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Abstract: This paper proposes to use deep reinforcement learning for the simulation of a physics-
based musculoskeletal model of transfemoral prostheses’ users during the transition between level-
ground walking and stairs ascend. The deep reinforcement learning algorithm uses the proximal
policy optimization with covariance matrix adaptation and imitation learning to guarantee the
level ground walking and the ascension of stairs. The optimization algorithm is implemented
for the OpenSim model of transfemoral prosthesis’ users. The transfemoral prosthesis has two
actuators for the knee joint and the ankle joint. This study shows that the model can only take
a step while normal walking, starting with the prosthesis, and it has not been able to take the
second step, the transition to ascending the stairs, even with the increase of 50% of the maximum
muscles’ force.

1 Introduction

Computer simulations are used to study the dy-
namic behavior of objects or systems in response to
conditions that cannot be easily or safely applied
in real life (Britannica, 2021): analyzing the biome-
chanics of both healthy and impaired gait patterns
(Geijtenbeek, van de Panne, and van der Stap-
pen, 2013), (Ong, Geijtenbeek, Hicksand, and Delp,
2019), and to understand how assistive devices and
prostheses can provide valuable support to com-
pensate for abnormalities (Ranz, Wilken, Gajewski,
and Neptune, 2017), (Harandi, Ackland, Haddara,
Lizama, Graf, Galea, and Lee, 2020).

This study aims to apply deep reinforcement
learning (DRL) for physics-based musculoskele-
tal simulations of transfemoral (above-knee) pros-
theses’ users during the transition between level-
ground walking and stairs ascent. We use a
DRL Algorithm, the Proximal Policy Optimization
(PPO) (Dhariwal, Hesse, Klimov, Nichol, et al.,
2017), together with Covariance Matrix Adap-
tation (Hämäläinen, Babadi, Ma, and Lehtinen,
2020) (PPO-CMA), and imitation learning (Peng,
Abbeel, Levine, and van de Panne, 2018). The im-
itation data used is from a public data set (Ca-

margo, Ramanathan, Flanagan, and Young, 2021).
After training, the resulting gait patterns of the
prostheses’ model are compared to the imitation
data set to study the effects of a transfemoral pros-
thesis on the gait patterns and muscle’s forces.
Also, the comparison is used to analyze the required
actuators’ forces of the prosthesis.

This study is based on the work of a pre-
vious Bachelor’s student, (de Vree and Carloni,
2021), where reinforcement learning has been used
for physics-based musculoskeletal simulations of
healthy subjects and transfemoral prostheses’ users
during normal walking. The previous work intro-
duced a generic musculoskeletal model of a trans-
femoral amputee, without using actuators (but
with a generic prosthetic device with two ago-
nists/antagonist muscle-like actuators at the knee
joint and two at the ankle joint), and the PPO algo-
rithm with imitation learning for the transfemoral
amputee and the healthy model to achieve level-
ground walking.

This study proposes to use a DRL algorithm
(PPO-CMA with imitation learning) to simulate
the forward dynamics of an agent during the tran-
sition between normal walking and stairs ascend.
The model is trained on a DRL algorithm which is
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based on a critic network that estimates the value
of the importance of being in an action-state pair
(the advantage function), and two deep neural net-
works (one for the policy mean and one for the pol-
icy variance) that receives an advantage function
and the observed muscles’ and joints’ states of the
agent as inputs, and outputs the mean and variance
for sampling/exploring actions.

Figure 1.1 shows the diagram of the proposed
DRL algorithm. The main loop describes the order
of actions at each time step. The agent receives the
input action and simulates it. The simulation re-
turns the new observation state of the agent which
is used in the policy training. In addition, the sim-
ulation leads to computing the reward. The joint
angles and velocities from the simulation are com-
pared to the ones in the imitation data. The reward
and the observe state help train the policy.

This study aims for three main additions to the
paper of de Vree and Carloni (2021).

Firstly, this paper uses a new musculoskeletal
model of a transfemoral amputee with a prosthe-
sis in the open-source software OpenSim (Delp,
Anderson, Arnold, Loan, et al., 2007). The model
consists of 15 muscles and two actuators to con-
trol 14 degrees of freedom. There are 11 muscles
in the healthy leg (the right leg) and four muscles
at the hip joint of the amputated leg (the left leg).
The two actuators replace the knee and ankle joints
(Internal-Research, 2021).

