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Abstract: This Bachelor’s project generates challenging data and compares statistical classifi-
cation models linear and quadratic discriminant analysis with the supervised learning methods
support vector machine, random forest and neural networks. These methods are compared in
classification accuracy, precision, recall, and F1 score. In the case of a small number of observations,
QDA or RF is the classifier with the highest chance of success. Furthermore, in the case of linearly
separable data, LDA will work just as well as QDA, RF, SVM, and NN.
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1 Introduction

This Bachelor’s project will focus in generating challenging data to in order to compare the traditional
statistical classification models linear and quadratic discriminant analysis with the supervised learning
methods support vector machine, random forest and neural networks. These methods will be compared in
classification accuracy, precision, recall, and F1 score.
The goal of the research is to compare the classification models and find a road map in choosing the right
classifier for different types of data. The research question we aim to answer in this project is: on what
type of data does the classical classification models linear and discriminant analysis outperform supervised
learning classification models random forest, support vector machine, and neural networks?
The report is written in the following structure: chapter 2 focuses on the theoretical framework of the five
classification models. Chapter 3 illustrates the method in which the data is generated and the models
are evaluated. In chapter 4 the results are outlined and discussed. The final chapter is comprised of the
conclusion.

2 Theoretical Framework

2.1 Types of data

Before we dive into the different types of classification models, it is perhaps important to differentiate
between two different types of data: linearly separable data and data that is not linearly separable.
Data that is linearly separable means that the data can be separated by a linear hyperplane. A hyperplane
is defined as a flat affine subspace of a p-dimensional space of dimension p− 1, defined as an equation in
(2.1).

β0 + xTβ = 0 (2.1)

For example, consider a dataset with only two independent variables x1 and x2. Since this data is
2-dimensional, it is linearly separable if it can be separated by a line, see figure 2.1. The dots are the
observations, and the ellipses represent the 95% prediction confidence. The hyperplane separating the
data is the black line through the figure.

Figure 2.1: Example of linearly separable data

Data that is not linearly separable is data in which a linear hyperplane will not successfully separate the
dependent variables. See for example the data in figure 2.2. Here, once again, the ellipses represent the
95% prediction confidence. The line which does successfully separate the data in this figure is not linear.
If it were, it would separate the response variables with low accuracy.
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Figure 2.2: Example of non-linearly separable data

So far we have only considered binary response data, for which the dependent variables can only take two
values: ’true’ or ’false’ (1 or 0). For non-binary response, for example response with three categories, the
data is separated by different hyperplanes computed between each pair of responses. See for example
figure 2.3 for linearly separable data with three possible responses.

Figure 2.3: Example of linearly separable data with 3 responses

2.2 Discriminant Analysis

Discriminant analysis is a traditional statistical classification method. It is based on a probability theorem
by Bayes [2] that flips conditional probabilites. Bayes’ thoerem states that:

pk(x) =
πkfk(x)∑K
l=1 πlfl(x)

. (2.2)

In this theorem, πk is the prior probability of class k, hence
∑K
k πk = 1. For example in a binary response

model where π0 = π1 then πk = 0.5 for k = 0, 1. Furthermore, pk represents the posterior probability that
an observation X = x belongs to the k-th class, given the predictor value. Hence pk = P (Y = k|X = x).
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Discriminant Analysis works by firstly assuming that each class is normally distributed:

fk(x) =
1

(2π)p/2 |Σk|1/2
e−

1
2 (x−µk)

TΣ−1
k (x−µk). (2.3)

This distribution is then plugged into Bayes formula (2.2) for each class. This equation can be simplified
and after having taken the natural logarithm of the resulting equation, we arrive at (2.4).

δk(x) = −1

2
(x− µk)

T
Σ−1k (x− µk)− 1

2
log |Σk|+ log πk (2.4)

The class k for which δk(x) is highest is the class to which the observation will be assigned.
In Linear Discriminant Analysis (LDA) the data is split with a linear decision boundary. The decision
boundary is the black line that splits the binary response data in Figure 2.1 and the multi-class response
data in Figure 2.3. The decision boundary is the set of points x where the (log) probability of two outcomes
is equal. So in predicting a binary output (0 or 1), the decision boundary is therefore {x : δ1(x) = δ0(x)}
where the δk(x) represents the equation (2.4). However, in LDA the classes are assumed to have equal
variance, hence

Σk = Σl, ∀l.

This assumption simplifies the equation and, most importantly, cancels out the quadratic terms in (2.4).
Hence for LDA the δk becomes:

δk(x) = xTΣ−1µk −
1

2
µTkΣ−1µk + log πk (2.5)

The decision boundary is therefore where:

xTΣ−1µ1 −
1

2
µT1 Σ−1µ1 + log π1 = xTΣ−1µ0 −

1

2
µT0 Σ−1µ0 + log π0 (2.6)

Note that by this assumption of equal variance, the decision boundary in linear in x

In quadratic discriminant analysis (QDA) the classes are still assumed to be drawn from normal distributions
but the equal variance assumption is no longer made. This leaves us with the original equation (2.4)
which can be rewritten as:

δk(x) = −1

2
xTΣ−1k x+ xTΣ−1k µk −

1

2
µTkΣ−1k µk −

1

2
log |Σk|+ log πk (2.7)

In order to construct the function for LDA (2.5), estimates for the covariance matrices Σ, mean µk, and
prior probability πk must be made, for the descriminant function for QDA (2.7) the covariance matrix has
to be estimated seperately for each class. The parameters are estimated with the following formulae [2]:

π̂k = Nk/N (2.8)

µ̂k =
∑
gi=k

xi/Nk (2.9)

Σ̂ =

K∑
k=1

∑
gi=k

(xi − µ̂k)(xi − µ̂k)T /(NK) (2.10)

Where Nk is the number of observations in class k.

