
Establishing contributor
roles within software
repositories by mining

architectural information

Bachelor’s Project Computing Science

July 2021

Author: Kanghu Shi
Student Number: S3794431
First supervisor: Dr. Vasilios Andrikopoulos
Second supervisor: Anja Reuter

1

Contents

1 Introduction 3
1.1 Background . 3
1.2 Motivation . 3
1.3 Proposal . 4

2 Related work 4

3 Processing architectural information 5
3.1 Mining repositories . 6
3.2 Aggregating metrics . 7

4 Implementation 8
4.1 Visualization . 9
4.2 Extending the framework . 9

5 Results 11
5.1 Expert identification . 11
5.2 Contribution analysis . 13
5.3 Cohesion & Task distribution . 13
5.4 Aggregation weights . 15

6 Conclusion 18

2

Abstract

Modern development teams are varied and diverse; they often encompass a large
number of engineers with distinct specializations and technical viewpoints, working
either remotely or on-site across possibly multiple locations. As such, keeping track
of which developers are actively contributing/knowledgeable towards a certain piece of
the architecture may pose to be a tedious, often difficult task.

In this paper, we shall propose a method (and develop an accompanying tool) which
seeks to ease this process by mining architectural information from software reposito-
ries and subsequently inferring the role each contributor has within each (meaningful)
part of the repository. Our resulting framework proves to be a reliable instrument in
identifying experts, analyzing contribution as well as overseeing a number of valuable
indicators about the development process.

3

1 Introduction

1.1 Background

In the distributed-systems world of today, coordination between teams is a central issue in
developing software. Teams rely on one another for code, API’s, documentation, updates,
bug-fixes and many other aspects that require effective communication and cooperation. As
with any sufficiently complex system, there are experts who often possess a deeper under-
standing of certain parts than others. This concept is closely related to that of code owner-
ship, in which an expert takes primary responsibility for overseeing one or more subsystems
within the codebase [1]. However, as software projects are ever-growing and increasingly
becoming distributed [2], it is often not clear who these experts are and which parts of the
system they have deep knowledge of [3] - [4]. When detailed knowledge of a particular piece
within the system is required, the relevant expert(s) often need to be identified in a tedious,
manual process, with the help of possibly multiple referrals [5]. An interview conducted
with several Microsoft engineers revealed that most rely solely on connections (e.g. friends,
co-workers) they already have in order to reach the people they are looking for [6], effectively
reducing the search process to a game of six degrees of separation.

In this paper we propose to develop a framework for efficient identification of contribu-
tors in software repositories. By identifying, we primarily mean the process of determining
each contributor’s involvement within each segment of the architecture. Involvement is a nu-
anced term and in the context of this paper, we define it as an aggregation of several metrics
measuring different qualities of contributions to the repository. A trivial, but prime example
of a metric that comes to mind are the number of added lines of code (LOC). If, among
hundreds of contributors, only 5% are responsible for 80% of the LOC ever committed to a
particular package, that is a fairly solid sign that these people have a deeper understanding
of the architectural piece in question. This particular distribution of workload isn’t unheard
of; the Pareto principle has been found to apply to many software engineering processes,
including contribution [6]-[7]. If we need to further distinguish between the remaining 5%,
the package in question may then be further split up into sub-packages and files, leading to
more detailed measurements. This is, of course, a heavily simplified example of the process,
yet it helps in illustrating the point. We also need to take into account time measurements
(as engineers come and go), as well as other more fine-grained metrics in order to obtain
truly useful insights.

1.2 Motivation

Our motivation stems from two main reasons, one of which we have briefly underlined above.
Experts are difficult to track manually, especially when considering community-driven OSS
projects (e.g. the Linux kernel) which frequently number thousands of contributors working
in a semi-decentralized fashion. As identifying people who are knowledgeable on a certain
issue often proves to be a time-consuming affair, developing a framework that may assist in
automatizing it is certainly a topic worthy of exploration. Management often has a vested
interest in determining and increasing the number of experts in order to make the project

4

more resilient and consistent; Consequently, collective code ownership (shifting ownership
towards the entire team rather than individual developers) represents a core concept in Ex-
treme Programming [8], a type of Agile development methodology.