Secondly, this study focuses on a different ac-
tivity for the model to train on. A new object is
introduced in the environment, a set of stairs (each
stair has a height of 11 cm). The goal is for the
model to train on the transition between normal
walking and ascending the stairs. To achieve this
activity, an imitation data set is used and scaled
for the model (Camargo et al., 2021).

Thirdly, an improvement is proposed by us-
ing PPO with Covariance Matrix Adaptation
(Hämäläinen et al., 2020), a hybrid method
between on-policy and off-policy Reinforcement
Learning methods. PPO-CMA outputs a continu-
ous action space, and it also performed better than
PPO in eight out of nine tests made by Hämäläinen
et al. (2020).

To summarize, the contributions of this paper
are the following:

(1) To find and process the data used for the

imitation learning

(2) To implement PPO-CMA with imitation-
learning on the new activity: transition between
normal-walking and stairs ascend

(3) To observe whether the model can start
ascending the stairs with the healthy leg or with
the prosthetic one.

Figure 1.1: The proposed DRL algorithm for the
dynamic optimization of the forward dynamic of
the agent during the transition between normal
level-ground walking and stairs ascend

The remainder of the paper is organized as
follows. Section 2 describes the theoretical back-
ground on optimization strategies and DRL. Sec-
tion 3 describes the materials used in this study.
Section 4 presents the methodology and implemen-
tation of this paper, i.e., the neural network and
the optimizer for training the model. The empir-
ical results are presented and discussed in Section
5. Finally, concluding remarks are drawn in Section
6.

2 Theoretical Background

This section discusses the motivation behind the
choice of using DRL with PPO-CMA and imitation
learning on a model built in OpenSim in this study.

A. OpenSim

Opensim is an open-source software for model-
ing, simulating, controlling, and analyzing the hu-
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man neuromusculoskeletal system. It performs in-
verse and forward dynamics, which allows for
simulations of human locomotion (Delp et al.,
2007). In the previous work, (de Vree and Car-
loni, 2021), two algorithms, PPO and PPO with
imitation learning, were used on a musculoskele-
tal model built-in OpenSim. This study builds on
the above-mentioned paper, consolidating the rea-
son to choose the same software. The NeuroIPS
2018 AI for Prosthetics challenge’s task ( Lukasz
Kidziński, Ong, Mohanty, Hicks, et al., 2019) was
to build a controller for a musculoskeletal model
to match a given time-varying velocity vector. The
model used in the challenge is built in OpenSim,
and from the 10 top algorithms used in the compe-
tition, four are PPO. This study has a similar goal,
building a controller for a musculoskeletal model
to match a data set, which motivates the choice for
using OpenSim. The open-source software allows
for calculating forces generated by muscles, build-
ing, manipulating, and interrogating biomechanical
models, and also the changes in musculoskeletal dy-
namic due to human-device interaction can also be
simulated (Seth, Hicks, Thomas K. Uchida, and an-
dothers, 2018). OpenSim was also used to predict
gait adaptation when weakening or contracting the
plantar flexor muscle (Ong et al., 2019), a similar
task to observing the gait pattern of a model using
a prosthesis.

B. Transfemoral Prostheses and DRL

Previous research has shown that DRL may pro-
vide an effective tool in studying different types of
prostheses, which is one of the main reasons for
choosing DRL in this study. First of all, in the
NeurIPS 2018 Artificial Intelligence for Prosthetics
challenge, results have shown that DRL can find
solutions in which the model (a transtibial am-
putee model with a prosthesis) learns a policy to
efficiently move forward ( Lukasz Kidziński et al.,
2019). In addition, most of the current contribu-
tions to prosthetics research that use DRL are ap-
plications to arm prostheses. Katyal, Staley, Jo-
hannes, I., Reiter, and Burline (2016) shows the
use of a neural network in combination with re-
inforcement to learn a policy for in-hand manipu-
lation from raw images. Mudigonda, Agrawal, De-
weese, and Malik (2018) argues that it is possible
to learn robust grasp policies for anthropomorphic

hands using DRL.
Secondly, the model’s muscles’ activations need

continuous values between 0 and 1, i.e. an infinity
of values, not only two. The reason for the contin-
uous actions space comes from the fact that the
muscles can be partially activated, and if the value
0 would mean inactivated, and the value 1 would
mean fully activated, then our model’s muscles’ can
receive values anywhere in between the two limits.
Moreover, the same applies to the two actuators,
with the exception that the values can be between
-1 and 1. DRL is specialized to deal with continu-
ous action spaces, which makes the choice of using
it in this study advantageous.