Which discriminant function will outperform the other depends on the data. For data that is not linearly
severable, LDA will not perform well, or at all, see Figure 2.4. Its clear that this linear decision boundary
is much less accurate than the one in Figure 2.2. In other data sets, the LDA will perform no better than
chance alone, see the attempt at a decision boundary in Figure 2.5.
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Figure 2.4: Example on LDA on non-linearly seperable data

Figure 2.5: Another example of LDA on non-linearly separable data

For data that is linearly separable, there exists a trade-off in complexity between variance and bias .
Firstly, the amount of parameters in both methods. In order to construct the discriminant function for
LDA, p+ 1 parameters are needed to construct where p is the number of predictors. This is since it takes
p predictors to estimate the mean, 1 to estimate the prior probability. The covariance matrix does not
need additional parameters since it is defined in terms of the already predicted means. Hence for a dataset
with K classes, LDA estimates (K − 1)(P + 1) parameters. Due to having to estimate separate covariance
matrices, QDA on the other hand also takes p predictors to estimate the mean and 1 to estimate the
prior probability but also needs p(p+ 1)/2 to estimate the covariance matrices. Hence together this is
1+p(p+2)/2 parameters. For a dataset with K classes, QDA estimates (1+p(p+2)/2)(K−1) parameters.
Thus QDA has a much higher complexity than LDA and increases in complexity quadratically in p while
LDA increases linearly in p.
Secondly, the bias. In QDA the high amount of parameters can lead to high variance. However, on the
other hand, in a dataset where the classes have very different variances, LDA will classify with a very
high bias due to the equal variance matrix assumption.
The performance of QDA and LDA is therefore dependent on the dataset with LDA generally performing
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better than QDA on datasets where the training set is small.

2.3 Random Forest

2.3.1 Classification Trees

To understand Random Forest (RF), we must first gain a foundation in classification trees. The classification
tree is a tree that consists of a root node, branches, internal nodes, and terminal nodes or leaves. Each
node represents a decision which splits the data based on a condition. In the classification tree algorithm,
the first step is to build the tree with recursive binary splitting. This means that for every independent
variable a cost function is computed that represents how predictive the variable is for the outcome. The
most predictive variable (hence the variable with the lowest cost) will become the root node. The algorithm
is recursive so the same algorithm will be performed on the child nodes until a stop condition is reached.
There are different possibilities for the cost function, the RF algorithm from the randomForest package
[5], uses the Gini index (G).

G =

K∑
k=1

pmk(1− pmk) (2.11)

Where pmk is the proportion of test observations in mth input variable that are from the kth class.

2.3.2 Random Forest

In Random forrest (RF) a certain amount of classification trees are made from bootstrapped samples (of
63, 2%) from the training set. This sample is called ’the in-bag set’. The remaining 36, 8% is known as
’the out-of-bag data’. Each tree may only train using a random sample

√
p of predictors for each split,

where p is the amount of predictors. The out-of-bag sample is then used to test the trees. Out of the all
the trees produces, the classification choice is made by majority vote.

The advantage of RF is that classification trees are produced without considering strongest predictor.
This is a good counter-measure against overfitting.

2.4 Support Vector Machine

2.4.1 Binary response classification

Support Vector Machine (SVM) is built as a binary classifier, this can be extended to multi-class
classification. We will primarily explain SVM for two response variables and then touch on how SVM
classifies for more than two classes in 2.4.2.
SVM is an extension of the Support Vector Classifier (SVC) which is in turn an extension of the Maximum
Margin Classifier (MMC). If the two classes are separable by a linear boundary, MMC works by finding a
maximal margin hyperplane. It is defined by equation (2.1).
Hence the classification is decided by the sign on the function f(x)

f(x) = β0 + xTβ (2.12)

Thus given training observations x1, . . . , xn ∈ Rp and response variables y1, · · · , yn ∈ {−1, 1}, MMC
works maximizing the margin M , hence finding a solution to:

max
β,β0,‖β‖2=1

M (2.13)

subject to yi(x
T
i β + β0) ≥M ∀ i = i, . . . , n (2.14)

Where ‖ · ‖2 represents the Euclidean norm.
In the case that a separating hyperplane does not exist, there will exist no solution to equations (2.13) -
(2.14). SVC bypasses this issue by finding a hyperplane that separates the classes with a margin that
allows misclassification if it will ensure better overall classification for new data points. SVC also works in
the case that a hyperplane does exist but the plane is too sensitive to new data (hence will perform well
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on the training set but not on the test test) for MMC. SVC works by maximizing the margin M just as
MMC but a conditional is added. SVC finds a solution to:

max
β,β0,ε,‖β‖2=1,

M (2.15)

subject to yi(x
T
i β + β0) ≥M(1− εi) (2.16)

and ε1 ≥ 0,

n∑
i=1

ε1 ≤ C (2.17)