The second reason springs out of the observation that architectural data is ubiquitously
present in online repositories. Virtually every software project makes use of Version Control
Systems (VCS), which maintain a historical record of all changes made to the project since
its inception. As we already have a historical log of developments and their respective au-
thors, this rich set of data could be processed in order to infer, on a commit-basis, who the
experts are over all subdivisions (i.e. files, packages) of the project.

1.3 Proposal

We shall propose a framework for optimizing the above-mentioned process of tracking experts
of a software system and subsequently develop a tool which will serve as its implementation.
Our framework roughly consists of mining all previous code-commits of an existing git repos-
itory followed by processing the acquired data into a comprehensive report which describes
the contribution carried out by each developer over each file within the repository.

Contributions are measured across pre-established metrics which may be ‘collected’ from
a git-commit. These metrics quantify different aspects of contributions to the codebase,
such as the number of LOC, methods and comments that are added/removed or other struc-
tural changes undertaken (e.g. files deleted). Our aim is not for this report to be in a
human-readable form, but rather generated under a standardized format such as JSON, es-
sentially describing the repositories’ file structure and the contributions undertaken within
each file. Visualizing the data in a meaningful way is thus delegated to the frontend, which
is a part of the project in itself. We envision a lightweight frontend that should be capable
of navigating the repositories’ nested structure as well as visually conveying the associated
contribution metrics of each file/folder in an useful manner. Besides allowing for smooth
graphical visualization of the pre-generated report, the frontend will also post-process the
data to glimpse into other aspects of interest, such as team cohesion across the project.

2 Related work

Related work towards efficient identification of contributors within a repository may be found
in areas such as quantifying contributions / source code metrics, code ownership and other
alternative expert identification techniques. We shall briefly describe some of these works
and how they relate with our current proposal.

Kalliamvakou et. al [7] have proposed a framework for measuring developer contribution
from repository collected data. In their paper, a comprehensive list of actions that may be
undertaken on a software repository is proposed and subsequently used to study the distri-
bution of work within OSS projects. The method by which these metrics are used to infer
certain aspects of the distribution resembles our approach, although we resume to a smaller

5

set of actions due to solely focusing on code, rather than additionally considering other
repository related features such as mailing list archives, bug databases and wikis. Our pro-
posal strives towards providing an implementation that may potentially be directly applied
on any given repository, thus rendering the collection of such fine-grained details as beyond
the scope of this work. We do however take this option into consideration as a potential
extension, which we shall delve further into during section (4.2).

Hattori and Lanza [9] put forward a classification of commits according to their associated
textual comments. Their classification roughly divides commits into four categories: Forward
engineering, Re-engineering, Corrective engineering, Management. Forward engineering ac-
tivities are those related to incorporation of new features/requirements. Re-engineering
activities are related to refactoring, redesign and other actions to enhance the quality of
the code without properly adding new features. Corrective engineering solves errors, bugs
or other potential disrupts in the software. Management activities are those unrelated to
code in itself, such as formatting, cleaning up, and updating documentation. Their concrete
method of classification consists of comparing each commit’s attached comment against a
predefined work bank containing words commonly associated with repository comments (e.g.
‘release’, ‘bugfix’, ‘feature’, etc.). Each word thus corresponds to a certain type of commit
(e.g. ‘bugfix’ would correspond to Re-engineering). We do not adopt this approach in our
project as we consider it fairly rigid, (as also pointed out by [14]), and thus inappropriate
to be applied on a general basis. We do however appreciate the classification and have tried
to roughly incorporate it into our implementation. Instead of inferring the type of commit
from its comments, we try to assign each contributor a value for their contribution in these
aspects, based on the first-hand metrics.

Teusner et. al [4] implemented a framework for expert identification using code complexity
metrics. Their method aggregates multiple metrics into a single score representing the de-
veloper expertise for a particular component. The aggregation method used in their paper
is Squale, proposed by Mordal et. al [11], which emphasizes improvements in badly rated
system parts rather than direct metrics such as LOC. We do make use of these metrics as
displaying them directly is also one of our goals, whilst utilising aggregation comes as a sec-
ond source of information. Teusner et. al do indeed point out that most contributions take
place on a pre-existing codebase and thus the degree of expertise could be better reflected
in the quality of code produced. Although we do not currently employ any measurements
about the quality of code in itself, the possibility is considered and detailed in (4.2).