Thirdly, de Vree and Carloni (2021) argues that
DRL can be effectively applied to transfemoral
prostheses. The results showed that DRL can gen-
erate a stable gait with a forward dynamic compa-
rable to the healthy subjects, for the physics-based
musculoskeletal model of the transfemoral prosthe-
ses’ users.

C. PPO-CMA

The change from PPO to PPO-CMA from the pre-
vious work, (de Vree and Carloni, 2021), is backed
up by the fact that PPO-CMA performs better
than PPO in eight out of the nine RoboSchool en-
vironments tested (Hämäläinen et al., 2020).
PPO-CMA is a model-free reinforcement learning
approach. It is also a hybrid method between on-
policy and off-policy algorithms. The policy’s mean
is updated using on-policy experience, but vari-
ance update includes older off-policy experience,
(Hämäläinen et al., 2020). PPO-CMA was tested
on continuous control problems, training a 3D
humanoid, (Roboschool, Brockman, Cheung, Pet-
tersson, Schneider, Schulman, Tang, and Zaremba
(2016)) tasks similar to the ones in this study,
motivating the reason for choosing PPO-CMA
(Hämäläinen et al., 2020). In addition, PPO-CMA
uses an adaptation of the evolutionary algorithm
Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) that is often used as an optimizer in
robotic applications (Hansen, 2006). CMA-ES was
also used in two other similar circumstances to our
training goal, one for the use of torque-control of
a powered ankle-foot prosthesis (Yin, Pang, Xiang,
and Jing, 2018), and as an optimizer to create gait
patterns for two simulation models in OpenSim,
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one healthy subject and a subject with ankle weak-
nesses.

D. PPO-CMA with imitation learning

In this study, PPO-CMA with imitation learning is
used, because the results from (de Vree and Carloni,
2021) paper show a better performance of the PPO
with imitation on normal walking than PPO. Con-
trollers trained with DRL exhibit artifacts, such as
peculiar gaits, unrealistic posture, or erratic pat-
terns in the muscles’ forces which can be avoided
by using an imitation data term (Peng et al., 2018).
The imitation learning part in the algorithm helps
when creating a reward function for natural move-
ment. The choice of adding the imitation learning
part also comes from the chosen activity.

3 Materials

A. The model

In OpenSim, a musculoskeletal model consists of
rigid body segments connected by joints. Hill-type
muscles connect these joints and produce forces
and motion (Hill, 1938). OpenSim allows the user
to observe and analyze a wide range of topics:
the effects of geometry, the joint kinematics, and
the properties on the muscle-tendon’s forces and
joint’s moments. For the implementation of the
DRL algorithm, this paper makes use of an adap-
tation of the environment in (Kidzinski, Mohanty,
Ong, Hicks, Carroll, Levine, Salathé, and Delp,
2018) which provides a link between the OpenSim
software and the Python programming language
(www.python.org).
This study uses a new musculoskeletal model of a
transfemoral amputee with a prosthesis (Internal-
Research, 2021). The model has 15 muscles and
two actuators to control 14 degrees of freedom. The
muscles are divided into 11 for the healthy leg and
four at the hip joint of the amputated leg. The two
actuators replace the knee and ankle joints (con-
cerning Figure 4.1).