Here, The εi is a is a slack variable. It is a location parameter for the ith observation relative to the
margin. εi = 0 indicates that the ith observation is right side of the margin, εi > 0, indicates that it is on
the wrong side. C is known as the turning parameter, and since it bounds the sum of the slack variables
εi, it determines the amount violations that the margin will tolerate.
In the case that the data is not linearly separable, the extension of SVC, is to be used: Support Vector
Machine (SVM). SVM produces a function g(x), the sign which makes the classification decision:

g(x) = β0 + h(x)Tβ (2.18)

h(xi) = (h1(xi), h2(xi), . . . , hn(xi)) where hi are the basis functions. Which changes the minimization
problem to :

max
β,β0,ε,‖β‖2=1,

M (2.19)

subject to yi(β0 + h(xi)
Tβ) ≥M(1− εi) (2.20)

and ε1 ≥ 0,

n∑
i=1

ε1 ≤ C (2.21)

In order to explain how SVM works, we must first compute the solution of (2.19) - (2.21). First, the
‖β‖2 = 1 constraint can be combined with equation (2.16):

1

‖β‖
yi(β0 + h(xi)

Tβ) ≥M(1− εi)

Then we can arbitrarily set ‖β‖ = 1
M to simplify the equation. Now we can substitute (2.15) - (2.17) to:

min
β,β0

1

2
‖β‖2 + C

N∑
i=1

εi (2.22)

subject to yi(β0 + h(xi)
Tβ) ≥ 1− εi (2.23)

εi ≥ 0 (2.24)

In order to solve this minimization problem, we must minimize the Lagrange function with respect to
β0, β, εi[2].

L =
1

2
‖β‖2 + C

N∑
i=1

εi −
N∑
i=1

α1[yi(β0 + h(xi)
Tβ)− (1− εi)]−

N∑
i=1

µiεi (2.25)

In this equation the positive constants µi, αi, εi are the positivity constraints. In order to minimize the
equation, we take the derivative of the Lagrange function and set it to zero:

1

β
L = −

N∑
i=1

αiyih(xi) + β = 0, (2.26)

1

β0
L = −

N∑
i=1

αiyi, (2.27)

1

εi
L = C −

N∑
i=1

αi = 0. (2.28)

(2.29)
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Since from (2.26) we know that β =
∑N
i=1 αiyih(xi) The function (2.18) can therefore be written as:

g(x) = h(x)Tβ + β0 (2.30)

= h(x)T (

N∑
i=1

αiyih(xi)) + β0 (2.31)

=

N∑
i=1

αiyih(x)Th(xi) + β0 (2.32)

=

N∑
i=1

αiyi〈h(x), h(xi)〉+ β0 (2.33)

In order to avoid computing h(x), we can use a generalisation of the inner product, the kernel.

K(x, xi) = 〈h(x), h(xi)〉

The solution function then becomes:

g(x) = β0 +

N∑
i=1

αiyiK(x, xi) (2.34)

Different kernels can be used, for non-linear data the radial kernel is the best choice, and the one used in
this thesis.

K(x, xi) = exp(−γ
p∑
j=1

(xj − xij)2) (2.35)

What this means intuitively is that the further away a test observation is from a training observation, the
smaller K(x, xi) will be hence the smaller influence the observation will have on the decision function
(2.34) [3]

2.4.2 Multi-class classification

Since SVM is built around binary classification, extension to multi-class is not directly possible. The
two possible workaround methods are the One-Versus-One or the One-Verus-Many. The SVM classifier
from e1071 package, the one used in this thesis, applies the One-Versus-One method [4] in which a test
observation is classified by using SVM on every possible pair of classes and classifying based on the most
frequently occurring decision.

2.5 Neural Networks

Neural network is a complex classification model that tries to copy the layout of the human brain in order
to make decisions. The most basic version of neural network (NN) architecture is the single-layer network,
called the perceptron. The perceptron consists of an input layer and an output layer. The input layer
consists of nodes that each transmit an observation x = (x1, x2, . . . , xp) with a weight w = (w1, w2, . . . , wp)
to an output node. This output node classifies the observation in one of two classes y ∈ {−1, 1}.It is a
single-layer network because it has only one computational layer, the output layer. Hence the observation
is estimated with the following formula:

ŷ = Φ(

p∑
j=1

wixi) (2.36)

The Φ is known as an activation function. The activation function translates the computation to an
output. A simple example of an activation function is : Φ(u) = sign(v). The one that the neuralnet[6]
package’s default is the sigmoid function.

Φ(u) =
1

1 + e−v
(2.37)

The neural network algorithm works by using small inputs in order to update the weights based on the
error value:

wnew = Wold + αE(x)x (2.38)
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Where α is a constant representing the learning rate and E(x) is the error of x.

E(x) = y − ŷ (2.39)

The perceptron is a linear model, the data is separated by the hyperplane
∑p
j=1 wixi = 0.It will therefore

not perform well on non-linear data. Multi-layer neural networks resolve this issue. Multi-layer means
that, unlike with the perceptron, we do not simply only have the output layer as a computing layer but
there are additional layers in between the input and output layer which also make computations. These
are called the hidden layers because the computations are not visible to the user. In this thesis we will be
using nnet from neuralnet. The model is a single hidden layer neural network which is trained using
backpropagation [7].
The backpropagation algorithm is an algorithm with two phases, the forward phase and the backward
phase. In the forward phase the training data is fed trough the neural network and all its hidden layers
with the current (or initially: random) weights. Then, at the final output, the derivative of the loss
function is computed. A loss function representative of the prediction error. Then, in the backward phase,
the gradient of the loss function is cothemputed in order to compute new, better, weights. This is repeated
until an acceptable loss function is reached.