3 Processing architectural information

In this section we shall discuss the inner workings of our framework for processing data
collected from git commits. Briefly speaking, our algorithm should: given the commit history
of a repository; for each distinct commit; extract all data from it that proves to be helpful in
our analysis (e.g. author, nr. of modifications, files/lines affected, timestamp, etc.) From this
acquired information we build an internal representation of the repository which describes
both its structure as well as the computed metrics over all its internal parts. Our workflow

6

can be roughly divided into two parts: (1) mining & processing git repositories in a consistent
manner and (2) aggregating the previously collected metrics.

3.1 Mining repositories

For any given git repository, we may access its commit history, reflecting a log of all changes
made to the repository since its inception. By traversing these chronologically, we are able
to reconstruct the repositories’ structure (i.e. organization into files/folders) as well as take
into account any modifications undertaken by its contributors. Each modification represents
a valuable source of data: it completely captures the changes made to a specific file be-
fore/after the modification. As such, we are able to collect metrics on-the-fly, by parsing
each modification appropriately and storing relevant information. The metrics of folders can
then be recursively inferred from their children.

Our first-hand metrics (i.e. those that are computed directly and not as a result of ag-
gregation) are comprised of the following:

Metric Description

LOC +/- the nr. of lines of code that have been added/removed

FUNC +/- the nr. of methods that have been added/removed

FUNC * the nr. of changes undertaken to pre-existing methods

COM +/- the nr. of lines of comments that have been added/removed

LOC.<f> +/- LOC that have been added/removed in files of format <f>

Modification.MODIFY the nr. of files modified

Modification.ADD the nr. of files added

Modification.REMOVE the nr. of files removed

Table 1: Directly collected metrics

Once these first-hand metrics have been obtained for each file, we move on towards aggre-
gating these sources of data into composite metrics that may provide insights into other
aspects of development. In order to take into account the timeframe, we maintain a separate
value for each metric describing the contribution only for a recent period of time. This is
required in order to allow focusing only on those developers who have recently contributed
code and are well-versed with the current architecture. The timeframe may be specified as
a parameter upon running the tool; otherwise a default value of 6 months will be assigned.

7

3.2 Aggregating metrics

In aggregating the different metrics detailed above, we try to roughly assign each developer a
weighted score in each of the four classification types proposed in [10]. Forward engineering
consists of implementing new features into the codebase and thus may be considered a
function of lines of code that are added, new methods that are implemented and total
number of files added. Corrective engineering and Re-engineering pertain to making changes
on the existing codebase (although for different purposes). These can be described as a
function of the nr. of changes applied to existing methods, as well as the number of removed
methods/lines of code. Management type of activities can be captured by actions such
as adding comments, or modifying documentation/configuration files (usually identified by
common formats such as .xml, .yaml, etc.). Source code metrics such as those mentioned
earlier often have different domains and scales [12], rendering simple aggregation methods
such as sum-averaging inefficient towards obtaining truly useful information. In the scope
of this paper, we will not delve too deeply into exploring aggregation techniques but rather
explore the possibility of modelling aggregation as a linear equation. This aspect will be
further discussed in the results section (5.4). Given developer i, his assigned score in the
aspect of ‘Forward Engineering’ (FwD) would thus be:

iFwD = f(iLOC+, iFUNC+, iMODIFICATION.ADD)

We may then assign weights to each developer based on how they fared in certain aspects
compared to the total amount acquired by all developers. Thus, if D is the set of developers,
developer i will have an assigned FwD weight of:

w.iFwD = iFwD / ΣjFwD, j in D, j 6= i

If we wish to flag all developers who’ve fared beyond average in a particular aspect, we
can compare their assigned weight to the mean weight. The following statement will be true
when developer i has fared better than average in FwD.

w.iFwD > 1/(#D) ?

It must be pointed out that we do not distinguish between Corrective Engineering / Re-
engineering, but rather aggregate them under the same metric. The reason for this is due
to our limited capabilities of determining whether a change on the codebase represents a fix
or an improvement/optimization. However, we do consider the possibility of extending the
framework with such features (more in 4.2). As such, our aggregation functions are defined
in Table 2.

