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Abstract

Introduction The capture of light by molecular antennas and the subsequent energy transfer are
processes widely spread in nature and artificial light harvesting (LH) systems. This makes photosynthesis
a fundamentally interesting topic to study. Normal plants are actually not so efficient when it comes
to capturing light, but green sulphur bacteria and purple nonsulphur bacteria have developed light
harvesting antenna’s that make them super efficient with capturing light.

Upto now, the connectivity within the natural light harvesting networks in bacteria is typically
studied with two dimensional electronic spectroscopy (2DES), which actually has a very low signal
to noise ratio. Jennifer P. Ogilvie recently invented fluorescence detected two dimensional electronic
spectroscopy (FD-2DES), which has a significantly higher signal to noise ratio. It must be noted that
the results of both 2DES and FD-2DES images are hard to interpret, but since FD-2DES is a new
technique, there is still a lot to learn and discover.

Aim. Since the FD-2DES technique is new, I developed a theoretical model to predict FD-2DES
spectra. The theoretical model is meant to be a toy model, so that we can play with various variables,
beyond what can be measured with the FD-2DES spectroscopy technique. Finally, the toy model is
exploited to predict a wide scale of spectra, which ideally would mimic the light harvesting systems
from those which are used in low light conditions, to the light harvesting systems which are used under
high light conditions.

Conclusion. The model predicts that there is a negative correlation between the cross peak
intensity and the concentration of LH1. It also predicts that the upper and lower diagonal peaks should
be as intense, irrespective of LH1 concentration. This is something that could be measured.

Discussion. The purple non-sulphur bacteria are known to be able to adjust their light harvesting
antenna, from optimal under low light conditions (a dense network with loads of LH2), to optimal for
high light conditions (a thin network with more LH1). This is also what I tried to model. However,
while transitioning from low light to high light conditions, LH2 changes itself too. This is something
which wasn’t taken into account in the current model.
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Chapter 1

General Introduction

1.1 Introduction

Photosynthesis in normal plants, like grass, actually isn’t that efficient, it only has an energy efficiency
of 3∼6%[1]. For grass, this is not a problem, because there is plenty of light anyways.

Not all organisms have the luxury of growing up in a sun-rich environment. For example, green
sulphur bacteria live on bottom of the sea. They don’t live of light from the sun (which only penetrates
100∼200 meter into the ocean), but from the glow of hydrothermal vents. Because the light of these
hydrothermal vents is so dim, it pays off to create a very efficient light harvesting system for low light
intensity conditions[2]. The antenna networks of these green sulphur bacteria is so efficient, that they
can survive with 1% of full moonlight intensity light[3].

Since the discovery of the antenna networks in green sulphur bacteria, scientists found the light
harvesting antenna systems in purple non-sulphur bacteria too (e.g. Rhodoblastus acidophilus[4, 5],
R. sphaeroides[6] and Rhodospirillum photometricum[7]). Although this may sound like convergent
evolution, the photo systems in purple and green bacteria actually have a common ancestor[8].

Scientists are excited to study how these light harvesting systems work exactly, and ideally want to
compare the exciton dynamics in many different species. However, there is one problem: these bacteria
are used to low light conditions, and they die very fast under normal daylight, not to mention the lasers
the scientists intent to use for their experiments.

Fortunately, Jennifer Ogilvie has recently discovered a new technique which has a high signal to
noise ratio at relatively low laser light intensities: fluorescence detected two dimensional electronic
spectroscopy (FD-2DES)[9].

In this master thesis, I describe the development of tools capable of simulating the exciton dynamics
on light harvesting (LH) antenna networks in these kind of systems.

The light harvesting complexes are used to capture light for photosynthesis. Several colaborating
light harvesting complexes together form an antenna network, see Figure 1.1.
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Figure 1.1: (A) AFM topograph of the native Rhodospirillum photometricum photosynthetic mem-
brane. (B) and (C) are schematic representations, with LH1 in blue (with red reaction center) and LH2
in green. Note that LH1 typically has 7 neighbors and LH2 typically has 6 neighbors. Reprinted with
permission from Ref. [7].
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1.1.1 The LH1/LH2 system

The structural model of the LH2 complex is shown in Figure 1.2. Inside this complex, we find molecules
that absorb light near 800 nm (B800) and molecules that absorb near 850 nm (B850).

Figure 1.2: Structural model of the LH2 complex. An exciton on one of the 9 B800 molecules is
localized, but it can be transferred to one of the 18 B850 molecules. An exciton on the B850 molecules
is delocalized over all 18 B850 molecules [10]. Reprinted with permission from Ref. [11].
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An excited state has many degrees of freedom in an antenna network. The key-processes are high-
lighted in Figure 1.3, however, there is a lot of discussion about the rates[10, 7, 11], and therefore I will
use different rates than those indicated in this Figure. Also note that this Figure has the wrong number
of B850 molecules.