3 Method

3.1 Generated Data Sets

Synthetic data is produced in order to compare the different classification methods. The data sets all
consist of 5 dependent variables, of which 2 have zero predictive power. The data sets differ in the
following items:

• Linear- or non-linearly seperably data (L/NL): tells the reader if the data is seperable by a hyperplane
or not.

• Amount of response variables (RV): In datasets 1 - 7 the response is binary and in datasets 8-14 the
number of response variables is 3.

• Prior probability (PP): for most data sets it is assumed that the response classes are approximately
equal in size. In data set 5 and 10, one response is much less likely than the other(s).

• Number of observations (N): The models all have 1000 observations with the exception of dataset 4
and 11 where the classification models are tested on a low number of observations.

• Co-variance matrices (COV): the co-variance matrices between the three predictors x1, x2, x3. Note
that if i = j:

COV (xi, xi) = σ2
xi

= var(xi)

and if i 6= j:
COV (xi, xj) = corr(xi, xj) · σxi

σxj

Where corr is the correlation. Datasets 1,2 and 3 are identical with the exception of the correlation
between the predictors. In dataset 1 there is no correlation, in dataset 2 there is a correlation of
−0.5 between two predictors in both response classes and in dataset 3 there is a correlation of −0, 5
between two predictors in only one response class. The same is done for the datasets 8,9,10, and the
datasets 6,7.

• Mean (µ) The mean of the three predictive classes. Note that, for example, the three classes in the
first data set have the same mean and the classes in dataset 6 are completely separated.

The datasets were synthetically created in R. The data sets are made by firstly making a p uniformly
distributed multivariate datasets around a certain mean and variance. Here p is the number of response
variables, hence either 2 or 3. these are combines into one big 3 dimensional dataset. Two more independent
variables are added to the dataset with no predictive power. With the formula for the LDA or QDA
decision boundary the dependent variables for each synthetic observation is computed and added to
the dataset. Noise is then added to all the independent variables by adding a random sample from the
N(0, 0.2) distribution to each observation:

x = x +N (0, .2) (3.1)

Finally, the dataset is standardised and shuffled. Also see appendices A for the R program for a binary
response dataset and B for a multi-class reponse dataset.
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D L/NL RV PP N COV µ