The model presented contains simulated biolog-
ical muscles based on a first-order dynamic Hill-
type muscle model between excitation and activa-
tion (Thelen, 2003). Figure 4.2 shows the Hill-type
muscle model including a contractile element (CE),

Figure 3.1: Overview of the muscles used in the
models, the ones present in the healthy leg and
the ones in the prosthetic leg

a parallel elastic element (PE), and a series elas-
tic element (SE). The generated muscles force is a
function of three factors: the length, the velocity,
and the activation level, which can range between
0% and 100 % (in the neural network, this is trans-
lated into values ranging from 0 to 1), On the other
hand, the two actuators need activations between
-1 and 1. The muscle activations generate a move-
ment as a function of muscle properties, such as the
maximum isometric force, the muscle fiber length
LM , the tendon slack length LT , the maximum con-
traction velocity, and the pennation angle αM

Figure 3.2: Hill-type muscle model that de-
scribes the musculo-tendon contraction mechan-
ics in the model (Hill, 1938). It includes a con-
tractile element (CE), a parallel elastic element
(PE), and a series elastic element (SE). The el-
ements generate a force on the tendon (Thelen,
2003)

Based on the observation of the state vector, the
DRL algorithm outputs a vector of 15 muscle exci-
tations and 2 actuator excitations. OpenSim com-
putes the muscle activations from the excitations
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by using first-order dynamics equations of a Hill-
type muscle model. During each time-step of 5ms
the simulation: (i) computes the activations of the
muscles based on the provided excitation vector;
(ii) actuates the muscles; (iii) computes the torques
based on the activations; (iv) computes the ground
reaction forces; (v) computes the positions and the
velocities of the joints and the bodies’ segments;
(vi) generates a new state based on the forces, ve-
locities, and positions of the joints.

B. The stairs

The environment around the model created by
Internal-Research (2021) was modified to match the
new activity. A new contact geometry was built
and added: the stairs. The object was constructed
in blender (www.blender.org) with some final ad-
ditions in MeshLab (www.meshlab.net). Each step
of the stairs has a height of 11 cm and a depth
of 30 cm. The top of the stairs has a length of 1
m. The stairs, the platform (the ground), the two
toes (per leg) spheres and the hill (per leg) sphere
are contact geometries, i.e. they can interact with
each other. As a contact geometry, the stairs have
specific parameters used for their elastic foundation
force, presented in Table II.

Parameter Value
Stiffness 50000000
Dissipation 5
Static friction 0.9
Dynamic friction 0.9
Viscous friction 0.9

Table II: The stairs’ parameters chosen on the
base of DeMers et al. (2017)

C. Data Preparation

The data used for the imitation learning part of
the algorithms is from a public data set Camargo
et al. (2021). The data set provides the marker data
for each subject performing various activities to-
gether with the subject’s OpenSim model. From
the 22 subjects, the participant closest in height
and weight to the model was chosen. The data was
collected using markers. The stairs activities from
the data set include four types of stairs of different

dimensions. The data that contains the stairs with
the smallest stair height is used, i.e., one data set
for starting the activity with the left leg and one for
starting the activity with the right leg. The marker
data for both situations was uploaded to OpenSim
to rotate it to match the direction our model is fac-
ing. After the rotation of the data, the model of
the subject from the data set was also uploaded to
OpenSim, together with the weights of each marker
to perform inverse kinematics. To the inverse kine-
matics data, the velocities were added, and the an-
gles measured in degrees were changed to radians.
The above resulted in a CSV file to be used in im-
itation learning. To check if the modifications re-
sulted in the correct data for imitation learning, the
CSV file was transformed into an MOT file which
was uploaded to OpenSim. An MOT file simulates
a motion using an OpenSim model. The motion is
identical to the one in the original data set, with the
exception that the motion is rotated 90 degrees.

4 Methods and Implementa-
tion

This paper proposes to use a DRL algorithm (PPO-
CMA with imitation learning) so that the muscu-
loskeletal model of a transfemoral amputee with a
prosthesis learns how to transition between walking
on a flat surface at a normal speed and stairs as-
cending. The remainder of this Section details the
components of the DRL algorithm and its imple-
mentation of the OpenSim musculoskeletal model.

