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This thesis presents an implementation of a general-purpose, multi-core solver for
finite-domain Constraint Satisfaction Problems (CSPs) that runs efficiently on all
multi-core machines, including personal computers. This solver reads input CSPs
from a small, custom-designed specification language that provides the user a flexible
way of specifying CSPs. The first part of the thesis covers some of the most popular
example CSPs and how the backtracking search algorithm, including heuristics and
inferences, can be used to solve CSPs. Next, we look at how this algorithm can
be parallelized by starting the searching process on multiple threads, each starting
at a different variable. This approach leads to duplicate searches between threads,
however. We discuss how custom search trees can be used to store partial states that
have already been covered to avoid these duplicate searches, and what the drawbacks
are of using these trees. We then look at the specification language itself and what
features are implemented. We will show how the aforementioned example CSPs can
be represented in this language, followed by a section on how the CSP solver works
under the hood. Lastly, we analyse the performance of the solver, using different
settings for each example CSP, and conclude that there is a speed-up for the majority
of these CSPs.
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1

Chapter 1

Introduction

We implemented a multi-core solver for finite-domain Constraint Satisfaction Prob-
lems. We designed a small specification language that allows the user to specify
these problems in a flexible way. This research results in a general-purpose solver
that will run efficiently on all multi-core machines, including personal computers.

1.1 Definition of a CSP
A discrete finite domain Constraint Satisfaction Problem is a tuple (X,D,C) where:

• X is a finite set of variables, {X1, . . . , Xn}.

• D is a set of discrete finite domains, {D1, . . . , Dn}, one for each variable. The
set Di consists of a set of permissible values for variable Xi.

• C is a set of constraints on the variables of X , where each constraint is a logical
expression, or a built-in constraint.

A solution of a CSP is an assignment of a value taken from Di for each variable
Xi ∈ X such that all the constraints in C are satisfied.

We define a state as a set of assignments of values to some or all of the variables
of the CSP. A partial state is a state in which some variables have not been assigned a
value (yet), while a complete state is a state in which all variables have been assigned
a value. A state S is a substate of a state T if the set of variables of S is a subset
of the variables of T , and each of the overlapping variables in S and T has been
assigned the same value. A state, either partial or complete, that does not violate any
of the constraints is called a consistent state, otherwise, it is called an inconsistent
state. Therefore, we can also define a solution as a complete state that is consistent.

1.2 Examples CSPs
In this section, we give a few concrete examples of CSPs. They are given to make
the reader familiar with the concept of a CSP, but they are also used as reference
examples later in this document.

1.2.1 N-queens problem
A famous CSP is the eight-queens puzzle, which was first published in 1848 by chess
composer Max Bezzel [2].
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The objective is to place eight queens on a chessboard such that no queen attacks
any other queen. Later this puzzle was generalised to n× n chessboards, and is now
known as the n-queens problem. It can be formulated as a CSP as follows:

• X = {X1, . . . , Xn}, where each Xi is the column of the queen that is placed
on row i of the chessboard.

• For each Xi we have Di = {1, . . . , n} (i.e. column numbers).

• C = AllDiff (X1, . . . , Xn) ∪ {j − i 6= abs(Xi −Xj) | 1 ≤ i < j ≤ n}.

Here abs(x) denotes the absolute value of x. Moreover, we also made use of the
AllDiff constraint here, which is a constraint that takes an arbitrary number of vari-
ables. This constraint says that all variables involved must have a different value,
and is helpful in specifying multiple constraints as a single expression. For example,
AllDiff (X1, X2, X3, X4) is a compact notation for the set of constraints
{X1 6= X2, X1 6= X3, X1 6= X4, X2 6= X3, X2 6= X4, X3 6= X4}.

A solution of the eight-queens problem is [X1, .., X8] = [5, 7, 2, 6, 3, 1, 4, 8],
which is shown in Figure 1.1.

FIGURE 1.1: An example solution of the eight-queens puzzle.

1.2.2 Map-colouring problem
The map-colouring problem (also known as the four-colour map problem) is the
task of trying to assign one of four given colours to each area in a map such that
no neighbouring areas have the same colour. As an example, in Figure 1.2a we
see the provinces of the Netherlands. Using the four colours red, green, blue,
and yellow, each province can be assigned a colour such that no neighbouring
provinces have the same colour, as shown in Figure 1.2b.
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(a) (b)

FIGURE 1.2: (a) A map of the Netherlands, showing the provinces.
(b) A solution to the map-colouring problem applied to the map of

(A).

Formally, we can define this as the following CSP:

• X = {GR,FR,DR,OV,GE, FL,NH,ZH,UT, ZE,NB,LI}

• For each Xi we have Di = {red,green,blue,yellow}

• C = CGR ∪CFR ∪CDR ∪COV ∪CGE ∪CFL ∪CNH ∪CZH ∪CUT ∪CZE ∪CNB ∪CLI ,

where
CGR = {GR 6= FR,GR 6= DR}
CFR = {FR 6= GR,FR 6= DR,FR 6= OV, FR 6= FL, FR 6= NH}
CDR = {DR 6= GR,DR 6= FR,DR 6= OV }
COV = {OV 6= DR,OV 6= FL,OV 6= GE}
CFL = {FL 6= FR,FL 6= OV, FL 6= GE,FL 6= UT, FL 6= NH}
CNH = {NH 6= FR,NH 6= FL,NH 6= UT,NH 6= ZH}
CGE = {GE 6= OV,GE 6= FL,GE 6= UT,GE 6= NB,GE 6= LI}
CUT = {UT 6= FL,UT 6= GE,UT 6= NB,UT 6= ZH,UT 6= NH}
CZH = {ZH 6= NH,ZH 6= UT,ZH 6= GE,ZH 6= NB,ZH 6= ZE}
CZE = {ZE 6= ZH,ZE 6= NB}
CNB = {NB 6= ZE,NB 6= ZH,NB 6= GE,NB 6= LI}
CLI = {LI 6= NB,LI 6= GE}

1.2.3 Sudoku
Another well-known CSP is the 9x9 Sudoku puzzle, such as the one shown in Fig-
ure 1.3. The objective is to fill all the empty cells in the grid with digits such that
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there are no duplicates in each row, column, or 3× 3 block. More formally, the rules
of the puzzle can be specified as constraints as follows (where ai,j denotes the value
in the ith row of the jth column of the Sudoku puzzle):

• for 1 ≤ i ≤ 9: AllDiff (ai,1, ai,2, ai,3, ai,4, ai,5, ai,6, ai,7, ai,8, ai,9)

• for 1 ≤ j ≤ 9: AllDiff (a1,j, a2,j, a3,j, a4,j, a5,j, a6,j, a7,j, a8,j, a9,j)

• for 0 ≤ i ≤ 2, 0 ≤ j ≤ 2:

AllDiff ( a3i+1,3j+1, a3i+1,3j+2, a3i+1,3j+3,

a3i+1,3j+1, a3i+1,3j+2, a3i+1,3j+3,

a3i+1,3j+1, a3i+1,3j+2, a3i+1,3j+3 )

Now, for a specific sudoku puzzle, all that is needed are constraints that specify the
given grid cells. For example, the sudoku in 1.3(a) is defined by the following extra
constraints:

1 = a1,4 = a2,9 = a3,1 = a4,5 = a8,6 = a9,3

2 = a2,6 = a3,8

3 = a1,2 = a2,5 = a3,9 = a5,3 = a6,4

4 = a1,3 = a3,4 = a8,2

5 = a1,6 = a3,3 = a4,4 = a5,9 = a6,2 = a9,5

6 = a1,7 = a2,4 = a3,2 = a4,6 = a5,8 = a7,9

7 = a6,6

8 = a4,2 = a5,4 = a9,6

9 = a1,9 = a2,2 = a3,6 = a5,5 = a6,1

(a) (b)

FIGURE 1.3: (a) A 9x9 Sudoku puzzle. (b) The solution to (A).
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1.2.4 Magic square
A magic square is an n × n grid where the sum of each row, column, and both
diagonals must be the same. Unlike the Sudoku puzzle, the grid is initially empty
and the player is tasked to fill in the grid such that these requirements are met. In the
context of this project, we restrict the domains of the grid cells to a predefined finite
domain. For example, for a 4 × 4 magic square it suffices to restrict the domains to
the range [0, . . . ,m), where m ≥ 26 (as can be seen from Figure 1.4).

(a) (b)

FIGURE 1.4: (a) An empty 4x4 grid. (b) A 4x4 magic square.

Solving a magic square puzzle as shown in 1.4a can be done by solving CSP with the
following constraints (where ai,j denotes the value in the ith row of the jth column
of the magic square puzzle):

• for 1 ≤ i ≤ 4: sum(ai,1, ai,2, ai,3, ai,4) = S

• for 1 ≤ j ≤ 4: sum(a1,j, a2,j, a3,j, a4,j) = S

• sum(a1,1, a2,2, a3,3, a4,4) = S

• sum(a1,4, a2,3, a3,2, a4,1) = S

Here, sum(x0, . . . , xn) denotes
∑n

i=0 xi. A solution of the above CSP yields the
magic square shown in Figure 1.4b.

1.2.5 Crypt-arithmetic puzzle
A crypt-arithmetic puzzle is a mathematical puzzle where individual digits of num-
bers in a mathematical expression are replaced by letters or symbols. Each letter in
these puzzles represents a unique digit and there are no leading zeros in the num-
bers. The task is to assign to each letter a unique digit such that the mathematical
expression is valid. While there are many different kinds of crypt-arithmetic puzzles
available, the most common ones are only concerned with addition. An example of
such a crypt-arithmetic puzzle can be seen in Fig. 1.5.
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FIGURE 1.5: A simple crypt-arithmetic puzzle.

This puzzle can be formulated as a CSP as follows:

• X = {F, T,O,W,U,R, c10, c100, c1000}.

• The domain of c10, c100, and c1000 is {0, 1}. For all other variables the domain
is D = {0, . . . , 9}.

