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Abstract: Labeling data can be an expensive task as it is usually performed manually by domain
experts. This is cumbersome for deep learning, as it is dependent on large labeled datasets.
Active learning (AL) is a paradigm that aims to reduce labeling effort by only using the data
which the used model deems most informative. Little research has been done on AL in a text
classification setting and next to none has involved the more recent, state-of-the-art NLP models.
Here, we present an empirical study that compares different uncertainty-based algorithms with
BERTbase as the used classifier. We evaluate the algorithms on two NLP classification datasets:
Stanford Sentiment Treebank and KvK-Frontpages. Additionally, we explore heuristics that aim
to solve presupposed problems of uncertainty-based AL. Namely, that it is unscalable and that
it is prone to selecting outliers. Furthermore, we explore the influence of the query-pool size
on the performance of AL. Our results show that using uncertainty-based AL with BERTbase

outperforms randomly sampling data. This difference in performance can decrease as the query-
pool size gets larger. It was also found that the proposed heuristics did not significantly improve
performance when compared to the basic implementation of uncertainty-based AL.

1 Introduction

Deep learning is a field in machine learning in
which neural networks with a large number of lay-
ers (therefore called deep networks) are made to
perform complicated human tasks. These networks
have to be trained on a large amount of data to be
able to learn the underlying distribution of the task
they are trying to model. In supervised learning,
this data is required to be labeled with the desired
output. This allows the network to learn to map
the input to the desired output. This research will
focus on an instance of supervised learning, called
text classification. An example of mapping a text to
a certain output would be classifying a text on its
quality, where the labels could for instance be {low,
medium, high}. Data labeling is usually done man-
ually and can grow to be an expensive and time-
consuming task for larger datasets, like those used
in deep learning. This begs the question of whether
there is no way to reduce the labeling effort while
still being able to reach an acceptable performance
on the network modeling the chosen task. Similarly

to lossy compression (Ahmed, Natarajan, & Rao,
1974), we want to retain a good approximation of
the original dataset while at the same time reduc-
ing its size as much as possible. Or to put it more
specifically: given a training set, how can we opti-
mally choose a limited number of examples based
on the amount of relevant info they contain for the
target task?

To be able to determine what data contains the
most information, we need to quantify the amount
of information contained in a datapoint. This finds
its roots, like lossy compression, in information the-
ory. Shannon (1948) introduced informational en-
tropy, for which the definition can be found in
Equation 1.1 and where p(xi) is the probability of
xi. It is a measure of the number of binary digits
(bits) required for encoding a message. This num-
ber of bits is in turn a measure of the amount of
information contained in a message.

H(x) = −
n∑

i=1

p(xi) log2 p(xi) (1.1)

A model trained on limited data has an entropy
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associated with its target variable predictions. Our
goal is to select the data that is to be labeled in a
greedy way to reduce this entropy as much as possi-
ble, similar to how it is done in research on decision
trees (Gulati, Sharma, & Gupta, 2016). In essence,
we are trying to maximize the information gain or
minimize the Kullback-Leiber divergence (Kullback
& Leibler, 1951). To exemplify: this is quite similar
to a game of ’Guess Who?’. We are trying to de-
termine what person we are with as little guesses
as possible. Moreover, in ’Guess Who?’ you change
your strategy based on the answers you get from
your opponent. This is akin to a problem that we
have to overcome in the field of deep learning, albeit
more troublesome there. This problem being that
the parameters of a neural network change during
training, and therefore its predictions and certainty
of new datapoints will also change. This makes it
so that we cannot calculate the entropy for all dat-
apoints in one go to then split the dataset in a way
that results in the highest information gain.

A machine learning technique called Active
Learning (AL) (Settles, 2012) can be used to com-
bat this problem. In AL, a human labeler is queried
for datapoints that the network itself deems most
informative with its current parameter configura-
tion. The human labeler proceeds to assign the
right label to these queried datapoints and then the
network is retrained on them. This process is re-
peated until the model shows robust performance,
which in turn is an indication that the data that
was labeled is a sufficient approximation of the
complete dataset. There are multiple types of in-
formativeness by which to determine what data to
query the oracle for. For instance calculating what
results in the highest model change (Cai, Zhang,
& Zhou, 2013) or through treating the model as
a multi-arm bandit (Bouneffouf, Laroche, Urvoy,
Féraud, & Allesiardo, 2014). Most of the existing
literature on this does this through different mea-
sures of model uncertainty though (Drost, 2020;
Gal, 2016; Gal & Ghahramani, 2016; Gal, Islam, &
Ghahramani, 2017; Teye, Azizpour, & Smith, 2018)
and this is also what this research will focus on.
Bayesian probability theory provides us with the
necessary mathematical tools to reason about un-
certainty, but in the space of deep learning it has
its complications.

To clarify this, it is essential to note that classi-
fication neural networks are disciminative systems.

A classifier is trained to map one or more inputs to
one or more outputs, or to put it more formal: to
learning a certain f(x) = y. After the classifier has
learned such a function and the training process is
over, its parameters do not change anymore. This
in turn means that the same input will from then
on always map to the same output, or in our case
the same text to the same label.

