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Abstract: This thesis explores the best way to handle multiple consecutive opponents in a
reinforcement learning context. Q-learning, Double Q-learning and Sarsa, all using function ap-
proximation, are compared on a Gridworld game task with multiple levels in which an agent
needs to pass an opponent and reach the goal. Monte-Carlo rollouts are used to improve action
selection together with opponent models, represented using Multi-Layer Perceptrons. A com-
parison is made between different opponent modelling setups, with one opponent model for all
opponents and two novel techniques compared. The novel techniques involve recognising whether
an opponent has been previously encountered or is a new opponent. This is done by comparing
the prediction losses on trajectories on which an opponent model was trained with the prediction
losses on the new opponent. One method checks if these losses come from the same distribution,
while the other whether there was a change-point in the losses when represented as a time series.
Results show that the novel methods can predict the opponent considerably better on an illustra-
tive example, with a more reduced improvement on more general deterministic opponents and no
improvement on opponents with randomness. Overall mean final rewards are similar regardless
of opponent modelling technique, with Sarsa performing best.

1 Introduction

Reinforcement Learning (RL) is a machine learning
subset that enables an agent to learn how to behave
in an environment by maximising a reward signal
obtained from interacting with it (Sutton & Barto,
2018). This reward signal is an abstraction that rep-
resents a task that the agent needs to do, embedded
in the environment associated with it. An environ-
ment can contain opponents that run counter to the
agent’s goals. This complicates the environment’s
representation (usually done using Markov Deci-
sion Processes (Bellman, 1957)), as well as how to
best perform in such an environment, as the oppo-
nent’s strategies and behaviour cannot be ignored.
In such a situation opponent modelling is useful,
where a model of the opponent’s behaviour pat-
terns is kept and taken into account when consid-
ering actions to take towards the agent’s goals.

An example of an opponent modelling approach
is Knegt, Drugan, & Wiering (2018b), where a
Multi-Layer Perceptron (MLP) (Rumelhart, Hin-
ton, & Williams, 1985) is used to predict the next
move of an opponent, which is then used in Monte-
Carlo rollouts (Tesauro & Galperin, 1996) in order

to pick the best action to take in a state by simu-
lating future game states. This MLP representation
improves upon other probabilistic opponent mod-
elling methods in that it can generalise well (Knegt
et al., 2018b). In one versus one games such as
Tron (Knegt et al., 2018b) that will only have one
opponent for their entire duration, only one oppo-
nent model is sufficient. However, such an approach
might have problems in environments where dif-
ferent opponents appear consecutively (and might
appear more than once), as in a tournament or
a level-based game. This is because different op-
ponents might act differently in the same states,
making the single opponent model pick the action
most often encountered in those states, which does
not model all opponents correctly. Even using a
Long Short-Term Memory network (Hochreiter &
Schmidhuber, 1997) might not be appropriate if
the state-action combinations do not have a use-
ful short-term temporary component.

In such cases, the opponent modelling needs to
account for multiple possible opponents in a suc-
cessful way. This includes remembering previous
opponents and recognising when the current oppo-
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nent behaves like a previous one, in order to use the
already created model for that previous opponent
instead of learning a new one.

The aim of this thesis is to find the best ap-
proach for learning to perform in such a multiple-
opponent environment. Two novel approaches are
proposed for opponent recognition. They attempt
to match an MLP to one opponent and record state-
action histories for that opponent. When a new op-
ponent is encountered, a short state-action history
is recorded and the existing MLPs are evaluated
on both histories. One approach entails evaluat-
ing whether those loss samples come from the same
overall distribution, while the other checks whether
a change-point did not occur between the two loss
samples. An affirmative answer to either of those
queries can indicate that the new opponent is the
same as the one the MLP and history belong to.

A level-based game is designed for this task, and
combinations of learning algorithms using function
approximation (Sarsa (Sutton & Barto, 2018), Q-
Learning (Watkins & Dayan, 1992; Mnih et al.,
2015) and Double Q-Learning (Van Hasselt, Guez,
& Silver, 2016)) and opponent modelling techniques
(one opponent model for all opponents and the two
novel methods) are compared. Similarly to Knegt
et al. (2018b), the opponent models are used in
Monte-Carlo rollouts and state is represented us-
ing vision grids (Shantia, Begue, & Wiering, 2011)
(representations focused on the proximities of the
agent and opponents) with a global goal compo-
nent added. There will be three instances of the
game examined in order to see the robustness of
the algorithms used across different settings. One
has specifically made opponents for illustrating the
benefits of the novel approaches, one has more
general deterministic opponents and one has those
same general opponents but with a random com-
ponent added to them.

1.1 Contributions of this thesis

This thesis proposes two new novel techniques for
opponent recognition as presented above. They are
an alternative for tasks where usual recognition
methods are inadequate, such as low-data scenar-
ios or tasks with a variable number of opponents.
Furthermore, the loss-based approaches explored
in this thesis could be extrapolated to other ar-
eas (beyond opponent modelling) where comparing

Figure 2.1: Screenshot of the simulation user
interface representing a level of a game in
progress. The agent is blue, the opponent’s head
is red, the opponent’s tail is dark red and the
goal is green. The vision grids for both agent
(seeing the opponent’s head and the wall) and
opponent (seeing some of its own tail and the
wall) are also represented with lighter colours.

two MLPs in such a way can prove useful.
This thesis also tests the usefulness of vision grids

as a local state representation when combined with
a global goal representation. It also provides insight
into whether vision grids and function approxima-
tion can generalise across multiple opponents.