Where f1, f2, f3 are simple aggregation methods generalizable as linear equations:

fi(x, y, z) = w1 · x + w2 · y + w3 · z, ∀i ∈ {1, 2, 3}

Finding appropriate weights such that the result of these aggregations lend accurate infor-
mation represents a goal of the paper itself. The method through which we seek to find these
weights resembles linear regression - we attempt to actively ”fit” the equation according to
observed data. Our findings are detailed in subsection (5.4).

8

Metric Aggregation method

Forward Engineering f1(iLOC+, iFUNC+, iMODIFICATION.ADD)

Re-engineering f2(iLOC−, iFUNC∗, iMODIFICATION.MODIFY)

Management f3(iCOM+, iLOC.<config>, iMODIFICATION.REMOV E)

Table 2: Aggregated metrics

4 Implementation

In our implementation, we make use of pydriller, a Python framework for mining git
repositories. This framework helps us greatly simplify the boilerplate code of the repository
collection pipeline. We use pydriller’s provided methods for traversing the commit his-
tory and then progressively feed each commit into our pipeline. Based on each modification
within the commit, our dynamic structure will update itself appropriately as well as take into
account the particular contribution underlying the modification. Any relevant information
contained within the modification will be used towards updating the values associated with
each measurement.

Metrics that are directly reflected from the nature of the commit (e.g. lines of code commit-
ted) can be gathered in a straightforward manner, whilst other values need to be computed
through dedicated means. In order to determine the number of comment lines before/after
each modification, regular expressions are applied on the source code. These expressions are
pre-defined in the configuration file for all supported languages. We define an associated
expression for each supported family of languages, as the manner through which comments
are annotated is identical across languages from the same family (e.g. C/C++/Java/C# all
use C-like syntax for marking comments).

regex_C_like = ’(?://[^\n]*|/*(?:(?!*/).)**/)’

regex_XML_like = ’<!--(.*?)-->’

regex_PY_like = ’#[^\n\r]+?(?:*\)|[\n\r])’

Thus, the C-like regex captures all characters that come after double slashes (//...) or are
enclosed within a slash and star sequence (/*...*/). Similarly, the XML and PY regular ex-
pressions capture comments as they are found in the XML family of languages (<!--...-->)
and Python (#...) respectively.

The repository is internally represented as a tree, with folders as its non-leaf nodes and
files as leaves. Each node will have a list of contributors representing all the developers
who’ve ever contributed to the file/folder in question. Contributors are described by their
name and contribution hash-map, which stores the values attained by the contributor within
each of the measured metrics.

Our generated report will thus take the form of a single JSON object represented as a

9

string, encapsulating the entire repositories’ structure within it. The following exemplified
object illustrates the core of the idea.

{

"name" : "repository-name",

"contributors" : [

{

"name": "contributor_1",

"contribution": {

"LOC+" : "100",

// other metrics

}

}

],

"children" : [

{

// nested child object

}

]

}

4.1 Visualization

Visualizing the JSON object(s) described above is realized through a web frontend. The
D3 Javascript library is utilized to allow for smooth creation of graphical objects & state
transition. We’ve chosen to represent the data structure itself as a collapsible tree of nodes,
with each being represented by a package/file. The metrics are displayed using bar charts,
with axis dimensions bound to the names/quantities of the metrics in question. Fig. 1 il-
lustrates the collapsible tree structure of Apache Tomcat as visualized from our application;
we consider such a hierarchical structure most suitable for representing a software repository.

We must point out that our frontend does not merely visualize the data, but also performs
work associated with aggregation: e.g. composite metrics & cohesion indicators. We have
decided to keep these computations in the frontend due to efficiency: the generated report
only contains ‘raw’ metrics that are directly collected; whilst aggregation is kept separate
from the initial collection. Moreover, this allows us to flexibly test a wide range of values to
be used in aggregation, easing the experimental process.

4.2 Extending the framework

In this subsection we shall discuss possible extensions to our application. As pointed out in
the literature study, two potential courses of action for further extending the framework’s
capability are (1) incorporating additional sources of data (i.e. not only commits but also
mailing lists, wiki activity and other information that may be gathered from software repos-
itories) and (2) measurements about the quality of code. Although other alternatives exist, in

10

Figure 1: Apache Tomcat repository tree as visualized from our application

the scope of this project we chose to consider only these extensively due to their suitability
with our framework.

