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Abstract
Minimal Realization Theory for Fixed Switched Linear Systems

by Maico Engelaar

In this paper, I will investigate whether results from minimal realization the-
ory for linear systems can be generalized to fixed switched linear systems,
under the condition that the minimal realizations are based on dynamical re-
lations given by the corresponding system types only. For this, both linear
systems and fixed switched linear systems will be introduced, observability
and controllability will be considered, and finally, minimal realization theory
will be formulated and generalized.
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Chapter 1

Introduction

Within the mathematical field of dynamical systems, there are many differ-
ent research areas. There is linear systems, non-linear systems, chaos theory,
system identification, stabilization theory and many others. Among them is
also the research area of Minimal Realization Theory, of which the objective is
to express a dynamical relation by means of as optimal as possible dynami-
cal systems. And it will be this area that will have the main focus during this
paper. However, why would minimal realization theory be of interest?

Consider for example the topic of system identification. System identification
is the methodology of constructing dynamical systems from input-output
data. While the main objective of system identification is to construct dynam-
ical systems that accurately represents the given input-output data, focusing
solely on accuracy could lead to some issues. In most cases, more accuracy
would imply more complexity. More complexity would, in turn, lead to less
ease of use. Computations could become more difficult and already existing
theorems and algorithms might not be applicable. Hence, it is important to
find a good balance between accuracy and complexity. One possibility, that
could be considered, would be to first construct a dynamical system that ac-
curately represents the given input-output data, and afterwards apply min-
imal realization theory to find the most optimal system descriptions. These
combined steps would then describe a possible first step within system iden-
tification, which then can be expanded upon.

Besides such a direct application, minimal realization theory can be also ex-
panded upon. First of all understand that the idea behind minimal realiza-
tion theory is to remove parts, from dynamical systems, that have no influ-
ence on the input-output behavior. Next understand that dynamical systems,
besides unnecessary parts, might also contain parts that have little influence
on the input-output behavior. Hence, a possible expansion would be to not
only remove unnecessary parts, but also less influential parts. This subject is
known as model reduction, another interesting and topical area within math-
ematics, which, unfortunately, will not be expanded upon, within this paper.

The above, of course, are just two of the many possible applications for min-
imal realization theory. Nevertheless, they clearly express the main objective
of minimal realization theory, namely to find the most optimal dynamical
systems to a given dynamical relation.
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1.1 Which Dynamical Systems will be considered?

Considering minimal realization theory for any and all possible dynamical
systems would be rather difficult and time consuming, hence, within this pa-
per, the main focus shall lie with two particular systems, namely the Linear
Systems and the Switched Linear Systems.

Linear systems are a well known subset of the dynamical systems. Many
books, articles and papers have been written about them and many more ap-
plications do exists. In addition, there exists many different types of linear
systems. In this paper, the main focus shall lie with the linear systems known
as the Continuous Time-Invariant Input-State-Output Linear Systems.

Switched linear systems, on the other hand, are a well known subset of the
so-called Hybrid Dynamical Systems. Without going into too much details, hy-
brid dynamical systems refer to dynamical systems in which both continuous
and discrete dynamics are present. In the case of switched linear systems,
the discrete dynamics will be given by the so-called Switching Signal, and the
continuous dynamics will be given by the linear systems between which will
be switched. For more information on hybrid dynamical systems, see, for
example, the book by v.d. Schaft et al. [9].

Unfortunately, though the area of switched linear systems is much smaller
then the area of dynamical systems, the area of switched linear systems is
still immense. Hence, it will be nigh impossible to consider the entire area of
switched linear systems within the time allocated to this thesis. This implies
that, similar to the linear systems, a subclass needs to be taken as the main
focus. In this paper this subclass will be the subclass of switched linear sys-
tems for which the switching signal is assumed to be fixed. This, of course,
doesn’t imply that "general" switched linear systems will be completely ig-
nored, but by and large the main focus shall not lie with each and every
possible switched linear system.

1.2 What are the Objectives?

In this paper, the main objective shall be to consider minimal realization the-
ory for linear systems and "fixed" switched linear systems. In particular, the
goal shall be to investigate whether results for the linear systems can be gen-
eralized to the "fixed" switched linear systems. Hereby, the main focus shall
lie with the case that the dynamical relations are given by, respectively, linear
systems and "fixed" switched linear systems. To rewrite this into an easy to
understand primary research question, consider the following.

Primary Research Question: Can results from minimal realization theory
for linear systems be generalized to "fixed" switched linear systems, under
the assumption that the minimal realizations are based on dynamical rela-
tions given by the corresponding system types only?
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In order to investigate this, within this paper, linear systems and "fixed"
switched linear systems shall be formally introduced, Observability and Con-
trollability shall be considered and finally, minimal realization theory shall
be formulated and generalized. To rewrite this into easy to understand sec-
ondary research questions, consider the following.

Secondary Research Question 1: What is the mathematical definition of lin-
ear systems and "fixed" switched linear systems and what are some of their
characteristics? (Chapter 2)

Secondary Research Question 2: What is observability and controllability
for linear systems and "fixed" switching linear systems? (Chapter 3)

Secondary Research Question 3: What are some important results from min-
imal realization theory for linear systems? (Chapter 4)

Secondary Research Question 4: Which results can be obtained with regards
to minimal realization theory for "fixed" switched linear systems? (Chapter 5)

In this paper, all these questions will be answered to the best of the author’s
ability. But first, consider the following overview regarding the topics that
will be discussed within this paper.

1.3 Overview

Before being able to consider minimal realization theory for either linear sys-
tems or "fixed" switched linear systems, first the relevant system types need
to be formally introduced. This will be done in Chapter 2. In particular,
in Chapter 2 linear systems, "general" switched linear systems and "fixed"
switched linear systems will be introduced, together with some of their char-
acteristics. In the case of linear systems, most information will be assumed
to be known to any mathematician, but possible references would be the
books [1, 7, 8]. In the case of "general" switched linear systems, most in-
formation will be a "generalization" of the linear case. Finally, in the case of
"fixed" switched linear systems, most information will be a simplification of
the "general" switched case.

After introducing all the relevant system types, next, in Chapter 3, the con-
cepts of observability and controllability will be introduced, for each system
type separately. These two concepts will be used later in Chapter 4 and Chap-
ter 5, when considering, respectively, minimal realization theory for linear
systems and minimal realization theory for "fixed" switched linear systems.
In the case of linear systems, most information will be assumed to be known
to any mathematician, but possible references would, again, be the books
[1, 7, 8]. In the case of "general" switched linear systems and "fixed" switched
linear systems, all information, regarding observability, will be obtained from
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the paper by Petreczky et al. [5]. For controllability, instead, there will be only
a brief statement.

After both the system types and the concepts of observability and control-
lability have been introduced, minimal realization theory for linear systems
will be studied in Chapter 4. In this chapter a distinction will be made be-
tween the so-called function case and the so-called system case. For each
case, realization theory shall be considered, minimal realization theory shall
be considered and an algorithm, to find minimal realizations, shall be con-
sidered. Since the function case is well known within the literature, many
references can be found. In this paper mostly the book by Antsaklis et al. [1]
will be used as reference material. For the system case, most information will
be a replication of the function case, but also the book by Polderman et al. [7]
shall be used. Important to know is that the main objective of this chapter is
to collect results from the system case, for this case will also be used in Chap-
ter 5 to investigate whether such results can be generalized to fixed switched
linear systems.

Finally, after minimal realization theory for linear systems, and in particu-
lar the linear system case, has been considered, minimal realization theory
for fixed switched linear systems will be studied in Chapter 5. In this chapter
only the system case shall be considered, contrary to Chapter 4. For this sin-
gular case, realization theory shall be considered, minimal realization theory
shall be considered and the generalization of the linear system case shall be
considered. Lastly, no references will be used within this chapter, since all
information will be provided by the author himself.
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Chapter 2

(Switched) Linear Systems

During the last century linear systems of the form

ẋ = Ax + Bu (2.1)
y = Cx + Du

have been studied in great detail, spanning multiple articles, books and stud-
ies, see for example [1, 2, 7, 8]. This interest comes from the fact that systems
of the form (2.1) have many applications, for example in control theory, me-
chanics, electrical engineering and many other fields. In this paper, however,
the main focus does not lie only with systems of the form (2.1). Instead, the
main focus also lies with systems that switch between systems of the form
(2.1) as time evolves. These kinds of systems are called switched linear sys-
tems.

2.1 Overview

Before minimal realization theory can be considered, first the relevant system
types need to be introduced. In this paper, the relevant system types shall
be the linear systems, the "general" switched linear systems and the "fixed"
switched linear systems. In particular, while the main focus does not lie with
the "general" switched linear systems, "general" switched linear systems will
still be introduced within this chapter, in order to create a solid foundation
within the area of switched linear systems. All-in-all, in this chapter, the main
objective will be to mathematically introduce linear systems (Paragraph 2.2),
"general" switched linear systems (Paragraph 2.3) and "fixed" switched linear
systems (Paragraph 2.4), together with some of their characteristics.

2.2 Linear Systems

In this paragraph, the idea is to formally introduce linear systems together
with some of their characteristics. Hereby a distinction will be made between
introducing the linear systems and considering input-output relations of lin-
ear systems. While most information in this paragraph will be assumed to be
known to any mathematician, possible references would be the books [1, 7, 8].
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2.2.1 Introducing Linear Systems

In this paper the general definition of linear systems shall be as follows.

Definition 2.2.1 (Linear Systems). A Continuous Linear Time-Invariant Input-
State-Output System, or Linear System for short, is a dynamical system given
by the following equations

ΣN :

{
ẋ(t) = Ax(t) + Bu(t), t ∈ R

y(t) = Cx(t) + Du(t), t ∈ R
(2.2)

where

• A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m are constant matrices.

• N is the 4-tuple given by N = (A, B, C, D).

• u : R → Rm is the piecewise continuous input function, i.e. u ∈
PC(R, Rm) (see Appendix A.2).

• x : R→ Rn is the continuous piecewise differentiable state-space func-
tion, i.e. x ∈ CPD(R, Rn) (see Appendix A.2).

• y : R → Rp is the piecewise continuous output function, i.e. y ∈
PC(R, Rp). �

Remark 2.2.2. Some remarks regarding Definition 2.2.1

(i) It might happen that the dimension of the state will be equal to zero,
i.e., n = 0. Should such a situation occur, the following should be kept
in mind (see Appendix A.7).

• x(t) = 00 for all t ∈ R.

• y(t) = Du(t) for all t ∈ R.

(ii) Similar to the dimension of the state-space, also the dimensions of the
input and/or the output could be zero. These situations, however, are
ignored within this paper. �

Remark 2.2.3 (Some remarks regarding simplification of notation). text
From now onwards, when a linear system ΣN is given, it will be assumed
that

• m, n and p represent, respectively, the dimension of the input u, the di-
mension of the state x and the dimension of the output y, unless stated
otherwise. This statement also holds true in the case N = Ni, m = mi,
n = ni and p = pi, for any i ∈N0.

• N = (A, B, C, D), unless stated otherwise. This statement also holds
true in the case N = Ni, A = Ai, B = Bi, C = Ci and D = Di, for any
i ∈N0. �
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Consider next the following definition regarding dimensions of linear sys-
tems.

Definition 2.2.4 (The Dimension of Linear Systems). Let ΣN be a linear sys-
tem. The dimension of ΣN will be given by the dimension of the state x,
i.e.

Dim(ΣN) := n �

Consider next the following definition regarding solutions of linear systems.

Definition 2.2.5 (Solutions of Linear Systems). (u, x, y) is said to be a solution
to a linear system ΣN if and only if

• u ∈ PC(R, Rm).

• x ∈ CPD(R, Rn) satisfies the first equation of (2.2) almost everywhere
(see Appendix A.1).

• y ∈ PC(R, Rp) satisfies the second equation of (2.2) for all t ∈ R. �

Consider next the following well-known lemma regarding solutions of linear
systems.

Lemma 2.2.6. Consider a linear system given by ΣN and assume that the following
are given.

• the input u ∈ PC(R, Rm)

• the initial state x(tb) ∈ Rn at initial time tb ∈ R

Then the unique state-space solution x is given by

x(t) = eA(t−tb)x(tb) +
∫ t

tb

eA(t−τ)Bu(τ)dτ. (2.3)

and the corresponding unique output solution y is given by

y(t) = CeA(t−tb)x(tb) +
∫ t

tb

CeA(t−τ)Bu(τ)dτ + Du(t). (2.4)

For an explanation on Lemma 2.2.6, see the books [7, 8].

2.2.2 Input-Output Relations

Consider the following deduction regarding the input-output relation, for
linear systems, when the initial state and the initial time are both equal to
zero.