1 NL 2 0.5, 0.5 103
[
1 0 0
0 1 0
0 0 1

]
,
[
2 0 0
0 2 0
0 0 2

]
,

[
1
1
1

]
,
[
1
1
1

]
2 NL 2 0.5, 0.5 103

[
1 −0.5 0
−0.5 1 0
0 0 1

]
,
[

2 −1 0
−1 2 0
0 0 2

]
,

[
1
1
1

]
,
[
1
1
1

]
3 NL 2 0.5, 0.5 103

[
1 −0.5 0
−0.5 1 0
0 0 1

]
,
[
2 1 0
1 2 0
0 0 2

]
,

[
1
1
1

]
,
[
1
1
1

]
4 NL 2 0.5, 0.5 50

[
1 0 0
0 1 0
0 0 1

]
,
[
2 0 0
0 2 0
0 0 2

]
,

[
1
1
1

]
,
[
1
1
1

]
5 NL 2 0.7, 0.3 103

[
1 0 0
0 1 0
0 0 1

]
,
[
2 0 0
0 2 0
0 0 2

]
,

[
1
1
1

]
,
[
1
1
1

]
6 L 2 0.5, 0.5 103

[
1 0 0
0 1 0
0 0 1

]
,
[
1 0 0
0 1 0
0 0 1

]
,

[
1
5
10

]
,
[

3
7
12

]
7 L 2 0.5, 0.5 103

[
1 −0.5 0
−0.5 1 0
0 0 1

]
,
[

1 −0.5 0
−0.5 1 0
0 0 1

]
,

[
1
5
10

]
,
[

3
7
12

]
8 NL 3 0.33, 0.33 0.34 103

[
1 0 0
0 1 0
0 0 1

]
,
[
2 0 0
0 2 0
0 0 2

]
,
[
3 0 0
0 3 0
0 0 3

] [
1
1
1

]
,
[
1
1
1

]
,
[
1
1
1

]
9 NL 3 0.33, 0.33 0.34 103

[
1 −0.5 0
−0.5 1 0
0 0 1

]
,
[

2 −1 0
−1 2 0
0 0 2

]
,
[

3 −1.5 0
−1.5 3 0
0 0 3

] [
1
1
1

]
,
[
1
1
1

] [
1
1
1

]
10 NL 3 0.33, 0.33 0.34 103

[
1 −0.5 0
−0.5 1 0
0 0 1

]
,
[
2 0 0
0 2 0
0 0 2

]
,
[

3 1.5 0
1.5 3 0
0 0 3

] [
1
1
1

]
,
[
1
1
1

] [
1
1
1

]
11 NL 3 0.33, 0.33 0.34 100

[
1 0 0
0 1 0
0 0 1

]
,
[
2 0 0
0 2 0
0 0 2

]
,
[
3 0 0
0 3 0
0 0 3

] [
1
1
1

]
,
[
1
1
1

]
,
[
1
1
1

]
12 NL 3 0.2, 0.2 0.6 103

[
1 0 0
0 1 0
0 0 1

]
,
[
2 0 0
0 2 0
0 0 2

]
,
[
3 0 0
0 3 0
0 0 3

] [
1
1
1

]
,
[
1
1
1

]
,
[
1
1
1

]
13 L 3 0.33, 0.33 0.34 103

[
1 0 0
0 1 0
0 0 1

]
,
[
1 0 0
0 1 0
0 0 1

]
,
[
1 0 0
0 1 0
0 0 1

] [
1
5
10

]
,
[

3
7
12

] [
5
9
14

]
14 L 3 0.33, 0.33 0.34 103

[
1 −0.5 0
−0.5 1 0
0 0 1

]
,
[

1 −0.5 0
−0.5 1 0
0 0 1

]
,
[

1 −0.5 0
−0.5 1 0
0 0 1

] [
1
5
10

]
,
[

3
10
20

] [
5
9
14

]
Table 3.1: The Datasets

3.2 Classifier Evaluation

Each data set is randomly split in 20% testing set and 80% training set. Repeated 5-fold cross-validation
is then used to train classifiers to prevent overfitting. In 5-fold cross-validation, the observations are split
up into 5 groups, or folds. The first fold then becomes the test set and the other 4 folds together form the
training set. The model is trained using the training set and then tested on the test set. This process is
repeated three times with all k folds having served as a test set. Finally we obtain 14 confusion matrices
per classification model. The confusion matrix displays the amount of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). For every classification matrix, we get multiple
values for these computations considering which response class is chosen as the ’true’ value. In order to
make conclusions about the classification model in general we consider the overall accuracy (Ac) and the
macro-averaged precision (Pr) (also known as positive predictive value) and recall (Re) (also known as
sensitivity or true-positive rate). Macro-averaged simply means the mean of the two or three values for
recall and precision. The accuracy considers amount of correct classifications. This can, however, give
very inaccurate results, for example in the case of the dataset where the classifier is to classify into either
’man’ or ’woman’ and a dataset in which 90% is men. If the classifier then randomly classifies all the
observations as men, it would get a 90% accuracy rate but would in fact be performing very poorly. This
is why we also consider precision, recall, and F1. Recall measures the amount of true positives out of all
the results, hence measures how well a test can identify true positives. Precision tests how much of the
positives are true positives. A classifier with a high accuracy but a low precision score would therefore not
be useful in the application where a false positive is not desirable.The most concise method of comparing
classification models is the F1 score, the harmonic mean of the precision and recall score. It is a general
measure of accuracy between 0 and 1. 1.0 therefore indicates perfect recall and precision. We will be using
the traditional F1 score where the precision and recall are assumed to be of equal importance. Below are
the formulas used to calculate these scores and the Bayesian conditional probability interpretation of the
score. Here 1 represents the case where the response variable is 1, K is either 2 or 3 , depending on the
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number of responses, and πi is the prior probability.

Accuracy =

K∑
i=0

P (y is classified as i|y = i)πi =
TP + TN

TP + TN + FN + FP
(3.2)

Recall = P (y is classified as 1|y = 1) =
TP

TP + TN
(3.3)

Precision = P (y = 1|y is classified as 1) =
TP

TP + FP
(3.4)

F1 =
2

recall−1 + precision−1
(3.5)

The R programs for the classification models can be found in appendices C - G

4 Results and Discussion

4.1 Accuracy, precision, and recall

The accuracy, precision, and recall of the datasets per classifier are summarised in tables 4.2,4.3 and 4.4.
The missing values in the precision column is caused by the fact when the amount of true and negatives
positives is zero. In this case, the classifier is definitely inaccurate for that dataset since zero amount of
positives never occurs.
As is expected, the LDA only produces accurate results for datasets 6,7, 13 and 14 since these were the
datasets where the datapoints were separable by a linear hyperplane. In these sets LDA either outpeforms
the other classifiers or performs with simuliar accuracy, precision and recall. However, unexpectibly, LDA
did not outpeform QDA in the case of a small set (and thereby training set) as was expected.
The importance of the precision and recall as evaluation of the classifier is highlighted in dataset 5. If one
were to evaluate a classifier purely on accuracy, it would seem that LDA performs fine on this dataset but
in reality the confusion matrix tells a different story. All the instances were classified to class 0 but since

0 1
0 181 0
1 19 0

Table 4.1: Confusion matric of dataset 5

this test set only had a small amount of observations belonging to the class 1, the accuracy is very high (
181
200 = 0.905) when in reality the classifier is very inaccurate.
QDA peforms well on almost all datasets. It outperforms all the other classifiers in the case of dataset
4, the dataset of with a binary response and a low number of observations. In the little difference in
performance between data sets 1, 2, 3, between 6 and 7, and 8, 9 and 10, we can conclude that performance
of the model is not significantly influenced by correlation between predictors. QDA slightly outperforms
all other classifiers in the case of dataset 2, the dataset with correlation between two predictors in both
response classes, this is not the case in dataset 9 where which is the same setup of correlation but in the
case of three response variables.
Random forest performs well overall but cannot classify better than chance in dataset 4. RF outperforms
SVM in the cases of dataset 5, the one with the binary response where the response classes are of different
sizes, and dataset 11, the case where the number of observations were low. This is however not the case
for datasets 4 and 12, the other classes with low amount of observations or unbalanced response classes.
SVM slightly outperforms RF on almost every dataset but miss-classifies many observations in the case of
dataset 5, a dataset with binary response where the response classes are of different sizes, and dataset 11,
the case where the number of observations were low.
NN performs well overall with most accuracy above 90%. It cannot classify better than chance alone in
the case of dataset 11 where the amount of observations are low.
There is no clear difference between performance of the datasets between correlated and non-correlated
datasets.
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D LDA QDA

