
Comparing two approaches for
singular systems occurring dur-
ing bifurcation analysis

Bachelor’s Project Applied Mathe-

matics

July 2021

Student: W.Guo

First supervisor: dr.ir. F.W. Wubs

Second assessor: dr.ir. B. Besselink

1

Abstract

During bifurcation analysis, singular systems occur at various places in the algo-
rithm. In this thesis, we consider the Jacobian matrix that becomes singular at a
bifurcation point and to the shifted matrix occurring in the JDQZ for the eigenvalue
problem, which becomes singular on convergence. The former singularity will be studied
for the one-dimensional Bratu problem and the latter for the Rayleigh-Bénard prob-
lem. In both cases, we apply two different approaches to solve the singular system and
explore the influence of various parameters on the results.

Keywords: Bifurcation analysis; Bratu problem; Rayleigh-Bénard problem; Pseudo-
arclength continuation; JDQZ;

1

Contents

Abstract 1

1 Introduction 3
1.1 One-dimensional Bratu problem . 3
1.2 Rayleigh-Bénard problem . 3
1.3 Singular systems emerging from bifurcation analysis 4
1.4 Overview of this thesis . 5

2 Methodology 6
2.1 Finite difference method . 6
2.2 Pseudo-arclength continuation . 7
2.3 Preconditioner . 9

2.3.1 ILU preconditioner . 10
2.4 HYMLS . 11

3 One-dimenstional Bratu problem 12
3.1 Effect of methods . 12
3.2 Effect of the number of cells . 13
3.3 Effect of ∆s . 14

4 Rayleigh-Bénard problem 15
4.1 Effect of the number of Levels . 15
4.2 Effect of the Rayleigh number . 18

5 Discussion and Conclusions 20

References 21

2

1 Introduction

In this thesis, techniques for the bifurcation and linear stability analysis will be introduced.
Also, these techniques will be applied to one-dimensional Bratu problem and Rayleigh-Bénard
problem. Bifurcation analysis is the mathematical study of changes of a given problem, such
as the solutions of differential equations. A bifurcation occurs when a small smooth change
made to the parameter values (the bifurcation parameters) of a system causes a sudden
qualitative change in its behaviour.

This chapter is organised as follow. First, we shall introduce two problems we want to
solve, one-dimensional Bratu problem and Rayleigh-Bénard problem. Then we shall briefly
introduce the methods we use and the singular systems encountered. Finally, an overview of
the thesis will be presented.

1.1 One-dimensional Bratu problem

The one-dimensional Bratu problem is an elliptic nonlinear partial differential equation prob-
lem of the form (1.1) [1]:

uxx + Ceu = 0, 0 ≤ x ≤ 1

u(0) = u(1) = 0
(1.1)

where C > 0 is a parameter of the system.
We can simply rewrite it as,

Φ(u,C) = 0

This differential equation appears in a variety of applications, such as fuel ignition models
for thermal combustion, radiation heat transfer, thermal reactions, Chandrasekhar model for
universe expansion, chemical reactor theory, and nanotechnology. At the same time, it is
also widely used as a test problem for many numerical algorithms.

1.2 Rayleigh-Bénard problem

The Rayleigh-Benard problem is a differential equation of the form

Pr−1(
∂u

∂t
+ u · ∇u) = −∇p+∇2u+Ra · T · e3

∇ · u = 0

∂T

∂t
+ u · ∇T = ∇2T

(1.2)

3

with boundary conditions

z = 0 : T = 1;
∂u

∂z
=
∂v

∂z
= w = 0

z = 1 :
∂u

∂z
= Ma

∂T

∂x
;
∂v

∂z
= Ma

∂T

∂y
;w = 0;

∂T

∂z
= BiT

x = 0, Ax : u = v = w =
∂T

∂x
= 0

x = 0, Ay : u = v = w =
∂T

∂y
= 0

(1.3)

where Pr,Ra,Ma,Bi are four dimensionless parameters. In addition, two aspect ratios
Ax = L/D and Ay = B/D.

The Rayleigh-Bénard convection problem has been widely investigated because of its fun-
damental interest in relation to the evolution of flow patterns and the onset of unsteadiness.
Many engineering problems related to thermal transport in crystal growth, solar collectors,
buildings and nuclear reactor core insulation depend on this type of natural convection[2].

1.3 Singular systems emerging from bifurcation analysis

In general, for bifurcation analysis, one can use two methods: the time integration approach
and the continuation approach. In this thesis, the continuation approach is used to obtain
the solution of the problems. In addition, Jacobian Davidson QZ method is used to assess
the linear stability of the solution.

Before solving our problems, we need to discretize them using finite difference method.
Then, the resulting problem can be written in the general form

Φ(u,C) = Lu+N (u) = 0 (1.4)

where u is the solution of original problems, M the mass matrix, L the discretized linear
operator, N the discretized nonlinear operator.