Deduction 2.2.7. Consider a linear system ΣN that is given by the following
equations:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
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Applying a Laplace transform on both sides, results in the following equa-
tions:

sx̂(s)− x(0) = Ax̂(s) + Bû(s)
ŷ(s) = Cx̂(s) + Dû(s)

where û, x̂ and ŷ are, respectively, the Laplace transform of u, x and y. Solv-
ing for x̂, the following is obtained:

x̂(s) = (sIn − A)−1x(0) + (sIn − A)−1Bû(s)

Substituting this into the output part and assuming that x(0) = 0n, the result
will be a direct relation between input and output, in the Laplace domain,
given by:

ŷ(s) = C(sIn − A)−1Bû(s) + Dû(s)

This relation can also be written as

ŷ(s) = H(s)û(s)

where H(s) = C(sIn − A)−1B + D. This function H(s) is then called the
Transfer Function of linear system ΣN. �

For Deduction 2.2.7 all information was obtained from the book by Antsaklis
et al. [1]. Some information, regarding the Laplace transform, is also given
in Appendix A.4.

Consider next the following definition that states when two linear systems
are assumed to be input-output equivalent.

Definition 2.2.8 (Input-Output Equivalent Linear Systems). Two linear sys-
tems ΣN1 and ΣN2 are Input-Output Equivalent if and only if

S1 = {(u, y) | ∃ x such that (u, x, y) is a solution of ΣN1}

and
S2 = {(u, y) | ∃ x such that (u, x, y) is a solution of ΣN2}

satisfy that S1 = S2. �

As can be seen from Definition 2.2.8, it is not trivial to show that certain linear
systems do have the same input-output behavior. Luckily, there does exist a
lemma that makes it easier to show input-output equivalency in certain cases.

Lemma 2.2.9. Consider two linear systems ΣN1 and ΣN2 . If there exists a non-
singular matrix S such that SA1S−1 = A2, SB1 = B2, C1S−1 = C2, and D1 = D2,
then the two linear systems ΣN1 and ΣN2 are input-output equivalent.

Since the proof of Lemma 2.2.9 is rather trivial, it will be omitted in this pa-
per. Nevertheless, for those interested, an explanation to the proof can be
found in the book by Polderman et al. [7, Chapter 4.6]
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A particular topic that would be of interest next, is the relation between
transfer function and input-output equivalency. For this consider first the
following corollary.

Corollary 2.2.10. If two linear systems satisfy Lemma 2.2.9, they also share the
same transfer function.

Proof. Consider two linear systems ΣN1 and ΣN2 , and assume that they satisfy
Lemma 2.2.9. Let H1(s) and H2(s) be the transfer functions of, respectively,
ΣN1 and ΣN2 . Then the following holds true:

H2(s) = C2(sIn − A2)
−1B2 + D2

= C1S−1(sIn − SA1S−1)−1SB1 + D1

= C1S−1(sSS−1 − SA1S−1)−1SB1 + D1

= C1S−1S(sIn − A1)
−1S−1SB1 + D1

= C1(sIn − A1)
−1B1 + D1

= H1(s)

Hence, both linear systems have the same transfer function.

Remark 2.2.11. The above statement also holds true for the general case.
However, in order to proof the general case, some specific concepts first need
to be introduced. Combining this with the fact that no further mention of
the general case will be made within this paper, the general case shall be
ignored. �

Consider next the situation that two linear systems share the same trans-
fer function. It is easily shown that this does not guarantee that the linear
systems are also input-output equivalent. This is because, in general, the
transfer function does not contain information about the input-output rela-
tion when x(0) 6= 0, see also the following example.

Example 2.2.12. Consider two linear systems ΣN1 and ΣN2 and let

N1 =

0 0 1
0 0 0
0 0 0

 ,

1
0
0

 ,
[
1 0 0

]
, 0


N2 =

0 0 1
0 0 0
0 0 0

 ,

0
0
1

 ,
[
0 0 1

]
, 0


It is easily shown that both linear systems have the same transfer function
T(s) = 1

s . However, are they also input-output equivalent?

To answer this question, first assume that input u is constant 0, the initial
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time is 0 and the initial states, for the linear systems ΣN1 and ΣN2 , are, respec-
tively, given by

x1(0) =

a1
b1
c1

 ∈ R3 and x2(0) =

a2
b2
c2

 ∈ R3.

Using Lemma 2.2.6, the unique outputs of linear systems ΣN1 and ΣN2 are,
respectively, given by

y1(t) = a1 + c1t and y2(t) = c2.

Notice that if c1 6= 0, there do not exists values a1, a2, b1, b2, c2 ∈ R such that
y1 ≡ y2. Hence, it can be concluded that the two linear systems are not input-
output equivalent, even though they share the same transfer function. �

2.3 (General) Switched Linear Systems

In this paragraph the idea is to formally introduce the "general" switched
linear systems together with some of their characteristics. Similar to the lin-
ear systems, a distinction will be made between introducing the "general"
switched linear systems and considering input-output relations of "general"
switched linear systems. In this paragraph most of the information will be a
"generalization" of the linear case.

2.3.1 Introducing (General) Switched Linear Systems

Before introducing "general" switched linear systems, first the so-called switch-
ing signal needs to be introduced.

Definition 2.3.1 (Switching Signal). A Switching Signal σ : R→N0 is a func-
tion given by

σ(t) :=


s0 if t ∈ (−∞, t1)

s1 if t ∈ [t1, t2)
...
sl if t ∈ [tl, ∞)

(2.5)

where

• l ∈N∞
0 .

• t1 < t2 < · · · < tl.

• any finite interval I ⊂ R can contain only finitely many tq, q ∈ {1, 2,
. . . , l} (no Zeno behavior, see Appendix A.8). �

Remark 2.3.2. Some remarks regarding Definition 2.3.1

(i) Notice that both finite and infinite switching is allowed.
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(ii) The Indexed Family (see Appendix A.3) of all Switching Modes is given
by S := {sq ∈N0 | q ∈ {0, 1, 2, . . . , l}}.

(iii) The indexed family of all Switching Times is given by T := {tq ∈ R | q ∈
{1, 2, . . . , l}} if l > 0. In the case l = 0, hence no switching occurs, the
indexed family of all switching times will be empty, i.e. T = ∅. �

Consider the following lemma, without proof, regarding switching signals.

Lemma 2.3.3. Any switching signal can be expressed by means of an indexed family
of switching modes S and an indexed family of switching times T .

Remark 2.3.4. Some remarks regarding the notation of switching signals.

(i) In general, notation (2.5) shall be used to express switching signals. No-
tice, however, that switching from mode i back to mode i could lead
to confusion when using notation (2.5). Hence, an alternative descrip-
tion would be preferable in such cases. In this paper, this alternative
description will be given by the indexed family of switching modes
S and the indexed family of switching times T , which together com-
pletely describe a switching signal σ, see Lemma 2.3.3. This alternative
description will be used if at any point confusion may arise because of
notation (2.5).

(ii) To avoid tedious notations, it will be assumed that given a switching
signal σ, the corresponding indexed families S and T are also given,
even if they are not explicitly mentioned. �

Now that switching signals have been introduced, next consider the follow-
ing definition for "general" switched linear systems.

Definition 2.3.5 (General Switched Linear Systems). A General Switched Lin-
ear System, or Switched Linear System for short, is a dynamical system given
by the following equations

ΣM :


ẋq(t) = Aσ(t+q )xq(t) + Bσ(t+q )u(t), t ∈ (tq, tq+1)

xq(t+q ) = J(σ(t+q ),σ(t−q ))xq−1(t−q ), q ∈ {1, 2, . . . , l}
y(t) = Cσ(t)xσ(t)(t) + Dσ(t)u(t), t ∈ R

(2.6)

where

• t0 = −∞.

• D := {0, 1, 2, . . . , f }, f ∈ N∞
0 , is the Index Set (see Appendix A.3) of

linear systems between which can be switched.

• for (r, q) ∈ D×D, J(r,q) ∈ Rnr×nq are constant matrices.

• J := {J(r,q) | (r, q) ∈ D×D} is the indexed family of jump matrices.

• for q ∈ D, Aq ∈ Rnq×nq , Bq ∈ Rnq×m, Cq ∈ Rp×nq and Dq ∈ Rp×m are
constant matrices.
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• N := {nq ∈ N | q ∈ D} is the indexed family of linear system dimen-
sions.

• M := {(Aq, Bq, Cq, Dq) | q ∈ D} is the indexed family of linear systems.

• M is the 4-tuple given byM = (M,J ,N ,D).

• σ : R→ D is the switching signal.

• l = #T .

• tq ∈ T , for all q ∈ {1, 2, . . . , l} (see Appendix A.3).

• u ∈ PC(R, Rm) is the piecewise continuous input function.

• for each q ∈ {0, 1, 2, . . . , l}, xq ∈ CPD(R, R
n

σ(t+q )) is the (q + 1)th contin-
uous piecewise differentiable state-space function.

• y ∈ PC(R, Rp) is the piecewise continuous output function. �

Remark 2.3.6. Some remarks regarding Definition 2.3.5

(i) Notice that in the definition the switching signal σ is regarded as an in-
put similar to u. Therefore, only the 4-tupleM is required to be known,
to construct the corresponding switched linear system ΣM.

(ii) Notice that the definition allows the number of switching times and the
number of linear systems, between which can be switched, to be either
finite or infinite independent of each other.

(iii) Notice that the linear systems, between which can be switched, could
be of zero dimension. If this happens, for example for linear system
ΣNp , the following should be kept in mind.

• if σ(t+q ) = p then xq(t) = 00 for all t ∈ (tq, tq+1).

• if σ(t+q ) = p then y(t) = Dpu(t) for all t ∈ (tq, tq+1).

• ∀r ∈ D, J(p,r) : Rnr → R0 maps any element in Rnr to 00

• ∀r ∈ D, J(r,p) : R0 → Rnr is given by J(r,p)00 = 0nr .

(iv) Notice that between each switch the dimension of the state can change.

(v) Notice that if σ is constant, i.e. T = ∅, the result would be a linear
system.

(vi) Notice that if D = {0} and J(0,0) = In, i.e. one linear system and
no jumps, the resulting switched linear system would essentially be
a linear system. Hence why, switched linear systems can be considered
"generalizations" of linear systems.

(vii) Systems of the form (2.6) are also referred to as Switched Linear Systems
with Jumps, since the second equation in (2.6) can be interpreted as a
jump map.
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(viii) Notice that this definition is just one of many. Another possibility would
be to let nq = n for all q ∈ D and J(r,q) = In for all (r, q) ∈ D×D, see,
for example, the papers by Petreczky et al. [4, 6]. These types of sys-
tems are called Switched Linear Systems without Jumps. It is also possible
to expand on the current definition by including, for example, an input
at the jump map, see, for example, the paper by Petreczky et al. [5].

(ix) Notice that in the definition there is a difference between a constant
switching signal and a switching signal that switches from mode i back
to mode i. This is because matrix J(i,i), in general, is not equal to the
identity matrix.

(x) Consider again remarks (v) and (vi). Notice that since D and σ are
two independent mathematical objects, see remark (i), both remarks,
while seemingly stating the same, state completely different observa-
tions. �

Remark 2.3.7. Some general remarks regarding notation

(i) For a function f : R → Rn, f (t−) and f (t+) denote, respectively, the
left- and right-sided limit at t, assuming these limits exists.

(ii) In the case T is finite, tl+1 = ∞.

(iii) Notice that σ(−∞+) = σ(t−1 ). In the case t1 is undefined, σ will be
constant and thus σ(−∞+) will be equal to this constant. �

Remark 2.3.8 (Some remarks regarding simplification of notation). text
From now onwards, when a switched linear system ΣM is given, it will be
assumed that

• m and p represent, respectively, the dimension of the input u and the
dimension of the output y, unless stated otherwise. This statement also
holds true in the caseM =Mi, m = mi and p = pi, for any i ∈N0.

• M = (M,J ,N ,D), unless stated otherwise. This statement also holds
true in the caseM =Mi, M = Mi, J = Ji, N = Ni and D = Di, for
any i ∈N0. �

To get a better understanding of Definition 2.3.5, consider the following ex-
ample.

Example 2.3.9. Consider the three linear systems ΣN0 , ΣN1 and ΣN2 , where

N0 =

1 0 0
0 1 0
0 0 1

 ,

1
0
1

 ,
[
1 1 0

]
, 0


N1 =

([
1 0
0 1

]
,
[

1
0

]
,
[
1 1

]
, 1
)

N2 =

1 0 0
0 1 0
0 0 1

 ,

−1
0
1

 ,
[
1 1 0

]
, 0
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Let

J(0,0) = I3, J(1,0) =

[
0 0 1
0 1 0

]
, J(2,0) =

0 0 1
0 1 0
1 0 0

 ,

J(1,1) = I2, J(0,1) =

1 2
0 1
0 0

 , J(2,1) =

1 2
0 1
0 0

 ,

J(2,2) = I3, J(0,2) =

0 0 1
0 1 0
1 0 0

 and J(1,2) =

[
0 0 1
0 1 0

]
.