2 Game Description

The game used in this thesis is a multiple level se-
quential Gridworld (Sutton & Barto, 2018) game,
where the purpose of the agent is to pass all levels
by reaching their goals. The levels always appear
in the same order and each level has the agent’s
starting position, one goal, walls, and an opponent
resembling a snake. These differ from level to level.
The agent and opponent can only move up, down,
left or right, and the walls and goal are static. At
each time step, the agent and opponent both make
a move simultaneously. When the goal from one
level is reached by the agent, it is transported to
the next level and is placed randomly in one square
of a 7-square vertical line with the centre at the
level’s starting position. When the agent is hit by
the opponent, it loses the game. When the agent
moves into a wall, its position is the same as its
previous one. When the final level’s goal is reached,
the agent wins the game. If 1000 time steps have
passed in a game, the game also ends. An episode
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consists of one game. An example of a level from a
game in progress is shown in Figure 2.1.

The opponent has a head, representing its cur-
rent position, and a tail of a certain size that fol-
lows its movements. The opponent follows a pre-
set route sequentially. There are no intersections
within the route. When the agent is transported to
a new level, the opponent’s head is set to a random
position along this route and its tail occupies the
closest previous positions along the route.

The opponent can be of a deterministic type, al-
ways moving on the set route, or have a stochas-
tic component (referred to as ”random opponent
type”), where after each move, an alternative
way to get to the route’s next position is picked
RandCoef% of the time, where RandCoef is a hy-
perparameter describing how stochastic the oppo-
nent’s movement is. This alternative way represents
the shortest possible detour towards the next posi-
tion without collisions with the walls, goal or the
opponent itself. For example, if the next position
is left, the opponent will attempt to go down, then
left, then up. If this is not possible due to collisions,
then it will attempt to go up, then left, then down.
If that is not possible either, no detour is made.
The same process is valid for all directions, with
the random detours first attempting to go down,
then up, then left and then right in that order.

3 Reinforcement Learning

3.1 Markov Decision Process

Since the game’s next state depends only on the
game’s last state and the action taken in that state,
and since the levels are predetermined and not
changing, the game can be modelled as a Markov
Decision Process (MDP) (Bellman, 1957). An MDP
is defined by a set of states (states of the game), a
set of actions that can be taken in those states (left,
right, up, down in the level), a transition function
that describes the probability of reaching a state
from another when taking a specific action (game
rules implemented by a computer simulation), and
a reward function specifying the rewards that are
received for those transitions.

For this game, the rewards are 1 for reaching the
goal, −1 for hitting the opponent and −0.01 for
any other move. If 1000 time steps are reached, the

game simply stops with no reward being sent to
the agent. The negative step reward ensures that
the quickest path is learned, and the small values
ensure that it can be properly approximated with
function approximation (and also yielded better re-
sults in initial experiments).

Each level is trained as if it is the only one, mean-
ing that reaching the goal (as opposed to only the
final level’s goal) and hitting the opponent are con-
sidered terminal states. This is done because the
agent has no information about which level it is in
(the level transitions are done by the simulation),
so it cannot model the entire game state properly.
This setup makes the agent’s behaviour more gen-
eral with respect to the level and initial experiments
have shown that performance is better with it.

3.2 Policy and action-value function

In order to perform well, the agent needs to learn a
policy π, which matches each state with the prob-
abilities of picking each possible action from that
state (Sutton & Barto, 2018). The expected return
from a state s when following the policy π and tak-
ing action a is defined by the action-value function
qπ(s, a):

qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt|s0 = s, a0 = a

]
(3.1)

where Eπ is the expected value, rt represents the
reward at time t and γ is the discount factor that
discounts future rewards so that immediate rewards
are deemed more important, with γ ∈ [0, 1]. Since
computing these exact values is not feasible due
to them involving all future state sequences, they
are estimated using reinforcement learning, with
Q(st, at) being the estimate for qπ(st, at).

In order to perform well, the agent needs to bal-
ance exploring the environment to find the best
state-action pairs and exploiting those pairs in or-
der to perform well. This balance is achieved using
an ε− greedy exploration policy for picking an ac-
tion, where ε is a hyperparameter controlling the
amount of exploration:

A(st) =

{
arg maxaQ(st, a) with probability 1− ε
a random action with probability ε

(3.2)
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3.3 Function approximation

Since our problem has a large number of states due
to the large number of possible routes that the op-
ponents might take, all the state-action pairs can-
not be realistically represented in, for example, a
lookup table. In such a situation, function approxi-
mation is used, where a function approximator (an
MLP in this thesis) is used to estimate the Q-values
Q(s, a) for each action a from state s when given
state s as input. The MLP is trained using back-
propagation (Rumelhart et al., 1985) by updating
the weights of the MLP based on a target Q-value
Qtarget(st, at) with respect to the predicted Q-value
of the performed action. The MLP also has a learn-
ing rate hyperparameter α, that determines how
big the updates taken towards the target are.

The reinforcement learning algorithms used are
presented in the following sections. Since the func-
tion approximator already has a learning rate α,
the methods below will use a learning rate of 1,
simplifying the formulas involved.

3.4 Sarsa (SAR)

State-action-reward-state-action, or Sarsa, is an on-
policy control algorithm where the updates are
modelled based on transitions between state-action
pairs. This means that after a reward rt is received
and a new state st+1 obtained, the next action
to be taken at+1 is picked and the estimated Q-
value Q̂(st+1, at+1) is used for the update. When
the state is not terminal, the target Q-value is:

Qtarget(st, at)← rt + γQ̂(st+1, at+1) (3.3)

When the state is terminal, the target is updated
solely using the reward obtained:

Qtarget(st, at)← rt (3.4)

The MLP is updated with stochastic gradient de-
scent and Qtarget.