• C = AllDiff (F, T,O,W,U,R) ∪ {O + O = R + 10 ∗ c10, c10 +W +W =
U + 10 ∗ C100, c100 + T + T = O + 10 ∗ c1000, c1000 = F, F 6= 0, T 6= 0}.

Note that the augmented variables c10, c100, and c1000 are introduced. They play
the role of the carry (either 0 or 1) in the tens, hundreds, and thousands column
respectively. Several solutions for this puzzle exist. An example solution is F =
1, T = 8, O = 6, W = 4, U = 9, R = 2, which corresponds to 846+846 = 1692.
Moreover, c10 = 1, c100 = 0, c1000 = 1, but these are helper variables, so their
values in the solutions are not relevant.

1.2.6 Boolean satisfiability problem
A Boolean satisfiability problem, or SAT, is a problem in which you are given a
Boolean formula and are tasked with determining whether there exists an interpre-
tation that satisfies the given formula by incrementally replacing the variables in the
formula with a Boolean value, true or false. A simple example of a Boolean
formula is (x∧ y)∨ (¬x∧ z). The interpretation x = true, y = true, z = true
satisfies the aforementioned Boolean formula.

This SAT can be formulated as a CSP as follows:

• X = {x, y, z}

• For each Xi we have Di = {true, false}

• C = (x ∧ y) ∨ (¬x ∧ z)

1.3 Solving CSPs using a backtracking search
Backtracking search is a depth-first search that incrementally assigns values to the
given variables and backtracks when there are no more legal values left (in other
words, when the state becomes inconsistent). Algorithm 1 shows a pseudo-code that
implements this technique [20, p. 215].
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Algorithm 1 Pseudocode for the backtracking search algorithm
1: function BACKTRACKING-SEARCH(csp) returns a solution, or failure
2: return Backtrack({ }, csp)
3: end function
4:
5: function BACKTRACK(state, csp) returns a solution, or failure
6: if state is complete then return state
7: end if
8: var ← SELECT-UNASSIGNED-VARIABLE(csp)
9: for all value in ORDER-DOMAIN-VALUES(var, state, csp) do

10: if value is consistent with state then
11: add {var = value} to state
12: inferences← INFERENCE(csp, var, value)
13: if inferences 6= failure then
14: add inferences to state
15: result← BACKTRACK(state, csp)
16: if result 6= failure then return result
17: end if
18: end if
19: end if
20: remove {var = value} and inferences from state
21: end for
22: return failure
23: end function

The introduction of states allows us to look upon solving a given CSP as a back-
tracking state search problem. A solution to a CSP is a leaf node of the corresponding
search tree in which a consistent value has been assigned to each variable of the CSP.
An example of a partial search tree that is traversed by the backtracking search algo-
rithm for the map-colouring problem is shown in Figure 1.6.

FIGURE 1.6: A (partial) search tree for the map-colouring problem
described in Chapter 1.2.2
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1.3.1 Heuristics
In each step of the backtracking search algorithm, we must select an unassigned
variable in the CSP and assign a legal value to it such that no constraints are violated.
The straightforward approach of selecting the next variable is to simply select the
next unassigned variable in the list, although this can lead to nodes with a very large
branching factor. In order to optimise the search, we can make use of heuristics to
intelligently select the next variable to be assigned. Many different types of heuristics
have been published, but we will resort to the most common ones.

Minimum-remaining-values (MRV) heuristic

In Figure 1.2b, we see that a partial state that the solving algorithm may reach is:

NH = yellow

UT = green

GE = blue

Since ZH is a neighbour to NH,UT and GE, we know that ZH must be red
in order for CZH = AllDiff (ZH,ZE,NH,NH,UT,GE,NB) to hold.

The process of choosing the variable with the fewest legal values is called the
minimum-remaining-values heuristic. It selects the variable that has the highest prob-
ability of leading to an inconsistent state soon. If a partial state is inconsistent, then
the entire sub-tree of which this state is the root node can be pruned. Hence, this
technique is likely to yield a smaller search tree than random variable selection. In
the literature, this heuristic is also called the most constrained variable heuristic or
the fail-first heuristic.

Degree heuristic

The MRV heuristic does not help at all in the case that all variables have an equal
number of available values. In that case, the degree heuristic can be used. This
heuristic attempts to reduce the branching factor of a search tree by looking at which
variable is involved in the most constraints and assigning a value to this variable. If
we take Figure 1.2b again as an example, we see that GE has the most neighbours
(and therefore constraints) in the map of the Netherlands. If we decide to assign
blue to GE, the branching factor will be reduced for all of GE’s neighbouring
nodes, as LI,NB,ZH,UT, FL,OV 6= blue.

Least-constraining-value heuristic

Unlike the aforementioned heuristics, the least-constraining-value (LCV) heuristic is
used to improve the performance of the backtracking search by examining in which
order the values should be assigned to the selected, unassigned variable. Unlike
MRV, LCV chooses values for a variable xi that occur in the lowest number of do-
mains of all variables that occur in constraints that xi also occurs in. In other words,
LCV selects values that eliminate the fewest choices for the neighbouring variables
in the constraint graph, which allows for flexibility for subsequent assignments [20,
p. 217].
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1.3.2 Inference
In Algorithm 1 we saw the following line:

1: inferences← INFERENCE(csp, var, value)

This type of inference is called constraint propagation. Constraint propagation uses
the constraints to reduce the domains of the variables in the CSP. Once the domain
of a variable xi is reduced, this could, in turn, also reduce the domain for another
variable xj , et cetera. We will look at two kinds of constraint propagation; node
consistency, and arc consistency.

Node consistency

A CSP is said to be node consistent when for each unary constraint Cx on a variable
x, all values in its domain respect Cx.

For example, if x has a domain of {1, 2, 3, 4, 5} and Cx = {x | x < 3}, we can
remove the values {3, 4, 5} from the domain of x and reduce it to {1, 2}. Making
a CSP node consistent may result in great reduction of the execution time of the
backtracking algorithm.

Arc consistency

A binary constraint Cxy on variables x, y is said to be arc consistent if for each value
for x (taken from the domain of x) there exists a value for y (in the domain of y) such
that Cxy holds. A CSP is said to be arc consistent if all its binary constraints are arc
consistent.

As an example, let us take a look at the following CSP:

• X = {a, b, c}

• For each Xi, we have Di = {1, 2, 3}

• C = {a > b, b = c}

This CSP is clearly not arc consistent, as there is no value for b if a = 1. There-
fore, we remove the value 1 from the domain of a:

• X = {a, b, c}

• Da = {2, 3}, Db = {1, 2, 3}, Dc = {1, 2, 3}

• C = {a > b, b = c}

This CSP is still not arc consistent, as there is no value for a if b = 3 (because
a > 3 fails). Therefore, we remove the value 3 from the domain of b:

• X = {a, b, c}

• Da = {2, 3}, Db = {1, 2}, Dc = {1, 2, 3}
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• C = {a > b, b = c}

This still leaves us with a CSP that is not arc consistent. If c = 3, there is no
matching value for b. Hence, we remove 3 from the domain of c, which (finally)
leaves us with an arc consistent CSP:

• X = {a, b, c}

• Da = {2, 3}, Db = {1, 2}, Dc = {1, 2}

• C = {a > b, b = c}

In this example, we have reduced the domain of each variable by one-third! Mak-
ing a CSP arc consistent may speed up the backtracking solving process significantly,
since the number of states visited by this brute force process may be as large as the
product of the sizes of the domains.

1.4 Literature review

1.4.1 History
Prolog [14] was the first logic programming language. A Prolog program essentially
consists of a set of Boolean equations (constraints) that declaratively specify a prob-
lem. Hence, Prolog can be seen as the first Constraint Logic Programming (CLP)
programming language [3], and a Prolog implementation can be seen as a solver for
Boolean CSPs.

Soon after Prolog’s release in 1972, research started to appear on the theory be-
hind efficiently solving CSPs. This started with the introduction of minimal graphs
for the representation and handling of constraints by Montari in 1974 [18]. Soon af-
ter, a paper was published in 1977 [16] that extended Montari’s work and introduced
a number of problem reduction strategies and algorithms [22].

Researchers began experimenting with the idea of using backtrack-free search
algorithms [7] and backtrack-bound searches [10]. The focus, however, shifted to-
wards standard backtracking search algorithms again [15, 17], which are used to this
day.

Following the research on search algorithms, heuristics started to get developed to
optimise the search process for solving CSPs [11]. This ranged from using network-
based heuristics [7] to using evolutionary algorithms [5, 9], which greatly improved
the performance of solvers on a subset of CSPs.

Research on concurrent CLP started to appear [13] in the 1980s, followed by re-
search on general Concurrent Constraint Programming [21]. This research on general
Concurrent Constraint Programming inspired the addition of constrained reasoning
into multi-paradigm languages, notably Mozart [6] in 1991. As an example, Mozart
has been used to create a program verification system [8]. Mozart eventually dropped
the support for constraints in the first release of Mozart 2 due to the complexity of
the ongoing developments in efficient constraint solving; it is still possible to do con-
straint solving in Mozart, but this will have to go through the library Gecode [12].
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Over the years, many CSP solvers have been made and released, but there are
still very few (efficient) general-purpose CSP solvers [1, 19].

1.4.2 Multi-core CSP solvers
Multi-core processing has become the new standard in modern computing [4]. Many
computing science (related) fields have benefited from using multi-core processing
by adapting algorithms such that they can run concurrently using the shared memory
threading model. The field concerned with solving CSPs, however, appears to lag
behind in this respect. While there are currently many CSP solvers that are highly
optimised for specific CSPs, there appears to be very little focus on developing effi-
cient multi-core general-purpose CSP solvers.

1.4.3 Parallelization
We will implement a concurrent CSP solver based on a parallelization of the back-
tracking search algorithm which is commonly used for solving CSPs [20]. Addition-
ally, we need to implement some concurrent data structures for performing book-
keeping.