Switched linear system ΣM that switched between linear systems ΣN0 , ΣN1
and ΣN2 is now given by the 4-tupleM = (M,J ,N ,D) where D = {0, 1, 2},
N = {Dim(ΣNi) | i ∈ D}, J = {J(j,i) | (j, i) ∈ D × D} and M = {Ni |
i ∈ D}. �

Consider next the following definition regarding dimensions of switched lin-
ear systems.

Definition 2.3.10 (The Dimension of Switched Linear Systems). Let ΣM be a
switched linear system. The dimension of ΣM shall be given by the indexed
family of linear system dimensions i.e. Dim(ΣM) := N . �

Consider next the following definition regarding solutions of switched linear
systems.

Definition 2.3.11 (Solutions of Switched Linear Systems). (σ, u, x, y) is said
to be a solution to a switched linear system ΣM if and only if

• σ : R→ D is a switching signal.

• u ∈ PC(R, Rm).

• x is of the form

x(t) :=



x0(t) if t ∈ (−∞, t1),
x1(t+1 ) if t = t1

x1(t) if t ∈ (t1, t2),
x2(t+2 ) if t = t2
...
xl(t) if t ∈ (tl, ∞)

(2.7)

where

– l = #T .

– tq ∈ T , for all q ∈ {1, 2, . . . , l}.
– ∀q ∈ {0, 1, 2, . . . , l}, (u, xq, yq) is a solution of ΣN

σ(t+q )
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• x satisfies the second equation of (2.6) for all q ∈ {1, 2, . . . , l}.

• y ∈ PC(R, Rp) satisfies the third equation of (2.6) for all t ∈ R. �

Remark 2.3.12. Notice that x is not well-defined as a function, since x does
not have a fixed dimension. Nevertheless, to avoid tedious notations, through-
out this paper notation (2.7) shall be used instead of considering each mode
separately. �

Consider next the following lemma regarding solutions of switched linear
systems.

Lemma 2.3.13. Consider a switched linear system given by ΣM and assume that
the following are given.

• the switching signal σ : R→ D

• the input u ∈ PC(R, Rm)

• the initial state x(tb) ∈ R
n

σ(t−1 ) at initial time tb ∈ R, such that tb < t1

Then the unique state-space solution x is given by

x(t) =



e
A

σ(t−1 )
(t−tb)

x(tb) +
∫ t

tb

e
A

σ(t−1 )
(t−τ)

Bσ(t−1 )u(τ)dτ, if t ∈ (−∞, t1)

e
A

σ(t+1 )
(t−t1)

J(σ(t+1 ),σ(t−1 ))x(t
−
1 ) +

∫ t

t1

e
A

σ(t+1 )
(t−τ)

Bσ(t+1 )u(τ)dτ, if t ∈ [t1, t2)

e
A

σ(t+2 )
(t−t2)

J(σ(t+2 ),σ(t−2 ))x(t
−
2 ) +

∫ t

t2
e

A
σ(t+2 )

(t−τ)
Bσ(t+2 )u(τ)dτ, if t ∈ [t2, t3)

...

e
A

σ(t+l )
(t−tl )

J(σ(t+l ),σ(t−l ))x(t
−
l ) +

∫ t

tl

e
A

σ(t+l )
(t−τ)

Bσ(t+l )u(τ)dτ, if t ∈ [tl , ∞)

(2.8)

where l = #T . The corresponding unique output solution y can be constructed by
substituting equation (2.8) into the output part of equation (2.6).

Do notice that the proof of Lemma 2.3.13 is rather straightforward, when
given Lemma 2.2.6, and is therefore omitted in this paper.

2.3.2 Input-Output Relations

For switched linear systems it is difficult to express input-output behavior, in
the case the initial state and the initial time are both equal to zero, by means
of a transfer function. In particular, the Laplace transform is not as straight-
forward as for linear systems. Hence, within this paper, transfer functions
for switched linear systems will be ignored.

Instead, consider the following definition that states when two switched lin-
ear systems are assumed to be input-output equivalent.

Definition 2.3.14 (Input-Output Equivalent Switched Linear Systems). Two
switched linear systems ΣM1 and ΣM2 are Input-Output Equivalent if and only
if

S1 = {(σ, u, y) | ∃ x such that (σ, u, x, y) is a solution of ΣM1}
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and

S2 = {(σ, u, y) | ∃ x such that (σ, u, x, y) is a solution of ΣM2}

satisfy that S1 = S2. �

2.4 Fixed Switched Linear Systems

Now that the switched linear systems have been introduced, next would be
to introduce the "fixed" switched linear systems. One possibility would be
to consider, again, Definition 2.3.5 and assume that the switching signal be-
comes fixed. And indeed the dynamics given in Definition 2.3.5 are still ap-
plicable after fixing the switching signal. However, there does exists a more
convenient description instead.

In this paragraph the goal is to consider this alternative description, together
with some of its characteristics. Similar to before, a distinction will be made
between introducing the "fixed" switched linear systems and considering
input-output relations of "fixed" switched linear systems. In this paragraph
most information will be a simplification of the general switched case.

2.4.1 Introducing Fixed Switched Linear Systems

Before introducing the alternative description for "fixed" switched linear sys-
tems, first the so-called fixed switching signal needs to be introduced.

Definition 2.4.1 (Fixed Switching Signal). A Fixed Switching Signal σ : R →
N0 is a function given by

σ(t) :=


0 if t ∈ (−∞, t1)

1 if t ∈ [t1, t2)
...
l if t ∈ [tl, ∞)

(2.9)

where

• l ∈N∞
0 .

• t1 < t2 < · · · < tl.

• any finite interval I ⊂ R can contain only finitely many tq, q ∈ {1, 2,
. . . , l} (no Zeno behavior). �

Remark 2.4.2. Some remarks regarding Definition 2.4.1.

(i) Notice that, similar to Definition 2.3.1, both finite and infinite switching
is allowed.
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(ii) The indexed family of all switching times is again given by T = {tq ∈
R | q ∈ {1, 2, . . . , l}} if l > 0. In the case l = 0, hence no switching
occurs, the indexed family of all switching times will again be empty,
i.e. T = ∅.

(iii) Notice that in the definition the switching modes are fixed. The only
freedom left, in this definition, is in the values of the switching times
and in the number of switches. �

Consider the following lemma, without proof, regarding fixed switching sig-
nals.

Lemma 2.4.3. Any fixed switching signal can be expressed by means of an indexed
family of switching times T .

Remark 2.4.4. Similar to switching signals, to avoid tedious notations, it will
be assumed that given a fixed switching signal σ, the corresponding indexed
family T will also be given, even if T is not explicitly mentioned. �

Now that fixed switching signals have been introduced, next consider the
following definition for "fixed" switched linear systems.

Definition 2.4.5 (Fixed Switched Linear System). A Switched Linear System
with Fixed Switching Signal σ, or Fixed Switched Linear System for short, is a
dynamical system given by the following equations

ΣΓ :


ẋq(t) = Aqxq(t) + Bqu(t), t ∈ (tq, tq+1)

xq(t+q ) = Jqxq−1(t−q ), q ∈ {1, 2, . . . , l}
y(t) = Cσ(t)xσ(t)(t) + Dσ(t)u(t), t ∈ R

(2.10)

where

• t0 = −∞.

• D := {0, 1, 2, . . . , l}, l = #T , is the index set of linear systems between
which will be switched.

• for q ∈ D∗ := D− {0}, Jq ∈ Rnq×nq−1 are constant matrices.

• J := {Jq | q ∈ D∗} is the indexed family of jump matrices.

• for q ∈ D, Aq ∈ Rnq×nq , Bq ∈ Rnq×m, Cq ∈ Rp×nq and Dq ∈ Rp×m are
constant matrices.

• N := {nq ∈ N | q ∈ D} is the indexed family of linear system dimen-
sions.

• M := {(Aq, Bq, Cq, Dq) | q ∈ D} is the indexed family of linear systems.

• Γ is the 4-tuple given by Γ = (σ, M,J ,N ).

• tq ∈ T , for all q ∈ D∗.
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• u ∈ PC(R, Rm) is the piecewise continuous input function.

• for each q ∈ D, xq ∈ CDP(R, Rnq) is the (q + 1)th continuous piecewise
differentiable state-space function.

• y ∈ PC(R, Rp) is the piecewise continuous output function. �

Remark 2.4.6. Some remarks regarding Definition 2.4.5. Do notice that also
Remarks 2.3.6 (iv)-(v) hold true for fixed switched linear systems.

(i) Notice that in the definition the switching signal σ is regarded as a con-
stant similar to the matrices. Therefore, only the 4-tuple Γ is required to
be known, to construct the corresponding fixed switched linear system
ΣΓ. (See also Remark 2.3.6 (i))

(ii) Notice that the definition allows the number of switching times and the
number of linear systems, between which will be switched, to be both
either finite or infinite. (See also Remark 2.3.6 (ii))

(iii) Notice that the linear systems, between which will be switched, could
be of zero dimension. If this happens, for example for linear system
ΣNq , the following should be kept in mind. (See also 2.3.6 (iii))

• xq(t) = 00 for all t ∈ (tq, tq+1).

• y(t) = Dqu(t) for all t ∈ (tq, tq+1).

• if q > 0, Jq : Rnq−1 → R0 maps any element in Rnq−1 to 00.

• if q < #T , Jq+1 : R0 → Rnq+1 is given by Jq00 = 0nq+1 .

(iv) Notice that a fixed switched linear system ΣΓ contains only linear sys-
tems between which will be switched, while a switched linear system
ΣM contains also linear systems between which can be switched. �

Remark 2.4.7 (Some remarks regarding simplification of notation). text
From now onwards, when a fixed switched linear system ΣΓ is given, it will
be assumed that

• m and p represent, respectively, the dimension of the input u and the
dimension of the output y, unless stated otherwise. This statement also
holds true in the case Γ = Γi, m = mi and p = pi, for any i ∈N0.

• Γ = (σ, M,J ,N ), unless stated otherwise. This statement also holds
true in the case Γ = Γi, σ = σi, M = Mi, J = Ji and N = Ni, for any
i ∈N0. �

Consider the following lemma, without proof, regarding switched linear sys-
tems and fixed switched linear systems.

Lemma 2.4.8. Let ΣM be a switched linear system and let σ : R→ D be a switch-
ing signal. It is possible to find Γ such that the resulting fixed switched linear system
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ΣΓ has the same input-state-output behavior as ΣM when fixing its switching signal
equal to σ, i.e. there exists Γ such that

S1 = {(u, x, y) | (σ, u, x, y) is a solution of ΣM}

and

S2 = {(u, x, y) | (u, x, y) is a solution of ΣΓ} (See Definition 2.4.11)

satisfy S1 = S2.

Lemma 2.4.8 implies that Definition 2.4.5 is an alternative description for
"fixed" switched linear systems. Hence the objective, as described at the be-
ginning of paragraph 2.4, has been met.

To get a better understanding of Definition 2.4.5, consider the following con-
tinuation of Example 2.3.9.

Example 2.4.9 (Continuation Example 2.3.9). Assume that t1 < t2 and let

σ(t) =


0, if t ∈ (−∞, t1)

1, if t ∈ [t1, t2)

0, if t ∈ [t2, ∞)

be a switching signal. After fixing the switching signal of system ΣM to be
equal to σ, the result will be a "fixed" switched linear system that between
−∞ and t1 follows a trajectory given by the linear system ΣN0 , between t1
and t2 follows a trajectory given by the linear system ΣN1 and between t2 and
∞ follows a trajectory given by the linear system ΣN0 .

According to Lemma 2.4.8, there exists an Γ such that the corresponding fixed
switched linear system ΣΓ has the same input-state-output behavior as ΣM,
when fixing its switching signal equal to σ. One such possible Γ is given by
Γ = (σ̂, M̂, Ĵ , N̂ ), where

• σ̂ has switching times T̂

• D̂ = {0, 1, 2}

• T̂ = {t1, t2}D̂
∗

(see Appendix A.3)

• M̂ = {N0, N1, N0}D̂

• Ĵ = {J(1,0), J(0,1)}D̂
∗

• N̂ = {3, 2, 3}D̂ �

Consider next the following definition regarding dimensions of fixed switched
linear systems.
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Definition 2.4.10 (The Dimension of Fixed Switched Linear Systems). Let ΣΓ
be a fixed switched linear system. The dimension of ΣΓ shall be given by the
indexed family of linear system dimensions i.e. Dim(ΣΓ) := N . �

Consider next the following definition regarding solutions of fixed switched
linear systems.

Definition 2.4.11 (Solutions of Fixed Switched Linear Systems). (u, x, y) is
said to be a solution to a fixed switched linear system ΣΓ if and only if

• u ∈ PC(R, Rm).