This poses a problem to Bayesian probability
theory as it prevents us from being able perform
Bayesian inference. With Bayesian inference we can
determine the probability of a certain output y*
given a certain input point x* as seen in Equa-
tion 1.2. Here is where the issue of the classifier be-
ing discriminative becomes apparent. Namely, that
there is no probability distribution over what out-
put gets generated from a certain input: the output
is always the same for a given input. A generative
model is needed to be able to reason about the re-
lation between input and output in this manner.
What is more, even if we suppose the network was
generative the integral would not be analytically
solvable due to the fact that we would need to in-
tegrate over all possible parameter settings ω.

p(y ∗ |x∗, X, Y ) =

∫
p(y ∗ |x∗, ω)p(ω,X, Y )dω

(1.2)
However, it can be approximated. Existing lit-

erature has explored different methods of achiev-
ing this, with Monte Carlo Dropout (MCD) being
the most popular one (Drost, 2020; Gal & Ghahra-
mani, 2016; Tsymbalov, Panov, & Shapeev, 2018).
In MCD, the network makes use of dropout (Srivas-
tava, Hinton, Krizhevsky, Sutskever, & Salakhutdi-
nov, 2014) to make the network generative. Multi-
ple stochastic forward passes are performed to pro-
duce multiple outputs for the same input. The out-
puts can then be used to summarise the uncertainty
of the model in a variety of ways. A more extensive
description of MCD can be found in Section 2.2.2.

By making use of the MCD approximation, this
research will go on to focus on comparing differ-
ent uncertainty-related AL query methods for text
classification, a space in which there is still little
literature on the usability of AL for modern NLP
models. We will try to answer the following research
question:

Research Question. How can uncertainty-based
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Active Learning be used to reduce labeling effort for
text classification tasks?

Where previous literature focused on compar-
ing AL strategies on small datasets and on the
test accuracy of the final classifier, this paper will
try and explore the usability of AL on a real-
world setting, in which factors like the prevalence
of transfer learning and scalability have to be taken
into account. The goal of this being to reach a
performance similar to the state-of-the-art text-
classification models that use random sampling on
a complete training set. This should provide insight
into whether AL can be applied to reduce labeling
effort.

2 Methods

This section will go on to describe the general AL
loop, the model architecture, the used query func-
tions, the implemented heuristics, and the finally
the experimental setup.

2.1 Active Learning

An implementation of the general AL loop/round is
shown in the Appendix (Algorithm A.1). It consists
of four separable steps:

1. Train: The model is reset to its initial param-
eters. After this, the model is trained on the
labeled dataset L. The model is reset before
training because otherwise the model would
overfit on data from previous rounds (Hu, Lip-
ton, Anandkumar, & Ramanan, 2018).

2. Query: A predefined query function is used
to determine what data is to be labeled in this
AL round. As discussed, this can be done in
various ways, but the guiding principle is that
the data that the model finds most useful for
the chosen task gets queried.

3. Annotate: the queried data is parsed to a hu-
man expert, often referred to as the oracle. The
oracle then labels the queried examples.

4. Append: The newly labeled examples are
transferred from the unlabeled dataset U to
L. The model is now ready to be retrained to
recompute the informativeness of the examples

in U now that the underlying distribution of L
has been altered.

Note the datasets used for the experiments (Section
2.5.1) were fully labeled and the annotation step
thus got skipped in this research. U existed out of
labeled data that was only trained on when it got
queried. This was done to speed up the process and
to enable scalable and replicable experiments with
varying experimental setups.

2.2 Model Architecture

2.2.1 BERT

The model used to classify the texts was BERTbase

(Devlin, Chang, Lee, & Toutanova, 2019), which is
a variant of the Transformer model (Vaswani et al.,
2017). This model was chosen due to the fact that
BERT is currently considered the state-of-the-art
language model.

BERTbase has its own tokenizer based on the
WordPiece tokenization method (Wu et al., 2016).
This tokenizer has a cased and an uncased version.
The uncased version was used in this research, as
the information of capitalization and accent mark-
ers preserved in the cased version was not deemed
to be of significant importance for the used tasks
and datasets. Only the first sentence of the used
texts was put into the tokenizer and the maximal
length to which the tokenizer either padded or cut
down this sentence was set to 50. This choice had
to be made due to computational constraints and
is discussed in Section 4.2.

Furthermore, the option of the BERTbase tok-
enizer to make use of special tokens for sentence
seperation, padding, masking and to generalise un-
known vocabulary was used. This was done as it
was assumed to provide BERTbase with a better
understanding of the texts, considering that our
data occasionally contained unknown vocabulary
and shorter texts which needed padding.

Finally, a softmax layer was added to the end
of BERTbase. Equation 2.1 shows how the softmax
probability for input vector z is computed.

σ(z)i =
exp(zi)∑K
j=1 exp zj

for i = 1, ...,K. (2.1)

Applying softmax to an input vector normalizes
that vector into a probability distribution that
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sums to one. This softmax layer is essential as the
implemented query functions (Section 2.3) compute
uncertainty based on sampled output probability
distributions∗.

2.2.2 Monte Carlo Dropout

Monte Carlo dropout (MCDO) is, like discussed in
Section 1, a technique that enables reasoning about
uncertainty with neural networks. Dropout (Srivas-
tava et al., 2014) essentially ’turns off’ neurons with
a predefined probability. Every forward pass, the
neurons have a predefined chance to not be used
in the computation of the output. Dropout is nor-
mally used during training to prevent overfitting
and create a more generalized model. In MCDO
though, it is used to approximate Bayesian infer-
ence (Gal & Ghahramani, 2016) through creating T
predictions for all datapoints. To emphasise: every
datapoint will now have T different predictions as-
sociated with it, as T slightly altered models will be
used on the same datapoint. The result of these so-
called stochastic forward passes (SFP’s) can then
be used by the query function to compute the un-
certainty, as will be explained in Section 2.3. The
way MCDO is incorporated in the AL loop is shown
in green in the Appendix (Algorithm A.2).