We will use a search tree data structure to keep track of the history of all partial
states that have been covered by the search algorithm to avoid duplicate searches by
multiple threads. Since we only need to know whether a substate of the state that
is currently being inspected has been covered in the past, it does not matter whether
the (partial) states that are stored in the tree previously yielded a solution or not.
Therefore, we can safely store both inconsistent as well as consistent partial states in
the same search tree. Note that because of this property, we only need to store partial
states in the tree and the solutions (which are complete states). We do not need to
store complete states that are not a solution, as these states must have been covered
earlier on by other threads in the program.
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Chapter 2

Parallelization

2.1 Parallelizing the Search Algorithm
In Algorithm 1, we saw that a CSP is solved by first selecting an unassigned variable,
followed by iterating over the values in that variable its domain. This was shown in
the following lines:

1: var ← SELECT-UNASSIGNED-VARIABLE(csp)
2: for all value in ORDER-DOMAIN-VALUES(var, state, csp) do

This algorithm, therefore, tries to solve for one variable at a time, while the other
(unassigned) variables are simply waiting until it is their turn to be processed. This
approach of consecutively solving the unassigned variables is therefore quite ineffi-
cient on a multi-core computer, as other variables could be processed in the mean
time.

2.1.1 Processing Variables Independently
Since Algorithm 1 does not depend on the order of the unassigned variables that are
picked (it does not matter which variable SELECT-UNASSIGNED-VARIABLE(csp)
returns), we could start the searching process from any unassigned variable. This
observation naturally allows for this algorithm to be parallelized.

Idea A better approach to solving a CSP using the backtracking search algorithm
shown in Algorithm 1 is to assign a thread to each variable and start solving the CSP
from that variable. This way, all variables will be processed concurrently, rather than
consecutively, which will save time as the variables are no longer ‘waiting’ on other
variables.

2.2 Master-slave Parallelization
There are different approaches that one could take to implement this parallelization
idea, but the most natural approach that comes to mind is making use of the master-
slave parallelization (or MSP) paradigm. In MSP, one thread (the so-called master
thread) is assigned a problem to solve. It does this by splitting the problem into
smaller tasks, which are distributed and assigned to (multiple) slave threads. These
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slave threads are each responsible for their own tasks. Once they receive a task, they
will perform the task and request a new one once they are done with their current
task. This process continues until there are no more tasks left.

2.2.1 Tasks
One idea that was briefly mentioned in Chapter 2.1.1 is to assign one slave thread per
variable. Although this solution might speed up the solving process, there are some
complications with this approach;

• What happens if some variable Xi has a large domain, whereas the other vari-
ables have relatively small domains? Processing variable Xi will take much
longer than the other variables, because trying all elements of its domain takes
longer than trying all elements of the other smaller domains. This means that
processing this variable will lead to a load-balancing bottleneck.

• Perhaps more importantly; what happens if there are more slave threads avail-
able than variables? If there are two unassigned variables and we have eight
slave threads available, six slave threads will remain idle. This leads to an
unnecessary waste of resources.

Idea Rather than assigning one slave thread per variable, we could split the vari-
ables and their domains into smaller tasks. In this case, a task consists of a variable
and a subset of its original domain. If the original domain is sufficiently small, we
may use the entire domain in a task as well.

The two aforementioned issues are now no longer present. It does not matter
whether there are variables with large domains anymore, as they are split into smaller
tasks anyway. Moreover, since a variable can now be split over multiple tasks, we
can now assign multiple slave threads to different subsets of a domain of a variable.
This means that all slave threads will be active in solving a CSP and will have an
(approximately) equally sized task. Consequently, this approach leads to load bal-
ancing amongst the slave threads which can be seen in Figure 2.1.
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(a)

(b)

FIGURE 2.1: Master-slave parallelization without (a) and with (b)
load balancing.

The implementation of the master-slave parallelization is discussed in Chapter 5.3.
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Chapter 3

Search tree

Let us consider the following CSP:

• X = {w, x, y, z}

• For each Xi, Di = {1, . . . , 100}

where C can be any set of constraints. Suppose that we would like to solve such a
CSP with two threads T1 and T2. Thread T1 starts the solving process with variable
x and T2 starts with variable y. Now, at some point, T1 may process the partial
state {x = 1, y = 2} whereas T2 has processed similar partial state in the past,
namely {y = 2, x = 1}. From this point onward, the search for assignments for the
remaining variables (w and z) in T1 will yield an identical search tree as the one that
was already generated by T2 because the partial states are identical (albeit they were
reached with a different order of variables)! This means that T1 will be searching
for solutions in a subspace that has already been searched before, which is clearly
very inefficient. It would be much better to store these “covered” (partial) states in a
shared data structure to avoid duplicate searches by different threads. For this shared
data structure we invented a kind of search tree.

3.1 Tree for Partial States
This search tree data structure and its operations are best explained by looking at
an example, such as the one shown in Figure 3.1a. The nodes in this tree consist
of a variable together with a set of values. A branch in this search tree represents
a (partial) state. The branch starting at node x2 = {1} represents the partial state
{x2 = 1, x4 = 1}, for example. In the case that a node has multiple values in its set,
such as x1 = {2, 3}, the branches (and therefore (partial) states) are defined as all
possible branches that can be generated with the values in this set. In this case, the
branches that are stored starting at node x1 = {2, 3} are:

• {x1 = 2, x2 = 3, x3 = 1}

• {x1 = 3, x2 = 3, x3 = 1}

• {x1 = 2, x3 = 4}

• {x1 = 3, x3 = 4}
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The full table of all partial states that are stored in the search tree of Figure 3.1a
can be found in the Figure 3.1b.

(a)

x1 = 2 x2 = 3 x3 = 1 −
x1 = 3 x2 = 3 x3 = 1 −
x1 = 2 − x3 = 4 −
x1 = 3 − x3 = 4 −
− x2 = 1 − x4 = 1
− x2 = 2 x3 = 0 −
− − − x4 = 0

(b)

FIGURE 3.1: (a) A search tree. (b) A table depicting all the branches
stored in (a).

Now that we have an overview of the structure of this search tree, let us take a
look at how (and which) operations work on these trees.

3.2 Operations
Since we will be using these search trees to look up (partial) states of previous at-
tempts, we only need a search and an insert operation. We do not need to delete
partial states from these trees, as we are interested in all previous attempts.

A crucial precondition for these operations is that the (partial) states must be
sorted alphabetically (i.e. lexicographically) on the variable names. We will explain
later why this is important. For now, let us first take a look at these operations and
look at some examples.

3.2.1 Search
Idea To find (parts of) an input state in this search tree, we traverse the children of
the root node until we find a node that contains a variable that is also present in the
input state. Moreover, the value of the variable in the input state must be in the set of
values of the variable in the node. If such a match is found, we continue the search
process by making this node the new root node and iterating over all its children until
another match is found. An input state is (partially) present in the search tree if there
exists a branch (up until a leaf) such that all nodes match with the corresponding
variables in the state. If there exists no such branch, the input state is not present in
the search tree.

Earlier, we mentioned that one of the preconditions for the operations on this
search tree is that the input state must be sorted alphabetically on the variable names.
The reason why this is important is to avoid duplicate branches in the tree. If we do
not have this precondition, then we would have two (completely separate) branches
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for the partial states {x2 = 1, x4 = 1} and {x4 = 1, x2 = 1}, even though they
represent the same partial states.

Let us now take a look at an example. Note that in these examples a green node
represents a match between the node and a variable in the (partial) state, whereas a
red node represents a mismatch.

Example 1 We would like to know whether (parts of) the state {x1 = 1, x2 =
2, x3 = 0, x4 = 1} exists in the search tree shown in Figure 3.1a.

FIGURE 3.2: x1 = 1 in our state, so no match for the node x1 =
{2, 3}.
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FIGURE 3.3: x2 = 2 in our state, so no match for the node x2 = {1}.

FIGURE 3.4: x2 = 2 in our state, so a match for the node x2 = {2}.
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FIGURE 3.5: x3 = 0 in our state, so a match for the node x3 = {0}.

We conclude that the partial state {x2 = 2, x3 = 0} is stored in the tree and is
consistent with the state {x1 = 1, x2 = 2, x3 = 0, x4 = 1} that we searched for.

Example 2 We would like to know whether (parts of) the state {x1 = 1, x2 =
3, x3 = 3, x4 = 3} exists in the search tree shown in Figure 3.1a. The search for
this state is depicted in Figure 3.6. The conclusion for this search is clearly that there
are no partial states in the tree that are consistent with the given state.
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(a) x1 = 1 in our state, so no match for the node
x1 = {2, 3}.

(b) x2 = 3 in our state, so no match for the node
x2 = {1}.

(c) x2 = 3 in our state, so no match for the node
x2 = {2}.

(d) x4 = 3 in our state, so no match for the node
x4 = {0}.

FIGURE 3.6: Searching for {x1 = 1, x2 = 3, x3 = 3, x4 = 3} in
the search tree shown in Figure 3.1a.

3.2.2 Insert
Idea Inserting in this search tree is relatively simple; we follow existing branches
as much as possible, and as soon as a node does not exist in a certain place in the
search tree, we create a new sub-branch at that point. Let us now take a look at some
examples. Note that in these examples a green node represents a newly added node,
whereas an orange node represents an existing node that has changed (in other words,
the set of values in that node has changed).

Example 1 We would like to insert the partial state {x2 = 1, x3 = 0} in the search
tree shown in Figure 3.1a. The insert operation is shown in Figure 3.7. The partial
state {x2 = 1} was already present, and its branch is extended with a new child-node
{x3 = 0}.
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FIGURE 3.7: Inserting the partial state {x2 = 1, x3 = 0} into the
search tree shown in Figure 3.1a.

Example 2 Suppose we would now like to add the partial state {x2 = 2, x4 = 1}
to the tree that is shown in Figure 3.7. A naive way of doing this is displayed in
Figure 3.8; the partial state x2 = 2 was already present,and its branch is extended
with a new child-node x4 = {1}.

FIGURE 3.8: Inefficient insertion of {x2 = 2, x4 = 1} into the tree
that is shown in Figure 3.7.