Natural parameter continuation method is a simple method for bifurcation analysis. One
of advantages is that it could be viewed as a black box, since only an initial solution is
required. However, if a turning point is encountered with the increase of parameter value
during natural parameter continuation, the method will fail. Hence, for problems with turn-
ing points, pseudo-arclength continuation method needs to be used.

In each continuation step, one can solve two different kinds of linear system. One is of
the form [

Φu(u
k, Ck) ΦC(uk, Ck)

ru(u
k) rC(Ck)

] [
∆u
∆C

]
=

[
−Φ(uk, Ck)
−r(uk, Ck)

]
(1.5)

This system is non-singular at the bifurcation point, however, it is much more computation-
ally intensive.

The other is of the form {
Φxy = Φµ

Φxz = −Φ
(1.6)

4

Compared with Equation 4.9, Equation 1.6 is more simple. However, it is singular at the
bifurcation point, which means that the algorithm may fail when it is close to the bifurcation
point. In Chapter 3, we compare the two methods and examine the effect of each parameter
in the method on the results.

Once a solution u is computed, its linear stability needs to be assessed. This can be done
by solving a generalised eigenvalue problem of the form

Φu(u)û = λMû (1.7)

where u(t) = ûeλt + u.
This generalised eigenvalue problem can be rewritten in the form

(βA− αB)u = 0 (1.8)

When all eigenvalues of the generalised eigenvalue problem have negative real part, then
the solution is linearly stable. Otherwise, the solution is unstable.

In this thesis, Jacobi Davidson QZ(JDQZ) method[3] is used to solve the generalised
eigenvalue problem. It turns out that it is an efficient method.

In each JDQZ step, one can solve two different kinds of correction equations. One is of
the form

z ⊥ u, (I − qq∗)(A− vB)(I − uu∗)z = 0 (1.9)

where v is the approximate eigenvalue, q = Bu/‖Bu‖.
Notice that, this system is singular at the bifurcation point, which means that the algo-

rithm may fail when we are close to the real bifurcation point.
The other is of the form [

A− vB q
u∗ 0

] [
z
α

]
= −

[
r
0

]
(1.10)

Compared with the previous correction equation, one advantage of this correction equation
is that it is non-singular at the bifurcation point. In Chapter 4, we also compare the two
methods and examine the effect of each parameter in the method on the results.

1.4 Overview of this thesis

In this chapter, we first introduce the governing equations of one-dimensional Bratu problem
and Rayleigh-Bénard problem, then briefly discuss the methods used to solve these prob-
lems and introduce the singular systems occurring during bifurcation analysis. In Chapter
2, we introduce the used algorithms in detail. First, finite difference method that is used
to discretized differential equations is presented. Next, the description of pseudo-arclength
continuation is given. Also, the preconditioner we used to speed up the algorithms’ conver-
gence is introduced. In Chapter 3, we present numerical results of one-dimensional Bratu
problem, not only the effect of several parameters but also the performance of our program.
In Chapter 4, we use Jacobi Davidson QZ(JDQZ) method to check the linear stability of the
solution. The last chapter outlines conclusions.

5

2 Methodology

In this chapter, we introduce the methods we use, like finite difference method, pseudo-
arclength continuation and preconditioner.

2.1 Finite difference method

In this section, we introduce the finite difference method used to discretize differential equa-
tions. The finite difference method is a widely used and very effective discretization method.
The core idea of the method comes from Taylor’s formula[4].

Suppose we want to discretize a partial differential equation L(u) = 0 defined on the
interval [0, 1].

First, we divide the interval [0, 1] into N equal parts, and each point on the interval is
defined as:

xi = ih, i = 0, 1, 2, · · · , N, h =
1

N

Further, we can define the value of the function to be solved u at each point on the interval:

ui = u(xi), i = 0, 1, 2, · · · , N

Then, using Taylor’s formula, one can get the finite difference formula of the derivative
of u at the point xi,

ui+1 = u(xi + h) = ui +
du

dx

∣∣∣∣
xi

+
h2

2!

d2u

dx2

∣∣∣∣
xi

+
h3

3!

d3u

dx3

∣∣∣∣
xi

+
h4

4!

d4u

dx4

∣∣∣∣
xi+ζ1h

(2.1)

as well as

ui−1 = u(xi − h) = ui − h
du

dx

∣∣∣∣
xi

+
h2

2!

d2u

dx2

∣∣∣∣
xi

− h3

3!

d3u

dx3

∣∣∣∣
xi

+
h4

4!

d4u

dx4

∣∣∣∣
xi−ζ2h

(2.2)

Adding and rearranging the formula (2.1) and the formula (2.2), one can get

d2u

dx2

∣∣∣∣
xi

=
ui+1 − 2ui + ui−1

h2
− h2

12

d4u

dx4

∣∣∣∣
xi+ζh

, ζ ∈ [−1, 1] (2.3)

If we ignore the O(h2) term, then we call the right side of the formula (2.3) the second-order
central difference formula of the second-order derivative function , which is

d2u

dx2

∣∣∣∣
xi

=
ui+1 − 2ui + ui−1

h2
(2.4)

Similarly, we can also get the second-order central difference formula of the first-order deriva-
tive function, namely

du

dx

∣∣∣∣
xi

=
ui+1 − ui−1

2h

6

Through the first-order derivative function, the second-order difference formula of the
second-order derivative function, and other difference formulas, we can convert the partial
differential equation into an algebraic equation, and use the method of solving algebraic
equations to solve it, thereby obtaining an approximation of the partial differential equation
solution. Next, we take the one-dimensional Bratu problem as an example and use the finite
difference method to discretize it.