BERTbase has two different types of dropout lay-
ers: hidden dropout and attention dropout. The
hidden dropout is the dropout for all fully con-
nected layers in the embedding, the encoder, and
the pooler. The attention dropout applies to all
attention layers in the multi-head attention block.
Both were turned on when performing a stochastic
forward pass.

Note that there are other ways of approximat-
ing Bayesian inference with neural networks. Fre-
quently used ones are:

• Having an ensemble of neural networks vote on
the label (Krogh & Vedelsby, 1994)

• Monte Carlo Batch Normalization (MCBN)
(Teye et al., 2018).

MCDO was chosen over the ensemble method due
to it being easier to implement and quicker to train.

∗Active learning using dropout-based uncertainty es-
timation is also possible for regression, but requires an
adapted approach to compute uncertainty and associated
query functions, see for example Tsymbalov et al. (2018)

MCBN was not chosen as it has been shown to be
more inconsistent than MCDO (Drost, 2020).

2.2.3 SentenceBERT

Textual data offers the advantage of having ac-
cess to the use of embeddings. A word embedding
is a learned representation of word into a vector
space in which semantically similar words are close
to each other. However, text classification involves
classifying texts made up of one or multiple sen-
tences. Fortunately, these can be computed in a
variety of ways. BERT specific ones include av-
eraging the pooled BERT embeddings and look-
ing at the BERT CLS token output. Other more
general ways are averaging over Glove word em-
beddings (Pennington, Socher, & Manning, 2014)
and averaging embeddings created by a Word2Vec
model (Mikolov, Chen, Corrado, & Dean, 2013).
We have opted to make use of SentenceBERT
(Reimers & Gurevych, 2019), a siamese BERT ar-
chitecture which has shown to have better perfor-
mance than the previously mentioned strategies.
To clarify: SentenceBERT was used seperately from
the previously discussed BERTbase model and was
used for the sole use of assigning embeddings to
each sentence in the dataset that were used by the
heuristics described in Sections 2.4.1 and 2.4.2.

2.3 Query Functions

The query function is the way by which the model
chooses what data it wants to learn from. It is cen-
tral to the AL loop and, as previously mentioned in
Section 1, this paper will focus on query functions
that reason about uncertainty. All used query func-
tions make use of T stochastic forward passes (Sec-
tion 2.2.2). In our case, the result of these stochas-
tic forward passes will be T softmax probability
distributions for every datapoint. These are essen-
tial to reason about uncertainty, as they provide
us with an approximated Bayesian distribution for
every datapoint (Gal & Ghahramani, 2016).

The three functions that were implemented
were the variation ratio, predictive entropy, and
Bayesian active learning by disagreement. They all
compute uncertainty differently, and their differ-
ences will be highlighted. For a more extensive dis-
cussion of Equations 2.2, 2.3 and 2.4 one is encour-
aged to look at Gal (2016).
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2.3.1 Variation Ratio

The variation ratio is a measure of dispersion
around the class that the model predicts most often
(the mode). The intuition here is that the model is
uncertain about a datapoint when it has predicted
the mode class a relatively small number of times.
This indicates that it has predicted other classes a
relatively large number of times. This can also be
gathered from Equation 2.2, where fx denotes the
mode count and T the number of stochastic forward
passes.

v[x] = 1− fx
T

(2.2)

The function attains its maximum value when the
model predicts all classes an equal amount of times
and its minimum value when the model only pre-
dicts one class across all stochastic forward passes.
Variation ratio only captures the uncertainty con-
tained in the predictions, not the model, as it only
takes into account the spread around the most pre-
dicted class. It is thus a form of predictive uncer-
tainty.

2.3.2 Predictive Entropy

As discussed in Section 1, entropy (Equation 1.1)
is used to quantify the information of data. In our
case we want to know the chance of the model clas-
sifying a datapoint as a certain class given the in-
put and model parameters (p(y = c|x,ω)). We can
compute this chance by averaging over the soft-
max probability distributions across the T stochas-
tic forward passes. This adjusted version of entropy
is denoted in Equation 2.3, where ω̂t denotes the
stochastic forward pass t, and c the number associ-
ated to the class-label.

H[y|x,Dtrain] = −
∑
c

(
1

T

∑
t

p(y = c|x, ω̂t)

)

log

(
1

T

∑
t

p(y = c|x, ω̂t)

)
(2.3)

To exemplify: in binary classification, the pre-
dictive entropy is highest when the model its soft-
max classifications consist of T times [0.5, 0.5]. In
that case, expected surprise when we would come
to know the real class-label is at its highest. The

uncertainty is computed averaging over all predic-
tions and thus falls under predictive uncertainty.

2.3.3 Bayesian Active Learning by Dis-
agreement

Predictive entropy (Section 2.3.2) is used to quan-
tify the information in one variable. Mutual infor-
mation or joint entropy is very similar but is used
to calculate the amount of information one variable
conveys about another. In our case, we’ll be looking
at what the average model prediction will convey
about the model posterior, given the training data.
This is a form of conditional mutual information,
the condition or the third variable being the train-
ing data Dtrain. Houlsby, Huszár, Ghahramani, and
Lengyel (2011) used this form of mutual informa-
tion in an AL setting and dubbed it Bayesian active
learning by disagreement (BALD).