1. Additional sources of data

The field of Mining Software Repositories (MSR) is not confined to only source code
modifications but extends to any type of information that may be gathered from soft-
ware repositories. The type of information that is available depends on the repositories’
organizational specifics (i.e. platforms/services used), as handling mailing archives,
bugs and other repository-related data goes beyond the scope of git itself. Conse-
quently, the method(s) by which these types of information may be mined also depends
on the implementation used. In order to allow for as many types of repositories to be
analyzed, we have chosen to not pursue this option in the project itself, but rather
mention it as a possible extension.

In the context of Github itself (which is the git service we are specifically interested
in), additional sources of data come in the form of pull request conversations, workflow
actions and documentation wikis. These can be programmatically accessed through
Github’s provided API. Integrating the acquired data into our framework may be done
in the form of metrics which quantify the number of bugs solved, tasks accomplished
(identified through Github Actions testing pipeline) and documentation created. These

11

types of information would be highly valuable as it would permit measuring the amount
of work realized by contributors beyond direct figures such as the nr. of LOC but rather
in terms of work-items/bugfixes carried out.

2. Quality of code

Another possible extension comes in the form of integrating measurements about the
code itself into our framework. There are a number of aspects that provide insight
into the quality of a particular code snippet/file, such as the cyclomatic complexity,
method size (in LOC) and interfacing degree (e.g. number of method parameters,
coupling between classes). Such values would allow us to measure the risk profile of
commits, enabling the classification of developers according to the quality of their com-
mited code. The method underlined here is based on the Delta Maintainability Model
(DMM) detailed in this paper [15] by di Biase et. al.

5 Results

We have analysed repositories of several established open source projects in order to deter-
mine the degree of utility of our tool. Analysed repositories include Apache Hudi, Spring,
Django and Node.JS. The use cases which we’ve tested our tool against are its two main in-
tended functionalities: identification of experts (5.1) and contribution analysis (5.2). We also
discuss the applicability of our cohesion indicators (5.3) and the refinement of aggregation
weights (5.4).

5.1 Expert identification

At a first glance, the applicability of our tool seems to be promising; main developers can
be quickly identified within each package. Two levels into the tree, the top 10% developers
already account, on average, for more than 80% of the total committed lines of code. On
the opposite spectrum of the tree, leaf nodes (files) are mostly always composed of only a
few contributors accounting for over 80% of the committed code on average.

Figures (2) and (3) illustrate how the most significant contributors of a particular package
or file may be identified. Whilst the figures describe the top developers from the viewpoint
of the entire repository, more accurate information may be accessed if we target a specific
package or file. At a first glance, ”experts” of the repository can be quickly identified, al-
though the degree of their expertise at such a broad level (the entire project) may vary. It
can be seen that Django’s distribution differs greatly from that of Kafka: the amount of
code contributed is spread out more evenly in the latter. Thus beyond the task of identifying
developers within a project, we also obtain insights into the distributiveness of tasks.

These results provide a promising glimpse into our tool’s applicability. When we wish to
identify contributors whose expertise lies within a particular package, the node only needs

12

Figure 2: Apache Kafka’s top 12 contributors as % of LOC committed

to be selected in order to visualize the top developers by a certain metric. If the returned list
of contributors is inconclusive, we may target one of its child nodes for more precise data.
The number of contributors diminishes significantly upon each level of nesting.

Repository avg. level-2 LOC avg. level-2 LOC (past 6 months) leaf LOC

Apache Hudi 90.98% 92.22% 99.97%

Apache Kafka 93.72% 94.44% 99.75%

Apache Tomcat 94.55% ≈ 100% 99.82%

Django 95.35% ≈ 100% 99.93%

Strider 95.5% ≈ 100% 99.82%

pydriller 84.63% 97.78% 99.25%

Table 3: The percentage of LOC realized by top-10% developers of each project

The table above illustrates the average percentage of lines of code committed by the top
10% developers (as measured by LOC+) within different nesting levels of the repository. As
level 1 is the root node itself, level 2 would thus be any package residing directly within
the repository. The second column is computed in the same manner as the first, except we
only take the contribution from the past 6 months in consideration (consequently, we also
decide the top-10% developers solely within this timeframe). Computing a statistic such as
the one exposed above may be realized from the vantage point of any other metric, yielding
the specific distribution for that measurement.