Ac Pr Re Ac Pr Re
1 0.59 0.50 0.89 0.88 0.88
2 0.63 0.81 0.53 0.94 0.93 0.93
3 0.61 0.81 0.51 0.90 0.89 0.90
4 0.60 0.56 0.54 0.80 0.79 0.79
5 0.91 tg 0.50 0.93 0.86 0.74
6 0.98 0.98 0.98 0.98 0.99 0.98
7 0.99 0.99 1.00 0.99 0.99 1.00
8 0.49 0.35 0.81 0.78 0.76
9 0.48 0.33 0.80 0.78 0.75
10 0.55 0.34 0.80 0.76 0.76
11 0.65 0.33 0.70 0.63 0.63
12 0.52 0.30 0.88 0.94 0.64
13 0.97 0.98 0.98 0.97 0.97 0.97
14 0.98 0.98 0.98 0.98 0.99 0.98

Table 4.2: Accuracy, Precision, Recall of LDA and QDA

D RF SVM

Ac Pr Re Ac Pr Re
1 0.93 0.93 0.92 0.91 0.90 0.89
2 0.90 0.90 0.89 0.91 0.89 0.90
3 0.90 0.90 0.89 0.92 0.92 0.91
4 0.60 0.62 0.60 0.70 0.81 0.70
5 0.92 0.85 0.81 0.85 0.50
6 0.98 0.98 0.99 0.98 0.98 0.99
7 0.97 0.97 0.97 0.99 0.99 1.00
8 0.81 0.78 0.77 0.84 0.79 0.78
9 0.84 0.79 0.80 0.84 0.83 0.81
10 0.82 0.80 0.77 0.80 0.76 0.74
11 0.85 0.75 0.70 0.65 0.47 0.53
12 0.87 0.91 0.77 0.90 0.94 0.73
13 0.96 0.97 0.97 0.99 0.99 0.99
14 0.97 0.97 0.97 0.98 0.98 0.99

Table 4.3: Accuracy, Precision, Recall of RF and SVM

D NN

Ac Pr Re
1 0.93 0.92 0.93
2 0.91 0.91 0.91
3 0.93 0.92 0.92
4 0.70 0.83 0.62
5 0.94 0.93 0.83
6 0.97 0.97 0.98
7 0.99 0.99 1.00
8 0.82 0.78 0.80
9 0.84 0.80 0.79
10 0.83 0.81 0.80
11 0.45 0.42 0.46
12 0.90 0.80 0.77
13 0.98 0.98 0.98
14 0.98 0.98 0.98

Table 4.4: Accuracy, Precision, Recall of NN
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4.2 Comparison with F1 score

Comparing the F1-scores, it can be remarked that QDA outperforms RF, SVM and NN in the case of low
number of observations for a binary response in dataset 4. Furthermore it can be observed in the case of
linearly separable data (dataset 6,7,13, and 14), that LDA has an accuracy equal to the other models. In
the case of dataset 11, which is the low amount of observations for a multi-class response, only the QDA
and RF perform adequately.

D LDA QDA RF SVM NN

1 0.88 0.93 0.90 0.92
2 0.43 0.93 0.90 0.90 0.91
3 0.40 0.89 0.89 0.91 0.92
4 0.52 0.79 0.58 0.67 0.60
5 0.79 0.83 0.87
6 0.98 0.98 0.98 0.98 0.97
7 0.99 0.99 0.97 0.99 0.99
8 0.76 0.78 0.78 0.79
9 0.76 0.79 0.82 0.79
10 0.75 0.78 0.75 0.81
11 0.62 0.70 0.42
12 0.66 0.82 0.78 0.78
13 0.97 0.97 0.97 0.99 0.98
14 0.98 0.98 0.97 0.98 0.98

Table 4.5: F1 score of classification models

5 Conclusion

This goal of this research was to describe a road map to choosing the right classification model for different
types of synthetic data. Based on 14 datasets that differ in size, correlation, class balance, number of
response variables, and mean, it is clear that no significant classifier stood out as the best for most of
these variables.
It cannot be concluded on which type of data sets discriminant analysis outperforms random forest, support
vector machine, and neural network. In can be said that in the case of a low amount of observations,
that QDA is a classifier with the higher chance of success than most other classifiers. It is only RF that
performd simularly. It was also apparent that in the cas of linearly seperable data, LDA will work just as
well as QDA, RF, SVM, and NN.
In this thesis, due to the small number of datasets, choices had to be made in which components in the
dataset to vary. In further research, the classification models could be tested on many more datasets
which all vary in more components: mean, variance, number of response variables, et cetera. This would
give the reader a more complete and concise picture of which dataset works on which classifier.
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A Appendix: Dataset 1

set.seed(101)

n <- 1000 # number of observations

mu<- cbind(c(1,1,1),c(1,1,1)); # mean

var1 <- rbind(c(1,0,0),c(0,1,0),c(0,0,1)) #covariance matrix

var2 <- rbind(c(2,0,0),c(0,2,0),c(0,0,2)) #covariance matrix

pp <- c(0.5,0.5)

x.y1 <- as.matrix(rmvnorm(n*pp[1], mu[,1],var1))

x.y2 <- as.matrix(rmvnorm(n*pp[2], mu[,2],var2))

mvndat <- as.matrix(rbind(x.y1, x.y2))

y <- NULL

for(i in 1:n) {

delta1 <- -0.5*t(mvndat[i,]- mu[,1])%*%inv(var1)%*%(mvndat[i,] - mu[,1]) - (0.5*log(det(var1)) + log(pp[1]))

delta2 <- -0.5*t(mvndat[i,]- mu[,2])%*%inv(var2)%*%(mvndat[i,] - mu[,2]) - (0.5*log(det(var2)) + log(pp[2]))

y[i] <- as.integer(delta1 >= delta2)