I[y, ω|x,Dtrain] = −
∑
c

(
1

T

∑
t

p(y = c|x, ω̂t)

)

log

(
1

T

∑
t

p(y = c|x, ω̂t)

)

− 1

T

∑
c,t

p(y = c|x, ω̂t)

log p(y = c|x, ω̂t)

(2.4)

The difference between Equation 2.4 and 2.3 is
that the conditional entropy is subtracted from the
predictive entropy. The conditional entropy is the
probability of the full output being generated from
the training data and the input. This is the reason
we do not average the predictions for every single
class. We first sum over all classes, so that we do not
average over the model parameters for every single
class and thus take into account the fact that we are
looking at the chance of the complete probability
distribution being generated.

BALD is maximized when the T predictions are
strongly disagreeing about what label to assign to
the example. So in the binary case, it would be
highest when the predictions would alter between
[1,0] and [0,1] as these two predictions are each oth-
ers complete opposite. Unlike the variation ratio
and predictive entropy, BALD is a form of model
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uncertainty. When the softmax outputs would be
equal to T times [0.5,0.5], the minimal BALD value
would be returned as the predictions are the same
and the model is thus very confident about its pre-
diction.

2.4 Heuristics

2.4.1 Redundancy Elimination

In AL, a larger query-pool size (from now on re-
ferred to as q) results in the model being retrained
less and the uncertainties of examples being re-
evaluated less frequently. This in turn results in the
model getting to make less informed decisions as it
uses less up-to-date uncertainty estimates. Larger
q could therefore theoretically cause the model to
collect many similar examples, because it is uncer-
tain about a specific type of data at that AL round.
Say for instance we were dealing with texts about
different movie genres. Suppose the data contained
a lot of texts about the exact same movie. When
the model would be uncertain about this type of
text, a large q would result in a large amount of
these texts getting queried. This would not be de-
sirable as querying this type of text a small amount
of times would likely result in the model no longer
being uncertain about that type of text.

The above could form a problem as although a
smaller q should theoretically provide us with bet-
ter results, it also results in the uncertainties having
to be computed more often. Every time the uncer-
tainties are computed, T stochastic forward passes
have to be made on the unlabeled dataset U . This
entails that, next to the computation, the time re-
quired to label a dataset would increase as well,
which is not in line with our goal. In hopes of im-
proving performance with larger q, we propose two
heuristics:

1. Redundancy Elimination by Training (RET)

2. Redundancy Elimination by Cosine Similarity
(RECS)

For both of these heuristics, a new pool, which
we will refer to as the redundancy-pool RP, is in-
troduced. The query-pool will be a subset of RP
of which we will try to select the most dissimilar
examples.

RET tries to eliminate redundant data out ofRP
by using it as a pool to retrain on. The datapoint
with the highest uncertainty is trained on for one
epoch and then the uncertainties are recomputed.
This process gets repeated until the query-pool is
of the desired size. Note that although this strategy
seems similar to having a q of one, it is less com-
putationally expensive as only the uncertainties for
the examples in RP have to be recomputed (which
also shrinks after each repetition). Algorithm A.3
of the Appendix shows how RET is integrated in
the AL loop.

RET its main purpose is enabling the use of
larger q. However, one needs to be mindful of the
fact that when q is increased, RP is to be increased
in size well. This being due to the fact that smaller
differences between the sizes of RP and the query-
pool result in less influence of the heuristic. When
these both grow in size, the computation and wait-
ing time of the oracle in between active learning
rounds rises exponentially. This is the case because
of the fact that T*q forward passes have to be made
multiple times for every additional example in RP .
Because of this, RECS is aimed at being computa-
tionally cheaper.

Instead of retraining the model and constantly
taking into account recomputed uncertainties,
RECS makes use of the sentence embeddings cre-
ated by SentenceBERT (Section 2.2.3). The as-
sumption made is that semantically similar data
conveys the same type of information to the model.
The examples are selected based on their cosine
similarity to other examples. RP is looped through
and examples are only added to the query-pool if
their cosine similarity to all other points that are
already in the query-pool is lower than the chosen
threshold l. If not enough examples are selected to
get the desired query-pool size, the threshold gets
decreased by 0.01. Algorithm A.4 of the Appendix
shows how this heuristic is added to the AL loop.

2.4.2 Sampling by Uncertainty and Density
(SUD)

Oosten and Schomaker (2014) showed that the dis-
tinction between separability and prototypicality is
important to account for. In their use case of the
SVM, datapoints that had a high margin to the de-
cision boundary were not always representative of
the class prototype. Uncertainty sampling also tries
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to sample examples close to the decision boundary,
but has been shown to often select outliers (Roy &
McCallum, 2001; Tang, Luo, & Roukos, 2002).

Outliers contain a lot of information that the
model has not encountered yet, but this informa-
tion is not necessarily useful. We hypothesise that,
like with RECT described 2.4.1, semantically sim-
ilar sentences provide the same type information.
In that situation, outliers are very far from other
examples in embedding space.