13

Figure 3: Apache Tomcat’s top 12 contributors as % of LOC committed

5.2 Contribution analysis

Our tool provides a solid framework for repository contribution analysis. Although a variety
of other tools exist for the purpose of analysing repositories from a contributory perspective,
most of them [e.g. 18, 19, 20] are concerned with generating a chronological statistic/report
of commits, but do not provide an interface for navigating the repository (thus allowing
ourselves to only focus on specific packages/files). This functionality paves the way for effec-
tively tracing the amount of effort that has been put into any node (package/file) of interest,
together with the relevant list of contributors, rather than overseeing the project from a
”broader” perspective.

As such, our tool may be employed on a wide range of repository-analysis use cases, such
as keeping track of the contribution put into the project by any specific contributor. Fig.
4 represents the contribution of Jason Gustafson, main developer of Apache Kafka, as vi-
sualized from our frontend. The metrics are shown as a percentage of the total collective
contribution, thus revealing important information about the amount of effort put in by any
participant to a repository. Such a feature might prove to be an useful tool for assessment
purposes by an educator or corporate management team.

5.3 Cohesion & Task distribution

Remarkably, our analysis goes beyond that of the contributory/identificatory perspective.
By further inspecting the generated report, we are able to infer certain indicators about the
overall development process, such as the average distribution of contributions attained across
the project by a certain percentage of developers. Such figures lend us valuable information

14

Figure 4: Individual contribution of Jason Gustafson to Apache Kafka’s repository, in
quality of main contributor

about aspects such as code/method ownership, essential indicators in Extreme Programming
(XP) or Agile practices [21].

The table below (4) describes our findings w.r.t the cohesion & task distribution of our
analysed repositories. The values above represents the amount of work realized by top 10%

Repository LOC+ LOC- FUNC+ FUNC-

Apache Hudi 97.97% 87.74% 48.47 % 33.99%

Apache Kafka 95.5% 89% 40.23% 35.97%

Tomcat 99% 98.92% 16.44% 16.48%

Strider 99.69% 60.92% 33.22% 21.88%

pydriller 97.53% 91.36% 18.82% 19.18%

Table 4: Distribution of metrics acquired by top 10% developers, as measured by LOC+

developers of each analysed repository (as measured by LOC+) in other metrics of interest (e.g.
methods implemented). For example, in the case of Apache Tomcat, developers responsible
for almost 99% of the total amount of LOC account for only 16.44% of the methods present
within the project. We should also point out that our definition of LOC includes any type of
”code” found within the repository, including configuration files (e.g. .properties, .json,
etc.) and documentation.

15

Figure 5: Django’s distribution of metrics acquired by top-10% developers as measured by
LOC+

5.4 Aggregation weights

In the process of aggregating first-hand metrics towards classifying the role of each contribu-
tor within a particular node (as per the classification described in [10]), we employ a method
which vaguely resembles linear regression. However, in a classic regression scenario, we try
to fit a pre-existing set of values to a number of explanatory variables; whereas in our case we
do not possess values which quantify developers contribution in different areas already but
rather attempt to create the value ourselves. As such, possibly the best source of ”observed
values” would be the publicly available lists of contributors of our analysed repositories and
their known attributions. Additionally, we attempt to scale each metric according to the
set of aggregated values, such that no metric heavily outweighs the others in computing the
final result.

We will analyse the case of Apache Tomcat, as its list of developers and their associated
main attributions are easily accessible on the project’s website [19]. Specifically, we will

16

focus on three contributors for which we roughly know the assumed roles (table 5).

Contributor Role

Mark Thomas (markt) CGI, SSI, WebDAV, bug fixing

Costin Manolache (costin) Catalina, Connectors

Filip Hanik (fhanik) Clustering, Release Manager

Table 5: Developers of Apache Tomcat and their attributions, as presented on the Tomcat
website

We shall now present the aggregated development measurements (i.e. classification according
to Engineering, Re-engineering, Management) of the contributors highlighted above. From
the observed list of roles, we roughly expect Mark/Costin to fare high in the area of Engi-
neering (due to development attributions), Filip/Mark in the area of Re-Engineering (bug
fixing and release patches) and Filip in tasks related to Management

As can be seen from Figs. 6, 7 and 8, the resulting metrics roughly resemble our initial
assumption. The method of aggregation used in computing these graphs is that of simple
addition between terms (metrics) with no additional weights. Although this approach cer-
tainly yields some data about the nature of each contributor’s role within the repository, the
method of aggregation requires further refinement until more fine-grained information can
be obtained.