This yields, however, a tree with two (nearly) identical sub-trees: ({x2 = 1} and
{x2 = 2}). The only difference between these branches is the values in their parent
node x2. This means that we are storing the same sub-trees twice, with a minor
difference. It would be much more efficient to merge these overlapping sub-trees
into one by simply merging the values of the x2 nodes, as can be seen in Figure 3.9.
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FIGURE 3.9: Efficient insertion of {x2 = 2, x4 = 1} into the tree
that is shown in Figure 3.7.

This compact notation saves a lot of memory. This is especially the case when the
CSP consists of many variables with large domains since this would result in many
extra branches if stored naively.

3.3 Access
We now have a data structure that can be used to avoid duplicate searches amongst
all threads. In practice, we will only need one instance of this tree to store both the
solutions and the partial states that have been covered before. However, the following
question naturally arises; what should the access rights of the threads on these search
trees be? Are there any complications when we allow all threads to insert and search
in the search trees? Moreover, what happens if a thread wants to insert a new (partial)
state while another thread is searching for another (partial) state?

3.3.1 Operations
Search Since each slave thread must be able to prematurely abort a search if (a part
of) the current state has been covered before, it is crucial that the slave threads have
at least search access to the tree. Otherwise, the benefits of storing previous attempts
in the search trees to avoid duplicate searches would cease to exist.

Insert Since the master thread is used as a middle man to get new tasks, it can also
be used as a middle man for inserting a new (partial) state in the search trees. This
approach ensures that all states are inserted consecutively, which is crucial as we do
not want to insert multiple states at the same time. Therefore, only the master thread
has insert access to the tree and the slave threads will have to signal the master thread
to request insertions in the tree.

The access rights of the threads on the search trees are shown in Figure 3.10.
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FIGURE 3.10: A diagram showing the access rights of the threads to
the search tree.

3.3.2 Data Race
A common problem that may occur in a parallelized application is when multiple
threads try to access the same shared memory simultaneously, while (at least) one
of the threads is trying to modify the data stored in this memory location. This
phenomenon is called a data race and can lead to unintended behaviour (when the
operations are executed in the wrong order, for example). In the case of the search
trees, a data race may occur when the master thread is inserting a (partial) state into
the search tree, while a slave thread is trying to search for a (partial) state in the same
branches. Luckily, data races can be solved by making use of objects called mutexes.
A mutex serves as a lock on shared memory and allows only one thread access to this
memory at a time. If a thread would like to access this shared memory, it will first
request to lock the corresponding mutex. If the mutex is already locked, however,
the thread will be blocked until the mutex is unlocked by another thread. Once this
is the case, the thread now locks the mutex and can continue its work.

In our solver, we have one mutex for the entire search tree. Now, whenever a thread
tries to read a node in a branch that is currently being processed by an insert operation
(performed by the master), it will be blocked until the insert operation has finished.
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Chapter 4

CSP specification language

In order to be able to specify CSPs in a compact manner, we designed a simple
specification language. We will first take a look at an example CSP defined in this
language, before covering the details of the language.

Recall that the 8-queens problem can be specified as a formal CSP as follows:

• X = {X1, . . . , Xn}, where each Xi is the column of the queen that is placed
on row i of the chess board.

• For each Xi we have Di = {1, . . . , 8} (i.e. column numbers).

• C = AllDiff (X1, . . . , Xn) ∪ {j − i 6= abs(Xi −Xj) | 1 ≤ i < j ≤ n}.

In our specification language, this would be represented as follows:
# Find all solutions for the N queens problem. In this case, N = 8
const N = 8;

type
column = {0..N-1};

csp diagonalCheck(board[0..N-1] : column) begin
constraint
{
forall (i in [0..N-1]:
forall (j in [i+1..N-1]:
j - i != abs(board[i] - board[j]);

)
)

}
end

csp main() begin
solutions all;

var
board[0..N-1] : column;

constraint
{
alldiff(board);
diagonalCheck(board);

}
end

We will use this example to explain the details of the specification language.
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4.1 Constants
The first line of code is const N = 8;. As one might expect, this defines a global
constant. Global constants are declared at the very top of the file and their scope
is the entire file, including sub-CSPs. Their names must start with a capital letter,
followed by numbers or lowercase letters. Moreover, their values must be constant
(either an integer, a Boolean value, or an enumeration value).

4.2 Types
This (optional) section can be used to define types, which can be used to reuse do-
mains that are used for multiple variables. Types (and therefore domains) are either
sets of integers or sets of enumerable values:

• Integers contains only integers, ranges or constants. This is present in the
8 queens problem CSP: column = {0..N-1}. The type column now
represents the set {0, 1, . . . , N − 2, N − 1}.

• Enumeration contains strings of options that a variable can be. An exam-
ple of this can be found in the implementation of the map-colouring prob-
lem in this specification language (found in Appendix A.1.2). In there, we
have colour = {red, green, blue, yellow}. This is more user-
friendly than having a type colour = {0, 1, 2, 3}, where each num-
ber would represent a colour.

Types defined in this section can be used in all CSPs.

4.3 CSPs
The specification language supports multiple (sub-)CSPs in one file, as can be seen
in the example. There must be at least one CSP, though, named main with no pa-
rameters. The solver will always start by solving this CSP. All other sub-CSPs are
then only solved if there is a path between the main CSP and the given sub-CSP. As
an example, let us take a look at the following input file:

csp d(x) begin
constraint
{
x != 5;

}
end

csp c(x) begin
constraint
{
x != 4;
d(x);
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}
end

csp b(x) begin
constraint
{
x != 3;

}
end

csp a(x) begin
constraint
{
x != 2;
b(x);

}
end

csp main() begin
var
x : {1..10};

constraint
{
a(x);

}
end

The CSP c is never solved, as there is no reference to it. The CSP d does have a ref-
erence from c, but since c ixtself cannot be reached from main, d is consequently
also never solved, as it is only referenced in c.

A CSP declaration starts with its name and its (optional) parameters. Only the name
of the parameters is provided (including the size if a parameter is an array). An
example of a sub CSP with parameters:

csp diagonalCheck(board[0..N-1]) begin
constraint
{
forall (i in [0..N-1]:

forall (j in [i+1..N-1]:
j - i != abs(board[i] - board[j]);

)
)

}
end

Aside from its heading, a (sub-)CSP also has a body. The body (may) contain three
sections, each of which we will cover next.
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4.3.1 Solutions
This (optional) section can be used to define the number of solutions that are re-
quested. The options are solutions all, solutions single and solutions
n, for some natural number n. If no option is declared, the default option will be used,
which is solutions all. Moreover, if there are only m solutions, with m < n,
then the system will only show those m solutions (in other words, n is an upper
bound).

4.3.2 Variables
In this section, the user can declare the variables that are used in the constraints. A
variable declaration has one of the following forms:

• variable : type

• variable : boolean (note that {boolean} is a built-in type)

• variable : set (for example, variable : {0..N})

Moreover, a variable can also be an array. The syntax for arrays is similar to the
formats above;

• variable[0..N] : type

• variable[0..N] : boolean

• variable[0..N] : set

In the case of the 8-queens problem, we find the declaration board[0..N-1] :
column, which is equivalent to board[0..7] : {0..7}. Arrays of higher
dimensions are also supported by separating the indices by commas. An example of
this can be seen in the sudoku implementation (found in Appendix A.1.3):

sudoku[1..9, 1..9] : {1..9}

Note that the user is free to choose the starting and ending indices of arrays. This
allows the user to start indexing at any non-zero value, should they want to do this.
Additionally, the specification language supports declaring multiple variables of the
same type in a single line as follows:

variable1, variable2 : type

Accessing Array Elements

Apart from directly accessing elements from an array by using indices, the specifi-
cation language also allows the user to access section(s) of an array. For the variable
sudoku[1..9, 1..9] and board[1..8], we may do the following:

max(board) = n;

alldiff(sudoku[1, 1..9]);

sum(sudoku[1..3, 1..3]) = m;
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which, respectively, correspond to:

max(board[1], board[2], board[3], board[4],
board[5], board[6], board[7], board[8]) = n;

alldiff(sudoku[1,1], sudoku[1,2], sudoku[1,3],
sudoku[1,4], sudoku[1,5], sudoku[1,6],
sudoku[1,7], sudoku[1,8], sudoku[1,9]);

sum(sudoku[1,1], sudoku[1,2], sudoku[1,3],
sudoku[2,1], sudoku[2,2], sudoku[2,3],
sudoku[3,1], sudoku[3,2], sudoku[3,3]) = m;

4.3.3 Constraints
A constraint can consist of several options:

• Binary comparison: a binary comparison of the form Expression operator
Expression, where operator∈ {=, !=, <, <=, >, >=}. An Expression
can either be a Boolean expression, or a numeric expression. An example of a
binary comparison using numeric expressions is

j - i != abs(board[i] - board[j]);

There are a few built-in mathematical functions available; abs, min, max and
sum. For these functions, you can also pass ranges of variables (as discussed
in Chapter 4.3.2):

sum(square[i, 0..SIZE-1]) = RESULT;

which is equivalent to:

sum(square[0,0], square[0,1],
square[0,2], square[0,3]) = 34;

for i=0, SIZE=4 and RESULT=34.

• CSP call a call to a sub-CSP, including its parameters. An example that we
have seen already is alldiff(board).

• Forall statement a for-loop alike construct that allows the user to iteratively
define (parts of) a constraint. The syntax is:

forall (iterVar in [start..end]:
constraint;

)

where start and end are numeric expressions. An example of such a forall
statement can be found in the 8 queens problem:
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forall (i in [0..N]:
forall (j in [i+1..N]:

j - i != abs(board[i] - board[j]);
)

)

which represents the set of constraints {j−i 6= abs(Xi−Xj) | 1 ≤ i < j ≤ n},
where Xi = board[i-1].

• Constraint block a block of constraints, encapsulated by curly brackets. A
constraint block can be looked upon as a conjunction; all constraints in the
block must hold in order for the block to hold.