3.5 Experience replay

Experience replay (Lin, 1992) is a technique which
stores the agent’s experiences, allowing them to be
reused multiple times for updating the function ap-
proximator. In this way, the experiences may be
utilised better (Knegt, Drugan, & Wiering, 2018a;

Mnih et al., 2015) than when only using each ex-
perience once as described above with Sarsa. An
experience is of the form (st, at, rt, st+1), indicat-
ing the action at performed in state st, upon which
reward rt was received and the state st+1 was
reached. Experiences are used in mini-batches for
the mini-batch gradient descent update, comput-
ing the average gradient over batchSize (hyperpa-
rameter) experiences and using that to update the
network. This mini-batch update can make learn-
ing more stable. The mini-batches are sampled ran-
domly from the experience history, which is at first
filled with historySize (hyperparameter) experi-
ences. Afterwards, when a new experience is ob-
served, it replaces the oldest experience in the expe-
rience history. This matches the design of Mnih et
al. (2015). A design where the history was emptied
and refilled periodically instead was also tried, but
it performed slightly worse in initial experiments.
Experience replay was only used with Q-learning
and Double Q-learning (see Subsections 3.6 and
3.7), not Sarsa (see Subsection 3.4).

3.6 Q-learning (QL)

Q-learning (Watkins & Dayan, 1992) is an off-
policy control algorithm for estimating qπ(s, a). Un-
like Sarsa, the maximum Q-value over all actions
in the next state st+1 is used for the update. How-
ever, one more modification is made, as per Mnih
et al. (2015). A target MLP is used in the update,
whose Q-values are denoted with Q′. It is a copy
of the current MLP taken every C (hyperparam-
eter) time steps. This is done so that the update
is more stable and also produced slightly better re-
sults in initial experiments. For terminal states, the
target Q-value is taken from Equation 3.4. For non-
terminal states, it is:

Qtarget(st, at)← rt + γmax
a

Q̂′(st+1, a) (3.5)

3.7 Double Q-learning (DQL)

A problem with Q-learning is that Q-values can be
overestimated due to always picking the action cor-
responding to the maximum Q-value. A solution is
Double Q-learning, which uses another function ap-
proximator (or lookup table) in order to pick the
action which will be used in the update. Van Has-
selt et al. (2016) devised a way to use the current
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MLP as the second function approximator, picking
the action that is used by the target MLP. There-
fore, if Q-learning suffers from a maximisation bias
that hinders performance, Double Q-learning will
perform as expected. For terminal states, the tar-
get Q-value is the same as in Equation 3.4. For
non-terminal states, it is:

Qtarget(st, at)← rt+γQ̂′(st+1, arg max
a

Q̂(st+1, a))

(3.6)

4 State representation and
opponent modelling

4.1 Vision grids

Both the agent’s and the opponents’ state are rep-
resented using vision grids (Shantia et al., 2011),
similarly to Knegt et al. (2018b). A vision grid is
a grid representation of the presence of an object
in a square area centred around the item of inter-
est (in this case, agent or opponent). Therefore, if
that object is in a certain position in that area that
position will be encoded with a 1 and with a 0 oth-
erwise. There is a vision grid for each type of rele-
vant object. For the agent, there will be two vision
grids: for the walls and for the opponent. For an
opponent, there will be three vision grids: for the
walls, for the opponent itself and for the goal. There
are two vision grid sizes explored, a 3x3 square with
area 9 and a 5x5 one with area 25 (hyperparameter
visionGridArea). An example of vision grid areas
of size 25 is shown in Figure 2.1 for both agent
(light blue) and opponent (light red).

The goal is not represented as a vision grid for
the agent. The reason is that the agent, knowing the
current level’s layout, also knows where the goal is,
and not providing access to that goal information
unless it is in the agent’s proximity means that the
agent has no sense of direction towards it. What-
ever bias towards the goal’s general direction might
be encoded in the Q-values is lost if the goal posi-
tions vary across levels or if the agent is forced to
take a detour by the opponent.

Therefore, the goal is represented as four values
in the state as the difference in positions between
the goal and the agent on both axes. The differ-
ence on an axis dist is represented by two values:
dpos = max(dist, 0), dneg = |min(dist, 0)|. These

values are always divided by 5, making them simi-
lar in scale to the vision grid values. This represen-
tation led to remarkably improved performance in
initial experiments.

The final input sizes for the agent and opponent
MLPs depend therefore on the vision grid sizes,
which will be passed in a flattened form to the
MLPs: for the agent, it is visionGridArea ∗ 2 + 4,
and for an opponent it is visionGridArea ∗ 3.

4.2 Opponent MLP setup

An opponent modelling MLP will receive the op-
ponent’s state as described above and output 4
probabilities, each corresponding to the probabil-
ity that the opponent takes that action given the
input state. It will use the Softmax activation func-
tion for the output layer, which outputs probabil-
ities P (st, ai) corresponding to the probability of
taking action ai in state st according to the for-
mula:

P (st, ai) =
eai∑4
k=1 e

ak
(4.1)

4.3 Opponent modelling techniques

In this thesis, three different opponent modelling
techniques (referred to as OMTs) are compared.
The first one is where one MLP is used to model
all opponents simultaneously. This technique will
be referred to as SMA (Single MLP for All op-
ponents). This can be considered the baseline and
most straightforward approach. Additionally, two
novel methods are proposed.

The purpose of both approaches is to distin-
guish between different opponents. The set of op-
ponents that they find will be kept and updated
continuously (they are not reset by episode or
level). If there are no stored MLPs when entering
a level, a new one is created that starts training
on the opponent, as well as keep a history of op-
ponent state-action pairs encountered. This history
has a maximum size defined by the hyperparame-
ter maxHistorySize. When this level is finished,
the MLP and its history are only kept if the his-
tory size for that MLP is larger than or equal to
minHistorySize, another hyperparameter. Other-
wise, they are deleted.