Zhu, Wang, Yao, and Tsou (2008) proposed a
K-Nearest-Neighbor-based density approach called
Sampling by Uncertainty and Density (SUD) to
avoid outliers based on their distance in embedding
space. In this approach, the mean cosine similar-
ity between every datapoint and its K most simi-
lar datapoints is computed. If this is a low value,
it indicates that the datapoint is not very simi-
lar to other values. This value is then multiplied
with the uncertainty and the dataset is sorted based
on this Uncertainty-Density measure. They showed
that this measure improved performance of the ME
classifier. We will explore whether this approach
also works for BERT combined with the embed-
dings computed by SentenceBERT. The adjusted
pseudocode is shown in the Appendix (Algorithm
A.5).

2.5 Experimental Setup†

2.5.1 Data

Two datasets were used to validate and compare
the performance of the different AL implementa-
tions. Table 2.1 shows an overview of the amount
of examples and classes of each dataset.

Table 2.1: An overview of the two datasets used in the
experiments

Dataset Examples Features
SST 11,850 5
KvK 2212 15

The first of the used datasets was the Stanford
Sentiment Treebank (Socher et al., 2013) (SST).
SST exists out of 215,154 phrases from movies with

†The code used for the conducted experiments can be
found at https://github.com/Pieter-Jacobs/bachelor-thesis

fine-grained sentiment labels in the range of 0 to
1. These phrases are contained in the parse trees
of 11,855 sentences. Only these full sentences were
used in the experiments, and the sentiment labels
were mapped to five categories in the following way:

• 0 ≤ label < 0.2: very negative

• 0.2 ≤ label < 0.4: negative

• 0.4 ≤ label ≤ 0.6: neutral

• 0.6 < label ≤ 0.8: positive

• 0.8 < label ≤ 1: very positive

The second dataset that was used consists of the
of descriptions of companies located in Utrecht.
The companies are all registered at the Dutch
Chamber of Commerce, or Kamer van Koophan-
del (KvK) and were mapped to their correspond-
ing SBI-code. The SBI code denotes the sector a
company operates in, as defined by the KvK. The
HTML of the companies websites was scraped and
the meta content that was tagged as the description
was extracted. In nearly all cases, this contained a
short description about what the company was in-
volved in. This dataset will not be shared and is
not available online due to the fact that it was con-
structed as part of an internship at Dialogic.

2.5.2 Evaluation Metrics

To evaluate and compare the performance of the
different AL strategies, three evaluation metrics
were reported: the accuracy, the ROCAUC score
(Bradley, 1997), and an altered version of the defi-
ciency metric proposed in Zhu et al. (2008).

As both datasets had more than two features,
the ROCAUC score got computed for every pair of
class-labels and then the weighted average of these
scores was taken.

The variant of deficiency that was used is shown
in Equation 2.5, in which n denotes the amount of
accuracy scores, acc(R) denotes the accuracy of the
reference strategy and acc(C) the accuracy of the
strategy to be compared to this reference strategy.
Instead of using the accuracy that was achieved
in the final AL round like Zhu et al. (2008), we
use the maximal achieved accuracy. This accounts
for the fact that the last achieved accuracy in a
classification task is not necessarily the best while
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still returning a metric which provides a summary
of the entire learning curve. A value of <1 indicates
a better performance than the REF strategy wheras
a value of >1 indicates a worse performance.

DEF (AL,R) =

∑n
t=1(max(acc(R))− acct(C)∑n
t=1(max(acc(R))− acct(R))

(2.5)

2.5.3 Experiments

The goal of the experiments was to answer the ques-
tion of whether overall labeling effort could be re-
duced through making use of AL. We split this into
the following three sub-questions:

1. Does AL achieve better performance with less
data when compared to random sampling?

2. What is the relation between query-pool size q
and the achieved performance?

3. Do the proposed heuristics yield improved
performance when compared to a basic
uncertainty-based AL strategy?

The statistical setup used for the experiments
can be found in Table 2.2. The setup for SST was
based on the proposed setup in Socher et al. (2013).

Table 2.2: The statistical setup used for both datasets.
The percentages used are relative to the full dataset
size.

Dataset Seed U Dev Test
SST 594

(5%)
7951
(67%)

1101
(9%)

2210
(19%)

KvK 111
(5%)

1659
(75%)

221
(10%)

1659
(10%)

To reiterate, the following AL strategies were im-
plemented:

1. Variation Ratio (Section 2.3.1)

2. Predictive Entropy (Section 2.3.2)

3. BALD (Section 2.3.3)

4. RET (Section 2.4.1)

5. RECS (Section 2.4.1)

6. SUD (Section 2.4.2)

To answer subquestion 1, these strategies were com-
pared to the performance of random sampling us-
ing a q of 1% of the dataset. For subquestion 2,
the three query functions were be compared across
three q: 0.5%, 1% and 5% of the dataset size. Fi-
nally, to be able to answer subquestion 3, RET,
RECT and SUD were compared with a q of 1%.
As RET, RECS and SUD were meant as additions
to general problems of uncertainty-based AL, they
were only tested for the variation ratio query func-
tion. To make the results more generalisable, all the
experiments mentioned above were run three times.

Moreover, to test the assumption of the RECT
strategy, we measured whether there was a rela-
tion between how the model softmax predictions
changed towards the one-hot vector of the actual
label and the cosine similarity to the datapoint that
was trained on. The relationship was quantified by
means of Kendall’s τ between the ranking of the ex-
amples based on which one had the largest change
in KL divergence after training on the top example
and the ranking of the examples based on cosine
similarity to the example being trained on.