• Disjunction a disjunction of two constraint blocks. This can be used if only
one of the two blocks needs to be satisfied. A simple example that illustrates
the SAT as described in Chapter 1.2.6:

{
x = true;
y = true;

}
OR
{
x = false;
z = true;

}

4.3.4 Miscellaneous
Note that whitespace (i.e. tabs, spaces, and newlines) is ignored. Moreover, the
language supports single-line comments that start with a #. The following code:

forall (i in [0..SIZE-1]:
# Column has no duplicates
alldiff(sudoku[i, 0..SIZE-1]);

# Row has no duplicates
alldiff(sudoku[0..SIZE-1, i]);

)

is, therefore, equivalent to:

forall(i in [0..SIZE-1]:alldiff(sudoku[i,0..SIZE-1]);
alldiff(sudoku[0..SIZE-1,i]);)

4.4 Further Examples
The full list of CSP implementations of the examples described in Chapter 1.2 can
be found in Appendix A.1.
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Chapter 5

Workflow

5.1 Reading and parsing
To read and parse CSP specification files, we make use of the parser generator Bi-
son in combination with the lexical analyser generator Flex. Loosely speaking, Flex
tokenizes the input text and provides these tokens to a parser that was generated by
Bison. This parser determines whether the sequence of tokens is according to the
specified grammar. If this is the case then the parser returns an array of structs
that is constructed (in so-called grammar action rules) during the parsing process. If
the input does not follow the specified grammar, however, the parser will throw an
error and let the user know which token resulted in an error. In addition to the regular
error reporting provided by Bison, we have extended this to also show in which line
number the incorrect token is found. This, of course, takes into account white space
and comment lines.

On success, the parser returns a struct Program which was built while parsing
the input. This struct is a data type that contains all the data of the CSP specification
file and we may proceed to the next step of the program, which is parsing the pro-
gram arguments.

We have added support for the following run-time flags:

• -t=n: the flag -t allows the user to specify how many slave threads may
be used by the solver. Note that in the case that -t=1 is specified, then the
program will run sequentially;

• -st=n: the flag -st allows the user to specify whether they want to use the
search trees to store intermediate, partial states in, and n ∈ {0, 1};

• -a=n: the flag -a allows the user to specify whether they want to use arc
consistency inference, and n ∈ {0, 1};

• -n=n: the flag -n allows the user to specify whether they want to use node
consistency inference, and n ∈ {0, 1};

• -p=n: the flag -p allows the user to specify whether they want to solver to
print the solutions, and n ∈ {0, 1}.

Note that these program arguments may be given in any order, and if duplicate
arguments exist, the last ones will be used. If some program arguments are not
provided, however, their default values will be used;
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• -t=numAvailableThreads for Linux, and -t=8 for macOS;

• -st=0, -a=0, -n=1, and -p=1 for all operating systems.

5.1.1 Setting program scope
Lastly, we set the scopes in the Program accordingly. A scope is a struct that
contains a list of all constants, sub-CSPs, variables, and parameters that can be called
or accessed at a certain location in the code. Each CSP has its own scope containing
all parameters and variables that are locally declared. These parameters and vari-
ables should not be accessible to other CSPs, and should, therefore, only occur in the
scope of the corresponding CSP. Aside from these scopes, the Program also con-
tains a global scope that contains a list of all constants and sub-CSPs defined in a file.

The next step is generating a reduced (simplified) variant of the CSP and solving this
variant.

5.2 Reduced Form
So far, we have seen what a CSP looks like in the specification language. The actual
solver, however, does not directly solve CSPs defined in this language. Instead, it
first translates the input into a reduced variant of the specification language. This
language is a simpler version of the original language and is used as a normal form
by the solver. This intermediate, reduced form is never seen by the user, and the
simplifications in this reduced form make the solving process significantly easier.

The following changes have been made in the reduced specification language (with
respect to the original language):

• There is only one (large) CSP, namely main. All CSP calls are (recursively)
replaced by the constraints defined in the corresponding CSPs, and the vari-
ables in these sub-CSPs are also copied into main. In order to avoid duplicate
variable names in main, we prefix all variables with the CSP identifier they
were defined and an underscore symbol (’_’). Note that underscores are not
allowed in the original specification language. For example, a local variable
x in sub-CSP sub is renamed into sub_x. For the solutions of the CSP, we
only print the variables defined in the original main CSP, since we are not
interested in the values for local variables and intermediate variables.

• Constants have been removed and all occurrences are simply replaced by their
values.

• Arrays have been removed. An array of size n is expanded into n separate
variables. For example, an array variable x[1,2] from the main CSP is
translated into main_x_1_2. Note that when a solution is printed, all vari-
ables will be displayed in their original form (i.e. main_x_1_2 is printed as
x[1,2]).
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• Domain type sections have been removed and all domains (sets) are written
explicitly in the variable declarations.

• Domains are expanded to an array of values, rather than an array of ranges and
values. Moreover, if there were any duplicates before, they are removed.

In the reduced format, constraints are also expanded as much as possible:

• Array ranges are expanded into n binary comparisons, where n is the number
of elements in the array range.

• All forall statements are replaced by n copies of the body, where n =
end-start.

• alldiff is expanded into n binary comparisons, where n is the number of
elements in the parameter variable(s).

Example Given the implementation of the 8 queens problem in the regular speci-
fication language, the reduced form variant would be as follows:
csp main() begin
solutions all;

var
main_board_0 : {0,1,2,3,4,5,6,7};
main_board_1 : {0,1,2,3,4,5,6,7};
main_board_2 : {0,1,2,3,4,5,6,7};
main_board_3 : {0,1,2,3,4,5,6,7};
main_board_4 : {0,1,2,3,4,5,6,7};
main_board_5 : {0,1,2,3,4,5,6,7};
main_board_6 : {0,1,2,3,4,5,6,7};
main_board_7 : {0,1,2,3,4,5,6,7};

constraint
{
main_board_0 != main_board_1;
main_board_0 != main_board_2;
main_board_0 != main_board_3;
main_board_0 != main_board_4;
main_board_0 != main_board_5;
main_board_0 != main_board_6;
main_board_0 != main_board_7;
main_board_1 != main_board_2;
main_board_1 != main_board_3;
main_board_1 != main_board_4;
main_board_1 != main_board_5;
main_board_1 != main_board_6;
main_board_1 != main_board_7;
main_board_2 != main_board_3;
main_board_2 != main_board_4;
main_board_2 != main_board_5;
main_board_2 != main_board_6;
main_board_2 != main_board_7;
main_board_3 != main_board_4;
main_board_3 != main_board_5;
main_board_3 != main_board_6;
main_board_3 != main_board_7;
main_board_4 != main_board_5;
main_board_4 != main_board_6;
main_board_4 != main_board_7;
main_board_5 != main_board_6;
main_board_5 != main_board_7;
main_board_6 != main_board_7;
((1)-(0)) != abs(((main_board_0)-(main_board_1)));
((2)-(0)) != abs(((main_board_0)-(main_board_2)));
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((3)-(0)) != abs(((main_board_0)-(main_board_3)));
((4)-(0)) != abs(((main_board_0)-(main_board_4)));
((5)-(0)) != abs(((main_board_0)-(main_board_5)));
((6)-(0)) != abs(((main_board_0)-(main_board_6)));
((7)-(0)) != abs(((main_board_0)-(main_board_7)));
((2)-(1)) != abs(((main_board_1)-(main_board_2)));
((3)-(1)) != abs(((main_board_1)-(main_board_3)));
((4)-(1)) != abs(((main_board_1)-(main_board_4)));
((5)-(1)) != abs(((main_board_1)-(main_board_5)));
((6)-(1)) != abs(((main_board_1)-(main_board_6)));
((7)-(1)) != abs(((main_board_1)-(main_board_7)));
((3)-(2)) != abs(((main_board_2)-(main_board_3)));
((4)-(2)) != abs(((main_board_2)-(main_board_4)));
((5)-(2)) != abs(((main_board_2)-(main_board_5)));
((6)-(2)) != abs(((main_board_2)-(main_board_6)));
((7)-(2)) != abs(((main_board_2)-(main_board_7)));
((4)-(3)) != abs(((main_board_3)-(main_board_4)));
((5)-(3)) != abs(((main_board_3)-(main_board_5)));
((6)-(3)) != abs(((main_board_3)-(main_board_6)));
((7)-(3)) != abs(((main_board_3)-(main_board_7)));
((5)-(4)) != abs(((main_board_4)-(main_board_5)));
((6)-(4)) != abs(((main_board_4)-(main_board_6)));
((7)-(4)) != abs(((main_board_4)-(main_board_7)));
((6)-(5)) != abs(((main_board_5)-(main_board_6)));
((7)-(5)) != abs(((main_board_5)-(main_board_7)));
((7)-(6)) != abs(((main_board_6)-(main_board_7)));

}

end

5.2.1 Preparing CSP
Before we can start solving the CSP main, we first need to make some preparations,
as the CSP is not ready to be solved straight after having been parsed. We do this by
performing the following actions:

Setting scope We set the scope for the CSP in this step in a similar way as discussed
in Chapter 5.1.1. Since the reduced specification language only consists of one CSP
main with no parameters, and constants are removed, the scope simply consists of
all the variables that are defined in main.

Infer variable types Next, we iterate over all variables and infer the type of the
variable by looking at the values in its domain. Based on these values, we assign one
of the following types to the variable: INT_TYPE, BOOL_TYPE, or ENUM_TYPE.
Moreover, if a variable is of type BOOL_TYPE, we assign the domain {0, 1} to it.
Note that we could also assign the enum domain {true,false} to it, but since a
BOOL_TYPE is treated as an INT_TYPE, it is simply easier to assign the set {0, 1}
to it.

Set assignments The following step is to look at all the constraints and check
whether there are any assignments present, that are not part of any disjunctions, of
the form variable = constant or constant = variable, where a con-
stant value is either a Boolean value, an integer, or an enumeration value (string). If
this is the case, we assign this constant value to this variable and disable this con-
straint such that it will not be inspected anymore in the future, to avoid unnecessarily
looking at these constraints and thereby increasing the performance.
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Remove duplicates Since the types were removed and replaced by sets, it may
be the case that there are overlapping numbers in the set. For example, the type
tType : {1..9, 7} will be translated into {1,2,3,4,5,6,7,8,9,7}, in
which 7 occurs twice. Therefore, we must get rid of all duplicates values in the
domains of the variables to avoid (unnecessary) duplicate searches. After the removal
of duplicates, the domains are simple arrays containing values (and no ranges), such
that we can iterate over the values in domains.