One possible approach for stabilizing the (aggregation) values further is that of scaling the
coefficients appropriately, such that no particular measurement heavily outweighs the others.
Here we present the measured metrics for the developers highlighted above, specifically those
who have been directly used in aggregating their roles.

Contributor LOC+ LOC- FUNC+ FUNC- FUNC* .ADD .MODIFY

markt 297661 160394 7721 3097 29064 1177 20424

costin 12136 1225 71 49 198 25 39

fhanik 97131 29087 4866 680 8347 347 1959

Table 6: Metrics of Apache Tomcat developers used in aggregating their qualitative
contribution. We have chosen to denote ModificationTypes by a dot (.) for brevity

As can be observed, FUNC+, FUNC-, FUNC*, .ADD and .MODIFY mostly yield values between 1
and 2 scales of magnitude lower than measurements about the lines of code (LOC+/-). Here,
the ”weight” of each action may be arbitrarily decided on a case basis; we have decided not
to incorporate any pre-defined weight as that would exceed the scope of this project, but

17

Figure 6: Filip’s aggregated metrics
within Apache Kafka

Figure 7: Costin’s aggregated metrics
within Apache Kafka

Figure 8: Mark’s aggregated metrics
within Apache Kafka

rather restrict ourselves to discussing the possible options. Whilst the first 4 measurements
quantify lines of code, and thus may be considered already under the same ”dimension” (it
is a matter of deciding whether lines of code added within a method are worth ”more” than
lines of code added elsewhere towards aggregating a particular role), the latter 3 represent
”modifications” and might be scaled up, since, in general, a modification (be it within a
method or the entire repository) will affect more than a single line of code and thus should
weigh more in the aggregation strategy.

18

6 Conclusion

Our tool proves to be a reliable framework for monitoring a repository from a multitude of
perspectives, ranging from contribution to expertise and cohesion. The degree of analysis
provided is extensive and may be applied in a wide range of use cases (detailed in subsection
5). A number of notable works in the field have proven to be influential towards our project,
most importantly the classification put forward by Hattori and Lanza [9] on which we’ve
based the aggregation technique.

Although our proposal is not in itself a novel idea (contribution analysis is a major sub-
field of MSR), the resulting tool provides a fresh approach for repository analysis, especially
due to the navigable interface & clear visualization. We are confident that our approach
has considerable potential, both in direct applicability (analysis of pre-existing repositories)
and research potential. A possible line of work could be further extending our framework
with features such as the ones described in subsection 4.2. Such additions could render our
application into a hallmark tool for contribution analysis & expert identification. Moreover,
the manner in which we have designed our application’s components (i.e. independent repos-
itory analyzer & web frontend) allows for smooth integration into a new or pre-existing web
application. The underlying framework for generating reports may be exposed under an API
service, thus permitting any potential user to analyse repositories.

Beyond the tool itself and its applicability, we have discussed the varied results obtained
by running it on publicly available repositories. The observed contrast between values ob-
tained for distinct repositories upon analysis of particular parameters (e.g. cohesion & dis-
tribution) reveal a number of aspects by which these projects differ. One such aspect is the
degree of distributiveness in development: certain projects are manned by only a handful of
people responsible for the majority of code written, while other projects adopt a more decen-
tralized approach, with a large number of developers all contributing a little to the codebase.

As it currently stands, our application may already be employed in a wide range of use
cases, all of which have been detailed in subsection 5. Currently, we plan on wrapping up
the underlying framework under a publicly accessible web service, thus allowing developers
and management teams to incorporate its functionalities into their own software projects or
research endeavours.

19

References

[1] Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin,
R. ”Microservices: Yesterday, Today, and Tomorrow.” Mazzara M., Meyer B. (eds.),
Present and Ulterior Software Engineering. Springer..