For the one-dimensional Bratu problem (1.1), due to its simpler form, we can discretize
the differential equation through the second-order difference formula of the second-order
derivative function.

We first divide the interval [0, 1] into N equal parts, which means that the length of the
grid unit is h = 1

N
, and the points on the grid are xi = ih, i = 0, 1, 2, · · · , N , and from the

boundary conditions we can get x0 = xN = 0.
Through the second-order difference formula of the second-order derivative function, we

can get the discrete algebraic equations, as shown in the formula (2.5),
−2 1
1 −2 1

.

1 −2 1
1 −2




u1
u2
...

uN−2
uN−1

+ C


exp(u1)
exp(u2)

...
exp(uN−2)
exp(uN−1)

 = 0 (2.5)

where C > 0 is a parameter of the system.
We can simply express the above nonlinear parameter-containing system as,

Au+N(C, u) = 0 (2.6)

For Rayleigh-Bénard problem, the procedure is similar.

2.2 Pseudo-arclength continuation

In this section, we introduce the Pseudo-arclength continuation method[5] for solving non-
linear systems with parameters. For nonlinear parameter-containing systems, the simplest
algorithm is the natural continuation algorithm, but for nonlinear parameter-containing sys-
tems with turning points, the natural continuation algorithm will often fail. It is because
the natural continuation algorithm will iterate to the area where the solution does not exist,
which leads to the failure of the algorithm[2]. In this case, the Pseudo-arclength continuation
needs to be used.

Assume the nonlinear parameter-containing system to be solved is

Φ(x, µ) = 0

where µ is the system parameter. Our goal is to get the solution set {(x, µ)} of the system.
Pseudo-arclength continuation method is an effective algorithm for solving the system.

The solution set {(x, µ)} represents a curve, and the point (x, µ) in the solution set represents
a point on the curve. We let it be described by the arc length parameter s, That is (x(s), µ(s)).

7

At this time, the curve represented by the solution set is expressed as r(s) = (x(s), (s)). The
curve needs to satisfy a regularization constraint:

ζ

∥∥∥∥dxds
∥∥∥∥2
2

+ (1− ζ)(
dµ

ds
)2 = 1

where ζ ∈ (0, 1).
The Pseudo-arclength continuation method starts from an initial solution and iteratively

obtains all the solutions step by step. The algorithm is divided into two parts. The first part
is called predition, which obtains the predicted value of the next solution, and the second
part is called correction, which corrects the predicted value.

In the first part, the predition part, we use the previously calculated points or initial
values to calculate the predicted value of the next point on the curve, namely

(x0, µ0) = (xi, ui) + ∆s(ẋ, µ̇)

where (xi, ui) is the previously obtained solution or initial value, (x0, µ0) the predicted value
of the next point, and ∆s an appropriate step size.

One can use the formula (2.7) to calculate (ẋ, µ̇),

(ẋ, µ̇) =
(xi, µi)− (xi−1, µi−1)

si − si−1
(2.7)

However, it is worth noting that when we use the initial value to solve the second solution,
there is not enough data to calculate (ẋ, µ̇). In this case, one can use the derivative of
F (x, µ) = 0 to get the initial (ẋ, µ̇).

We first take the derivative of the nonlinear system with respect to µ, and get

d

dµ
Φ(x, µ) = Φx

∂x

∂µ
+ Φµ = 0 (2.8)

Next, we have
∂x

∂µ
=
∂x

∂s

∂s

∂µ
(2.9)

Bringing it into the regularisation constraint, we get

∂µ

∂s
= (1 + ζ

∥∥∥∥∂x∂µ
∥∥∥∥2
2

)−
1
2 (2.10)

Through formula(2.8)(2.9)(2.10), we can get (ẋ, µ̇).
In the second part, that is, in the correction, we correct the predicted value obtained in

the first part to make it as close to the exact solution as possible. In this part, we need to
solve Φ(x, µ) = 0 and a discretized regularisation constraint

r(x, µ) = ∆s2 − ζ(x− xi)T (x− xi))− (1− ζ)(µ− µi)2 = 0 (2.11)

8

Finally, a linear system of the form[
Φx(x

k, µk) Φµ(xk, µk)
rx(x

k) rµ(µk)

] [
∆x
∆µ

]
=

[
−Φ(xk, µk)
−r(xk, µk)