When reaching a new level, minHistorySize
state-action pairs for the new opponent are
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recorded while the agent picks the stored MLP
with the smallest cumulative prediction loss on the
newly recorded pairs to model the new opponent
(until an opponent model is found).

When minHistorySize pairs have been
recorded, a statistical test is performed for
each MLP and their history. This test is between
the MLP losses when predicting the next action
from the MLP’s state-action history and the MLP
losses when predicting the new opponent’s next
action from its state-action pairs. These statis-
tical tests (detailed below) produce a significant
value when the two opponents are likely not the
same. The highest p-value between those tests is
compared to a hyperparameter pV alueThreshold
(threshold of significance). If it is higher, the MLP
associated with that p-value is deemed fit to model
the new opponent as well. If it is lower, none of the
stored opponent MLPs correctly model the new
opponent and a new MLP is created.

In any case, an MLP is found for the new op-
ponent. The new opponent’s state-action pairs are
added to its history and the MLP is trained on
them in order. The MLP is then trained on and
used to predict the new opponent’s movement. The
MLP’s state history is filled as needed under the
maxHistorySize constraint. Once this new level is
over, the MLP and history are kept if the history
size is larger than or equal to minHistorySize and
the next level is handled in the same way as above.

The difference between the two methods is in the
statistical test performed and the way the state
history is kept. In the first method, the statisti-
cal test is the Kolmogorov-Smirnov two-sample test
(Verzani, 2004), that determines whether two one-
dimensional probability distributions that gener-
ated two samples of data belong to the same over-
all distribution. This method will be referred to as
LDC (Loss Distribution Comparison) from now on.
This is done by computing the distance between
the two empirical distribution functions (ECDF)
(Verzani, 2004) of the samples. The ECDF is given
by:

Fn(x) =
#{i : xi ≤ x}

n
(4.2)

Which determines the number of elements smaller
than x from the sample with respect to sample size
n. The Kolmogorov-Smirnov statistic is then:

Dn,m = max
x
|Fn(x)−Gm(x)| (4.3)

where Fn and Gm are the ECDFs of the samples of
sizes n and m. Large values of Dn,m are significant.
The exact determination of significant values is con-
voluted and not presented. The simulation code for
this test was adapted from (Brun & Rademakers,
1997), which used Eadie, Drijard, & James (1971)
as reference.

In this case, the samples are defined as above and
the distribution is defined by the evaluation of the
MLP on the opponent. Therefore, the two samples
of losses are tested to see if they were generated
by the same MLP-opponent combination. This al-
lows the two samples to be taken in a discontinu-
ous fashion. Thus, state-action pairs are added to
the MLP’s history until it is filled. These pairs will
likely be from the opponent the MLP was created
for if maxHistorySize is small enough. In this way,
even if misclassifications occur in the future, the
history is unlikely to get filled with states from an-
other opponent.

For the second method it is desired to see
whether there is a change-point in the sequence of
losses defined by evaluating an MLP on its state-
action history and the state-action pairs of the new
opponent, point at which the underlying probabil-
ity distribution changes. This change would corre-
spond to a different opponent being modelled, since
the distribution is defined by the evaluation of the
MLP on one opponent. This method is referred to
as CPD (Change-Point Detection). The test per-
formed is an adapted version of Pettitt’s change-
point detection test (Pettitt, 1979). The test com-
putes Uk using the ranks ri, . . . , rn of the sample
sequence of length n (Pohlert, Pohlert, & Kendall,
2016):

Uk = 2

k∑
i=1

ri − k(n+ 1), k = 1, . . . , n (4.4)

The test statistic Û is usually the maximum abso-
lute value of Uk. However, since the change-point
is known to either reside or not between the two
samples, the test will be adapted to pick Û = |Ui|,
where i is the index corresponding to the first data
point in the second sample. This performed better
than the original test in initial experiments. The
null hypothesis of no change-point can be rejected
for confidence level α if p < α, where p is:

p = 2 exp
−6Û2

(n3 + n2)
(4.5)
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The simulation code for the test was adapted from
Pohlert et al. (2016).

Since the states are now part of a time series,
the history mechanism changes to a queue, where
whenmaxHistorySize capacity is reached, the old-
est state is discarded and the newest state added
to the state history. This constantly updates the
history even in cases of misclassification and might
be useful to model groups of opponents together.

Since both tests are non-parametric, they do not
assume any underlying distribution characteristics
and are therefore suitable for the loss distributions
to which they are applied. An important note is
that the MLPs used for the tests are evaluated, not
trained, on the state histories and thus kept con-
stant during the tests. Therefore, the loss samples
are independent. An early version of the change-
point test was done on the loss while the MLP
was updated, but since this broke the assumptions
of the statistical tests it was removed. This also
performed worse than the two methods presented
above.

An attempt was made to use mini-batch gradi-
ent descent for the novel techniques by averaging
samples for more stable losses. It was, however, dis-
carded due to low sample size for the new opponent
when needing to decide on an MLP.

4.4 Monte-Carlo rollouts

In order to make use of the opponent models
Monte-Carlo rollouts (Tesauro & Galperin, 1996)
are used for action selection for the agent. A
value Qsim(st, a) representing the simulated Q-
value of picking action a in state st is computed
for each action. This simulated value is computed
by performing nrRollouts rollouts of nrSteps, with
nrRollouts and nrSteps as hyperparameters. A
rollout is a simulation of the current level starting
from the current state st and initially picking ac-
tion a. The opponent’s action is predicted using the
current opponent’s MLP, the next level state is sim-
ulated and the reward is received. The simulations
respect the MDP structure outlined in Subsection
3.1.