• x is of the form (2.7) where

– l = #T
– tq ∈ T , for all q ∈ {1, 2, . . . , l}.
– ∀q ∈ {0, 1, 2, . . . , l}, (u, xq, yq) is a solution of ΣNq

• x satisfies the second equation of (2.10) for all q ∈ {1, 2, . . . , l}.

• y ∈ PC(R, Rp) satisfies the third equation of (2.10) for all t ∈ R. �

Consider next the following lemma regarding solutions of fixed switched
linear systems.

Lemma 2.4.12. Consider a fixed switched linear system given by ΣΓ and assume
that the following are given.

• the input u ∈ PC(R, Rm)

• the initial state x(tb) ∈ Rn0 at initial time tb ∈ R, such that tb < t1

Then the unique state-space solution x is given by

x(t) =



eA0(t−tb)x(tb) +
∫ t

tb

eA0(t−τ)B0u(τ)dτ, if t ∈ (−∞, t1)

eA1(t−t1) J1x(t−1 ) +
∫ t

t1

eA1(t−τ)B1u(τ)dτ, if t ∈ [t1, t2)

eA2(t−t2) J2x(t−2 ) +
∫ t

t2

eA2(t−τ)B2u(τ)dτ, if t ∈ [t2, t3)

...

eAl(t−tl) Jl x(t−l ) +
∫ t

tl

eAl(t−τ)Blu(τ)dτ, if t ∈ [tl , ∞)

(2.11)

where l = #T . The corresponding unique output solution y can be constructed by
substituting equation (2.11) into the output part of equation (2.10).

Do notice that the proof of Lemma 2.4.12 is rather straightforward, when
given Lemma 2.2.6, and therefore is omitted in this paper.
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2.4.2 Input-Output Relations

Similar to switched linear systems, for fixed switched linear systems it is dif-
ficult to express input-output behavior, in the case the initial state and the
initial time are both equal to zero, by means of a transfer function. In par-
ticular, the Laplace transform is not as straightforward as for linear systems.
Hence, within this paper, transfer functions for fixed switched linear systems
will also be ignored.

Instead, consider the following definition that states when two fixed switched
linear systems are assumed to be input-output equivalent.

Definition 2.4.13 (Input-Output Equivalent Fixed Switched Linear Systems).
Two fixed switched linear systems ΣΓ1 and ΣΓ2 are Input-Output Equivalent if
and only if

S1 = {(u, y) | ∃ x such that (u, x, y) is a solution of ΣΓ1}

and
S2 = {(u, y) | ∃ x such that (u, x, y) is a solution of ΣΓ2}

satisfy that S1 = S2. �

A particular case of the previous definition, that will be of importance later,
is the case that two fixed switched linear systems also share the same fixed
switching signal. This case will have its own separate definition.

Definition 2.4.14 (Signal-Input-Output Equivalent Fixed Switched Linear Sys-
tems). Two fixed switched linear systems ΣΓ1 and ΣΓ2 are Signal-Input-Output
Equivalent if and only if ΣΓ1 and ΣΓ2 are input-output equivalent and σ1 ≡
σ2. �

Remark 2.4.15. Notice that any two fixed switched linear systems that satisfy
Definition 2.4.14, will also satisfy Definition 2.4.13. The other way around,
however, does not hold in general. �

Similar to linear systems, using only Definition 2.4.14 it is not trivial to show
that certain fixed switched linear systems do have the same signal-input-
output behavior. Luckily, also similar to linear systems, there does exist a
lemma that makes it easier to show signal-input-output equivalency in cer-
tain cases.

Lemma 2.4.16. Consider two fixed switched linear systems ΣΓ1 and ΣΓ2 for which
σ1 ≡ σ2. If there exists a indexed family {Si ∈ Rni×ni | i ∈ {0, 1, 2, . . . , #T }} of
non-singular matrices such that

• Si A1
i S−1

i = A2
i

• SiB1
i = B2

i

• C1
i S−1

i = C2
i
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• D1
i = D2

i

• Si J1
i S−1

i−1 = J2
i

then the two fixed switched linear systems ΣΓ1 and ΣΓ2 are signal-input-output
equivalent. Here it should be noted that the following notations have been used:

• (A1
i , B1

i , C1
i , D1

i ) ∈ M1 is the ith linear system of ΣΓ1 .

• (A2
i , B2

i , C2
i , D2

i ) ∈ M2 is the ith linear system of ΣΓ2 .

• J1
i ∈ J1 is the ith jump map of ΣΓ1 .

• J2
i ∈ J2 is the ith jump map of ΣΓ2 .

The above lemma is a generalization of Lemma 2.2.9 and is rather trivial to
proof, hence the proof is omitted in this paper. Nevertheless, for those in-
terested, it again uses the idea explained in the book by Polderman et al. [7,
Chapter 4.6].

Now that linear systems, switched linear systems and fixed switched linear
systems have been introduced, in the next chapter the concepts of observ-
ability and controllability will be studied. Both these properties will be use-
ful, later, when discussing minimal realization theory for linear systems in
Chapter 4 and minimal realization theory for fixed switched linear systems
in Chapter 5.
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Chapter 3

Observability and Controllability

In general, observability is about how well one can "observe" the internal
states of a system from the knowledge of its external signals. In many cases
this boils down to the question: given the input and output data, what knowl-
edge is available with regard to the state values? On the other hand, control-
lability, in general, is about how well a system allows movement between
internal states. In many cases this boils down to the question: given an initial
state, which states can be reached within finite time?

3.1 Overview

In this chapter the main objective is to introduce the concepts of observabil-
ity (Paragraph 3.2) and controllability (Paragraph 3.3) for linear systems and
fixed switched linear systems. These two concepts will be used, later, in
Chapter 4 and Chapter 5, when considering, respectively, minimal realization
theory for linear systems and minimal realization theory for fixed switched
linear systems. Incidentally, for completeness, observability and controllabil-
ity for switched linear systems will also be discussed within this chapter.

3.2 Observability

In this paragraph observability with regards to linear systems, switched lin-
ear systems and fixed switched linear systems shall be studied, starting with
the linear systems. In the case of linear systems, most information is taught
during any standard mathematics bachelor curriculum, but if needed, a good
reference would be the book by Trentelman et al. [8, Chapter 3.3]. In the case
of switched linear systems and fixed switched linear systems, most informa-
tion will be obtained from the paper by Petreczky et al. [5].

Remark 3.2.1 (Remark about the paper by Petreczky et al. [5]). Do notice that
in the paper it is assumed that all state dimensions are equal. Nevertheless,
some of the observations still hold true when the state dimensions are vary-
ing. These particular observations, together with some of the more restrictive
observations, shall be considered within this paragraph. �
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3.2.1 Linear Systems

There are many ways to define what observability means for linear systems.
Most of these definitions, however, state the exact same, using different ex-
pressions. Still, to avoid miscommunication regarding the definition of ob-
servability, it is important to clearly state what the definition shall be. In this
paper the definition shall be as follows.

Definition 3.2.2 (Observability for Linear Systems). Let ΣN be a linear sys-
tem. ΣN is said to be Observable if and only if for all solutions (u1, x1, y1) and
(u2, x2, y2) the following implication holds

(u1, y1) ≡ (u2, y2) =⇒ x1 ≡ x2. �

Remark 3.2.3. Some remarks regarding Definition 3.2.2

(i) The definition has the following interpretation. A linear system is ob-
servable if and only if for the same input-output behaviour, no two
different state-space solutions exists.

(ii) If a linear system is not observable, it is called Unobservable.

(iii) Notice that any linear system of zero dimension is observable, see also
Remark 2.2.2.

(iv) It can be shown that input u plays no role in the definition of observ-
ability. Hence, also matrices B and D do not influence the observability
property. [8, Chapter 3.3] �

A well-known result from linear system theory is the observability rank test.
This is a test to check whether a linear system is indeed observable.

Theorem 3.2.4 (Observability Rank Test). A linear system ΣN is observable if
and only if Rank(O) = n, where

O :=


C

CA
CA2

...
CAn−1


Remark 3.2.5. The matrixO is known as the Observable Matrix and the kernel
of O is known as the Unobservable Subspace. Notice that, if the unobservable
subspace contains only the zero element, matrix O shall have full column
rank, and vice versa, if matrixO has full column rank, the unobservable sub-
space shall contain only the zero element. This implies that the unobservable
subspace is "empty" if and only if the linear system is observable. �

In the case of exact arithmetics, the observability rank test gives an easy
method to check whether a given linear system is indeed observable or not.
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Furthermore, because the rank test only needs finite computations, it is guar-
anteed that within a finite number of steps it can be checked whether a linear
system is observable or not. Of course, if the dimensions of the matrices be-
come rather large, checking for observability, using the rank test, can still be
inconvenient. In those cases other methods might be preferred. However in
the case of small dimensions, the observability rank test is both fast and easy
to apply.

Remark 3.2.6. It should be noted that in the case of computer computations,
even small dimensions can still cause incorrect results. This is because small
rounding errors can easily lead to wrong conclusions. �

For more information on observability for linear systems, see, for example,
the books [1, 7, 8].

3.2.2 Switched Linear Systems

In the case of switched linear systems, it is possible to define multiple differ-
ent concepts of observability. In this paper, however, the following concept
of observability shall be used, when considering switched linear systems.

Definition 3.2.7 (Observability for Switched Linear Systems). Let ΣM be a
switched linear system. ΣM is said to be Observable if and only if for all
solutions (σ1, u1, x1, y1) and (σ2, u2, x2, y2) the following implication holds

(σ1, u1, y1) ≡ (σ2, u2, y2) =⇒ x1 ≡ x2 �

Remark 3.2.8. Some remarks regarding Definition 3.2.7

(i) The definition has the following interpretation. A switched linear sys-
tem is observable if and only if for the same input-output behavior and
the same switching signal, no two different state-space solutions exists.

(ii) If a switched linear system is not observable, it is called Unobservable.

(iii) Observability of the type mentioned in this definition is also referred to
as Strong Observability.

(iv) It can be shown that input u plays no role in the definition of observabil-
ity. Hence, also matrices Bq and Dq do not influence the observability
property. [5] �

Using the paper by Petreczky et al. [5], the following theorem holds true with
regards to observability for switched linear systems.

Theorem 3.2.9 (Observability for Switched Linear Systems). Let ΣM be a switched
linear system. ΣM is observable if and only if for all q ∈ D linear system ΣNq is
observable.

For more information on observability for switched linear systems, see the
paper by Petreczky et al. [5].
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3.2.3 Fixed Switched Linear Systems

In the case of fixed switched linear systems, it is also possible to define multi-
ple different concepts of observability. In this paper, however, the following
concept of observability shall be used, when considering fixed switched lin-
ear systems.

Definition 3.2.10 (Observability for Fixed Switched Linear Systems). s
Let ΣΓ be a fixed switched linear system. ΣΓ is said to be Observable if and
only if for all solutions (u1, x1, y1) and (u2, x2, y2), the following implication
holds

(u1, y1) ≡ (u2, y2) =⇒ x1 ≡ x2 �

Remark 3.2.11. Some remarks regarding Definition 3.2.10

(i) The definition has the following interpretation. A fixed switched linear
system is observable if and only if for the same input-output behavior,
no two different state-space solutions exists.

(ii) If a fixed switched linear system is not observable, it is called Unobserv-
able.

(iii) It can be shown that input u plays no role in the definition of observabil-
ity. Hence, also matrices Bq and Dq do not influence the observability
property. [5]

(iv) Notice that if a switched linear system ΣM is observable, any fixed
switched linear system ΣΓ that is the result of fixing the switching sig-
nal of ΣM, also will be observable. However, the other way around
does not hold in general, i.e., given that a fixed switched linear system
ΣΓ, that will switch between the linear systems M, is observable, the
switched linear system ΣM, that can switch between at least the linear
systems M, does not need to be observable, see also Example 3.2.12. �

Example 3.2.12. Consider the two linear systems ΣN0 and ΣN1 , where

N0 =

([
1 0
0 1

]
,
[

1
0

]
,
[
1 0

]
, 0
)

N1 =

([
1 0
0 1

]
,
[

0
1

]
,
[
0 1

]
, 0
)

.

Let

J(0,0) = I2, J(1,0) = I2, J(0,1) =

[
0 0
0 1

]
and J(1,1) = I2.

Consider the following observations.

• Fixed switched linear system ΣΓ1 , that will switch from linear system
ΣN0 to linear system ΣN1 at t1 using jump map J(1,0), can easily be
proven to be observable. First notice that linear system ΣN0 shall ob-
serve its first state, linear system ΣN1 shall observe its second state and
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that the state-space does not change during the switch. Hence, the ini-
tial state can be determined uniquely, implying that ΣΓ1 is observable.