]
(2.12)

needs to be solved.
After solving the linear system (2.12) to get ∆x,∆µ, using

xk+1 = xk + ∆x

µk+1 = µk + ∆µ

we can correct the predicted value until it meets our accuracy requirements.
In addition, we can also obtain ∆x and ∆µ by solving a linear system (2.13):{

Φxy = Φµ

Φxz = −Φ
(2.13)

Assuming that Φx is reversible, the first equation of the linear system in the formula
(2.12) becomes

∆x+ y∆µ = z (2.14)

Putting it into the second equation of (2.12), we get

∆µ =
rxz − r
rµ − rxy

(2.15)

By formula (2.14) and formula (2.15) we can get ∆µ and ∆x.
In addition, we need to set convergence conditions to terminate the iteration. Usually,

given the threshold ε, when ∥∥(∆xT ,∆µ)
∥∥
∞ < ε (2.16)

At this time, the correction part converges and stops continuing to iterate.
In the Pseudo-arclength continuation method, the selection of the step size ∆s is very

important, and this value determines whether the value obtained in the prediction part is
accurate. If the value of ∆s is too large, it will cause incorrect results of the algorithm or
more iterations. If ∆s is too small, it will cause too much calculation and the calculation
time is too long, so we need to try our best choosing an appropriate step size that allows the
algorithm to reduce the calculation time while maintaining the correctness of the results.

In addition, the Pseudo-arclength continuation algorithm involves the solution of linear
systems. One can use direct solver or iterative method (such as GMRES algorithm[6]) to
solve it.

2.3 Preconditioner

In this section, we introduce the preconditioning technique, and a widely used preconditioner,
the ILU preconditioner.

9

In practical applications, the linear systems we need to solve are often large and sparse.
At this time, the direct solver is often not applicable. Usually we use iterative algorithms to
solve such linear systems.

However, iterative algorithms also have some shortcomings, such as slow convergence
speed, lack of robustness, and so on. Preconditioning is an effective way to solve these
problems.

Assume that we want to solve a linear system of the form

Ax = b (2.17)

When the linear system is not easy to solve, we can convert it into a linear system with the
same solution as the original system but easier to solve (with smaller condition numbers)
through preconditioning.

Generally, there are three ways to apply preconditioning techniques. Regard the precon-
ditioner as M . The first method multiplies the preconditioner on the left side of the linear
system, namely

M−1Ax = M−1b (2.18)

The second method is to load the preconditioner on the right side of the linear system,
that is

AM−1u = b (2.19)

Among them, x = M−1u.
The third first get the decomposition of the preconditioner

M = MLMR (2.20)

Then apply it to the linear system, that is

M−1
L AM−1

R u = M−1
L b (2.21)

where x = M−1
R u.

Normally, we have two requirements for the preconditioner we used:

1. The preconditioner should be close to the coefficient matrix A and not singular

2. The condition number of the new linear system obtained after applying the precondi-
tioner is smaller and easier to solve.

In this thesis, we use a widely applicable preconditioner called ILU preconditioner.

2.3.1 ILU preconditioner

In numerical linear algebra, the incomplete LU decomposition of the coefficient matrix A as
a preconditioner has proved to be a widely effective method[7].

First, the definition of incomplete LU decomposition is given:
Given a square matrix A of order n, we can define graph G(A) as

G(A) = (i, j) ∈ N2 : Aij 6= 0

10

With the help of G(A), we can define the sparse mode S, which satisfies

S ⊂ 1, ..., n2, (i, i) : 1 ≤ i ≤ n ⊂ S, G(A) ⊂ S

We call decomposition A = LU −R as incomplete LU decomposition, if it satisfies:

1. L ∈ Rn×n is a lower triangular matrix

2. R ∈ Rn×n is an upper triangular matrix The items of

3. L,U outside the sparse mode are all 0, that is, Lij = Uij = 0,∀(i, j) /∈ S

4. R ∈ Rn×n The item in the sparse mode is 0, that is, Rij = 0,∀(i, j) ∈ S

We take the LU in the incomplete LU decomposition as our preconditioner, that is,
M = LU . This type of preconditioner is a widely applicable preconditioner, and it has
proved to be effective[7].

2.4 HYMLS

HYMLS[8] is a hybrid direct/iterative solver for the Jacobian of the incompressible Navier-
Stokes equations on structured grids.

For Rayleigh-Bénard problem

• we use HYMLS to create the ILU preconditioner.

• we use the solver in the HYMLS to solve Rayleigh-Bénard problem.

11

3 One-dimenstional Bratu problem

In this chapter, pseudo-arclength continuation is used to solve one-dimensional Bratu problem
numerically. Also, we study the singularity occurring during bifurcation analysis and research
the relationship between several parameters and the results.

3.1 Effect of methods

In this section, we compare the time taken when we use different algorithms to solve the
linear systems involved in the Pseudo-arclength continuation method.