Afterwards, the process is repeated but with
arg maxaQ(st+1, a) as the agent’s action. Be-
sides the first already-picked action, there will be
nrSteps repetitions of the process performed as de-
scribed above. If nrRollouts is 1, the opponent

action with the highest probability is picked. If
nrRollouts is bigger than 1, the action is picked
according to the probability distribution over the
actions defined by the output of the opponent mod-
elling MLP.

The final Q̂sim(st, a) is the sum of obtained dis-
counted rewards during that rollout. If the roll-
out ends before the level is finished, the discounted
Q-value of the last action performed is added to
the rewards of that rollout. Q̂sim(st, a) for all the
rollouts for an action a are averaged to obtain
four Qsim(st, a) (one for each action), which rep-
resent the final values of the state st that the re-
inforcement learning algorithms use. All three al-
gorithms use them to pick the best action to take
according to the ε− greedy policy, while Sarsa also
uses them to update the function approximator
(Q̂(st+1, at+1) = Qsim(st+1, at+1) in Equation 3.3).

5 Experimental setup

There will be eight agents with different random
seeds for each experiment in order to see general
behaviour. The agents will be trained on 10000
episodes. The hyperparameter ε was linearly an-
nealed from its initial value to 0 over the first 75%
of episodes and kept at 0 for the rest in order to
gain a measure of the final learned performance.

The function approximator MLP and opponent
MLPs use one hidden layer of size 200 and one bias,
one output layer of size 4 and one input layer of
size determined by the vision grid size and goal
setup as described in Subsection 4.1. Initial exper-
iments showed that one hidden layer of size 200 is
enough for both function approximation and oppo-
nent modelling. The activation function for both
their hidden layers is the Sigmoid function, defined
as:

σ(z) =
1

1 + e−z
(5.1)

The activation function for the output layer of the
function approximator MLP is the linear function
and for the opponent MLPs is the Softmax function
as described in Subsection 4.2.

All MLPs are initialised using a common heuris-
tic (Glorot & Bengio, 2010), where biases are 0 and
the weights of the MLP Wij at each layer are ini-
tialised from the uniform distribution U over an
interval determined by the number of nodes n in
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the previous layer:

Wij ∼ U
[
− 1√

n
,

1√
n

]
(5.2)

This performed better in initial experiments than
initialising all weights and biases from U [−x, x]
(with x ∈ {1, 0.4, 0.05, 0.04, 0.01} tested). The op-
ponent MLPs will be trained using stochastic gra-
dient descent. The function approximator MLP will
be trained as detailed in Section 3.

5.1 Game designs

Two different games will be explored. The Simple
game consists of three levels, shown in Figure 5.1
(see caption). This game is an example that shows
the benefits of the novel opponent modelling tech-
niques. As can be seen, from some specific states,
each opponent takes a different action (left, right or
forward). The Complex game consists of nine lev-
els, shown in Figure 5.1 (see caption). The oppo-
nents are more general and any overlapping states
that they may have are due to the relatively simple
movement patterns.

Both games have opponents that have a tail
size of 6 (an example of which is shown in Fig-
ure 2.1) and respect the game and randomness
rules shown in Section 2. The Simple game will
be tested with Sarsa, all three opponent modelling
techniques, and the deterministic opponent. The
Complex game will be tested with all combina-
tions of reinforcement learning algorithms, oppo-
nent modelling techniques and opponent types (de-
terministic and random). The random opponent
type’s RandCoef , as discussed in Section 2, will
be set to 0.2.

5.2 Hyperparameter optimisation

The hyperparameters were first optimised on the
Complex game. The metric to maximise over was
defined as the mean over all eight agents’ mean re-
wards over the last 2500 episodes. This was done by
performing a grid search on ranges of hyperparame-
ter values for each algorithmic component. The best
values would then be used for the next component
and so forth. Good initial values were found manu-
ally. The order of optimisation was: opponent mod-
elling techniques, learning algorithm, experience re-
play, function approximator MLP, opponent mod-

Figure 5.1: Levels used in the two games. The
first three levels are for the Simple game and
the next nine are for the Complex game, count-
ing right and then down in order. The oppo-
nent moves in the direction in which the red
becomes less pronounced. The starting position
of the agent is shown with blue.

elling techniques again, opponent MLP and Monte-
Carlo rollouts. Components that did not apply to
a particular setting (such as experience replay with
Sarsa) were skipped.

For the Simple game hyperparameters, the best
values for the corresponding algorithm combina-
tions were taken from the Complex game, but
the opponent modelling techniques were optimised
again with the same metric as above. Furthermore,
0.2 was also added to the pV alueThreshold hyper-
parameter range when optimising. The ranges of

8



0.4

0.6

0.8

1.0

0 2500 5000 7500 10000
Episode Number

M
ea

n 
O

pp
on

en
t M

ov
e 

P
re

di
ct

io
n 

(%
)

opponent modelling method

change−point detection (CPD)
loss distribution comparison (LDC)
single MLP for all opponents (SMA)

 Correctly predicted moves (%) when found, Sarsa, Simple game

Figure 6.1: Mean opponent move prediction
percentages after opponent model was found
(FPP), Simple game. All plots represent the
mean over 8 agents. The transparent areas for
each algorithm are standard errors. The lines
are defined by 100 points, the mean over the 100
closest episodes, to help perceive differences.

values, initial values and obtained values for both
games are given in Appendix A.1.