2.5.4 Hyperparameters

An overview of all hyperparameters can be found in
2.4. Both dropout rate and l were chosen based on
a grid search across both datasets. The amount of
stochastic forward passes T was based on Ein-Dor
et al. (2020) and was set to 10 across all exper-
iments. Larger values up to 100 were tested, but
lead to much larger training times and little im-
provement on the average accuracy or the average
ROCAUC score and were thus deemed to lead to
a respectively larger computational cost, especially
for larger datasets, without a corresponding gain in
performance.

Early stopping was applied on each training
phase of the AL loop. The amount of epochs used
for each dataset can be found in Table 2.3. The
model that got the lowest validation loss across all
epochs was used for evaluation and to compute the
uncertainties. Note that in a normal AL setting,
validation sets are usually not available due to the
labelling effort required and this strategy would be
less feasible.

The Adam algorithm (Kingma & Ba, 2015) was
used for optimization and its learning rate was
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Table 2.3: The amount of epochs used for early stopping
for the different datasets.

Dataset # Epochs
SST 15
KvK 25

tuned based on the CLR method (Smith, 2015).
The batch size was based on the fact of it being
the best performing computationally feasible batch
size out of the tried batch sizes (32, 64, 128, 256).
The betas and ε were set to their default values.

The size of RP was chosen arbitrarily. We leave
the optimization of this parameter to future re-
search.

Finally, Principle Component Analysis was tried
for dimension reduction to determine whether re-
ducing dimensions would result in better class-
separability classes. For every datapoint in the full
dataset, the classes of the ten most similar data-
points (based oncosine similarity) were determined.
The number of same-class datapoints within these
ten was then averaged across all datapoints and
used to to decide what dimensionality was to be
used.

Table 2.4: The hyperparameters and their correspond-
ing values

Parameter Value
Dropout-rate 0.2
T 10
l 0
β1, β2 0.9, 0.999
ε 1 * 10−8

Learning rate 2 * 10−5

Batch size 128
RP size 1.5*q
embedding dim 768

3 Results‡

This section will go onto visualise and describe the
achieved results for all three experiments described
in 2.5.3. Note that for all figures, the results were
averaged over three runs with the error bars show-

‡No ROCAUC score was reported for the KvK dataset,
as it ended up being undefined a large number of times due
to only one class getting sampled in evaluation batches.

ing one standard deviation. Furthermore, all defi-
ciencies were rounded to two decimal places.

3.1 Active Learning

Figure 3.1 shows how the query functions per-
formed on the KvK dataset. All query functions

Figure 3.1: The achieved test accuracy on the KvK
dataset by random sampling and the uncertainty-based
query functions. The points shown are those at every
5th interval.

outperform random sampling when the labeled
dataset is less than 200 examples large. After this,
the performance of predictive entropy drops, only
to reach its maximal accuracy of 40% at around
1300 labeled examples. BALD continues to outper-
form random sampling up until the last 200 exam-
ples while variation ratio starts performing equally
to random sampling from about 1300 labeled ex-
amples. Another important insight is that varia-
tion ratio reaches close to maximal performance at
about 800 labeled examples.

Figure 3.2 shows how random sampling and the
implemented query functions performed on the SST
dataset. When L reaches a size of about 3000, both
predictive entropy and BALD start to outperform
random sampling on ROCAUC score by a margin
which falls outside of the 1 standard deviation. The
difference gets largest at a size of about 6500, which
is also where we see BALD and variation ratio out-
perform random sampling both on ROCAUC score
as well as test accuracy.

Finally, the deficiencies shown in Table 3.1 show
a positive result (< 1) for all query functions except
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for predictive entropy for the KvK dataset. BALD
has the lowest deficiency for both datasets.

(a)

(b)

Figure 3.2: The achieved test accuracy (a) and RO-
CAUC score (b) on the SST dataset by random sam-
pling and the uncertainty-based query functions. The
points shown are those at every 5th interval.

Table 3.1: The deficiencies of the uncertainty-based
query functions. Random sampling was the reference
strategy.

Dataset VR PE BALD
SST 0.95 1.01 0.89
KvK 0.67 0.9 0.64

3.2 Scaling

Figure 3.3 shows the performance of variation ratio
across different q when used on the KvK dataset. In

Figure 3.3: The achieved test accuracy across different
query-pool sizes on the KvK dataset. The points shown
of the lines representing the query pool sizes of 0.1%
and 0.5% are respectively those at every 10th and 5th
interval.

the range of 700 to 1300 examples, variation ratio
with a q of 5% has a worse performance than the
other q. This difference in performance is highest
at about 1200 labeled examples. The q of 0.5% and
1% achieve similar performance with the accuracy
scores always staying within one standard deviation
of each other.

Figure 3.4 shows the performance of the differ-
ent q on the SST dataset. The different q all achieve
similar performance in terms of both accuracy and
ROCAUC score. Only the q of 0.5% manages to
outperform the other q in terms of accuracy at
about 5000 labeled examples.

The deficiencies for the different q across both
datasets are shown in Table 3.2. For the SST
dataset, the q of 5% had a lower deficiency across
the learning curve whereas the q of 0.5% shows
a relatively high deficiency. For the KvK dataset
however, we see that the q of 5% has a relatively
high deficiency when compared to the similarly per-
forming q of 0.5% and 1%.
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Table 3.2: The achieved deficiencies by the different q
for the different datasets. A q of 1% was the reference
strategy.