In real life, the linear systems we encounter are often large and sparse. It is often a
better choice to use iterative algorithms to solve this type of linear system. This is because
there is an accumulation of errors in the direct solver. When the system is large, the error
will also expand, which will affect the correctness of our solution. It is worth noting that
although the error of the iterative algorithm is smaller, the running speed of the iterative
algorithm has no advantage compared with the direct algorithm. Even the iterative algorithm
often encounters problems such as slow convergence speed. At this time, we usually use
preconditioning techniques to accelerate Iterative algorithm.

Here, we set the number of grid cells N to 128, ∆s = 0.1, and then use three different
methods to solve the linear system (2.12) and the linear system (2.13), respectively. The first
method is the direct solver. We use LU decomposition and forward substitution algorithm.
The second method is the GMRES method without preconditioning. Here, we set restart =
20, that is, the number of iterations between restarts, and tolerance = 1e − 05. The third
method is the GMRES method using ILU preconditioner. We call it as pre-GMRES. Here,
we use the spilu function from the linalg package in python to create the ILU preconditioner.
We also set restart = 20 and tolerance = 1e− 05. The results are shown in the Table 3.1:

Table 3.1: The algorithm running time(unit:second)
N Linear system2.12 Linear system2.13

Direct solver GMRES pre-GMRES Direct solver GMRES pre-GMRES
64 0.007 10.414 0.156 0.012 12.406 0.290
128 0.012 33.299 0.221 0.019 68.946 0.402
512 0.039 277.251 0.576 0.058 1170.760 1.000
1024 0.063 971.963 0.777 0.119 7762.917 1.366

From the results of the Table 3.1, we can see that when the dimension of the linear
system is low, whether it is solving the linear system (2.12) or the linear system (2.13), the
direct solver is much faster than the iterative method. However, it is worth noting that when
the dimension of the linear system continues to increase, the time spent in the direct solver
increases relatively faster than the preconditioned iterative method.

In addition, it can be seen that the preconditioned GMRES algorithm converges much
faster than the GMRES algorithm without preconditioning. This shows that the ILU pre-
conditioner we use is very effective. It greatly accelerates the convergence of the algorithm.

12

In the following numerical experiments, due to the extremely low efficiency of the unpre-
conditioned GMRES algorithm, we abandon the use of this algorithm and only compare the
direct solver with the preconditioned GMRES algorithm.

At the same time, we also notice that under the same conditions, it takes less time to
solve the linear system (2.12). Although the linear system (2.12) is more complicated, the
solution of the linear system (2.13) requires the solution of two linear systems, resulting in
the actual time required to solve the problem.

Moreover, we can see that for the direct solver and the preconditioned GMRES algorithm,
if we double the number of grid cells, the algorithm running time is also almost doubled, which
indicates that the algorithm time is O(N).

In summary, when the dimension of the linear system is low, the direct solver is a faster
and more effective method. However, errors will accumulate in the process of direct solver,
and the influence of errors is often not obvious in low-dimensional problems, but when the
dimension is large, the deviation of the solution results may be too large. Therefore, we need
to select an appropriate method according to the actual situation encountered. When the
problem dimension is small, the direct solver can be used to obtain a satisfactory answer,
but when the problem dimension is large, the iterative method is a better choice.

3.2 Effect of the number of cells

In this section, we first set ∆s = 0.1. Then, we change the number of cells and observe its
influence on the results.

We know that for most differential equations, we often cannot get analytical solutions, we
can only use numerical method to get numerical solutions. In the process of solving, we need
to discretize the differential equation. In this process, the more discrete points we choose,
the closer the numerical solution should be to the exact solution.

Here, we use two different methods to solve the one-dimensional Bratu problem, respec-
tively. First, we use the direct solver and preconditioned GMRES algorithm to solve the
linear system (2.12), respectively. Then, we use the direct solver and preconditioned GM-
RES algorithm to solve the linear system (2.13), respectively. For preconditioned GMRES
algorithm, we also set restart = 20 and tolerance = 1e−05. The results are shown in Figure
3.1 and Table 3.1:

Figure 3.1: Effect of the number of cells on the critical parameter value

13

From Figure 3.1 we can see that the higher the number of grid cells, the closer our results
are to the exact solution Cc = 3.513830719.

Below we list the bifurcation point obtained by each method, that is, the maximum value
of the parameter C we obtained, as shown in the Table 3.2:

Table 3.2: Effect of the number of cells on the turing point we get
N Linear system(2.12) Linear system(2.13)

Direct solver preconditioned GMRES Direct solver preconditioned GMRES
4 3.3955425693283297 3.395542718391918 3.3955425693283297 3.395542569270278
16 3.5065373528713466 3.5065373138008047 3.506537352871346 3.506537353003978
64 3.5132934860734037 3.513293501931244 3.5132934860733984 3.513293486073435
128 3.5136815558555115 3.513681556047259 3.51368155585553 3.51368155585596

From the Figure 3.1 and the Table 3.2, we can easily see that in the same grid, using
different methods to solve the problem, the results obtained are very close, which means that
the accuracy of each algorithm is basically the same. However, it’s worth noting that as we
get closer and closer to the true turning point, the linear system (2.13) will also get closer and
closer to the singularity. At this time, the algorithms applied to the linear system (2.13 may
fail. However, in our experiments, we have not encountered any cases where the algorithm
fails, so we think that the algorithm does not fail in general. We guess that it will fail only
in the case of extremely high accuracy.