6 Results

All results specified in this and following sections
refer to the mean over all eight agents’ mean per-
formance over the last 2500 episodes. The results
evaluated were the rewards (referred to as ”mean
final rewards”), opponent move prediction percent-
ages (referred to as ”PP”) and opponent move pre-
diction percentages after an opponent model has
been found for the two novel methods (referred to
as ”FPP”, this term refers to PP if used for SMA
for ease of use). Statistical tests were done to com-

Table 6.1: Means and standard deviations over
all 8 agents of opponent move prediction per-
centages (PP) and PPs after opponent model
was found (FPP) for the last 2500 episodes, Sim-
ple game.

PP (%) FPP (%)
SMA 0.9±0.001 -
LDC 0.958±0.006 0.993±0.007
CPD 0.914±0.009 0.941±0.013
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Figure 6.2: Mean rewards of the best opponent
modelling technique (OMT) for each learning
algorithm, Complex game.
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Figure 6.3: Mean FPPs of the best OMT for
each learning algorithm, Complex game.

pare the best algorithm combination for each op-
ponent type against variations in each algorithm
separately. See Appendix B.1 for the exact proce-
dure and results.

For the Simple game, the novel methods per-
formed significantly better than the SMA baseline
in terms of both PP and FPP (see Table 6.1, Ta-
ble B.1). The difference can also clearly be seen in
Figure 6.1, where despite the slow increase in FPP,
LDC manages to almost perfectly predict the op-
ponents’ movements.

For the Complex game and both opponent types,
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Figure 6.4: Mean rewards of the best OMT for
each learning algorithm, Complex game, ran-
dom opponent type.

Sarsa outperforms the other learning algorithms
(Figure 6.2 for deterministic, Figure 6.4 for random
opponent types). The different OMTs produce sim-
ilar final rewards for the same learning algorithm
(see Table 6.2).

For the deterministic opponent type, in terms
of PP, the statistical results are fluctuating be-
tween the SMA baseline being better or worse than
the novel methods. However, FPP is always signif-
icantly higher with the novel methods (see Table
B.2), as can also be seen in Figure 6.3 for the best
performing OMT for each learning algorithm.

For the random opponent type, CPD was the
method that performed best across all learning
algorithms (see Table B.3). However, SAR&CPD
predicted only one opponent (see Table A.1), lead-
ing to the very similar results to SMA. It still had
lower PP than SMA, as well as higher PP than
the rest. This suggests that the novel methods per-
formed worse in terms of PP.

FPPs are also worse or not significantly worse
than SAR&CPD, an example of which is Figure 6.5,
where LDC has the lowest FPP despite reporting
much more opponents. This indicates that a single
opponent model was superior for the random oppo-
nent type regardless of whether this was achieved
through SAR&CPD or the SMA baseline.

Overall, for the Complex game, differences in PP
or FPP do not seem to impact mean final rewards
for either opponent type.

0.2

0.4

0.6

0.8

0 2500 5000 7500 10000
Episode Number

M
ea

n 
O

pp
on

en
t M

ov
e 

P
re

di
ct

io
n 

(%
)

algorithm combination

Sarsa (SAR), change−point detection (CPD)
Sarsa (SAR), loss distribution comparison (LDC)
Sarsa (SAR), single MLP for all opponents (SMA)

 Correctly predicted moves (%) when found, Complex game, Random

Figure 6.5: Mean FPPs for all OMTs for Sarsa,
Complex game, random opponent type.

7 Conclusion and Discussion

According to the results obtained, Sarsa is the best
performing learning algorithm. This could be be-
cause Sarsa is helped by learning from the Monte-
Carlo rollout Q-values in an on-policy fashion as
described in Subsection 4.4. Learning from Monte-
Carlo rollouts can also be done for QL (Knegt et
al., 2018a), where it led to better performance, and
similarly for DQL, but this was not explored in this
thesis. QL and DQL performed similarly, meaning
that most likely no maximisation bias was encoun-
tered.

The benefit of the novel OMTs can most easily
be seen in the Simple game. Since in that game,
each opponent takes a different action from some
specific states (either left, right, or forward), the
baseline SMA cannot properly represent them all.
Therefore, the PPs and FPPs for the novel meth-
ods are much better than the SMA. The heuristic
chosen until an opponent is found hinders PP accu-
racy as seen in Tables 6.1 and 6.2, but still performs
satisfactorily.

A smaller benefit in terms of FPP was seen for
the deterministic opponent in the Complex game,
which has more general opponents. The decrease
is likely because of only having a small subset of
the opponent’s full route to sample from. This is
due to minHistorySize being small, which is a di-
rect consequence of the negative step size reward
that encourages finding the fastest paths towards
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Table 6.2: Means and standard deviations over all 8 agents of mean final rewards, PPs and FPPs
for the last 2500 episodes, Complex game, both opponent types.

deterministic opponent type random opponent type
reward PP (%) FPP (%) reward PP (%) FPP (%)

SAR&SMA 6.81±0.08 0.794±0.002 - 6.73±0.04 0.661±0.001 -
SAR&LDC 6.76±0.10 0.791±0.008 0.818±0.009 6.69±0.05 0.632±0.006 0.647±0.01
SAR&CPD 6.78±0.05 0.771±0.002 0.801±0.002 6.73±0.03 0.645±0.002 0.659±0.002
QL&SMA 6.14±0.39 0.666±0.003 - 6.5±0.1 0.639±0.003 -
QL&LDC 6.16±0.42 0.809±0.011 0.834±0.013 6.52±0.1 0.624±0.01 0.639±0.012
QL&CPD 6.27±0.28 0.779±0.003 0.805±0.004 6.57±0.06 0.641±0.003 0.66±0.002
DQL&SMA 5.95±1.48 0.668±0.009 - 6.55±0.11 0.664±0.002 -
DQL&LDC 6.35±0.39 0.806±0.008 0.83±0.008 6.53±0.05 0.632±0.008 0.648±0.009
DQL&CPD 5.8±0.35 0.773±0.006 0.801±0.009 6.58±0.08 0.632±0.001 0.65±0.002

the goals. This was by design, as the comparison
between OMTs should be done in a common set-
ting. In most adversarial environments, the agent
cannot wait indefinitely until it has perfectly deter-
mined its opponent since the opponent might move
first and gain an overwhelming advantage.