• Fixed switched linear system ΣΓ2 , that will switch from linear system
ΣN1 to linear system ΣN0 at t1 using jump map J(0,1), can easily be
proven to be unobservable. First notice that during the switch all in-
formation about the first state is lost and ΣN1 shall only observe its
second state. Hence, the first coordinate of the initial state cannot be
determined uniquely, implying that ΣΓ2 is unobservable.

• Switched linear system ΣM, that can switch between at least the two
linear systems ΣN0 and ΣN1 , can easily be proven to be unobservable,
from the fact that both linear systems are unobservable. �

Consider the following lemma without proof. The proof comes from the fact
that the solution of a fixed switched linear system is uniquely determined by
the initial value, see Lemma 2.4.12

Lemma 3.2.13. A fixed switched linear system ΣΓ is observable if linear system ΣN0
is observable.

Using the paper by Petreczky at al. [5], the following theorem holds true with
regards to observability for fixed switched linear systems.

Theorem 3.2.14 (Observability for Fixed Switched Linear Systems). Let ΣΓ be
a fixed switched linear system such that σ is not constant and all state dimensions
are equal. ΣΓ is observable if and only if there exists k ∈ {1, 2, . . . , #T } such that

M k
1 = {0n0} (3.1)

where

M i := ker Oi−1 ∩ ker Oi Ji, (3.2a)

M k
k := M k, (3.2b)

M k
i := M i ∩ J−1

i (e−AiτiM k
i+1), k > i ≥ 1 (3.2c)

τi := ti+1 − ti (3.2d)

where Oi is the observable matrix of the linear system ΣNi , i ∈ {0, 1, 2, . . . , k}.

Remark 3.2.15. Some remarks regarding Theorem 3.2.14

(i) Do notice that in the theorem it is assumed that the fixed switching sig-
nal σ is not constant. In the case the fixed switching signal σ would be
constant, the resulting fixed switched linear system would be a linear
system and Theorem 3.2.4 could, instead, be used to check observabil-
ity.

(ii) The intuition behind M i is that M i would be the unobservable sub-
space if there would be only a single switch from mode i − 1 to mode
i.
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(iii) The intuition behind the sequence (3.2) is as follows: Starting at the kth

switch, we go backward in time and combine the local knowledge from
each of the previous switches to obtain knowledge of the initial state
value [5].

(iv) A conjecture, that will not be proven within this paper, is that the above
theorem also hold in the case of varying dimensions.

(v) See also Appendix A.6 regarding the concept of vector space opera-
tions. �

To get a better understanding of Theorem 3.2.14, consider the following ex-
ample.

Example 3.2.16. Consider the three linear systems ΣN0 , ΣN1 and ΣN2 where

N0 =

1 0 0
0 0 0
0 0 0

 ,

1
0
1

 ,
[
1 1 0

]
, 1


N1 =

1 0 −1
0 2 0
0 0 3

 ,

−1
0
1

 ,
[
1 2 0

]
, 0


N2 =

1 0 −1
0 2 0
0 0 3

 ,

−1
0
1

 ,
[
1 1 0

]
, 0


It can easily be shown, using the observability rank test, that linear system
ΣN0 is unobservable and linear systems ΣN1 and ΣN2 are observable. This
implies that the unobservable subspaces for linear systems ΣN1 and ΣN2 are
equal to {03}.

Let ΣΓ be a fixed switched linear system such that

• D = {0, 1, 2}

• σ is a fixed switching signal given by switching times T = {1, 2}D∗

• M = {N0, N1, N2}D

• J = {I3, I3}D
∗

• N = {3, 3, 3}D

When applying Theorem 3.2.14 with k = 2, the following steps are taken:

Step 1: Calculate M 2
2 = M 2 = ker O1 ∩ ker O2 J2 = {03}.

Step 2: Calculate M 1 = ker O0 ∩ ker O1 J1 = {03}.

Step 3: Calculate M 2
1 = M 1 ∩ J−1

1 (e−A1M 2
2 ) = {03} ∩ {03} = {03}.

From this it can be concluded, by Theorem 3.2.14, that ΣΓ is observable. �

For more information on observability for fixed switched linear systems, see
the paper by Petreczky et al. [5].
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3.3 Controllability

In this paragraph controllability with regards to linear systems, switched lin-
ear systems and fixed switched linear systems shall be studied, starting with
the linear systems. In the case of linear systems, most information is taught
during any standard mathematics bachelor curriculum, but if needed, a good
reference would be the book by Trentelman et al. [8, Chapter 3.2]. In the case
of switched linear systems and fixed switched linear systems, a brief state-
ment, with regards to controllability, will be made.

3.3.1 Linear Systems

In most textbooks, a distinction is made between what is called Controllability,
Null-Controllability and Reachability. In the case of linear systems, it can be
shown that all three concepts are equivalent. Nevertheless, for clarity, all
three concepts are introduced in the following definition.

Definition 3.3.1 (Controllability for Linear Systems). Let ΣN be a linear sys-
tem.

• ΣN is said to be Controllable if and only if for all states x0, x1 ∈ Rn, there
exists a solution (u, x, y) such that x(0) = x0 and x(T) = x1, for some
time T ∈ R>0.

• ΣN is said to be Null-Controllable if and only if for all states x0 ∈ Rn,
there exists a solution (u, x, y) such that x(0) = x0 and x(T) = 0n, for
some time T ∈ R>0.

• ΣN is said to be Reachable if and only if for all states x1 ∈ Rn, there exists
a solution (u, x, y) such that x(0) = 0n and x(T) = x1, for some time
T ∈ R>0. �

Remark 3.3.2. Some remarks regarding Definition 3.3.1

(i) The definition has the following interpretations:

• A linear system is controllable if and only if any state can be reached
from any state.

• A linear system is null-controllable if and only if the zero state can
be reached from any state.

• A linear system is reachable if and only if any state can be reached
from the zero state.

(ii) Notice that any linear system of zero dimension is controllable, null-
controllable and reachable, see also Remark 2.2.2.

(iii) Notice that output y plays no role in the definitions of controllabil-
ity, null-controllability and reachability. Hence, also matrices C and D
do not influence the controllability, null-controllability and reachability
properties.
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(iv) As stated before, all three concepts are equivalent in the case of lin-
ear systems. Henceforth, in the case of linear systems, the equivalent
concepts of controllability, null-controllability and reachability will be
referred to as simply Controllability.

(v) If a linear system is not controllable, it is called Uncontrollable. �

A well-known result from linear system theory is the controllability rank test.
This is a test to check whether a linear system is indeed controllable.

Theorem 3.3.3 (Controllability Rank Test). A linear system ΣN is controllable if
and only if Rank(R) = n, where

R =
[
B AB A2B . . . An−1B

]
Remark 3.3.4. The matrix R is known as the Reachable Matrix and the image
ofR is known as the Reachable Subspace. Notice that, if the reachable subspace
is equal to the entire space Rn, matrix R shall have full row rank, and vice
versa, if matrix R has full row rank, the reachable subspace shall be equal
to the entire space Rn. This implies that the reachable subspace is the entire
space Rn if and only if the linear system is controllable. �

In the case of exact arithmetics, the controllability rank test gives an easy
method to check whether a given linear system is indeed controllable or not,
similar to the observability rank test. Furthermore, because the rank test only
needs finite computations, it is guaranteed that within a finite number of
steps it can be checked whether a linear system is controllable or not. Again,
if the dimensions of the matrices become rather large, checking for controlla-
bility using the rank test can be inconvenient. In those cases other methods
might be preferred. However in the case of small dimensions, the controlla-
bility rank test is both fast and easy to apply. See also Remark 3.2.6.

For more information on controllability for linear systems, see, for example,
the books [1, 7, 8].

3.3.2 (Fixed) Switched Linear Systems

For switched linear system and fixed switched linear systems it is rather dif-
ficult to give a general definition for controllability. This is because already
the property that each "state-piece" xq has a different dimension, makes it
difficult to understand what it means to be able to "move" from any state to
any state. Fortunately, in the next chapters, controllability for switched linear
systems and fixed switched linear systems will not be used, and hence con-
trollability for both systems shall be ignored for the rest of this paper.

Now that the concepts of observability and controllability have been intro-
duced, in the next chapter minimal realization theory for linear systems shall
be considered.
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Chapter 4

Minimal Realization Theory for
Linear Systems

In mathematics the problem of system realization is to find an internal de-
scription to a given external description. Examples of this would be to find
a linear system that has transfer function equal to a given external descrip-
tion H(s), or to find a linear system that has input-output behavior equal
to a given external description ΣN. System realization, however, is only the
beginning. For each external description there might exist infinitely many
internal descriptions. Hence, the logical next step would be to consider find-
ing the most optimal internal descriptions. This subject is known as Minimal
Realizations Theory and will be the main subject of this and next chapter.

4.1 Overview

In this chapter the main objective shall be to consider minimal realization
theory for linear systems. However, the main goal shall be to collect results
for the case that the external description is given by a linear system. These
results will then be used in Chapter 5, to investigated whether these results
can be generalized to fixed switched linear systems.

Within this chapter a distinction will be made between having to satisfy an
external description given by a function (Paragraph 4.2), and having to sat-
isfy an external description given by a linear system (Paragraph 4.3). The
main reason as to why also the function case shall be considered, is that the
function case shall be the foundation on which the system case shall be con-
structed.

4.2 Function Case

Before considering the system case, first the function case shall be considered.
Important to know is that most information, from within this paragraph, was
obtained from the book by Antsaklis et al. [1].
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4.2.1 Linear Realization

Given an external description H(s), the following definition will explain when
a linear system is indeed considered a "linear" realization of H(s).

Definition 4.2.1 (Linear Realization). A Linear Realization of H(s) is any linear
system ΣN for which its transfer function is equal to H(s). �

It can be shown that not all functions H(s) have a linear realization. This, in
turn, begs the question, when does a function H(s) have a linear realization?
This question is answered in the following theorem. The proof can be found
in the book by Antsaklis et al. [1, Theorem 8.5].

Theorem 4.2.2 (Existence of Linear Realizations). H(s) has a linear realization
if and only if H(s) is a matrix of rational functions and satisfies

lim
s→∞

H(s) < ∞,

i.e. H(s) has only finite entries in the limit of s → ∞. This is equivalent to stating
that H(s) is a proper rational matrix, i.e., each entry of H(s) is a rational function of
which the degree of the denominator is higher or equal to the degree of the numerator.

To illustrate this theorem, consider the following example.

Example 4.2.3. Let H(s) = 1
s . Since H is a proper rational function, Theorem

4.2.2 states that there exists a linear realization of H(s). And indeed the linear
systems ΣN1 and ΣN2 , where

N1 =

([
0 1
0 0

]
,
[

0
1

]
,
[
0 1

]
, 0
)

N2 =

0 0 0
1 0 0
0 0 0

 ,

1
0
0

 ,
[
1 0 0

]
, 0


are examples of linear realizations of H(s), since, for both, their transfer func-
tion is equal to H. �

Besides illustrating the theorem, the example also shows that, indeed, for an
external description there might exists multiple internal descriptions. In the
following theorem it shall even be proven that for any external description
H(s), that is a proper rational matrix, there exists infinitely many linear real-
izations.

Theorem 4.2.4 (Infinitely many Linear Realizations). Consider any external de-
scription H(s) that is a proper rational matrix. There exists infinitely many linear
realizations of H(s).

Proof. Consider any linear realization of H(s), which exists since H(s) is said
to be a proper rational matrix, see Theorem 4.2.2. Adding the state equation
ż = Fz + Gu to the linear realization of H(s), will result in a new linear
system that has transfer function still equal to H(s), i.e. will results in a new
linear realization of H(s). This procedure can be repeated infinitely, hence
there exists infinitely many linear realizations of H(s).
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Remark 4.2.5. Notice that, after the procedure, the dimension of the new lin-
ear realization of H(s) is larger then the dimension of the linear realization of
H(s) used in the procedure. Since the procedure can be repeated infinitely,
this implies that there is no upper bound for the dimension of linear realiza-
tions of H(s). The lower bound, however, does exists and will have the main
focus when considering minimal linear realizations of H(s). �

Remark 4.2.6. From now onwards, it will be assumed that any external de-
scription H(s) will be a proper rational matrix unless stated otherwise. �

4.2.2 Minimal Linear Realization

Now that linear realizations of H(s) have been studied, the next topic of in-
terest would be the minimal linear realizations of H(s). For this consider the
following definition.

Definition 4.2.7 (Minimal Linear Realization). Let ΣN be any linear real-
ization of H(s). ΣN is a Minimal Linear Realization of H(s) if and only if
Dim(ΣN) ≤ Dim(ΣM) for all linear realizations ΣM of H(s). �

Consider next the following two well-known theorems within the study of
minimal realization theory for linear systems. For both, the proof can be
found in the book by Antsaklis et al. [1, Theorems 8.9 and 8.10].