Another observation is that when we continue to densify the grid, that is, the number
of grid cells is getting larger, no matter which algorithm is used to solve the problem, the
maximum value of C we get is getting closer and closer to the exact value Cc = 3.513830719.
This is consistent with our theory, since the denser the grid, the closer the obtained numerical
solution is to the real solution. However, the denser the grid, the greater the amount of
calculation and the greater the calculation time. In actual situation, we often need to find a
balance between accuracy and calculation time.

In summary, in this part, we verified that the larger the number of the grid cells, the
closer our result is to the exact solution.

3.3 Effect of ∆s

In this section, we first set the number of grid cells N = 128. Then we change the value of
∆s in the Pseudo-arclength continuation method and observe the effect of the change of this
variable on the result.

According to the theory, the smaller the iteration step ∆s, the closer the solution obtained
in the prediction part of the Pseudo-arclength continuation method is to the exact solution,
but the corresponding calculation time we need is longer.

Here, we also use two different methods to solve the one-dimensional Bratu problem,
respectively. First, we use the direct solver and preconditioned GMRES algorithm to solve
the linear system (2.12), respectively. Then, we use the direct solver and preconditioned

14

GMRES algorithm to solve the linear system (2.13), respectively. For preconditioned GMRES
algorithm, we also restart = 20 and tolerance = 1e− 05.

Below we list the turning points obtained by each method under different ∆s, that is, the
maximum value of the parameter C obtained. The results are shown in the Table 3.3:

Table 3.3: Effect of ∆s on the results
∆s Linear system2.12 Linear system2.13

Direct solver pre-GMRES Direct solver pre-GMRES
1 3.509575114557196 3.509575101442395 3.5095751145571983 3.5095751228541534

0.1 3.5136815558555115 3.513681556047259 3.51368155585553 3.51368155585596
0.01 3.5137187391364377 3.513765004259654 3.5137187391364555 3.5137619069145747
0.001 3.513719135866797 3.513758776919808 3.5137191358667965 3.513759181816871

From the results in the Table 3.3, we can see that when ∆s keeps getting smaller, the
numerical solution obtained under the same grid is more accurate, that is, closer to the exact
solution Cc = 3.513870319. When ∆s changes from 0.1 to 0.01, the accuracy is greatly
improved. This is because the smaller the ∆s, the more accurate the results obtained in the
prediction part of the Pseudo-arclength continuation method. However, when ∆s changes
from 0.01 to 0.001, the accuracy increase is small, but in this case, our calculation amount
and calculation time will increase a lot, that is to say that it is not a reasonable choice for
∆sto change from 0.01 to 0.001, and its benefits are not high.

It is worth noting that the smaller the ∆s, the closer we are to the true turning point. In
this case, the coefficient matrix of our linear system (2.13) is also closer to the singularity,
and the algorithm may fail.

In summary, through a number of numerical experiments, we have verified the influence
of the iteration step size ∆s on the results, that is, when the iteration step size ∆s is smaller,
the numerical solution we get is closer to the exact solution. Combining the above numerical
experiments, we can think that N = 128,∆s = 0.01 is a set of reasonable parameter choices,
and their combination can make the algorithm get an accurate numerical solution in a short
time.

4 Rayleigh-Bénard problem

In this section, we take the Rayleigh-Bénard problem as an example to explore the linear
stability of the solution.

4.1 Effect of the number of Levels

In this section, we observe the effect of the change of the number of levels on the results
under different targets.

Before we say something about the numerical results, we need to explain what we mean
by the number of levels. When we solve the correction equation which is a part of JDQZ
method, we use multilevel preconditioner to speed up the convergence[8]. If we set the number

15

of levels to 2, that means that we are using two-level ILU preconditioner. Hence, the number
of levels in our experiments represents the number of level of ILU preconditioner.

First, we set the number of grid cells N to 32 and the Rayleigh number to 1553.083383,
which means that we are really close to the real bifurcation point. The experimental results
are shown in the Table 4.1 and Table 4.2,

Table 4.1: Effect of the levels of preconditioner on the number of iterations of JDQZ and
GMRES when Rayleigh number is close to the bifurcation point
The number of levelsThe number of iterations of JDQZThe total number of iterations of GMRES

equation 1.10 equation 1.9 equation 1.10 equation 1.9
0 16 16 58 158
1 51 failed 5043 failed

From the Table 4.1, one can see that the number of levels has a great influence on the
number of iterations of JDQZ and GMRES methods when we are close to the bifurcation
point. The smaller the number of levels, the faster the algorithm converges. Note that when
the number of levels is 1, the algorithm always fail when solving Equation 1.10. In very few
cases it converges, but the number of iterations of JDQZ and GMRES method are large,
which indicates that this is bad convergence. This is because we are really close to the
bifurcation point. In this case, Equation 1.10 is close to the singular system, which may lead
to the failure of the algorithm.