Figure 4.1: The proposed DRL algorithm (in de-
tail) for the dynamic optimization of the for-
ward dynamic of the agent during the transition
between normal level-ground walking and stairs
ascend
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A. Deep Neural Networks

DRL algorithms use deep neural networks. This pa-
per proposes the use of three multi-layer percep-
trons, feed-forward artificial neural networks, the
same structure as de Vree and Carloni (2021). Two
neural networks are for training the policy mean
and variance, and the third neural network is a
critic network. This structure is used to implement
the PPO-CMA algorithm Hämäläinen et al. (2020).
The mean policy represents the mean of the Gaus-
sian distribution for each output neuron. The vari-
ance policy represents the standard deviation of the
Gaussian distribution for each output neuron. All
three of the networks have two hidden layers with
128 neurons each. The critic network has an in-
put layer of 89 neurons (the state dimension + 1)
and an output layer of 1 neuron. The critic network
computes the value-function prediction. The policy
mean and variance networks have an input layer of
88 neurons and an output layer with 17 neurons.
The neurons in the input layer correspond to the
state of the model: 9 neurons for the pelvis position,
rotation, and velocities, for each leg three neurons
for the ground reaction forces, four neurons for the
positions of the joints, and four neurons for the ve-
locities of the joints, three neurons for the normal-
ized force, length and velocities of 15 muscles, and
six neurons for the force, speed, control, actuation,
power and stress of each ankle and knee actuator.
Table I summarizes the state variables of the agent.
The output of the policy deep neural networks rep-

Model
Pos+Rot+Vel of the pelvis 9
Pos+Rot+Ground Reaction Forces for each leg (4+4+3) * 2
Normalized force, length
and velocities for 15 muscles

3*15

Force, speed, control, actuation,
power, stress for the knee and ankle actuators

6*2

Total size of the state vector 88

Table I: The state variables of the agent

resents the mean and variance of the action, i.e.,
a 17-dimensional vector, where 15 variables repre-
sent the activation of the muscles in the model and
two variables represent the activation for the knee
and ankle actuators. Out of the 15 variables for the
muscles activation, 11 correspond to the muscles of
the healthy leg (the right leg) and four correspond
to the muscles of the amputee’s leg (the left leg).

Both the state vector and action vector are contin-
uous variables, which entails that the values they
contain are neither binary nor binned to a certain
distribution. The activations of the muscles have
values between 0 and 1, whereas the actuators have
activation values between -1 and 1. The variance
network represents the balance between exploration
and exploitation.
For each neuron vi, the output y is calculated using
a general output function, Leaky ReLU, i.e.:

y(vi) = argmax
x∈X

(α ∗ x, x) (4.1)

where X is the set of inputs of the neurons from
the previous layer. The above activation function
returns x for positive input, and for a negative one,
it returns a small portion of x (usually, α is 0.01).
Our goal is to optimize the weights in the neural
networks such that, for each given state, the deep
neural network outputs the optimal mean and vari-
ance for the action to allow the agent to start walk-
ing and transition to stairs ascending.

B. The Learning Algorithms

The following subsections discuss the learning al-
gorithms used to train the neural networks (opti-
mizing the weights in the neural network such that
the networks outputs desirable actions based on the
state input).

1) Proximal Policy Optimization - Covari-
ance Matrix Adaptation

At time t, the agent observes a state vector st and
takes an action at →πΘ(at|st), where πΘ represents
the policy parameterized by Θ. As presented ear-
lier, PPO-CMA trains two separate networks for
the policy, one for the mean policy and one for the
variance policy. This method is called the rank-µ
update, and it is specific to the CMA-ES optimiza-
tion. The rank-µ update first updates the covari-
ance and only then updates the mean (Hansen,
2016). The effect of this method is extending the
exploration distribution along with the best search
directions. Executing the sampled action from the
respective mean and variance results in a new state
s′t and a scalar reward rt. The goal is to find Θ that
maximizes the expected future-discounted sum of
rewards E[Σ∞

t=0γ
trt], where γ is a discount fac-

tor that shows the importance of long-term gains.
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PPO-CMA collects experience tuples [si, ai, ri, s
′
i]

by simulating a number of episodes in each opti-
mization iteration.
The muscles’ activations are represented as a con-
tinuous action space described by a Gaussian pol-
icy. PPO-CMA builds a policy network that out-
puts state-dependent mean µΘ(s) and covariance
CΘ(s) for sampling the actions. The loss func-
tion, which needs to be minimized, uses a diago-
nal covariance matrix parameterized by a vector
cΘ(s) = diag(CΘ(s)), (Hämäläinen et al., 2020):