Theorem 4.2.8 (Minimal Linear Realization Theorem: Function Case). A lin-
ear realization ΣN of H(s) is minimal if and only if ΣN is both controllable and
observable.

Theorem 4.2.9 (Equivalent Minimal Linear Realizations). Let ΣN1 and ΣN2 be
linear realizations of H(s). If ΣN1 is a minimal linear realization of H(s), then ΣN2
is also a minimal linear realization of H(s) if and only if D1 = D2 and there exists
a non-singular matrix P such that

A2 = PA1P−1, B2 = PB1 and C2 = C1P−1.

Furthermore, if P exists, it is given by

P = R1RT
2 (R2RT

2 )
−1 or P = (OT

2O2)
−1OT

2O1.

whereOi andRi are, respectively, the observable and reachable matrices of the linear
system ΣNi , i ∈ {1, 2}.

Consider next the following corollary, which is the result of Theorem 4.2.9
and Lemma 2.2.9.

Corollary 4.2.10. Any two minimal linear realizations of H(s) are input-output
equivalent.

To illustrate Theorem 4.2.8, consider the following continuation of Example
4.2.3.
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Example 4.2.11 (Continuation Example 4.2.3). Notice that linear system ΣN2
is neither controllable nor observable and notice that linear system ΣN1 is
controllable but not observable. Hence, by Theorem 4.2.8, there exists a lin-
ear system of at most dimension 1 with transfer function equal to H(s).

Consider now the linear system ΣN3 , N3 = (0, 1, 1, 0). It can easily be shown
that this linear system is observable, controllable and has transfer function
equal to H(s). Hence, by Theorem 4.2.8, linear system ΣN3 is a minimal lin-
ear realization of H(s). �

As might be expected, one of the issues that need to be solved, when consid-
ering minimal linear realizations of H(s), is finding the "minimal dimension".
While there do exists methods to derive this "minimal dimension", this is be-
yond the scope of this paper. Instead, the reader is referred to the book by
Antsaklis et al. [1].

4.2.3 Minimal Linear Realization Algorithm: KCDA

Now that both linear realizations and minimal linear realizations of H(s)
have been considered, the next topic of interest would be algorithms that
generate minimal linear realizations. However, instead of analyzing any and
all possible algorithms, in this paragraph the focus will lie with a particu-
lar algorithm, namely the Kalman Canonical Decomposition Algorithm (KCDA).
The main objective behind introducing this algorithm is that a similar algo-
rithm will be considered later in the system case. Instead, for more informa-
tion on general minimal linear realization algorithms using, for example, the
observer form, the controller form or the singular value decomposition, see,
for example, the book by Antsaklis et al. [1].

As the name KCDA already implies, this algorithm uses the Kalman Canon-
ical Decomposition (KCD) to find a minimal linear realization of H(s). To
use this algorithm, it is required that already a linear realization of H(s) is
given. However, before explaining how this algorithm works, step-by-step,
first consider the following explanation regarding the KCD itself.

4.2.3.1 Kalman Canonical Decomposition

Around 60 years ago R.E. Kalman wrote his article about the KCD [2]. In this
article he explained that any linear system can be decomposed into observ-
able, unobservable, controllable and uncontrollable parts. In the following
theorem a quick summary of the KCD will be given.

Theorem 4.2.12 (KCD). Let ΣN1 be a linear system. There exists a non-singular
matrix S such that

S−1A1S =


A11 A12 A13 A14
0 A22 0 A24
0 0 A33 A34
0 0 0 A44

 , S−1B1 =


B11
B21
0
0

 , C1S =
[
0 C12 0 C14

]
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Furthermore

• ΣN2 , N2 =

([
A11 A12
0 A22

]
,
[

B11
B21

]
,
[
0 C12

]
, D1

)
is controllable.

• ΣN3 , N3 =

([
A22 A24
0 A44

]
,
[

B21
0

]
,
[
C12 C14

]
, D1

)
is observable.

• ΣN4 , N4 = (A22, B21, C12, D1) is controllable and observable.

• ΣN1 , ΣN2 , ΣN3 and ΣN4 all have the same transfer function.

Proof. text

• The main body and the first two points are proven in the book by Pol-
derman et al. [7, Theorem 5.4.1].

• The third point directly follows from the previous two points and the
observability/controllability rank tests.

• The fourth point can be proven by noticing, first, that for any two linear
systems ΣNi and ΣNj , i, j ∈ {1, 2, 3, 4}, CieAitBi ≡ CjeAjtBj (See also
Appendix A.5). Next, Lemma 2.2.6 will conclude that, for initial states
xi(0) = 0ni , i ∈ {1, 2, 3, 4}, all four linear systems have equal input-
output relation, i.e. have the same transfer function, see also Deduction
2.2.7.

Consider next the following algorithm that explains how non-singular matrix
S can be derived, see also [7, Proof 5.4.1].

Algorithm 4.2.13 (Non-singular matrix S). The Kalman Canonical Decompo-
sition of a linear system ΣN is entirely dependent on the non-singular matrix
S. While matrix S is not unique, there does exists a reliable algorithm of
construction:

Step 1: Find matrices O and R which are, respectively, the observable and
reachable matrices of the linear system ΣN.

Step 2: Find the dimensions of Im(R) ∩ Ker(O), Im(R) and Ker(O) and de-
note them, respectively, by k1, k1 + k2, k1 + k3 and let k4 = n − (k1 +
k2 + k3).

Step 3: Choose vectors a1, . . . , ak1 , b1, . . . , bk2 , c1, . . . , ck3 and d1, . . . , dk4 such that
(a1, . . . , ak1) is a basis of Im(R)∩Ker(O), (a1, . . . , ak1 , b1, . . . , bk2) is a ba-
sis of Im(R), (a1, . . . , ak1 , c1, . . . , ck3) is a basis of Ker(O) and (a1, . . . , ak1 ,
b1, . . . , bk2 , c1, . . . , ck3 , d1, . . . , dk4) is a basis of Rn.

Step 4: S = [a1 . . . ak1 b1 . . . bk2 c1 . . . ck3 d1 . . . dk4 ]. �
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4.2.3.2 Kalman Canonical Decomposition Algorithm

Now that the KCD has been explained, next up is the KCDA. Even though
the algorithm is not complicated, for clarity, the algorithm will be explained
step-by-step.

Algorithm 4.2.14 (KCDA). Let ΣN be a linear realization of H(s).

Step 1: Apply Algorithm 4.2.13 to ΣN and obtain S.

Step 2: Apply Theorem 4.2.12 to ΣN using S .

Step 3: Obtain ΣM, where M = N4.

The result will be that ΣM is observable, controllable and has transfer func-
tion H(s), see Theorem 4.2.12. Hence, by Theorem 4.2.8, ΣM is a minimal
linear realization of H(s). �

Remark 4.2.15. Some remarks regarding Algorithm 4.2.14

(i) As can be seen from the algorithm, the KCDA is very simplistic once the
KCD is constructed. The most difficult aspect of the entire algorithm
would be finding the non-singular matrix S, which is certainly doable
by using Algorithm 4.2.13.

(ii) Notice that the whole idea of this algorithm is to remove the uncon-
trollable and unobservable parts from the linear system. This simulta-
neously reduces the dimension while also preserving the transfer func-
tion. �

Before ending this paragraph, consider the following remark.

Remark 4.2.16. It should be noticed that given a linear realization of H(s),
there does not need to exists a minimal linear realization of H(s) such that
both realizations are input-output equivalent. To give an example consider,
again, Example 2.2.12. In this example it was proven that the given linear
systems were not input-output equivalent, even though they had the same
transfer function G(s), i.e. they could be considered linear realizations of
G(s). Assume now that for each of these linear realizations of G(s) there
does exists a minimal linear realization of G(s), that is input-output equiv-
alent to the corresponding linear realization of G(s). The problem would
be that Corollary 4.2.10 implies that the minimal linear realizations of G(s)
should be input-output equivalent and hence, a contradiction will emerge.
This implies that the assumption is incorrect and hence, at least one of the
linear realizations of G(s) is not input-output equivalent to any minimal lin-
ear realization of G(s). �

The above remark, in particular, implies the following lemma.

Lemma 4.2.17. Given a linear realization ΣN of H(s), there does not need to exist
a minimal linear realization of H(s) that is input-output equivalent to ΣN.

The above lemma introduces an interesting topic to consider, namely exter-
nal descriptions for which linear realizations and minimal linear realizations
are always input-output equivalent. And it is exactly one such external de-
scription that shall be considered within the system case.



Chapter 4. Minimal Realization Theory for Linear Systems 37

4.3 System Case

Now that the function case has been considered, next would be the system
case. For this case most information will be a replication of the function case,
in hopes of yielding similar results. Some information will also be obtained
from the book by Polderman et al. [7]. Most importantly however, most
results mentioned within this paragraph will again be considered in Chapter
5, in order to investigate whether these results can be generalized to fixed
switched linear systems.

4.3.1 Linear Realization

Given an external description ΣN (linear system), the following definition
will explain when a linear system is indeed considered a "linear" realization
of ΣN.

Definition 4.3.1 (Linear Realization). A Linear Realization of ΣN is any linear
system ΣM that is input-output equivalent to ΣN. �

Remark 4.3.2. Remember from Paragraph 2.2.2 that having the same trans-
fer function does not imply input-output equivalency. Hence, for certain,
Definition 4.2.1, with H(s) being the transfer function of ΣN, does not imply
Definition 4.3.1. Regarding whether Definition 4.3.1 does imply Definition
4.2.1, with H(s) being the transfer function of ΣN, see Remark 2.2.11 �

It can easily be shown that for any external description ΣN, there exists in-
finitely many linear realizations.

Theorem 4.3.3 (Infinitely many Linear Realizations). Consider an external de-
scription ΣN. There exists infinitely many linear realizations of ΣN.

Proof. Consider any linear realization of ΣN, which exists since linear system
ΣN itself is a linear realization. Adding the state equation ż = Fz + Gu to the
linear realization of ΣN, will result in a new linear system that is input-output
equivalent to the linear system ΣN, i.e. will results in a new linear realization
of ΣN. This procedure can be repeated infinitely, hence there exists infinitely
many linear realizations of ΣN.

Remark 4.3.4. Notice that, after the procedure, the dimension of the new lin-
ear realization of ΣN is larger then the dimension of the linear realization of
ΣN used in the procedure. Since the procedure can be repeated infinitely, this
implies that there is no upper bound for the dimension of linear realizations
of ΣN. The lower bound, however, does exists and will have the main focus
when considering minimal linear realizations of ΣN. �

4.3.2 Minimal Linear Realization

Now that linear realizations of ΣN have been studied, the next topic of in-
terest would be the minimal linear realizations of ΣN. For this consider the
following definition.
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Definition 4.3.5 (Minimal Linear Realization). Let ΣM be any linear realiza-
tion of ΣN. ΣM is a Minimal Linear Realization of ΣN if and only if Dim(ΣM) ≤
Dim(ΣW) for all linear realizations ΣW of ΣN. �

Consider next the following theorem regarding minimal realizations of ΣN.

Theorem 4.3.6 (Minimal Linear Realization Theorem: System Case). A linear
realization ΣM of ΣN is minimal if and only if ΣM is observable.

Proof. "only if": Consider Paragraph 4.3.3. There it is explained that given an
unobservable linear realization of ΣN, a lower dimensional linear realization
of ΣN can be found, see Algorithm 4.3.10.

"if": See the book by Polderman et al. [7, Section 6.5.3]

As might be expected one of the issues that need to be solved, when con-
sidering minimal linear realizations of ΣN, is, again, finding the "minimal
dimension". Similar to the function case, however, this subject will not be
considered within this paper.

4.3.3 Minimal Linear Realization Algorithm: KODA

Now that both linear realizations and minimal linear realizations of ΣN have
been considered, the next topic of interest would be algorithms that gener-
ate minimal linear realizations. However, instead of analyzing any and all
possible algorithms, in this paragraph the focus will lie with a particular al-
gorithm, namely the Kalman Observability Decomposition Algorithm (KODA).
This is an algorithm similar to the KCDA. The main difference, however, is
that instead of separating observable, unobservable, controllable and uncon-
trollable parts within the linear systems, instead, KODA separates only the
observable and unobservable parts.

As the name KODA already implies, this algorithm uses the Kalman Observ-
ability Decomposition (KOD). Hence, before explaining how this algorithm
works, step-by-step, first consider the following explanation regarding the
KOD itself.

4.3.3.1 Kalman Observability Decomposition

Similar to the KCD, the KOD decomposes a linear system into observable
and unobservable parts. In the following theorem a quick summary of the
KOD will be given.

Theorem 4.3.7 (KOD). Let ΣN1 be a linear system. There exists a non-singular
matrix S such that

S−1A1S =

[
A11 A12
0 A22

]
, S−1B1 =

[
B11
B21

]
, C1S =

[
0 C12

]
Furthermore
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• ΣN2 , N2 = (A22, B21, C12, D1) is observable.