}

x4 <- rnorm(n, 0, 3)

x5 <- rnorm(n, 0, 3)

dataset <- cbind.data.frame(mvndat, x4, x5)

#added noise for the indepent variables

for (i in 1:5){

dataset[,i] = dataset[,i] + rnorm(n,0,.2)

}

# bind and standardize data

dataset <- scale(dataset)

dataset <- cbind.data.frame(dataset,y)

colnames(dataset) <- c(’x1’, ’x2’, ’x3’, ’x4’, ’x5’, ’y’)

dataset.shuffle <- dataset[sample(nrow(dataset)),] #shuffle the data

write.csv(dataset.shuffle, file = "/Users/maike/Desktop/Scriptie/Datasetsnew/dataset1.csv",row.names = FALSE)
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B Appendix : Dataset 7

set.seed(108)

n <- 1000 # number of observations

mu<- cbind(c(1,1,1),c(1,1,1),c(1,1,1)); # mean

var1 <- rbind(c(1,0,0),c(0,1,0),c(0,0,1)) #covariance matrix

var2 <- rbind(c(2,0,0),c(0,2,0),c(0,0,2)) #covariance matrix

var3 <- rbind(c(3,0,0),c(0,3,0),c(0,0,3)) #covariance matrix

pp <- c(0.33,0.33,0.34)

x.y1 <- as.matrix(rmvnorm(n*pp[1], mu[,1],var1))

x.y2 <- as.matrix(rmvnorm(n*pp[2], mu[,2],var2))

x.y3 <- as.matrix(rmvnorm(n*pp[3], mu[,3],var3))

mvndat <- as.matrix(rbind(x.y1, x.y2, x.y3))

y <- NULL

for(i in 1:n) {

delta1 <- -0.5*t(mvndat[i,]- mu[,1])%*%inv(var1)%*%(mvndat[i,] - mu[,1]) - (0.5*log(det(var1)) + log(pp[1]))

delta2 <- -0.5*t(mvndat[i,]- mu[,2])%*%inv(var2)%*%(mvndat[i,] - mu[,2]) - (0.5*log(det(var2)) + log(pp[2]))

delta3 <- -0.5*t(mvndat[i,]- mu[,3])%*%inv(var3)%*%(mvndat[i,] - mu[,3]) - (0.5*log(det(var3)) + log(pp[3]))

if((delta1 >= delta2) && (delta1 >= delta3)){

y[i] <- 1

}

if((delta2 >= delta3) && (delta2 >= delta1)){

y[i] <- 2

}

if((delta3 >= delta2) && (delta3 >= delta1)){

y[i] <- 3

}

}

x4 <- rnorm(n, 5, 4)

x5 <- rnorm(n, 2, 3)

dataset <- cbind.data.frame(mvndat, x4, x5)

#add noise

for (i in 1:5){

dataset[,i] = dataset[,i] + rnorm(n,0,.2)

}

# bind and standardize data

dataset <- scale(dataset)

dataset <- cbind.data.frame(dataset,y)

colnames(dataset) <- c(’x1’, ’x2’, ’x3’, ’x4’, ’x5’, ’y’)

dataset.shuffle <- dataset[sample(nrow(dataset)),] #shuffle the data

#partimat(as.factor(y) ~ x1 + x2 , data = dataset, method="qda")

write.csv(dataset.shuffle, file = "/Users/maike/Desktop/Scriptie/Datasets_new/dataset8.csv",row.names = FALSE)
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C Appendix : Linear discriminant analysis R code

library(tidyverse)

library(caret)

library(MASS)

set.seed(201)

lda.results <- list()

lda.accuracy <- list()

lda.conf.matrix <- list()

lda.F1<- list()

for (d in 1 : 14) {

location <- sprintf("/Users/maike/Desktop/Scriptie/Datasets_new/dataset%s.csv", d)

dataset <- read.csv(location)

training.samples.dataset <- createDataPartition(y = dataset$y, p = 0.8,list =FALSE)

train.dataset <- dataset[training.samples.dataset,]

test.dataset <- dataset[-training.samples.dataset,]

train.control <- trainControl(method = "repeatedcv",

number = 5, repeats = 3)

start.time <- Sys.time()

lda.model <- train(as.factor(y) ~., data = train.dataset,

method = "lda", trControl = train.control)

end.time <- Sys.time()

time.taken <- end.time - start.time

print(time.taken)

predict.lda <- predict(lda.model, test.dataset)

lda.conf.matrix[[d]] <- confusionMatrix(table(test.dataset$y, predict.lda))

lda.results[[d]] <- ml_test(predict.lda, as.factor(test.dataset$y), output.as.table = TRUE)

lda.accuracy[[d]] <- ml_test(predict.lda, as.factor(test.dataset$y), output.as.table = FALSE)$accuracy

lda.F1[[d]] <- mean(ml_test(predict.lda, as.factor(test.dataset$y), output.as.table = FALSE)$F1)

}
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D Appendix : Quadtratic discriminant analysis R code

library(tidyverse)

library(caret)

library(MASS)

set.seed(202)