Link constraints In this step, we visit all constraints. If there is a constraint in
which a variable name occurs, we find the corresponding variable that is stored in
the scope and assign it to the variable in the constraint. We can now directly use the
variables stored in the constraints, rather than searching it in the scope every time we
need to access it.

Simplify constraints The constraints that are given in the reduced form can (some-
times) be simplified. For example, in the following (reduced) constraint from the
8-queens problem

((1)-(0)) != abs(((board_0)-(board_1)))

the term ((1)-(0)) can clearly be simplified to 1. Since all constraints are binary
comparisons in their core, we iterate over all these binary comparisons and check
whether the expressions on the left-hand side and right-hand side can be simplified.
If this is the case, we replace the expressions with these simplifications.

5.3 Parallelization
For the parallelization of the solver, we use the POSIX pthreads library. We will
spawn the slave threads from the master thread using pthread_create and start
the solving process on each thread separately. As mentioned in Chapter 3.3.2, we use
mutexes to ensure that multiple pthreads do not cause a data race. We only have
two mutexes; one for the search tree, and one for the array of tasks that is generated
by the master thread, which will be discussed in Chapter 5.3.2.

5.3.1 Load balancing
Let us take a look at a CSP with the following variables:

var
a : {1..10}
b : {1..10}
c : {1..1000000}

If we would like to solve this in parallel, with each thread starting at a different
variable, we see that the threads that start solving at variables a and b (Ta and Tb,
respectively) will likely be done relatively quickly compared to the thread that starts
solving at variable c (Tc). Once Ta and Tb are done, they will have to wait for Tc to
finish, without being able to help spread the workload. In this case, Tc might take
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a long time to terminate and the resources of Ta and Tb will go to waste, as they
are not helping Tc. Instead, we can create tasks for the slave threads to start solving
from, rather than entire variables. A task consists of a variable with a (sub) domain
of the original variable. This approach allows multiple threads to be able to start the
solving process for the same variable, but at a different part of its original domain.
This means that the load will be equally balanced amongst all available threads.

5.3.2 Master Thread
The master thread (which is the thread that starts the program) will first create an
array of all the tasks for the slave threads, beforehand. This array is created by first
determining a sufficient task size taskSize such that load balancing is feasible.

int stateSpaceSize = getTotalDomainSize(mainCSP);
int taskSize = (stateSpaceSize / n) / 100;

We do this by dividing the total state space size (in other words, the product of the
sizes of all domains) by n, the number of threads available. This is, in its turn,
divided by a modifier to ensure that there will be enough tasks to distribute amongst
all threads. We found 100 to be a good modifier in practice.

Once taskSize has been determined, the solver iterates over all variables in
main. Each variable is split into multiple variables with domains of (at most) size
taskSize. If a variable has a domain that is smaller than taskSize, it is simply
added to the array of tasks without getting split.

As an example, let a be a variable with domain {1..10}. If taskSize=3, the
array of tasks will consist of the following four elements:

a : {1..3}
a : {4..6}
a : {7..9}
a : {10}

Once the array of tasks has been made, we will spawn n slave pthreads and start
the solving process. We only spawn these threads if n > 1. If n = 1, we run the
sequential version of the program.

5.3.3 Slave Thread
Each slave thread first creates a copy of the main CSP to make sure that the changes
that they make remain local and do not affect the global main CSP. Once this is done,
the slave thread starts grabbing tasks that the master thread pre-computed. In order
to avoid multiple threads taking the same tasks, we use a mutex task_mutex to
limit access to the array of tasks. Once the slave thread is able to lock the mutex, it
grabs the next task and assigns it to a local variable. We then look for the variable
in the main CSP that matches the name of the task variable and make a copy of this
matching variable. We need this copy in order to reset the CSP back to its original
state after returning from the recursive solving procedure.
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After we have made the copy, we look for the index of the variable in the CSP that
matches the identifier (name) of the task variable. Once this match has been found,
we replace the variable at this index with the task variable and start the solving pro-
cess. Once the slave thread is done trying to find solutions for this task, we reset the
variable in the CSP back to the original variable and move onto the next task in the
task array. We continue this process until either the task array is empty (there are no
more tasks left), or until a global, atomic boolean variable isDone is set to true.
This variable is set to true when the solver has found the desired number of solutions.
This is only the case when solutions single or solutions n, of course.

Note that isDone is of type atomic_bool. Therefore, we can safely assign a
value to this variable and inspect the variable without explicitly using mutexes for
this, as C provides this functionality for us already.

The code for the slave threads is as follows:
/// Slave thread which grabs tasks and starts solving the CSPs using those variables

as starting points
void *consumer(void *arg) {

Program program = (Program)arg;

// Make a backup of the mainCSP
pthread_mutex_lock(&program->mainCSP.mutex);
CSP mainCSP = copyCSP(program->mainCSP);
pthread_mutex_unlock(&program->mainCSP.mutex);

// Continue until either all solutions have been found, or there are no more
tasks left

while (!isDone) {
// If there are no more tasks left, we are done
pthread_mutex_lock(&task_mutex);
if (taskArrayPos == taskArraySize) {

pthread_mutex_unlock(&task_mutex);
break;

}

// Select the next task as the starting variable
Variable startVar = taskArray[taskArrayPos];
taskArrayPos++;
pthread_mutex_unlock(&task_mutex);

// Get the index of the identifier of the starting variable in the CSP
int i;
for (i = 0; i < mainCSP.body.variables.size; i++) {

if (strcmp(mainCSP.body.variables.vars[i]->ident, startVar->ident) == 0) {
break;

}
}

// Make a copy of the variable at this index and reset the state of the CSP
Variable copy = copyVariable(mainCSP.body.variables.vars[i]);
mainCSP.body.variables.vars[i] = startVar;
mainCSP.body.variables.vars[i]->hasVal = true;
mainCSP.state = makeState();
mainCSP.state = initialiseState(mainCSP);

// Remove the starting variable from the list of unassigned variables
mainCSP.state->unassigned = removeVarNode(mainCSP.body.variables.vars[i],

mainCSP.state->unassigned);

// Start solving!
backtrackingSearch(program, mainCSP, startVar);

// Reset the values back
mainCSP.body.variables.vars[i] = copy;
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mainCSP.body.variables.vars[i]->hasVal = false;
freeState(mainCSP.state);
mainCSP.state = NULL;

}

// Clean up the copy that was created
freeCSP(mainCSP);

return NULL;
}

5.4 Solving
The actual solving part of the program is rather straightforward. We have a function
called solve which implements the backtracking search algorithm as shown in Al-
gorithm 1. We select an unassigned variable from the CSP and start iterating over all
the values in its domain. If the user wants to use inferences such as arc consistency
and node-consistency, the solver will first perform the specified inferences. In order
to make the variables in a CSP arc consistent, we apply the AC-3 algorithm [16].
To make the variables node-consistent (which is a simpler task), we iterate over all
unary constraints and update the domains of the variables accordingly.

Once this is done, we check whether the CSP does not contain any variables that
have an empty domain. If this is the case, we do not even need to check whether the
CSP is consistent, as there are no possible values for this variable.

Once we find a value for which the state remains consistent, we move onto the next
variable in the CSP by recursively calling the solve function again. We continue
doing this until we are either at the base case (in which we have found a solution), or
until we have run out of values.

The code for this function can be found below:
/// Finds all solutions of a CSP using backtracking
void solve(Program program, CSP csp, Variable startVar, bool isFirst) {

// If sufficient solutions have been found, we are done
if (isDone) {

return;
}

// If the CSP is complete (no more unassigned variables left), we have a solution
.

// If the state of assigned variables already exists in the search tree, however,
we simply skip this solution as it has been found by another thread before.

// Else, we print the solution and insert it into the state
if (isComplete(csp)) {

pthread_mutex_lock(&tree_mutex);
if (!treeContainsState(csp.state->assigned, program->history)) {

insertState(csp.state->assigned, program->history);
pthread_mutex_unlock(&tree_mutex);

// Atomic variable, so can safely increment
program->solNum++;

if (printSolutionsFlag) {
pthread_mutex_lock(&program->print_mutex);
printSolutionWrapper(csp.state->assigned, program->solNum);
pthread_mutex_unlock(&program->print_mutex);

}
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if (program->solNum == program->solTotal) {
isDone = true;

}
} else {

pthread_mutex_unlock(&tree_mutex);
}
return;

}

// If it is the first iteration, we assign the starting variable to startVar,
which will be one of the tasks. Else, we simply select the first unassigned
variable

Variable var;
if (isFirst && startVar != NULL) {

var = startVar;
} else {

var = selectUnassignedVariable(csp);
}

csp.state->assigned = addVarItem(var, csp.state->assigned);

// Iterate over all the elements in the set
for (int i = 0; i < var->decl.set->size; i++) {

// If sufficient solutions have been found, we are done
if (isDone) {

return;
}

SetElement se = var->decl.set->elements[i];
assignVariable(var, se);

// Make a backup of the variables and initialise the CSP’s state
VariableSection backupVariables = copyVariableSection(csp.body.variables);
csp.state = initialiseState(csp);

// Use the tree to store intermediate results in
if (useTreeFlag) {

pthread_mutex_lock(&tree_mutex);
if (treeContainsState(csp.state->assigned, program->history)) {

pthread_mutex_unlock(&tree_mutex);
resetCSP(csp, var, backupVariables);
continue;

}
pthread_mutex_unlock(&tree_mutex);

}

// Make CSP node-consistent
if (makeNodeConsistentFlag) {

makeNodeConsistent(csp.body.variables, csp.body.constraints.start);

if (containsEmptyDomains(csp.state)) {
resetCSP(csp, var, backupVariables);
continue;

}
}

// Make CSP arc-consistent. Uses the AC-3 algorithm
if (makeArcConsistentFlag) {

makeArcConsistent(csp.body.variables, csp.body.constraints.start);

if (containsEmptyDomains(csp.state)) {
resetCSP(csp, var, backupVariables);
continue;

}
}

// If the assignment leads to a consistent CSP, we go into recursion and try
to solve other variables

if (isConsistent(csp.state, csp.body.constraints.start)) {
solve(program, csp, startVar, false);

}
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// Use the tree to store intermediate, partial states in
if (useTreeFlag) {

if (!isDone && csp.state->unassigned != NULL) {
pthread_mutex_lock(&tree_mutex);
if (!treeContainsState(csp.state->assigned, program->history)) {

insertState(csp.state->assigned, program->history);
}
pthread_mutex_unlock(&tree_mutex);

}
}

// Reset the value and domain of the set
resetCSP(csp, var, backupVariables);

}
}
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Chapter 6

Performance

We now take a look at the performance of the solver on the example CSPs. For
every CSP (except the Boolean SAT problem, as this CSP was too small), we ran the
solver multiple times with different settings on a personal computer with an Intel(R)
Core(TM) i9-9880H CPU @ 2.30GHz. We turned off printing the actual solutions to
not include I/O time in the timings. The used settings are shown in the tables below
and are as follows:

• n denotes the number of slave threads used by the solver

• T denotes whether the tree was used for the intermediate partial states (instead
of just using it to store the solutions in).