In the following, we list the calculated eigenvalues, and the results are shown in Table 4.2
and Table 4.3.

Table 4.2: Eigenvalues when we are close to the bifurcation point(Solving Equation 1.10)
number The number of levels

0 1
α β α β

1 3.14552647e-09 0.00120876 3.46476361e-09 0.00129467
2 -3.09458868e-04 0.00099912 -3.09702198e-04 0.00102635
3 -4.78357326e-05 0.00174102 -4.52708087e-05 0.00163703
4 -7.43945212e-04 0.00193454 -7.41916785e-04 0.00186894
5 -8.58971795e-04 0.00102366 -8.45711788e-04 0.00102972

16

Table 4.3: Eigenvalues when we are close to the bifurcation point(Solving Equation 1.9)
number The number of levels

0
α β

1 3.20445504e-09 0.00121679
2 -3.07165224e-04 0.00101014
3 -4.81135293e-05 0.00174101
4 -7.42947878e-04 0.00189302
5 -8.48508134e-04 0.00100707

From the Table 4.2 and Table 4.3, we can see that there is no obvious difference between
eigenvalues obtained by the two methods. That means that when the algorithm is able to
converge successfully, the choice of method and the number of levels do not have a significant
effect on the eigenvalue results.

Subsequently, we set the number of grid cells N to 32 and the Rayleigh number to 10,
which means that we are far away from the bifurcation point. The experimental results are
shown in the Table ??,

Table 4.4: Effect of the levels of preconditioner on the number of iterations of JDQZ and
GMRES when Rayleigh number is far away the bifurcation point
The number of levelsThe number of iterations of JDQZThe total number of iterations of GMRES

equation 1.10 equation 1.9 equation 1.10 equation 1.9
0 23 22 78 110
1 24 23 774 810

From the Table 4.4, one can see that The number of levels has the same effect on the
results as before when we are far away from the bifurcation point.

We also list the calculated eigenvalues, and the results are shown in Table 4.5 and Table
4.6.

Table 4.5: Eigenvalues when we are far away from the bifurcation point(Solving Equation
1.10)

number The number of levels
0 1

α β α β
1 -0.01467388 0.00120876 -0.01457547 0.0034663
2 -0.01718342 0.00418236 -0.01716208 0.00417716
3 -0.02071538 0.00461037 -0.02080591 0.00463052
4 -0.02569372 0.00516867 -0.02567186 0.00516427
5 -0.0313049 0.00555606 -0.03131926 0.00555861

17

Table 4.6: Eigenvalues rb3 when we far away from the bifurcation point(Solving Equation
1.9)

number The number of levels
0 1

α β α β
1 -0.01466233 0.00348695 -0.01458602 0.0034688
2 -0.01718085 0.00418173 -0.01714411 0.00417279
3 -0.02072677 0.0046129 -0.02077923 0.00462458
4 -0.02569154 0.00516823 -0.0256744 0.00516478
5 -0.03130646 0.00555633 -0.03130038 0.00555525

From the Table 4.5 and Table 4.6, we can see that the experimental results are similar
with the first case. That means that the number of levels has similar effects on the results,
and has nothing to do with whether the point is a bifurcation point.

4.2 Effect of the Rayleigh number

In this section, we set the grid (32×16×1), ∆s to 600, the number of levels to 1, and observe
the influence of the change of the Rayleigh number on the result. The experimental results
are shown in the Table 4.7, Table 4.9 and Table 4.8,

Table 4.7: Effect of Rayleigh number on the number of iterations of JDQZ and GMRES
when solving Equation 1.9
Rayleigh numberThe number of iterations of JDQZThe total number of iterations of GMRES

1555 29 8091
1554 57 17672

1553.16 76 25871
1553.15 failed failed
1553.1 failed failed

1553.083383 failed failed
1553.01 failed failed

1553 19 3418
1552 28 7401

18

Table 4.8: Effect of Rayleigh number on the number of iterations of JDQZ and GMRES
when solving Equation 1.10
Rayleigh numberThe number of iterations of JDQZThe total number of iterations of GMRES

1555 19 4074
1554 19 4053

1553.16 24 6229
1553.15 18 4091
1553.1 16 2963

1553.083383 50 14069
1553.01 28 7112

1553 18 3481
1552 18 3515

Here, we specify that if the algorithm does not converge, or if the results of multiple
calculations are inconsistent, we consider the algorithm to have failed. From the results in
the Table 4.7, we can see that the algorithm can easily fail if the Rayleigh number is in the
range of 1553.01 to 1553.15. In other ranges, the algorithm converges successfully and the
results are consistent across multiple calculations.