# QUADREATIC DISCRIMINANT ANALYSIS

qda.results <- list()

qda.accuracy <- list()

qda.F1 <- list()

for (d in 1 : 14) {

location <- sprintf("/Users/maike/Desktop/Scriptie/Datasets_new/dataset%s.csv", d)

dataset <- read.csv(location)

training.samples.dataset <- createDataPartition(y = dataset$y, p = 0.8,list =FALSE)

train.dataset <- dataset[training.samples.dataset,]

test.dataset <- dataset[-training.samples.dataset,]

train.control <- trainControl(method = "repeatedcv",

number = 5, repeats = 3)

qda.model <- train(as.factor(y) ~., data = train.dataset,

method = "qda", trControl = train.control)

predict.qda <- predict(qda.model, test.dataset)

qda.conf.matrix <- confusionMatrix(table(test.dataset$y, predict.qda))

qda.results[[d]] <- ml_test(predict.qda, as.factor(test.dataset$y), output.as.table = TRUE)

qda.accuracy[[d]] <- ml_test(predict.qda, as.factor(test.dataset$y), output.as.table = FALSE)$accuracy

qda.conf.matrix[[d]] <- confusionMatrix(table(test.dataset$y, predict.qda))

qda.F1[[d]] <- mean(ml_test(predict.qda, as.factor(test.dataset$y), output.as.table = FALSE)$F1)

}
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E Appendix : Random forest R code

library(tidyverse)

library(caret)

library(MASS)

library(randomForest)

library("mltest")

set.seed(203)

rf.results <- list()

rf.accuracy <- list()

rf.F1 <- list()

for (d in 1 : 14) {

location <- sprintf("/Users/maike/Desktop/Scriptie/Datasets_new/dataset%s.csv", d)

dataset <- read.csv(location)

training.samples.dataset <- createDataPartition(y = dataset$y, p = 0.8,list =FALSE)

train.dataset <- dataset[training.samples.dataset,]

test.dataset <- dataset[-training.samples.dataset,]

train.control <- trainControl(method = "cv",

number = 5)

start.time <- Sys.time()

rf.model <- train(as.factor(y) ~ x1+x2+x3, data = train.dataset,

method = "rf", trControl = train.control)

end.time <- Sys.time()

time.taken <- end.time - start.time

print(time.taken)

predict.rf <- predict(rf.model, test.dataset)

rf.conf.matrix <- confusionMatrix(table(test.dataset$y, predict.rf))

rf.results[[d]] <- ml_test(predict.rf, as.factor(test.dataset$y), output.as.table = TRUE)

rf.accuracy[[d]] <- ml_test(predict.rf, as.factor(test.dataset$y), output.as.table = FALSE)$accuracy

rf.F1[[d]] <- mean(ml_test(predict.rf, as.factor(test.dataset$y), output.as.table = FALSE)$F1)

}
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F Appendix : Support vector machine R code

library(tidyverse)

library(caret)

library(MASS)

set.seed(204)

svm.results <- list()

svm.accuracy <-list()

svm.F1 <- list()

for (d in 1 : 14) {

location <- sprintf("/Users/maike/Desktop/Scriptie/Datasets_new/dataset%s.csv", d)

dataset <- read.csv(location)

training.samples.dataset <- createDataPartition(y = dataset$y, p = 0.8,list =FALSE)

train.dataset <- dataset[training.samples.dataset,]

test.dataset <- dataset[-training.samples.dataset,]

train.control <- trainControl(method = "repeatedcv",

number = 10, repeats = 3)

start.time <- Sys.time()

svm.model <- train(as.factor(y) ~., data = train.dataset,

method = "svmRadial", trControl = train.control)

end.time <- Sys.time()

time.taken <- end.time - start.time

print(time.taken)

predict.svm <- predict(svm.model, test.dataset)

svm.conf.matrix <- confusionMatrix(table(predict.svm,test.dataset$y ))

svm.results[[d]] <- ml_test(predict.svm, as.factor(test.dataset$y), output.as.table = TRUE)

svm.accuracy[[d]] <- ml_test(predict.svm, as.factor(test.dataset$y), output.as.table = FALSE)$accuracy

svm.F1[[d]] <- mean(ml_test(predict.svm, as.factor(test.dataset$y), output.as.table = FALSE)$F1)

}
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G Appendix : Neural networks R code

library(ggplot2)

require(neuralnet)

require(nnet)

library(tidyverse)

library(caret)

library(MASS)

set.seed(205)

nn.results <- list()

nn.accuracy <- list()

nn.F1 <- list()

for (d in 1 : 14) {

location <- sprintf("/Users/maike/Desktop/Scriptie/Datasets_new/dataset%s.csv", d)

dataset <- read.csv(location)

training.samples.dataset <- createDataPartition(y = dataset$y, p = 0.8,list =FALSE)

train.dataset <- dataset[training.samples.dataset,]

test.dataset <- dataset[-training.samples.dataset,]

train.control <- trainControl(method = "repeatedcv",

number = 5, repeats = 3)

nn.model <- train(as.factor(y) ~., data = train.dataset,

method = "nnet", trControl = train.control, )

predict.nn <- predict(nn.model, test.dataset)

nn.results [[d]] <- ml_test(predict.nn, as.factor(test.dataset$y), output.as.table = TRUE)

nn.accuracy[[d]] <- ml_test(predict.nn, as.factor(test.dataset$y), output.as.table = FALSE)$accuracy

nn.F1[[d]] <- mean(ml_test(predict.nn, as.factor(test.dataset$y), output.as.table = FALSE)$F1)

}
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