Figure 1.3: Energy transfer-lifetimes (inverse of the rates). Note that this Figure has multiple issues:
there should be 18 B850 molecules instead of 9 (recall Figure 1.2 on the preceding page). Excitons on
B800 can be seen as localized, and excitons on on B850 and B875 can be viewed as delocalized[10]. The
rate constant between LH1 and LH2 will be pulled from Ref. [7]. Figure reprinted from Ref. [11] with
permission from Ref. [12].

1.2 Double sided Feynman diagrams

In this master thesis, we will explore different processes that occur in light harvesting (LH) antenna
networks. In Chapter 3, these processes are described by double sided Feynman diagrams1. For learning
more about these Feynman diagrams, I refer to the textbooks of Boyd[13], Hamm and Zanni[14]. For
those who ware not familiar with double sided Feynman diagrams, these are introduced briefly here.

In the language of double sided Feynman diagrams, we describe the system by states. We follow
both the bra (〈b|) and the ket (|a〉). If the bra and the ket are in the same state (|a〉〈b| with a = b),
then the system is in a state in which the electron density is stationary. If a 6= b then the system is
in a state in which the electron density oscillates. These oscillating states can either absorb or emit an
electromagnetic wave, or the state may lose it’s vibration due to dephasing. Depending on the number
of interactions, we can use different spectroscopic techniques, see next section (section 1.3).

The first state is always a stationary state. For convenience, I will take the first state to be the
ground-state, which, in short-hand-notation is indicated by |00|. From there on, the idea is that the
system undergoes interactions with light pulses that come into or come out of the system. Each light

1 Small disclaimer: Since the double sided Feynman diagrams are the only Feynman diagrams I use in this thesis, so I
might eventually abbreviate it to Feynman diagrams.
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pulse is indicated by an arrow. Eq. 1.2.1 gives a few examples.

Absorption

�00 11 �
10 10

� 00 � 00

a〉〈b a〉〈b

SFG
00
�

�
20

10
� 00

a〉〈b

Raman

�00

10

�
� 00

10
� 00

a〉〈b

(Eq. 1.2.1)

Absorption spectroscopy is linear spectroscopy, and is discussed in section 1.3.1. Adding a third pulse
gives us sum frequency generation (SFG), which includes a stimulated emission step. This stimulated
emission step is also used in conventional two dimensional electronic spectroscopy (2DES), see sec-
tion 1.3.2. Adding a forth pulse unlocks a whole new realm of spectroscopies, like Raman, but also
fluorescence detected two dimensional electronic spectroscopy (FD-2DES), see section 1.3.4.

In the above examples, all interactions (arrows) are on the ket (|a〉). For one moment, we will leave
the bra (〈b|) out of consideration, and tilt the diagrams 90° to create Figure 1.4.

What we are essentially doing is, we are looking at how the density matrix ρ changes under the
influence of k interactions.

Figure 1.4: The density matrix ρ changes upon each interaction Linteract, and propagates according to
eiLfr ·tk .

If we look from a mathematical perspective, need to act with each of the operators on the electron
density ρ.

d

dt
ρ̂(t) = −iLρ̂(t) (Eq. 1.2.2)

= − i
~

[H, ρ(t)] + Γρ(t) (Eq. 1.2.3)

This equation is solvable if the Hamiltonian is defined. Working it out is done elsewhere[13, 14]. The
conclusion is that this will lead to Lorenzian line shapes. This will be elaborated in Chapter 3.
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1.3 Multidimensional Spectroscopy

Figure 1.5: A two-level system, indicating
a ground state (〈00〉 in Dirac notation, S0 in
Jablonski-diagram notation) and the first excited
state (〈11〉 in Dirac notation, S1 in Jablonski-
diagram notation). The transition from the ground
state to the first excited state are absorption and
emission.

Figure 1.6: Experimental absorption spectrum
(black circles) of the LH2 complex and model (black
dashed). The theoretical model can be decomposed
into contributions from the B850 pigments (red),
B800 pigments (blue), and mixed character states
(green). The experimental spectrum of the laser
pulse is also shown (dashed blue). Reprinted with
permission from Ref. [15]. Copyright 2013 Ameri-
can Chemical Society.

We can measure the Feynman diagrams of section
1.2 (previous page), with ultrafast spectroscopy
methods. Depending on the number of light
pulses or interactions, we can measure absorption,
fluorescence, multidimensional spectroscopy (e.g.
2DES), or even flurescence detected multidimen-
sional spectroscopy (e.g. FD-2DES).