• A denotes whether the inference arc consistency was used.

• N denotes whether the inference node consistency was used.

The run-time was measured by making use of the timer.c/timer.h files,
which store a start and stop, expressed as elapsed time since Unix Epoch. The
run-time is then calculated by subtracting these two times from each other.
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6.1 8 queens problem

n

1 2 4 8 16

T = 0, A = 0, N = 0 0.090 0.405 0.209 0.124 0.105

T = 0, A = 0, N = 1 0.090 0.435 0.224 0.124 0.109

T = 0, A = 1, N = 0 0.091 0.751 0.402 0.227 0.190

T = 0, A = 1, N = 1 0.091 0.774 0.406 0.226 0.186

T = 1, A = 0, N = 0 0.090 0.473 0.364 0.351 0.456

T = 1, A = 0, N = 1 0.092 0.478 0.356 0.335 0.438

T = 1, A = 1, N = 0 0.091 0.602 0.395 0.363 0.483

T = 1, A = 1, N = 1 0.091 0.597 0.388 0.350 0.459

TABLE 6.1: Run-time (in seconds) for solving the 8 queens problem
from Appendix A.1.1.

6.2 Map-colouring problem

n

1 2 4 8 16

T = 0, A = 0, N = 0 0.484 3.097 1.600 0.922 0.841

T = 0, A = 0, N = 1 0.483 0.984 0.501 0.291 0.280

T = 0, A = 1, N = 0 0.487 4.969 2.604 1.495 1.376

T = 0, A = 1, N = 1 0.488 1.374 0.708 0.413 0.381

T = 1, A = 0, N = 0 0.482 3.352 2.186 2.065 2.888

T = 1, A = 0, N = 1 0.480 1.110 0.737 0.671 0.828

T = 1, A = 1, N = 0 0.486 4.330 2.591 2.203 3.065

T = 1, A = 1, N = 1 0.487 1.335 0.770 0.608 0.723

TABLE 6.2: Run-time (in seconds) for solving the map-colouring
problem from Appendix A.1.2.
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6.3 Sudoku puzzle

n

1 2 4 8 16

T = 0, A = 0, N = 0 2.418 71.967 38.656 23.962 21.190s

T = 0, A = 0, N = 1 2.446 76.149 39.842 27.539 25.579s

T = 0, A = 1, N = 0 2.416 335.261 176.947 115.590 103.580s

T = 0, A = 1, N = 1 2.456 244.926 131.865 82.668 77.387s

T = 1, A = 0, N = 0 2.463 10.866 5.876 5.255 19.371s

T = 1, A = 0, N = 1 2.479 1.943 1.787 1.855 2.971s

T = 1, A = 1, N = 0 2.421 25.930 13.484 12.441 51.955s

T = 1, A = 1, N = 1 2.403 5.264 4.901 5.093 7.393s

TABLE 6.3: Run-time (in seconds) for solving the Sudoku puzzle
from Appendix A.1.3.

6.4 Magic square puzzle

n

1 2 4 8 16

T = 0, A = 0, N = 0 73.199 73.804 41.479 42.539 36.733s

T = 0, A = 0, N = 1 73.169 86.087 47.780 47.372 41.376s

T = 0, A = 1, N = 0 72.984 152.656 86.694 88.591 72.666s

T = 0, A = 1, N = 1 73.426 168.106 98.429 103.492 80.920s

T = 1, A = 0, N = 0 74.378 145.711 155.162 311.193 301.956s

T = 1, A = 0, N = 1 73.161 154.292 151.786 311.955 302.320s

T = 1, A = 1, N = 0 73.015 205.445 156.898 320.637 320.181s

T = 1, A = 1, N = 1 75.301 221.518 165.780 322.486 322.039s

TABLE 6.4: Run-time (in seconds) for solving the magic square puz-
zle from Appendix A.1.4.



6.5. Crypt-arithmetic puzzle 43

6.5 Crypt-arithmetic puzzle

n

1 2 4 8 16

T = 0, A = 0, N = 0 0.647 8.337 4.340 2.405 2.278s

T = 0, A = 0, N = 1 0.647 8.444 4.257 2.329 2.257s

T = 0, A = 1, N = 0 0.646 0.789 0.409 0.217 0.216s

T = 0, A = 1, N = 1 0.651 0.622 0.322 0.174 0.167s

T = 1, A = 0, N = 0 0.646 10.185 7.868 7.847 10.635s

T = 1, A = 0, N = 1 0.646 10.567 8.667 15.167 11.293s

T = 1, A = 1, N = 0 0.647 0.757 0.399 0.231 0.220s

T = 1, A = 1, N = 1 0.654 0.611 0.318 0.181 0.174s

TABLE 6.5: Run-time (in seconds) for solving the crypt-arithmetic
puzzle from Appendix A.1.5.

6.6 Pythagorean triples (extra)

n

1 2 4 8 16

T = 0, A = 0, N = 0 2.595 3.627 1.867 1.016 0.884s

T = 0, A = 0, N = 1 2.584 3.640 1.854 1.006 0.895s

T = 0, A = 1, N = 0 2.593 1.487 0.743 0.420 0.371s

T = 0, A = 1, N = 1 2.600 1.491 0.749 0.405 0.375s

T = 1, A = 0, N = 0 2.590 5.812 6.465 6.608 7.060s

T = 1, A = 0, N = 1 2.623 5.823 6.491 6.614 7.231s

T = 1, A = 1, N = 0 2.600 1.917 1.719 1.879 2.215s

T = 1, A = 1, N = 1 2.607 1.944 1.661 1.880 2.198s

TABLE 6.6: Run-time (in seconds) for finding all Pythagorean triples
a, b, c such that a2 + b2 = c2 with a, b, c ∈ {1, . . . , 100}, from Ap-
pendix A.1.7 (but the domains of a, b, c : {1, . . . , 100} in this case).
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n

1 2 4 8 16

T = 0, A = 0, N = 0 53.540 70.236 35.542 19.598 18.632s

T = 0, A = 0, N = 1 53.568 70.309 35.948 20.516 19.173s

T = 0, A = 1, N = 0 53.713 27.890 14.169 8.215 7.250s

T = 0, A = 1, N = 1 53.867 27.313 13.874 7.921 6.550s

T = 1, A = 0, N = 0 53.855 183.501 165.553 178.496 187.053s

T = 1, A = 0, N = 1 53.645 183.076 171.349 180.851 185.382s

T = 1, A = 1, N = 0 53.497 43.456 44.963 46.592 48.839s

T = 1, A = 1, N = 1 52.967 43.461 44.998 47.807 49.054s

TABLE 6.7: Run-time (in seconds) for finding all Pythagorean triples
a, b, c such that a2 + b2 = c2 with a, b, c ∈ {1, . . . , 250}, from Ap-

pendix A.1.7.

6.7 Evaluation
Based on the tables shown above in Chapter 6, we can construct the following table:

n T A N Total speed up

8 queens problem 16 0 0 0 0.86

Map-colouring problem 16 0 0 1 1.72

Sudoku puzzle 4 1 0 1 1.39

Magic square puzzle 16 0 0 0 1.99

Crypt-arithmetic puzzle 16 0 1 1 3.89

Pythagorean Triples {1,. . . ,100} 16 0 1 0 6.98

Pythagorean Triples {1,. . . ,250} 16 0 1 1 8.22

TABLE 6.8: Solver settings with the largest speed-ups for each CSP
and the total speed up, compared to 1 thread.

In Table 6.8, we see that the run-time for nearly all CSPs already improved for 4
threads on the best settings! The only exception to this rule is the 8 queens problem,
but this is expected as this CSP has a small number of variables, a small domain, and
very “basic" constraints that are easily satisfied. Moreover, we observe that nearly
all CSPs had the fastest run-time at 16 threads, which is the number of threads that
our CPU has. We did not have access to servers with more threads to test whether
the performance would have improved even more, unfortunately.
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Additionally, it has come to our attention that the majority of these optimal settings
make use of node consistency. This was also expected, given that most constraints
in the reduced form are binary constraints. This means that as soon as a variable is
assigned a value, this binary constraint turns into a unary constraint, and since most
variables occur in multiple of these (originally) binary constraints, making the CSP
node consistent yields in much smaller domains for many variables.

Similarly, we see that arc consistency only had a positive influence on the CSPs that
had constraints that involved three (or more) variables. As soon as one variable is
assigned a value, these constraints are turned into binary constraints, which are the
constraints that can highly benefit from becoming arc consistent. The reason why
this is not the case for constraints that are “originally" binary constraints is simply
that the probability of one of the variables getting assigned a value (and therefore
reducing the constraint to a unary constraint) is much higher.