[2] S. Faraj and L. Sproull ”Coordinating expertise in software development teams”. Manage.
Sci., vol. 46, no. 12 Dec. 2000.

[3] J. Herbsleb and R. Grinter ”Architectures, coordination, and distance: Conway’s law and
beyond”. Conway’s law and beyond,” Software, IEEE, vol. 16, no. 5

[4] Teusner, R., Matthies, C. and Giese, P., 2017. Should I Bug You? Identifying Domain
Experts in Software Projects Using Code Complexity Metrics. 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS),.

[5] Begel, A., Phang, K. and Zimmermann, T., 2010. Codebook. Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - ICSE ’10,.

[6] Boehm, B. W. (1987). Industrial software metrics top 10 list. IEEE Software

[7] Gousios, G., Kalliamvakou, E. and Spinellis, D., 2008. Measuring developer contribution
from software repository data. Proceedings of the 2008 international workshop on Mining
software repositories - MSR ’08.

[8] K. Beck, Extreme Programming Explained: Embrace Change. Addison- Wesley Profes-
sional, 2000.

[9] Hattori, L. and Lanza, M., 2008. On the nature of commits. 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering - Workshops,.

[10] F. Balmas, F. Bellingrad, F. Denier, S. Ducasse, B. Franchet, J. Laval, K. Mordal-
Manet, and P. Vaillergues, “The squale quality model. mod‘ele enrichi d’agr´egation des
pratiques pour java et c++,” INRIA, Tech. Rep., 2010.

[11] Vasilescu, B., Serebrenik, A. and van den Brand, M., 2011. You can’t control the un-
familiar: A study on the relations between aggregation techniques for software metrics.
2011 27th IEEE International Conference on Software Maintenance (ICSM),.

[12] Kim, S., Whitehead,, E. and Zhang, Y., 2008. Classifying Software Changes: Clean or
Buggy?. IEEE Transactions on Software Engineering, 34(2), pp.181-196.

[13] Milewicz, R., Pinto, G. and Rodeghero, P., 2019. Characterizing the Roles of Contrib-
utors in Open-Source Scientific Software Projects. 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR),.

[14] Nordberg, M., 2003. Managing code ownership. IEEE Software, 20(2), pp.26-33.

20

[15] Marco di Biase, Ayushi Rastogi, Magiel Bruntink, and Arie van Deursen. The
Delta Maintainability Model: measuring maintainability of fine-grained code changes.
IEEE/ACM International Conference on Technical Debt (TechDebt) at ICSE 2019, pp
113-122

[16] GitHub. 2021. reposense/RepoSense. [online] Available at:
https://github.com/reposense/RepoSense

[17] GitHub. 2021. bloomar/git-developer-contribution-analysis. [online] Available at:
https://github.com/bloombar/git-developer-contribution-analysis

[18] GitHub. 2021. IonicaBizau/git-stats. [online] Available at:
https://github.com/IonicaBizau/git-stats

[19] Tomcat. 2021. Apache Software Foundation [online] Available at:
https://tomcat.apache.org/tomcat-7.0-doc/developers.html

21

List of Figures

1 Apache Tomcat repository tree . 10
2 Kafka’s top developers . 12
3 Tomcat’s top developers . 13
4 Individual contribution . 14
5 Django metric distribution . 15
6 Filip Hanik’s (Kafka) aggregated metrics 17
7 Costin Manolache’s (Kafka) aggregated metrics 17
8 Mark Thomas’ (Kafka) aggregated metrics 17

List of Tables

1 Directly collected metrics . 6
2 Aggregated metrics . 8
3 The percentage of LOC realized by top-10% developers of each project . 12
4 Distribution of metrics acquired by top 10% developers, as measured by

LOC+ . 14
5 Developers of Apache Tomcat and their attributions, as presented on the

Tomcat website . 16
6 Metrics of Apache Tomcat developers used in aggregating their qualitative

contribution. We have chosen to denote ModificationTypes by a dot (.) for
brevity . 16

	Introduction
	Background
	Motivation
	Proposal

	Related work
	Processing architectural information
	Mining repositories
	Aggregating metrics

	Implementation
	Visualization
	Extending the framework

	Results
	Expert identification
	Contribution analysis
	Cohesion & Task distribution
	Aggregation weights

	Conclusion