There are many different kinds of multidimen-
sional experiments. In this thesis, we try to pre-
dict and rationalize the results of FD-2DES spec-
tra, a relatively new technique in which 4 laser-
pulses are used., however, we cannot understand
the 4-pulse experiment without understanding the
3-pulse experiment.

1.3.1 Absorption & Fluorescence

Absorption and fluorescence fall under linear spec-
troscopy, but they can also be a step in multidi-
mensional spectroscopy. In order for light to have
a chance of being absorbed, we need to have pho-
tons which are resonant with the states present in
the sample, see Figure 1.5. Therefore, the spec-
trum of the pulsed laser used in multidimensional
spectroscopy is tuned so that it is resonant with
the states in our sample. In Figure 1.6 we see
an example of a laser-spectrum which is used in
an ultra fast spectroscopy experiment, to measure
the kinetics between the B800/B850 bands within
LH2. Also shown are the absorption spectra of
B800/B850; the chlorophores in LH2.

If we were to do a 3-pulse experiment, we
would need to measure the signal of our stimu-
lated emission pulse above λ ≥ 875 nm, else we
would measure a lot of background intensity from
the laser pulse used. Emission of B800 cannot be
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measured, as emission from B800 completely overlaps with the laser spectrum, see Figure 1.6.

1.3.2 2DES: The 3-pulse experiment

In the 3-pulse experiment, three light pulses enter the system at different time intervals, see Figure 1.7.

(a) The 3-pulse train experiment (b) An example of a 2DES spec-
trum

Figure 1.7: The 3-pulse experiment.
(A) The 3-pulse train. The first pulse (black) brings the system in a electronic vibrating state, after
which the electrons are oscillating during t1. The second pulse (red) brings the system in a full excited
state, in which the electrons are no longer rapidly oscillating. The third pulse (blue) brings the system
in a electronic vibrating state again; but this time, we record the signal of this vibrating state (purple).
Figures 1.8 and 1.9 explain the events in t1 and t3 in a more visually attractive way.
(B) When the measured stimulated emission intensity is plotted as a function of ω1 (Fourier transform
of t1) and ω3 (Fourier transform of t3), one obtains a two dimensional electronic spectrum (2DES).

1. The first pulse brings the system in vibration with frequency ω1.

2. The second pulse stops this oscillation by either bringing the molecule/system to the stable ground
state (|00|) or excited state (|11|). Usually the second time delay (t2) is fixed.

3. The third pulse is called the measurement. The third pulse leaves the system in an oscillating
state, which will emit a photon (purple line in Figure 1.7a). This process is also called stimulated
emission. Phase-wise, the electrons could either oscillate in the same phase, or in the other phase,
this gives the difference between rephasing and nonrephasing, better explained on the next page.
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(a) 6 runners start to run.

(b) They run at different speeds.

(c) We observe severe dephasing.

(d) When the second pulse arrives,
the runners stop running; the system
is in a stationary state.

Figure 1.8: All the events
that occur during t1 of Figures
1.7a/1.11a.

The pulse sequence and the transitions within the system are best
described by the double sided Feynman diagrams shown in Eq. 1.3.1.

R
ep
ha

si
ng

 t2
[

GB
�00

10
� 00

�
01

00
�

SE
�00

10
�

11
� 01

00
�
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�11

21
� 11
� 01

00
�

]
t2


(Eq. 1.3.1a)
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EA
�00

21
� 11

10
�

� 00

]
t2


(Eq. 1.3.1b)

When a photon excites a molecule, an electron-hole pair is gener-
ated. This is also called an exciton.

The difference between rephasing and nonrephasing can best be de-
scribed by looking at the system from the perspective of the electron-
hole pairs. If this is difficult, just consider the electron. Picture them
as runners. The first pulse initiates polarization in the sample, after
which the electron-hole-pair starts oscillating. From a quantum me-
chanical point of view, the complex wavefunction starts rotating in the
complex plane. The complex plane can be represented as a complex
unit circle. Lets represent each oscillator with a runner (Figure 1.8a).
The oscillation can visualized as that the runners start running in a
circle. Not every electron is exactly in the same environment, so each
electron will oscillate with a slightly different frequency. This can be
visualized as that the runners have a slightly different running speed
amongst each other, see Figure 1.8. The “start” and “stop” of the referee
are the black and the red pulse of Figure 1.7a/1.11a. The stop-pulse
also indicates the start of t2, after which the runners will start changing
their local environment, after which the resonance frequency changes.
This is indicated by a change of color (compare Figure 1.8d with Figure
1.9a). Note that Figure 1.8 continues in Figure 1.9.
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(a) During t2, runners change color.

(b) For rephasing, the runners run
in the opposite direction.

(c) A bulk polarization reappears!

(d) Around the point t3 = t1, we
sometimes observe a maximum in
bulk polarization.

Figure 1.9: All the events
that occur during t3 of Figure
1.7a/1.11a.