LΘ =
1

M
ΣMi=1A

π(si, ai)Σj [
(ai.j − µj;Θ(si))

2

cj;Θ(si)
+

+0.5 ∗ log cj;Θ(si)]

(4.2)

where i indexes over a minibatch, j indexes over
action variables, and M is the minibatch size.
Aπ(si, ai) denotes the advantage function, which
measures the benefit of taking action ai in state si.
PPO-CMA maintains a history of experience over
H iterations which is used in training the variance
network. The mean policy is trained with the ex-
perience received from the last iteration. The critic
network is also trained using the experience from
the last iteration. The critic network helps com-
pute the advantage function. The advantage func-
tion Aπ(si, ai) measures the benefit of taking ac-
tion ai in state si. Positive advantage means that
the action was better than average and minimiz-
ing the loss function will increase the probability of
sampling the same action again.
Table 3.1 summarizes the hyperparameters and
specifications used in the PPO-CMA learning al-
gorithm as suggested in Hämäläinen et al. (2020).

Parameter Value Parameter Value
Iterations 200-250 Adam learning 0.0003
Episodes 3200-4900 Hidden layers per neural network 2
Steps 1.500.000-1.700.000 Neurons per hidden layer 128
Training time 36-48 (hours) Neurons in policy networks’ input layer 88
Policy network(s) 2 Neurons in critic network’s input layer 89
Critic network(s) 1 Neurons in policy networks’ output layer 17
Activation function Leaky ReLU Neurons in critic network’s output layer 1
Batch size 4040 History buffer size 12

Table 4.1: The hyperparamteres and specifica-
tions used in PPO-CMA learning algorithm dur-
ing training

2) Proximal Policy Optimization - Co-
variance Matrix Adaptation with imitation
learning

The reward function provides the agent with infor-
mation about the value of its actions. The only in-
formation the model receives is a reward after each
action. The agent’s behaviors are based upon max-
imizing the reward. In this paper, the reward func-
tion only uses an imitation data term. The added
imitation term uses experimental data (Camargo
et al., 2021) to ensure that the algorithm converges
to a solution and that the agent develops a natural
walking pattern. For each time step, both the po-
sition and the velocity loss of the pelvis (Equation
4.5), knee, hip, and ankle joints are calculated. This
is done by taking the sum of the squared error of
the difference between current angles of the agent’s
joint the joint’s angles in the data in Camargo et al.
(2021) at a specific time-step (Equation 4.3). The
same is done for the velocities, where their losses
are calculated by the difference between the cur-
rent velocities of the agent’s joints and the joint’s
velocities in the data in Camargo et al. (2021) at
specific time-steps (Equation 4.4). These losses rep-
resent a penalty, as the reward function doesn’t add
a positive reward, only a negative. The higher the
losses, the lower the reward. This encourages the
agent to keep its states as close to the ones in the
data as possible. The simulation stops every time
the pelvis of the model drops below 0.6 m or if the
legs cross (one of the legs goes through the other).
This method is called early stopping, and it is used
based on Peng et al. (2018). In Peng et al. (2018) ev-
ery time the actions of the model deviate too much
from the imitation data, the simulation restarts. By
using this method, the reward for the respective
episode is cut short and the action’s probability to
be chosen again minimizes.

position rewardt = (pelvis positiont−

pelvis position imitation datat)
2 + (ankle positiont−

ankle position imitation datat)
2 + (knee positiont−

knee position imitation datat)
2 + (hip positiont−

hip position imitation datat)
2

(4.3)
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velocity rewardt = (pelvis velocityt−

pelvis velocity imitation datat)
2 + (ankle velocityt−

ankle velocity imitation datat)
2 + (knee velocityt−

knee velocity imitation datat)
2 + (hip velocityt−

hip velocity imitation datat)
2

(4.4)

total rewardt = e−(position rewardt+velocity rewardt)

(4.5)

C. Validation data-set

For validating the proposed DRL algorithms and,
specifically, for implementing the imitation learning
reward term, we use the experimental data taken
from a public data-set (Camargo et al., 2021). The
subjects in Camargo et al. (2021) perform each ac-
tivity twice. In the imitation data, the first trial is
used, and for validating purposes, the second trial
is used. The data-set contains full-body motions,
EMG, and ground reaction forces. This paper uses
the pelvis, hip, knee, and ankle joints’ angles, and
velocities.