• ΣN1 and ΣN2 have the same transfer function.

• ΣN1 and ΣN2 are input-output equivalent

Proof. text

• The main body and the first point are proven in the book by Polderman
et al. [7, Corollary 5.3.14].

• The second point can be proven by noticing, first, that for the linear
systems ΣN1 and ΣN2 , C1eA1tB1 ≡ C2eA2tB2. Next, Lemma 2.2.6 will
conclude that, for initial states x1(0) = 0n1 and x2(0) = 0n2 , both linear
systems have equal input-output relation, i.e. have the same transfer
function, see also Deduction 2.2.7.

• The third point can be proven by first noticing, again, that for the linear
systems ΣN1 and ΣN2 , C1eA1tB1 ≡ C2eA2tB2. Next, consider the follow-
ing equivalency:

C1eA1(t−tb)x1(tb) ≡ C2eA2(t−tb)x2(tb)

where

x1(tb) = S
[

x11(tb)
x21(tb)

]
and x2(tb) = x21(tb). Using the above equivalencies, the fact that S is
invertable and Lemma 2.2.6, it can be concluded that the linear systems
are indeed input-output equivalent.

Remark 4.3.8. Notice that in Theorem 4.3.7 the non-controllable, but observ-
able part is kept, while in Theorem 4.2.12, the non-controllable, but observ-
able part is removed. This suggests that the non-controllable, but observable
part is important for input-output equivalency, but does not affect the trans-
fer function. �

Consider next the following algorithm that explains how non-singular matrix
S can be derived, see also [7, Proof 5.3.14].

Algorithm 4.3.9 (Non-singular matrix S). The Kalman Observability Decom-
position of a linear system ΣN is entirely dependent on the non-singular ma-
trix S. While matrix S is not unique, there does exists a reliable algorithm of
construction:

Step 1: Find matrix O which is the observable matrix of the linear system ΣN.

Step 2: Find the dimension of Ker(O) and denote it by k.

Step 3: Choose vectors s1, . . . , sn such that (s1, . . . , sk) is a basis of Ker(O) and
(s1, . . . , sk, sk+1, . . . , sn) is a basis of Rn.

Step 4: S = [s1 . . . sn]. �
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4.3.3.2 Kalman Observability Decomposition Algorithm

Now that the KOD has been explained, next up is the KODA. Even though
the algorithm is not complicated, for clarity, the algorithm will be explained
step-by-step.

Algorithm 4.3.10 (KODA). Let ΣN be a linear system.

Step 1: Apply Algorithm 4.3.9 to ΣN and obtain S.

Step 2: Apply Theorem 4.3.7 to ΣN using S.

Step 3: Obtain ΣM, where M = N2.

The result will be that ΣM is observable, input-output equivalent to ΣN and
has the same transfer function as ΣN, see Theorem 4.3.7. Furthermore, linear
system ΣM shall be strictly smaller dimensional compared to ΣN if ΣN is un-
observable, see Algorithm 4.3.9 and Remark 3.2.5. Finally, by Theorem 4.3.6,
it can be concluded that linear system ΣM will be a minimal linear realization
of ΣN. �

Remark 4.3.11. Some remarks regarding Algorithm 4.3.10

(i) As can be seen from the algorithm, the KODA is very simplistic once the
KOD is constructed. The most difficult aspect of the entire algorithm
would be finding the non-singular matrix S, which is certainly doable
by using Algorithm 4.3.9.

(ii) Notice that the whole idea of this algorithm is to remove the unob-
servable part from the linear system. This simultaneously reduces the
dimension while also preserving the input-output behavior. �

Now that minimal realization theory for linear systems has been considered,
in the next chapter minimal realization theory for fixed switched linear sys-
tems shall be considered.
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Chapter 5

Minimal Realization Theory for
Fixed Switched Linear Systems

Now that minimal realization theory for linear systems has been discussed,
in this chapter minimal realization theory for fixed switched linear systems
will be considered. To be more specific, in this chapter it will be investigated
whether results from the system case in Chapter 4, can be generalized to fixed
switched linear systems.

5.1 Overview

In this chapter the main objective will be to generalize the results from the
system case in Chapter 4 to fixed switched linear systems. The main reason
behind choosing only the system case, comes from the fact that a similar con-
cept like transfer function does not exist for fixed switched linear systems
and switched linear systems in general. Hence, instead of introducing such a
concept within this paper (could be a case study on its own in all probability)
only the system case will be considered. Consequently, this is also the reason
why the primary research question is conditioned to only consider the sys-
tem case.

Having explained that, within this chapter the following three items will be
the main research topics to consider:

• Introducing realization theory for fixed switched linear systems (Para-
graph 5.2)

• Introducing minimal realization theory for fixed switched linear sys-
tems (Paragraph 5.3)

• Examining whether results from the the linear system case can be gen-
eralized to fixed switched linear systems (Paragraph 5.4)

5.2 Fixed Switched Realization

Given an external description ΣΓ (fixed switched linear system), the follow-
ing definition will explain when a fixed switched linear system is indeed
considered a "switched" realization of ΣΓ.
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Definition 5.2.1 (Switched Realization). A Switched Realization of ΣΓ is any
fixed switched linear system ΣΓ1 that is input-output equivalent to ΣΓ. �

Remark 5.2.2. The above definition could also be used to define realizations
for general switched linear systems. �

While the above definition certainly makes sense, it also allows for far to
many possibilities. In order to be able to generalize the linear system case, a
more restricted definition will be needed.

Definition 5.2.3 (Fixed Switched Realization). A Fixed Switched Realization of
ΣΓ is any fixed switched linear system ΣΓ1 that is signal-input-output equiv-
alent to ΣΓ. �

Remark 5.2.4. Notice that any fixed switched linear system that satisfies Def-
inition 5.2.3 will also satisfy Definition 5.2.1, assuming that ΣΓ remains un-
changed between the two definitions, see also Remark 2.4.15. The other way
around, however, does not hold in general. �

Regarding existence, notice that any fixed switched linear system is a (fixed)
switched realization of itself. Combine this with the idea that any linear sys-
tem has infinitely many realizations, see Theorem 4.3.3, it is easily proven
that also fixed switched linear systems have infinitely many (fixed) switched
realizations.

Theorem 5.2.5 (Infinitely many (Fixed) Switched Realizations). Consider an
external description ΣΓ. There exists infinitely many (fixed) switched realizations of
ΣΓ.

Proof. Consider any (fixed) switched realization of ΣΓ, which exists since
fixed switched linear system ΣΓ itself is a (fixed) switched realization. Con-
sider next the (fixed) switched realization’s qth linear system part, i.e. ΣNq

and add the state equation ż = Fz+ Gu. Simultaneously, add a zero row to Jq
and a zero column to Jq+1 if they exist. The result will be a new fixed switched
linear system that is signal-input-output equivalent to the fixed switched lin-
ear system ΣΓ, i.e. will results in a new (fixed) switched realization of ΣΓ.
This procedure can be repeated infinitely, hence there exists infinitely many
(fixed) switched realizations of ΣΓ.

Remark 5.2.6. In a similar way to linear systems, notice that there is no up-
per bound for the dimension of (fixed) switched realizations. More specific,
notice that there is no upper bound for any element of N . Lower bounds,
however, do exist and they will, again, be used to define minimal realiza-
tions, see also Remark 4.3.4. �

5.3 Minimal Fixed Switched Realization

Now that fixed switched realizations of ΣΓ have been introduced, the next
topic of interest would be the minimal fixed switched realizations of ΣΓ. For
this consider the following definition.
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Definition 5.3.1 (Minimal Fixed Switched Realization). Let ΣΓ1 be any fixed
switched realization of ΣΓ. ΣΓ1 is a Minimal Fixed Switched Realization of ΣΓ if
and only if Dim(ΣΓ1) ≤ Dim(ΣΓ2) (element-wise, i.e. n1

i ≤ n2
i ) for all fixed

switched realizations ΣΓ2 of ΣΓ. �

To better understand this definition, consider the following example of a
minimal fixed switched realization.

Example 5.3.2. Consider the following two fixed switched linear systems
constructed from three linear systems, two jump matrices and one fixed switch-
ing signal.

Fixed Switched Linear System 1:

N1
0 =

1 0 0
0 1 0
0 0 1

 ,

2
1
0

 ,
[
0 1 0

]
, 0


N1

1 =

1 0 0
0 1 0
0 0 1

 ,

2
1
0

 ,
[
1 0 0

]
, 0


N1

2 =

1 0 0
0 1 0
0 0 1

 ,

2
1
0

 ,
[
0 0 1

]
, 1


J1
1 =

0 1 0
0 0 0
0 0 0

 J1
2 =

0 0 0
0 0 0
1 0 0


σ(t) =


0, if t ∈ (−∞, 0)
1, if t ∈ [0, 1)
2, if t ∈ [1, ∞)

Fixed Switched Linear System 2:

N2
0 = (1, 1, 1, 0)

N2
1 = (1, 2, 1, 0)

N2
2 = (1, 0, 1, 1)

J2
1 = 1 J2

2 = 1

σ(t) =


0, if t ∈ (−∞, 0)
1, if t ∈ [0, 1)
2, if t ∈ [1, ∞)

Consider Lemma 2.4.12 and apply this lemma to both of the fixed switched
linear systems. From the subsequent result, it can then be concluded that
the fixed switched linear systems are signal-input-output equivalent. In the
case this result is not readily seen, it might help to consider the initial state
of fixed switched linear system 2 to be given by x2(tb) = x1

2(tb). That aside,
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since fixed switched linear system 2 cannot be simplified any further without
losing information, it can be concluded that fixed switched linear system 2 is
an example of a minimal fixed switched realization of fixed switched linear
system 1. �

5.4 Generalizing the Linear System Case

Now that both fixed switched realizations and minimal fixed switched real-
izations have been introduced, next would be to consider generalizing the
linear system case. For starters consider the following candidate for a gener-
alization of Theorem 4.3.6.

Conjecture 5.4.1. A fixed switched realization ΣΓ1 of ΣΓ is minimal if and only if
ΣΓ1 is observable.

Remark 5.4.2. Notice that the above conjecture does make a lot of sense when
considering the "only if" direction. Namely, should a fixed switched realiza-
tion not be observable, it might be possible to remove the unobservable part
similar to how this is done for linear systems, see Algorithm 4.3.10. This
would imply that a fixed switched realization could only be minimal if the
fixed switched realization is observable. Of course, this would only hold
true if removing the unobservable part would not change the input-output
behavior. �

Unfortunately, though this candidate looks promising, the following exam-
ple will show that Conjecture 5.4.1 turns out to be false.

Example 5.4.3. Consider the following two fixed switched linear systems
constructed from two linear systems, one jump matrix and one fixed switch-
ing signal.

Fixed Switched Linear System 1:

N1
0 =

0 1 0
0 0 1
1 0 0

 ,

2
1
0

 ,
[
0 1 0

]
, 0


N1

1 = (1, 2, 1, 0)

J1 =
[
1 0 0

]
σ(t) =

{
0, if t ∈ (−∞, 0)
1, if t ∈ [0, ∞)
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Fixed Switched Linear System 2:

N2
0 =

0 1 0
0 0 1
1 0 0

 ,

2
1
0

 ,
[
0 1 0

]
, 0


N2

1 =

1 0 0
0 0 0
0 0 0

 ,

2
1
0

 ,
[
1 0 0

]
, 0


J2 =

1 0 0
0 1 0
0 0 1


σ(t) =

{
0, if t ∈ (−∞, 0)
1, if t ∈ [0, ∞)

Using Theorem 3.2.4, it can be shown that the linear systems ΣNi
0
, i ∈ {1, 2},

are observable. This, in turn, will imply that both fixed switched linear
systems are observable, see Lemma 3.2.13, and hence, by Conjecture 5.4.1,
minimal fixed switched realizations of themselves. However, after applying
Lemma 2.4.12, the subsequent result would be that both fixed switched lin-
ear systems are signal-input-output equivalent and thus there would be a
contradiction. �

The above example is a clear counter example towards Conjecture 5.4.1. In
particular, the above example "claims" that just observability is not enough
to proof minimality. Hence, to resolve this, consider the following "update"
of Conjecture 5.4.1.

Conjecture 5.4.4. A fixed switched realization ΣΓ1 of ΣΓ is minimal if and only if
each linear system of ΣΓ1 is observable.

Remark 5.4.5. Notice that since all linear systems need to be observable,
the fixed switched realization also has to be observable, see Lemma 3.2.13.
Hence, this conjecture is a stronger version of the previous conjecture. �

Unfortunately, though this candidate also looks promising, the following ex-
ample will show that also Conjecture 5.4.4 turns out to be false.