This constraint on sample size can lead to low
statistical power, which is supported by the Simple
game’s hyperparameter optimisation picking very
high pV alueThresholds of 0.1 and 0.2. Another
possibility is that the agent has learned how to
avoid opponents without over-relying on the op-
ponent modelling technique and when reaching the
second level it can also reach the third one and so on
reliably. This means that it does not have enough
time to train on the second opponent before mov-
ing onto the third and thus it cannot distinguish
between them because both of their sample losses
are large and random-looking. This is supported by
the constant, as opposed to abrupt, FPP decreases
in Figures 6.3 and 6.5. Initially, the agent can only
pass few or no levels and thus the OMTs model
only a few opponents. As the agent gets better it
encounters more opponents which the OMTs need
to model, making their task more complex and re-
sulting in the FPP decrease. These issues, combined
with the randomness of the random opponent type
are most likely what lead to the lower PPs and
FPPs for the novel techniques for that opponent
type when compared to the SMA baseline.

Given this, it is likely that vision grids did help
the agent towards a more general avoidance policy,
not one specific to a single opponent. Furthermore,
their combination with the goal distance performed

well. This indicates that vision grids can be com-
bined with other global representations of informa-
tion in order to provide more robust behaviour that
is aware of the local dynamics of the environment
while chasing a specific goal.

The mean final rewards were similar between
OMTs for both opponent types despite significant
differences in PP and FPP. This indicates that the
problem itself does not seem to need a very ac-
curate opponent modelling technique. This could
be because the Monte-Carlo rollouts act as a cor-
rection, so even if the PP is relatively low, the 5
rollouts per action usually chosen by the hyperpa-
rameter optimisation (see Appendix A.1) can mit-
igate that and still choose good actions. Opponent
modelling is still needed, however. The agent was
initially tested both without Monte-Carlo rollouts
and with a new opponent MLP for each level (PP
around 25-30%) and performed considerably worse.

In addition, the opponent modelling methods
seem to be unstable, with large variance in how
many opponents are reported (see Table A.1). This
is also probably due to low statistical power, as
well as randomness in the agent’s early exploratory
behaviour. CPD is more stable than LDC and re-
ports less opponents, which is consistent with the
idea that it groups opponents together due to its
history queue setup.

While the game designed in this thesis is some-
what simple, it is still representative of the different
opponents problem and how different actions taken
in the same state cannot be modelled successfully
with only one opponent model. It would therefore
be interesting to see how the novel opponent mod-
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elling techniques perform on more complex tasks
with longer episodes that strongly depend on good
opponent modelling. Furthermore, further research
into the applications of the novel MLP comparison
techniques outside opponent modelling could also
be useful. They could serve as a means to quickly
switch between a small number of MLPs in real-
world, unpredictable tasks, where full recognition
setups are impractical due to lack of data or a vari-
able number of items to model.
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A Appendix

A.1 Hyperparameters

The hyperparameters optimised for the complex
game can be found below. For each hyperparam-
eter, there is a range of values that was used in
grid-searches for each component as described in
Subsection 5.2. The bold numbers are the initial
values. For each value the combination of learning
algorithm, opponent modelling technique and type
of opponent that uses it is shown in parentheses
with an abbreviation that uses the first letter of
each of their names. For example, Sarsa with Loss
distribution comparison and the Deterministic op-
ponent is listed as SLD.

A.1.1 Opponent modelling

minHistorySize ∈ {8 (SLD, SLR, SCR, QLR,
DLR), 10 (SCD, QLD, QCD, DLD, DCD, QCR,
DCR)}
maxHistorySize ∈ {20 (SLD, QLD, QLR, DLR,
DCR), 30 (QCD, SLR), 50 (DLD, DCD, QCR),
100 (SCD, SCR)}
pV alueThreshold ∈ {0.025 (SLD, QLD, DLD,
SLR, SCR), 0.05 (SCD, QCR, DLR, DCR), 0.1
(QCD, DCD, QLR)}

A.1.2 Learning algorithm

εSAR ∈ {0.3 (SSD, SLD, SCD), 0.5 (SSR, SLR,
SCR)}
εQL,DQL ∈ {0.5 (QSD, QLD, QCD, DLD, QSR,
QLR, QCR, DSR, DLR, DCR), 0.75 (DSD, DCD)}
γ ∈ {0.9 (QLD, QCD, DCD), 0.95 (SSD, SLD,
SCD, QSD, DSD, DLD, SSR, SLR, SCR, QSR,
QLR, QCR, DSR, DLR, DCR), 0.99}

A.1.3 Experience replay

C ∈ {100 (QLD, DLD, QSR, QCR, DLR), 1000
(DSD, QSD, QCD, DCD, QLR, DCR, DSR)}
miniBatchSize ∈ {8 (DSD, QSR, QLR, QCR,
DLR, DCR, DSR), 16 (QSD, QLD, QCD, DLD,
DCD)}
historySize ∈ {10000 (DSD, QSR, QLR, DSR),
100000 (QSD, QLD, QCD, DLD, DCD, QCR,
DLR, DCR)}