5 Results and Discussion

This Section presents the results of the DRL al-
gorithm (PPO-CMA with imitation learning). The
first part will show the results of the comparison
between the simulation where the model starts the
activity with the healthy leg and the simulation
where the model starts the activity with the pros-
thetic leg. The second part will discuss the limita-
tions and future outlook.

A. First step with the prosthetic leg

1) Normal muscles’ force

Figure 5.1 shows the performance of the DRL al-
gorithm on the trial where the model should start
the activity with the prosthetic leg. The blue curve
shows the reward received by the model in each
episode, and the red curve shows the number of
timesteps the model was “alive“ (did not fall or
make an illegal action) in each episode. Given that
at each timestep the maximum reward the model
can receive is one, the red curve also shows the max-
imum reward the model could have gotten at each
episode. It can be noted that after 3500 episodes,

the model does not learn anymore. In the first 3500
episodes, the model learns to initiate a step with the
prosthetic leg however, it does not learn to lean for-
ward and lean on the prosthesis.

Figure 5.1: The learning curve of the DRL algo-
rithm (PPO-CMA with imitation learning) on
the task of transitioning between normal walk-
ing and stairs ascend, starting with the pros-
thetic leg. The graph on the top shows on the
y-axis the reward and on the x-axis the number
of episodes. The graph on the bottom shows on
the y-axis the number of timesteps and on the
x-axis the number of episodes

Because of the above-mentioned observations, we
tried to increase the maximum muscles’ force and
the maximum actuator’s force by 50%.

2) Increased muscles’ force

Figure 5.2 shows the performance of the DRL al-
gorithm on the trial where the model should start
the activity with the prosthetic leg, with the mus-
cles’ maximum force increased by 50%. The blue
curve shows the reward received by the model in
each episode, and the red curve shows the number
of timesteps the model was “alive“ (did not fall or
make an illegal action) in each episode. By compar-
ing the learning curves for this trial with the trial
where the muscles’ forces are not increased, we can
see that they follow the same trend. After 2000-
2500 episodes, the model stops learning and the
rewards also become unstable. The model learns to
initiate a step, although more chaotically than in
the trial without the increase of the muscles’ force,
but it does not learn how to lean forward or how
to lean on the prosthesis.
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Figure 5.2: The learning curve of the DRL algo-
rithm (PPO-CMA with imitation learning) on
the task of transitioning between normal walk-
ing and stairs ascend, starting with the pros-
thetic leg with increased muscles force. The
graph on the top shows on the y-axis the re-
ward and on the x-axis the number of episodes.
The graph on the bottom shows on the y-axis
the number of timesteps and on the x-axis the
number of episodes

B. First step with the healthy leg

1) Normal muscles’ force

Figure 5.3 shows the performance of the DRL algo-
rithm on the trial where the model should start the
activity with the healthy leg. The blue curve shows
the reward received by the model in each episode,
and the red curve shows the number of timesteps
the model was “alive“ (did not fall or make an il-
legal action) in each episode. Compared to Figure
5.1 where the model should start the activity with
the prosthetic leg in this trial, the learning does not
stop. On the other hand, although the reward per
episode is increasing, the movement of the model
does not follow the imitation data. The model tries
to bend the healthy knee in an attempt to lift the
leg and take the first step, but it cannot move the
leg in a forward direction because it cannot lean on
the prosthetic leg. The reward keeps increasing be-
cause the model learns not to fall for an increasing
number of timesteps, but it does not learn to imi-
tate the data. The number of timesteps the model is
alive increases so much that the model starts learn-
ing to take the second step, although it did not take
the first step yet.

As mentioned for the trial where the model
should start the activity with the prosthetic leg,

we tried to increase the maximum muscles’ force
and the maximum actuator’ force by 50%.