Example 5.4.6. Consider the following fixed switched linear system constructed
from three linear systems, two jump matrices and one fixed switching signal.

Fixed Switched Linear System:

N0 = (1, 1, 1, 0)

N1 =

0 0 0
0 0 1
0 1 0

 ,

0
0
1

 ,
[
0 1 0

]
, 0


N2 = (1, 1, 1, 0)
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J1 =

1
0
0

 J2 =
[
1 0 0

]

σ(t) =


0, if t ∈ (−∞, 0)
1, if t ∈ [0, 1)
2, if t ∈ [1, ∞)

Using Theorem 3.2.4, it is readily shown that linear systems ΣN1 and ΣN3 are
observable and linear system ΣN2 is unobservable. Next, notice that none of
the linear systems can be simplified any further without losing information:

1. System 1 and 3 are already 1-dimensional and reducing these systems
any further would result in loss of information.

2. System 2 has two independent optimised roles:

i Pass on the output of linear system 1 to linear system 3.

ii Obtaining output from a 2-dimensional observable linear system.

Hence, this implies that the above fixed switched linear system is a minimal
fixed switched realization of itself, contradicting Conjecture 5.4.4. �

Remark 5.4.7. Notice that nothing has been said about changing the linear
systems all together, in hopes of finding three linear systems which are all
observable, smaller dimensional and give the same input-output behavior
when considering the corresponding fixed switched linear system. This sug-
gestion, however, will quickly turn out to be impossible. First of all notice
that changing linear system 1 doesn’t matter, since linear system 2 is only
interested in the output of linear system 1. Second of all, reducing linear
system 2 is just not feasible. Hence, it will be impossible to remove the unob-
servability from linear system 2, implying that Conjecture 5.4.4 keeps being
contradicted. �

Similar to the previous example, the above example is a clear counter exam-
ple towards Conjecture 5.4.4. In particular, the above example "claims" that
taking all linear systems to be observable, is to strong of a condition. Hence,
this time, the "updated" conjecture should be stronger than Conjecture 5.4.1
but weaker then Conjecture 5.4.4. In order to construct such a conjecture, first
consider the following definition.

Definition 5.4.8. Let ΣΓ be a fixed switched linear system. Σi
Γ is the fixed

switched linear system constructed by removing the first i linear systems
within ΣΓ. �

Conjecture 5.4.9. A fixed switched realization ΣΓ1 of ΣΓ is minimal if and only if
fixed switched linear system Σi

Γ1
is observable ∀i ∈ {0, 1, 2, . . . , #T − 1}.

Remark 5.4.10. Some remarks regarding Conjecture 5.4.9
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(i) The idea behind the conjecture is that for each linear system, contained
within the fixed switched realization, the unobservable part, based on
the observability definition for fixed switched linear systems, is removed.

(ii) Notice that Conjecture 5.4.9 is both stronger then Conjecture 5.4.1 and
weaker then Conjecture 5.4.4. �

Unfortunately, though the latest conjecture is the most promising candidate
of all, no proof has been found as of yet by the author. On the other hand,
also no counter example has been found as of yet. Hence, a future study
might resolve whether this last conjecture is correct or false. Either way, at
least it is justifiable, see Remark 5.4.10.

Before ending this chapter, consider the following algorithm that can be used
to find the unobservable parts within each linear system of a fixed switched
linear system. The idea behind this algorithm is similar to finding the unob-
servable subspace for linear systems.

Algorithm 5.4.11. Let ΣΓ be a fixed switched linear system.

Step 1: Let i = 0.

Step 2: Let k = 1.

Step 3: Apply Theorem 3.2.14 to Σi
Γ, obtain M k

1 and take k = k + 1.

Step 4: Repeat from step 3 until either M k
1 = {0ni} or k = #T .

Step 5: Let Si = M k
1 and repeat from step 2 until i = #T

The indexed family of Si now contains for each linear system ΣNi the unob-
servable part. �

Remark 5.4.12. Some remarks regarding Algorithm 5.4.11

(i) Notice that the algorithm, technically, only works if the fixed switched
linear system has finite switches.

(ii) Notice that the algorithm, technically, only works if the fixed switched
linear system contains only linear systems of equal dimension. How-
ever, a conjecture, that will not be proven within this paper, states that
the algorithm also works when the linear system dimensions are vary-
ing, see also Remark 3.2.15.

(iii) Now that the unobservable parts have been found, next would be to
remove them from within each linear system. This, however, would
require a theorem similar to Theorem 4.3.7, hence, unfortunately due to
time constraint, this would be something for a future study to consider.

(iv) It still needs to be shown that removing the unobservable parts does
not change the input-output behavior. However, in the case this could
be proven and Conjecture 5.4.9 turns out to be true, after removing the
unobservable parts the result would be a minimal fixed switched real-
ization of ΣΓ. �
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Chapter 6

Conclusion

In this paper, the goal was to generalize results from minimal realization the-
ory for linear systems to fixed switched linear systems, under the assumption
that the minimal realizations would be based on external descriptions given
by the corresponding system types only. In order to accomplish this task,
first both system types were mathematically introduced, together with some
of their important characteristics, among which the dimension and input-
output equivalency. Afterwards, the concepts of observability and controlla-
bility were introduced for both systems types. These would then become
useful when next minimal realization theory for linear systems would be
considered. Furthermore, while considering minimal realization theory for
linear systems, a distinction was made between the so-called function case
and the so-called system case. In the end, however, only the system case
was of importance, since only the system case would be considered for fixed
switched linear systems. The paper was concluded with some conjectures
regarding generalization for which, unfortunately, no definite answers could
be given, resulting in many questions still left open, to be solved in a future
study.
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Appendix A

Important Concepts
(Alphabetically Ordered)

In this appendix, some important concepts will be explained that are used
throughout this paper. Most importantly, this appendix will contain both
formal and informal explanations.

A.1 Almost Everywhere

To explain the concept of almost everywhere, first sets of zero measure need
to be introduced, see also the book by Polderman et al. [7, Definition 2.3.6].

Definition A.1.1 (Set of Zero Measure). A set N ⊂ R is said to have mea-
sure zero if and only if its elements can be covered by a countable union of
intervals of arbitrary small total length. �

Using sets of zero measure, the following definition explains the concept of
almost everywhere.

Definition A.1.2 (Almost Everywhere). Let f : R → Rn be a function. f
satisfies property A almost everywhere if and only if there exists a set of zero
measure N such that f (t) satisfies property A for all t ∈ R− N. �

A.2 Functions

Consider the following definition regarding continuous piecewise differen-
tiable functions.

Definition A.2.1 (Continuous Piecewise Differentiable Functions). A func-
tion f : R → Rn is said to be Continuous Piecewise Differentiable if and only
if f is both continuous and piecewise differentiable, i.e. if and only if f is
continuous and

f (t) =


f0(t) if t ∈ (−∞, t1)

f1(t) if t ∈ [t1, t2)
...
fk(t) if t ∈ [tk, ∞)

where



Appendix A. Important Concepts (Alphabetically Ordered) 50

• k ∈N∞
0 (finite or infinite).

• fi : R→ Rn is differentiable for all i ∈ (0, 1, 2, . . . , k).

• t1 < t2 < · · · < tk.

• any finite interval I ⊂ R can contain only finitely many tq, q ∈ {1, 2, . . . , k}.
(no Zeno behavior). �

Remark A.2.2. CPD(R, Rn) is the set of all continuous piecewise differen-
tiable functions f : R→ Rn. �

Consider next the following definition regarding piecewise continuous func-
tions.

Definition A.2.3 (Piecewise Continuous Functions). A function f : R → Rn

is said to be Piecewise Continuous if and only if

f (t) =


f0(t) if t ∈ (−∞, t1)

f1(t) if t ∈ [t1, t2)
...
fk(t) if t ∈ [tk, ∞)

where

• k ∈N∞
0 (finite or infinite).

• fi : R→ Rn is continuous for all i ∈ (0, 1, 2, . . . , k).

• t1 < t2 < · · · < tk.

• any finite interval I ⊂ R can contain only finitely many tq, q ∈ {1, 2, . . . , k}.
(no Zeno behavior). �

Remark A.2.4. PC(R, Rn) is the set of all piecewise continuous functions f :
R→ Rn. �

A.3 Index Sets and Indexed Families

Consider the following formal and informal definitions regarding index sets
and indexed families.

Definition A.3.1 (Index Set). An Index Set is a set whose elements can be used
to label elements of another set, i.e. is a countable (infinite) set. �

Definition A.3.2 (Indexed Family). An Indexed Family is a set whose elements
are labelled by elements of a given index set. In other words, there exists a
function that associated to each element in the indexed family, an element in
the index set. �
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In this paper, an indexed family will have the following notation: P = {sq ∈
S | q ∈ Q}. Here S can be any set, butQ has to be an index set. Furthermore,
not every element in S needs to be an element in P, but every element in Q
needs to be associated to an element in S.

The idea is that sq is an element of P if and only if sq is an element in S
and sq is associated to the element q in Q. Furthermore, ai ∈ P if and only
if ai is equal to the element in S that is associated to the element i in Q, i.e.
ai ∈ P if and only if ai = si.

In order to make notation easier, consider the following. Let Q = {1, 2, 3}
and let S = {a, b, c, d}. Assume that P = {sq ∈ S | q ∈ Q} is the indexed
family for which s1 = b, s2 = a and s3 = c. A short hand notation for P is
given by {b, a, c}Q. Notice that this notation uses the order of elements, for
both {b, a, c} and Q, to construct the indexed family.

A.4 Laplace Transform

Consider the following definition regarding the Laplace transform.

Definition A.4.1 (Laplace Transform). The Laplace Transform for a function
f : R→ Rn is defined as

f̂ (s) = L{ f }(s) =
∫ ∞

0
f (t)e−stdt �

Remark A.4.2. Some remarks about the Laplace transform

(i) The Laplace domain of a function f is the domain of the Laplace trans-
form of the function f i.e. is the domain of the function f̂ (s).

(ii) According to the book by Antsaklis et al. [1, Table 3.1], the Laplace
transform of ẋ(t) is given by sx̂(s) + x(0). �

A.5 Matrix Exponential

In this paragraph a few notes about matrix exponential will be given.

Definition A.5.1 (Matrix Exponential). Given a square matrix X ∈ Rn×n, the
matrix exponential of X is given by

eX =
∞

∑
k=0

1
k!

Xk �

Theorem A.5.2. Let S ∈ Rn×n be a non-singular matrix and M ∈ Rn×n be a
square matrix. The following holds true.

eS−1 MS = S−1eMS
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Proof. This is a straightforward application of Definition A.5.1.

A.6 Operations on Vector Spaces

In this paragraph, three different operations on vector spaces will be ex-
plained.

Definition A.6.1 (MV). Let M ∈ Rm×n be a matrix and V ⊆ Rn be a vector
space. MV := {Mv ∈ Rm | v ∈ V}. �

Definition A.6.2 (M−1V). Let M ∈ Rm×n be a matrix and V ⊆ Rm be a vector
space. M−1V := {w ∈ Rn | Mw ∈ V}. �

Definition A.6.3 (V ∩W). Let V, W ⊆ Rn be vector spaces. V ∩W := {x ∈
Rn | x ∈ V and x ∈W}. �

A.7 The Zero Dimensional Real Vector Space

Consider the following definitions regarding the zero dimensional real vector
space.

Definition A.7.1 (The Zero Dimensional Real Vector Space). The Zero Dimen-
sional Real Vector Space is given by R0 = {00}. �

Definition A.7.2 (Valid Operation on the Zero Dimensional Real Vector Space).
Below some valid operations on the zero dimensional real vector space.

1. A : R0 → Rn will be the map given by A(00) = 0n.

2. B : Rn → R0 will be the map given by B(x) = 00 for all x ∈ Rn.

3. x : R→ R0 is a function that is given by x(t) = 00 for all t ∈ R. �

Definition A.7.3 (Identity Matrix). For zero dimensional real vector spaces,
the identity matrix I0 is given by I0(00) = 00. �

A.8 Zeno Behavior

In this paragraph all information is obtained from the book by Liberzon [3,
Chapter 1.2.2]. Hence, for more information, the reader is directed to this
book.

Consider the following situation. A ball is bouncing on the floor. Each time it
reaches the floor, it will bounce upwards and in the process will lose some of
its energy. This implies that the time between each bounce will shorten and,
eventually, the ball will come to a halt, at the accumulation point of all time
instances the ball bounces on the floor. In the physical world this phenomena
is easy to understand, however in a mathematical model the opposite might
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be true. In certain mathematical models, as the time between each bounce
shortens, the number of bounces, within a finite interval, would increase and
eventually would reach infinite. This phenomena is called Zeno behavior.
The reason such behavior should be avoided, is because the mathematical
model would need infinite computations just to reach the accumulation point
and hence cannot "explain" what happens after the accumulation point.
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