Dataset 0.5% 5%
SST 1.65 0.62
KvK 0.91 1.33

(a)

(b)

Figure 3.4: The achieved test accuracy (a) and RO-
CAUC score (b) on the SST dataset by using the vari-
ation ratio query function with different q. The points
shown of the lines representing the query pool sizes of
and 0.5% and 1% are respectively those at every 10th
and 5th and interval.

3.3 Heuristics

Figure 3.6 shows the performance of using variation
ratio with heuristics together with the performance

of solely using variation ratio on the KvK dataset
(this is the same run shown in Figure 3.2.

Figure 3.5: The achieved test accuracy on the KvK
dataset by the different heuristics. The points shown
are those at every 5th interval

Both RET and RECT show no significant im-
provement over solely using variation ratio. The
same can be gathered from the results of the SST
dataset shown in Figure 3.6, were their accuracy
scores stay within one standard deviation for the
entire learning curve.

Moreover, Table 3.3 shows that the average
Kendall’s τ is around 0 with a relatively large stan-
dard deviation. This indicates that there is no re-
lationship between the compared rankings.

Table 3.3: The mean and the 1 standard deviation range
of Kendall’s τ from the described ranking experiment
across the two datasets. Both measures were rounded
to two decimal places.

Dataset Mean σ
SST 0.14 0.33
KvK 0.02 0.47

Lastly, SUD shows a worse performance for both
the SST and KvK datasets. For the SST dataset,
this decline in performance is seen at around 6000
labeled examples as well as from 7500 labeled exam-
ples and onwards. For the KvK dataset, it occurs
between 200 and 400 labeled examples as well as
between 800 and 1100 examples. The deficiencies
shown in Table 3.4 also show high values for SUD
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across both datasets.

Table 3.4: The achieved deficiencies by the different
heuristics for the different datasets. Variation ratio was
the reference strategy.

Dataset RET RECT SUD
SST 1.02 1.05 1.23
KvK 0.98 0.96 1.33

(a)

(b)

Figure 3.6: The achieved test accuracy and ROCAUC
score on the SST dataset by the different heuristics.
The points shown are those at every 5th interval.

4 Discussion

The goal of this research was to find out whether
Active Learning (AL) could be used to reduce la-
beling effort while at the same time maintaining

similar performance to a model trained on a full
dataset. To achieve this, the performance and scal-
ability of different AL query-strategies was tested
for the state-of-the-art NLP model: BERT.

4.1 Conclusions

The results showed that uncertainty-based AL can
provide improved performance over random sam-
pling for cut-down datasets. This difference was
not consistent throughout the whole training curve
though: there were specific points at which AL out-
performed random sampling and others at which
it achieved similar performance. Unfortunately, the
results found for the KvK dataset show that the
found improvement can diminish as query-pool
sizes get larger. Moreover, the two proposed heuris-
tics aimed at improving scalability did not help
in improving performance for either dataset and
the heuristic aimed at avoiding outliers even re-
sulted in worse performance. An unexpected result
was found in that the assumption that semantically
similar data conveyed the same type of information
did not hold according to the conducted ranking
experiment.

From the above, we conclude that uncertainty-
based AL with BERTbase can be used to decrease
labeling effort. This corresponds to what was con-
cluded by Grießhaber, Maucher, and Vu (2020). We
also conclude that its scalability is limited, as there
can be an inverse relationship between query-pool
size and performance.

When looking at the bigger picture, we showed
that AL can still provide an improvement in per-
formance over random sampling for large datasets.
Unfortunately, the scaling problem could prove to
be detrimental to AL being applicable to real world
problems. This being due to the fact that label-
ing with small query-pool sizes will take a tremen-
dous amount of time and computation for larger
datasets. One might have to weigh the cost of
performance against the cost of computation and
longer waiting times for the oracle in between the
moments he gets to label data. Additionally, the im-
provement of performance of AL with BERT is lim-
ited when compared to what it achieved for older
NLP models (Roy & McCallum, 2001; Tang et al.,
2002; Zhu et al., 2008) and even more so when com-
pared to image classifiers (Drost, 2020; Gal et al.,
2017; Houlsby et al., 2011). Performance did show
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to increase more when used on the smaller dataset.
A possible explanation for this is that BERT is pre-
trained on a large amount of data and that it only
needs fine-tuning for achieving good performance
on a specific task. Transfer learning models (Gupta,
Thadani, & O’Hare, 2020) like BERT have the abil-
ity to perform well on new tasks with just a limited
amount of data. The power of this few-shot learn-
ing also became apparent on a dataset which we
decided not to use. Here, BERT was able to get a
low validation error on the seed alone, while at the
same time having a training accuracy of 100%.

4.2 Limitations

Regrettably, there were some flaws in the method-
ology which could have had an impact on the gener-
alizability and the reliability of the results. One of
these being that, due to computational constaints,
only the first sentence of texts was used. There were
datapoints where the first sentence did not contain
any clear indication of its label. Take for example
the following description from the KvK dataset:

”Hi, I’m Barbara Goudsmit. Welcome to my
woven world! I am a passionate hand weaver from
the Netherlands who loves creating patterns and

bringing them to live on my 8-shaft loom.”

This type of data could have resulted in the net-
work learning suboptimal mappings, which could in
turn have had an influence on the performance of
AL. Another limitation could be the fact that Sen-
tenceBERT was not pretrained on the task-specific
labels before assigning embeddings to them. It was
found that retraining SentenceBERT on the labeled
dataset L did not improve the amount of same-class
data being the closest neighbors. This, however, is
just an indication of the fact that training Sentence-
BERT would not improve the embeddings. It could
still be the case that similar examples would get
closer in embedding space in a way that could im-
prove the performance of RECT and SUD (Sections
2.4.1 and 2.4.2).