Lastly, we see that using the search tree to store intermediate partial states lowered
the performance for most CSPs. This can be explained by the fact that most of the
example CSPs do not contain many variables with large domains. In these cases,
searching in (and inserting into) the search tree is not worth the overhead caused
by these operations, as the height of the tree is simply not that significant. For the
Sudoku puzzle, however, we see that using the search trees did in fact improve the
performance (which also happened to be the only option that leads to an improve-
ment). This makes sense, as a Sudoku puzzle 9 × 9 = 81 variables, each with a
domain of {1, . . . , 9}.

In short, we can conclude that the solver benefited from the parallelization and,
in some cases, also benefited from the usage of the search trees on larger CSPs (such
as the Sudoku puzzle). The real performance gains can be seen in the larger, more
complex CSPs, such as the crypt-arithmetic puzzle and the two Pythagorean triples
CSPs (with domains {1, . . . , 100} and {1, . . . , 250}, respectively).
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Chapter 7

Conclusion

The goal of this bachelor thesis was to write an efficient, multi-core solver for Con-
straint Satisfaction Problems (CSPs). Solving CSPs is still a relevant task to this day,
and having a solver that can efficiently run on commodity hardware can be useful in
several fields (like computer science, artificial intelligence, economics, operational
research, mathematics, etc.).

As we have seen in Chapter 6.7, our solver is able to solve relatively large CSPs
quite quickly. We ran the solver on the example CSPs in Appendix A.1 with differ-
ent options. We saw that for nearly all CSPs, there was a configuration of options
and threads that led to a significant speed-up compared to only using one thread with
no options. We noticed that the solver already started to show improvements for
most CSPs when 4 threads were assigned, which is available in the vast majority
of commodity hardware. The only exceptions to this are the relatively small CSPs,
for which the overhead of initiating the parallelization resulted in slightly slower run
times, as is expected. Moreover, we saw that assigning more threads to the solver
yielded better performance for the majority of the CSPs (with an exception of the
map-colouring problem, the sudoku puzzle, and the magic square puzzle).

We can therefore conclude that our solver successfully met the requirements that
we initially had and is able to offer a speed-up for the vast majority of Constraint
Satisfaction Problems on commodity hardware.

7.1 Future work
Even though the solver fulfils our requirements, there is still room for improvement.
Concerning usability, the main limitation is the fact that the solver only does very
basic semantic checking on the user input. It simply assumes that the input is of the
correct form. If this is not the case, the solver might crash. Moreover, the program
currently consists of two separate executable files; one for translating the user input
into the reduced form, and the second one for solving this reduced variant.

Aside from this, there are also some changes that can be made to improve the effi-
ciency of the solver. Currently, we have not implemented the heuristics described in
Chapter 1.3.1. The solver simply picks the next available variable in its list of unas-
signed variables, regardless of their properties. Implementing these heuristics may
lead to significant improvement in performance.
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Moreover, we currently make a deep copy of all variables in a CSP in the recur-
sive step, whereas it is only necessary to make a copy of the variables that have been
affected by the inferences. This implementation can lead to worse performance if the
inferences hardly affect the variables since they will be reset in each iteration of the
algorithm.

Another optimization that can be made is to disable the unary and binary con-
straints after having made a CSP node consistent and arc consistent, respectively.
These constraints can be enabled again after we move onto the next value of the
domain of the current variable, and will likely improve the performance as some
constraints are not evaluated at all.

Lastly, as discussed in Chapter 3.3.2, we only use one mutex to lock the entire
history tree. This is may be inefficient, however, as we only need to lock down
the branches that are being inserted, not the entire search tree. Other branches may
remain intact during an insertion. Therefore, the solver may perform better if it had
a mutex on every node of the tree, rather than having just one global mutex.
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Appendix A

Specification language examples

A.1 Input CSPs

A.1.1 8 queens problem

# Find all solutions for the N queens problem. In this case, N = 8
const N = 8;

type
column = {0..N-1};

csp diagonalCheck(board[0..N-1] : column) begin
constraint
{
forall (i in [0..N-1]:
forall (j in [i+1..N-1]:
j - i != abs(board[i] - board[j]);

)
)

}
end

csp main() begin
solutions all;

var
board[0..N-1] : column;

constraint
{
alldiff(board);
diagonalCheck(board);

}
end

A.1.2 Map colouring problem

# Find one solution to the map-colouring problem for the provinces of the
Netherlands

type
colours = {red, green, blue, yellow};

csp main() begin
# no solutions-section, showcase that this is optional

var
gr, fr, dr, ov, ge, fl: colours;
nh, zh, ut, ze, nb, li: colours;

constraint
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{
# Groningen’s neighbours
gr != fr; gr != dr;

# Friesland’s neighbours
fr != gr; fr != dr; fr != ov; fr != fl; fr != nh;

# Drenthe’s neighbours
dr != gr; dr != fr; dr != ov;

# Overijssel’s neighbours
ov != dr; ov != fl; ov != ge;

# Flevoland’s neighbours
fl != fr; fl != ov; fl != ge; fl != ut; fl != nh;

# Noord-Holland’s neighbours
nh != fr; nh != fl; nh != ut; nh != zh;

# Gelderland’s neighbours
ge != ov; ge != fl; ge != ut; ge != nb; ge != li;

# Utrecht’s neighbours
ut != fl; ut != ge; ut != nb; ut != zh; ut != nh;

# Zuid-Holland’s neighbours
zh != nh; zh != ut; zh != ge; zh != nb; zh != ze;

# Zeeland’s neighbours
ze != zh; ze != nb;

# Noord-Brabant’s neighbours
nb != ze; nb != zh; nb != ge; nb != li;

# Limburg’s neighbours
li != nb; li != ge;

}
end

A.1.3 Sudoku puzzle

# Find all solutions for a given sudoku

const SIZE = 9;
const BLOCKSIZE = 3;

type
sType = {1..SIZE};

csp blockCheck (sudoku[0..SIZE-1, 0..SIZE-1] : sType) begin
constraint
{
forall (j in [0..BLOCKSIZE-1]:
forall (k in [0..BLOCKSIZE-1]:
alldiff(
sudoku[3*j, 3*k], sudoku[3*j, 3*k+1],
sudoku[3*j, 3*k+2], sudoku[3*j+1, 3*k],
sudoku[3*j+1, 3*k+1], sudoku[3*j+1, 3*k+2],
sudoku[3*j+2, 3*k], sudoku[3*j+2, 3*k+1],
sudoku[3*j+2, 3*k+2]

);
)

)
}

end

csp main() begin
solutions all;
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var
sudoku[0..SIZE-1, 0..SIZE-1] : sType;

constraint
{
sudoku[0,1] = 3; sudoku[0,2] = 4; sudoku[0,3] = 1;
sudoku[0,5] = 5; sudoku[0,6] = 6; sudoku[0,8] = 9;

sudoku[1,1] = 9; sudoku[1,3] = 6; sudoku[1,4] = 3;
sudoku[1,5] = 2; sudoku[1,8] = 1;

sudoku[2,0] = 1; sudoku[2,1] = 6; sudoku[2,2] = 5;
sudoku[2,3] = 4; sudoku[2,5] = 9; sudoku[2,7] = 2;
sudoku[2,8] = 3;

sudoku[3,1] = 8; sudoku[3,3] = 5; sudoku[3,4] = 1;
sudoku[3,5] = 6;

sudoku[4,2] = 3; sudoku[4,3] = 8; sudoku[4,4] = 9;
sudoku[4,7] = 6; sudoku[4,8] = 5;

sudoku[5,0] = 9; sudoku[5,1] = 5; sudoku[5,3] = 3;
sudoku[5,5] = 7;

sudoku[6,8] = 6;

sudoku[7,1] = 4; sudoku[7,5] = 1;

sudoku[8,2] = 1; sudoku[8,4] = 5; sudoku[8,5] = 8;

forall (i in [0..SIZE-1]:
# Column has no duplicates
alldiff(sudoku[i, 0..SIZE-1]);

# Row has no duplicates
alldiff(sudoku[0..SIZE-1, i]);

)
# Blocks have no duplicates
blockCheck(sudoku);

}
end

A.1.4 Magic square puzzle

# Find a solution for a 4x4 magic square whose columns, rows and diagonals have a
sum of 34 each

const SIZE = 4;
const RESULT = 34;

type
mgrid = {1..16};

csp main() begin
solutions single;

var
square[0..SIZE-1, 0..SIZE-1] : mgrid;

constraint
{
alldiff(square);

forall (i in [0..SIZE-1]:
sum(square[i, 0..SIZE-1]) = RESULT;
sum(square[0..SIZE-1, i]) = RESULT;

)

sum(square[0,0], square[1,1], square[2,2], square[3,3]) = RESULT;
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sum(square[0,3], square[1,2], square[2,1], square[3,0]) = RESULT;
}

end

A.1.5 Crypt-arithmetic puzzle

# Solves crypt-arithmetic puzzle TWO + TWO = FOUR

type
letter = {0..9};

csp checkCarry(f : letter, t : letter, o : letter, w : letter, u : letter, r :
letter) begin

var
c10, c100, c1000 : letter;

constraint
{
2*o = r + 10*c10;
c10 + 2*w = u + 10*c100;
c100 + 2*t = o + 10*c1000;
c1000 = f;

}
end

csp main() begin
solutions all;

var
f, t, o, w, u, r : letter;

constraint
{
alldiff(f, t, o, w, u, r);
f != 0;
t != 0;
checkCarry(f, t, o, w, u, r);

}
end

A.1.6 Boolean SAT problem

# Find all the solutions for the logical expression (x and y) or (not(x) and z)

csp main() begin
solutions all;

var
x, y, z : boolean;

constraint
{
{
x = true;
y = true;

}
OR
{
x = false;
z = true;

}
}

end
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A.1.7 Pythagorean Triples

# Finds all Pythagorean triples in domain {1..N}. In this case, N = 250
const N = 250;

type
pType = {1..N};

csp main() begin
solutions all;

var
a, b, c : pType;

constraint
{
a^2 + b^2 = c^2;

}

end
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