In addition, we can see that solving Equation 1.10 requires fewer iterations of the JDQZ
and GMRES methods than solving Equation 1.9, and is not affected by singularity.

We are also interested in the difference between the two methods as we gradually move
away from the bifurcation point. In Table 4.9, we list the first eigenvalues (α, β)calculated
by the two methods for different Rayleigh numbers.

Table 4.9: Eigenvalues calculated by the two methods for different Rayleigh numbers.
target equation 1.10 equation 1.9

1553.083383 (-3.09458868e-04, 0.00102366) failed
1553 (-4.21546129e-07, 0.00120669) (-4.34629297e-07, 0.00123195)
1552 (-5.58146056e-06, 0.00121147) (-5.54714796e-06,0.00120185)
1551 (-1.07674477e-05,.00121229) (-1.08714550e-05,0.00122428)
1550 (-1.59444019e-05, 0.00121266) (–1.63625136e-05, 0.00124464)
1250 (-0.00165097, 0.0012432) (-0.00165218, 0.00124412)
1000 (-0.00243738,0.00101597) (-0.00242862, 0.00101232)

From the above experimental results in the Table 4.9, we can see that the smaller the
Rayleigh number, the closer the eigenvalues obtained by the two methods are. This is because
the smaller the Rayleigh number is, the further away we are from the bifurcation point. this
means that solving Equation 1.9 is further away from the singularity, making the algorithm
converge better and the solution results more accurate.

19

5 Discussion and Conclusions

At the beginning of the research, We first briefly introduce the singular systems that arise
when solving the one dimensional Bratu problem and the Rayleigh Bénard problem, and
introduce two methods for solving the problem. Then, we introduce several algorithms
we use in detail, such as finite difference method, pseudo-arclength continuation method
and preconditioning technique. Finally, these theories are applied to one-dimensional Bratu
problem and Rayleigh-Bénard problem.

Next, a number of numerical results are introduced. We first solve these two problems
numerically, then change parameters in the system to see the effect of these parameters on
the numerical results.

The experimental results shows that, for one-dimensional Bratu problem, (i)when the it-
eration step size ∆s is smaller, the numerical solution we get is closer to the exact solution;(ii)
The larger the number of the grid cells, the closer our result is to the exact solutionCombining
the above numerical experiments, we can say that N = 128,∆s = 0.01 is a set of reasonable
parameter choices, and their combination can make the algorithm get a accurate numerical
solution in a short time. (iii)In addition, we found that it is usually difficult for the algorithm
to fail when we are close to the bifurcation point.

For Rayleigh-Bénard problem, the experimental results shows that(i)the smaller the
Rayleigh number, the closer the results of the two methods; (ii)the larger the level of the ILU
preconditioner, the less precise the numerical solution obtained and the greater the number
of iterations of JDQZ and GMRES methods, and the more the calculation time. (iii) In
addition, we found that the algorithm can easily fail if the Rayleigh number is in the range
of 1553.01 to 1553.15, which is close to the bifurcation point. In other ranges, the algorithm
converges successfully and the results are consistent across multiple calculations.

Finally, the research of this project provides direction guidance and method innovation
for the research of related topics, and there is still a lot of work to be done to quantify the
more specific characteristics.

20

References

[1] Adel Mohsen. A simple solution of the bratu problem. Computers & Mathematics with
Applications, 67(1):26–33, 2014.

[2] Weiyan Song. Matrix-based techniques for (flow-) transition studies. PhD thesis, Uni-
versity of Groningen, 2019.

[3] Diederik R Fokkema, Gerard LG Sleijpen, and Henk A Van der Vorst. Jacobi–davidson
style qr and qz algorithms for the reduction of matrix pencils. SIAM journal on scientific
computing, 20(1):94–125, 1998.

[4] Fred Wubs. Lecture notes:computational method of science. 2021.

[5] Sven Baars. Numerical methods for studying transition probabilities in stochastic ocean-
climate models. PhD thesis, Rijksuniversiteit Groningen, 2019.

[6] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical
computing, 7(3):856–869, 1986.

[7] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[8] Sven Baars, Mark van Der Klok, Jonas Thies, and Fred W Wubs. A staggered-grid multi-
level incomplete lu for steady incompressible flows. International Journal for Numerical
Methods in Fluids, 93(4):909–926, 2021.

[9] Henk A Dijkstra, Fred W Wubs, Andrew K Cliffe, Eusebius Doedel, Ioana F
Dragomirescu, Bruno Eckhardt, Alexander Yu Gelfgat, Andrew L Hazel, Valerio Lu-
carini, Andy G Salinger, et al. Numerical bifurcation methods and their application to
fluid dynamics: analysis beyond simulation. Communications in Computational Physics,
15(1):1–45, 2014.

[10] Thomas Erik Mulder Mulder. Design and bifurcation analysis of implicit Earth System
Models. PhD thesis, Utrecht University, 2019.

[11] Rüdiger Seydel. Practical bifurcation and stability analysis, volume 5. Springer Science
& Business Media, 2009.

21