Figure 5.3: The learning curve of the DRL algo-
rithm (PPO-CMA with imitation learning) on
the task of transitioning between normal walk-
ing and stairs ascend, starting with the healthy
leg. The graph on the top shows on the y-axis
the reward and on the x-axis the number of
episodes. The graph on the bottom shows on
the y-axis the number of timesteps and on the
x-axis the number of episodes

2) Increased muscles’ force

Figure 5.4 shows the performance of the PPO-
CMA algorithm on the trial where the model
should start the activity with the healthy leg, with
an increase of the muscles’ maximum force by
50%. The blue curve shows the reward received
by the model in each episode, and the red curve
shows the number of timesteps the model was
“alive“ (did not fall or make an illegal action) in
each episode. By comparing the learning curves
for this trial with the trial where the muscles’
forces are not increased, we can see that the
reward per episode keeps increasing, although
the model cannot take a step. The model bends
its healthy knee in an attempt to lift the leg
to move it forward, but because it cannot lean
on the prosthetic leg, it cannot lift the leg. The
reward keeps increasing because the model learns
not to fall for an increasing number of timesteps,
but it does not learn to imitate the data. The
number of timesteps the model is alive increases so
much that the model starts learning to take a sec-
ond step, although it did not take the first step yet.
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Compared to the trial where the muscles’ forces
are not increased, in this trial, the learning starts
much later. For 1500 episodes, the model does not
learn anything, followed by a steep increase in the
reward per episode. The number of timesteps the
model is alive per episode also stabilizes after 1500
episodes, but it does not increase afterward.

Figure 5.4: The learning curve of the DRL algo-
rithm (PPO-CMA with imitation learning) on
the task of transitioning between normal walk-
ing and stairs ascend, starting with the healthy
leg with increased muscles force. The graph on
the top shows on the y-axis the reward and on
the x-axis the number of episodes. The graph
on the bottom shows on the y-axis the number
of timesteps and on the x-axis the number of
episodes

C. Limitations and Future Outlook

As shown in the previous sections, deep reinforce-
ment learning, i.e. PPO-CMA with imitation learn-
ing, is not able to generate a stable gait with a
forward dynamic comparable to the healthy sub-
jects for the physics-based musculoskeletal model of
the transfemoral prosthesis users. Future research
should focus on investigating how the two actua-
tors influence the learning of the model. In de Vree
and Carloni (2021), both the healthy model and the
amputee model converge to a stable gait pattern,
however, the model with a prosthesis used in this
study cannot learn to take a step. A possible solu-
tion could be found in the activation of the muscles
and actuators. When receiving an input, the mus-
cles gradually activate towards the received input.
On the other hand, the actuators jump to the re-
ceived signal. The difference between how the mus-

cles and actuators activate can lead to the reason
why the model cannot take a step. Another possible
solution can be found in the range of activations for
the two actuators. Muscles receive activation values
ranging from 0 to 1, and actuators receive activa-
tion values ranging from -1 to 1. The difference in
range causes two out of the 17 output neurons of
the policy networks to need twice as much training
as the rest of the neurons.

Another idea for future research could focus on
creating a reward function that does not use only
the imitation data. This could be achieved by divid-
ing the activity into steps. It could start by creating
a reward function similar to the one in de Vree and
Carloni (2021) for the first step on the ground, and
then modeling a reward function for each step as-
cending the stairs.

6 Conclusions

By examining the usage of computer simulations
to study transfemoral prostheses and gait patterns,
this paper contributes to an expanding research
field. Being based on a paper on deep reinforcement
learning for physics-based musculoskeletal simula-
tions of healthy subjects and transfemoral prosthe-
ses’ users during normal walking (de Vree and Car-
loni, 2021), this paper hypothesized that similar
algorithm and methods could be used for study-
ing actuators as prostheses and also transitioning
between normal walking and stairs ascending.

Testing these predictions, we observed that deep
reinforcement learning, mainly PPO-CMA with im-
itation data, does not converge to a result for the
new transfemoral model in the task of transitioning
between normal walking and stairs ascending. The
model using the proposed method starts learning
the transitioning, but it stops at the first step, not
being able to continue. Future work will focus on
analyzing the actuators of the prosthetic leg and
the way the activation should happen in the actu-
ators compared to the muscles.
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