Lastly, only one seed size (5% of the dataset size)
was tried across all experiments. One could argue
that this does not show the robustness of the tested
AL approaches and that smaller seed sizes should
have been tried in the spirit of getting AL to decide
what data should be used from an earlier point.

4.3 Future Research

This work focused on classification tasks. A future
direction could be to investigate the influence of AL
on BERT its performance in the context of regres-
sion tasks and to also examine how the proposed
heuristics perform in that type of task.

Moreover, instead of using BERTbase, more re-
cent BERT variants, like for instance RoBERTa
(Liu et al., 2019), could be tested to see whether
AL still outperforms the random sampling bench-
mark.

Furthermore, the used query functions were
mostly developed for and used in computer vi-
sion. It could prove fruitful to research query func-
tions aimed at text classification or at the fact that
BERT is a pretrained model.

Another important problem for reducing labeling
effort in a real-world setting would be to research
ways of deciding when the labeling process is to
be ended. In this study, we ran the AL algorithms
until the full dataset was labeled, but in a non-
research setting one would want to know when a
good approximation of the full dataset is reached
to then be able to quit labeling data.

Lastly, an important direction for future work
could be to try and make AL more scalable. This
could be done through making larger query-pool
sizes more viable. One suggestion for this would
be to try and improve the proposed heuristics by
trying different ways of creating the sentence em-
beddings.

We hope that the proposed algorithms, results,
and conclusions of this paper provide a good start-
ing point for the mentioned future studies.
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A Algorithms

Algorithm A.1 The general AL loop.

Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the untrained classifier
f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier f(x; θ)

1: n← Desired length of L
2: q ← Query-pool size
3: Q(x)← Query Function
4: while L length < n do
5: Retrain f(x; θ) on L
6: Sort U based on Q(U)
7: Let Oracle assign labels to Uq

0

8: Insert Uq
0 into L

9: Remove Uq
0 from U

10: end while

Algorithm A.2 The AL loop with MCD.

Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the untrained classifier
f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier f(x; θ)

1: n← Desired dataset length
2: q ← Query-pool size
3: Q(x)← Query Function
4: T ← Number of SFP’s
5: while L length < n do
6: Retrain f(x; θ) on L
7: P ← ∅
8: for t = 0, ..., T do
9: insert f(U ; θt) into P

10: end for
11: Sort U based on Q(P )
12: Let Oracle assign labels to Uq

0

13: Insert Uq
0 into L

14: Remove Uq
0 from U

15: end while
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Algorithm A.3 The AL loop with Redundancy Elimination by Training (RET).

Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the untrained classifier
f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier f(x; θ)

1: n← Desired dataset length
2: r ← Redundancy-pool size
3: q ← Query-pool size
4: T ← Number of SFP’s
5: Q(x)← Query Function
6: while L length < n do
7: Retrain f(x; θ) on L
8: P ← ∅
9: for t = 0, ..., T do

10: insert f(U ; θt) into P
11: end for
12: Sort U based on Q(P )
13: U ← ∅
14: queried← 0
15: while queried < q do
16: for t = 0, ..., T do
17: insert f(RP; θt) into U
18: end for
19: i← argmin(U)
20: Let Oracle assign label to Ui
21: Train f(x; θ) on Ui
22: Insert Ui into L
23: Remove Ui from U
24: queried← queried+ 1
25: end while
26: end while
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Algorithm A.4 The AL loop with Redundancy Elimination by Cosine Similarity (RECS).

Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the untrained classifier
f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier f(x; θ)

1: n← Desired dataset length
2: u← Redundancy-pool size
3: q ← Query-pool size
4: l← Cosine similarity threshold
5: T ← Number of SFP’s
6: Q(x)← Query Function
7: Cos(x, y)← Cosine similarity between x and y
8: while L length < n do
9: Retrain f(x; θ) on L

10: P ← ∅
11: for t = 0, ..., T do
12: insert f(U ; θt) into P
13: end for
14: Sort U based on Q(P )
15: U ← ∅
16: while Ulength < q do
17: for i = 0, ..., u do
18: if Cos(Ui, UUlength

0 ) < l then
19: insert Ui into U
20: end if
21: end for
22: l← l − 0.01
23: end while
24: Reset l to initial value
25: Let Oracle assign labels to U
26: Insert U into L
27: Remove U from U
28: end while
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Algorithm A.5 The AL loop with SUD.

Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the untrained classifier
f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier f(x; θ)

1: n← Desired dataset length
2: q ← Query-pool size
3: k ← Amount of similar examples to compute density with
4: T ← Number of SFP’s
5: Q(x)← Query Function
6: Cos(x, y)← Cosine similarity between x and y
7: while L length < n do
8: Retrain f(x; θ) on L
9: P ← ∅

10: E ← ∅
11: for t = 0, ..., T do
12: Insert f(U ; θt) into P
13: end for
14: for example in U do
15: similar ← Sort(Cos(example, U))

16: Insert
sum(similark0 ))

k into E
17: end for
18: Sort U based on Q(P∗E)
19: Let Oracle assign labels to Uq

0

20: Insert Uq
0 into L

21: Remove Uq
0 from U

22: end while
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