A.1.4 Function approximator MLP

visionGridArea ∈ {9, 25 (SSD, SLD, SCD, QSD,
QLD, QCD, DSD, DLD, DCD, SSR, SLR, SCR,
QSR, QLR, QCR, DSR, DLR, DCR)}
α ∈ {0.0001, 0.0005 (SLD, SCD, QSD, QLD,
QCD, DLD, DCD, SLR), 0.001 (SSD, DSD, SSR,
SCR, QSR, QLR, QCR, DSR, DLR, DCR)}

A.1.5 Opponent MLP

visionGridArea ∈ {9 (QSD, DSD), 25 (SSD, SLD,
SCD, QLD, QCD, DLD, DCD, SSR, SLR, SCR,
QSR, QLR, QCR, DSR, DLR, DCR)}
α ∈ {0.0001 (QSR), 0.0005 (QSD, SSR, DSR),
0.001 (SSD, SLD, SCD, QLD, QCD, DSD, DLD,
DCD, SLR, SSR, QLR, QCR, DLR, DCR)}

A.1.6 Monte-Carlo Rollouts

nrSteps ∈ {1 (SSD, SLD, SCD, QSD, QLD, QCD,
DSD, DLD, DCD, SSR, SLR, SCR, QSR, QLR,
QCR, DSR, DLR, DCR), 3, 5}
nrRollouts ∈ {1 (DCD), 3, 5 (SSD, SLD, SCD,
QSD, QLD, QCD, DSD, DLD, SSR, SLR, SCR,
QSR, QLR, QCR, DSR, DLR, DCR)}

A.1.7 Simple Game Opponent Modelling

pV alueThreshold = 0.1 for LDC, 0.2 for CPD
minHistorySize = 8 for LDC, 10 for CPD
maxHistorySize = 30 for both LDC and CPD

A.2 Predicted number of opponents

Table A.1: Means and standard deviations of re-
ported number of opponents over all 8 agents for
each algorithm combination and opponent type.
”Simple” denotes the Simple game where only
Sarsa (SAR) was used.

deterministic random
LDC Simple 4.875± 0.83 -
CPD Simple 2.5± 0.53 -
SAR&LDC 4± 0.53 4.625± 0.74
SAR&CPD 2± 0 1± 0
QL&LDC 4.75± 0.7 7.875± 1.64
QL&CPD 3.25± 0.46 3± 0
DQL&LDC 5.875± 0.99 5.625± 1.06
DQL&CPD 3± 0 5.25± 0.46
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Table B.1: Results of Mann-Whitney U tests performed in order to see differences in PP and
FPP for the Simple game and deterministic opponent type. The tests were conducted against a
Bonferroni-adjusted alpha level of 0.0125 (0.05/4). NS denotes that the test was not significant.
(>) denotes that the algorithm on the left in the row label has a greater mean for the result tested
than the one on the right. (<) denotes the opposite.

PP (%) FPP (%)
SMA, CPD U=1, p<0.001, (<) U=0, p<0.001, (<)
CPD, LDC U=0, p<0.001, (<) U=0, p<0.001, (<)

Table B.2: Results of Mann-Whitney U tests performed to see differences in mean final reward, PP
and FPP for the Complex game and both opponent types. See Table 6.2 for the mean final rewards.
The algorithm combination with the best mean final reward, listed as first in the row labels, was
compared with the same learning algorithm, but a change in opponent modelling technique. It
was also compared with the best performing algorithm combination in terms of mean final reward
for the other two learning algorithms. The tests were conducted against a Bonferroni-adjusted
alpha level of 0.0041 (0.05/12). The table below is for the deterministic opponent type.

rewards PP (%) FPP (%)
SAR&SMA, SAR&LDC U=50, p=0.06, NS U=38, p=0.57, NS U=0, p<0.001, (<)
SAR&SMA, SAR&CPD U=54, p=0.02, NS U=64, p<0.001, (>) U=0, p<0.001, (<)
SAR&SMA, QL&CPD U=63, p<0.001, (>) U=64, p<0.001, (>) U=0, p<0.001, (<)
SAR&SMA, DQL&LDC U=62, p<0.001, (>) U=4, p=0.0018, (<) U=0, p<0.001, (<)

Table B.3: The same motivation and type of tests as Table B.2 for the random opponent type.

rewards PP (%) FPP (%)
SAR&CPD, SAR&SMA U=31, p=0.95, NS U=0, p<0.001, (<) U=18, p=0.16, NS
SAR&CPD, SAR&LDC U=49, p=0.08, NS U=64, p<0.001, (>) U=64, p<0.001, (>)
SAR&CPD, QL&CPD U=63, p<0.001, (>) U=58, p=0.004, (>) U=27, p=0.64, NS
SAR&CPD, DQL&CPD U=61, p=0.001, (>) U=64, p<0.001, (>) U=64, p<0.001, (>)

B Appendices

B.1 Statistical tests

Exploratory plots reveal that the distributions for
the mean final rewards, opponent move prediction
percentages (PP) and PPs after opponent model
was found (FPP) are either normal or have a left
skew. This is because the maximum reward achiev-
able has an upper bound, and smaller PP and
FPP values are easier to reach than larger ones.
Therefore, the Mann-Whitney U test (Nachar et
al., 2008) was used for the comparisons, since it
does not require the normal distribution. Further-
more, to correct for multiple comparisons, Bonfer-
roni corrections (Bonferroni, 1936) were used for
the statistical tests. See Table B.1 for the Simple

game tests, Table B.2 for the Complex game with
deterministic opponent type tests and Table B.3
for the Complex game with random opponent type
tests. The context and procedure for the tests are
present in the captions of those tables.

B.2 Source code

The simulation, algorithms, scripts and ran-
dom seeds used to produce the results reside at
https://github.com/raduacosma/BachelorProject.
Since the random seeds were fixed and are
mentioned in the source code, the results are
deterministic and should be reproducible.
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