As indicated on page 7, the second time delay (t2) is usually fixed,
but in section 3.2, we will also show an experiment in which t2 could be
varied. This could be done to observe beating patterns, which happens
if two molecules oscillate with a slightly different frequency.

During t2, the electrons change their local environment a bit, which
means that the standard frequency by which they oscillate will change
a bit. This is indicated in Figure 1.9a by the fact that the runners
change color. Note that the runners don’t change position! The posi-
tion (or identity) of the runners is labeled with a number on their chest
(compare Figure 1.9a with Figure 1.8d).

After t2, we have the third pulse (blue pulse of Figures 1.7a/1.11a),
after which the system will be oscillating again.

1.3.3 Distinction between the 3-pulse experiment

and the 4-pulse experiment

In the 3-pulse experiment, the system will be left in the oscillat-
ing state, which by nature will emit photons. Since this oscillating
state was induced by another photon or light pulse, this process is also
called stimulated emission. Another name by which this goes is “the
measurement”, because the system will be emitting photons which we
will collect for our measurement.

In the 4-pulse experiment, we give the system another pulse (see
green line in Figure 1.11a on page 11) at a time at which the bulk
polarization is maximal again. This typically is around t3 = t1, see
Figure 1.9d. After that, the system is allowed to spontaneously emit
photons. t4 isn’t fixed; all photons after the 4th pulse are collected.
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1.3.4 The 4-pulse experiment

In the 4-pulse experiment, we stop the runners after t3. The sample is then left undisturbed, and we
measure the spontaneous emission of photons, see Figure 1.10. The signal-to-noise ratio of Fluorescence
Detected two dimensional spectroscopy (FD-2DES) is remarkably higher than for conventional 2DES,
because the measurement is done in the dark, without background noise of the 3rd pulse.

(a) The 4th pulse stops the oscilla-
tors from oscillating.

(b) Fluorescence of a molecule. (c) Fluorescence of another
molecule.

Figure 1.10: The events during t4 of Figure 1.11. Note that each molecule which spontaneously emits
a photon creates it’s own wiggle in the electric field (purple line), after a distinct t4.

The Feynman diagrams for FD-2DES is shown in Eq. 1.3.2.
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(Eq. 1.3.2a)
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(Eq. 1.3.2b)

We will refer to the Feynman diagrams with 4 laser-pulses (Eq. 1.3.2) again in the Theory chapter
(Chapter 3). In section 3.1, we will discuss the spectral line-shapes which we can observe in FD-2DES

10



experiments. In 3.2, we fill in Eq. 1.3.2 for two molecules; instead of 1 and 2 we will use A or B and A2

or B2 to refer to excited states in different molecules.

(a) The pulse-train for a 4-pulse experiment. (b) Schematic FD-2DES spectrum

Figure 1.11: The 4-pulse experiment.
(A) The 4-pulse train. The first pulse (black) brings the system in a electronic vibrating state, after
which the electrons are oscillating during t1. The second pulse (red) brings the system in a full excited
state, in which the electrons are no longer rapidly oscillating. The third pulse (blue) brings the system
in a electronic vibrating state again; but this time, the signal is just partially rephased (or nonrephased),
see Figure 1.9, until the oscillation is stopped with a fourth pulse (green). The system is now (during
t4 in a properly excited, non oscillating state. At rest, this system will spontaneously emit photons
(indicated by the purple curve). Figures 1.8 and 1.9 explain the events in t1 and t3 in a more visually
attractive way.
(B) When the measured fluorescence intensity as a function of ω1 (Fourier transform of t1) and ω3

(Fourier transform of t3) is plotted, one obtains a fluorescence detected two dimensional electronic
spectrum (FD-2DES).

The signal pattern we get out of a Fluorescence Detected Two Dimensional Spectroscopy (FD-2DES)
experiment, e.g. Figure 1.11b, is still not fully understood. This is the main reason why this thesis
performs the theoretical analysis for the FD-2DES experiment.
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1.4 Outline

Chapter 2 is the methods-chapter, which introduces the Master equations. For each component of the
master equation, an example will be demonstrated, with as final product, a master-equation-matrix for
a dimer. Of course, building these matrices manually would be tedious, therefore I’ve written some code
which automatically generates the master-equation-matrix for any given/generated n ×m-LH-matrix.
The documentation of the code is given in Appendix B, recommended for anyone who would like to redo
these computational experiments.

The simulations spit out photon intensities for each different starting configuration. Unfortunately,
these raw intensities barely make any sense when we try to compare it with an experiment: all intensities
are dependent on how many photons are emitted from the system. Fortunately, experiments also give
frequency information for which the system is sensitive. In order to make the connection between
the diagrams and the measured spectra, we need theory on Feynman diagrams (Chapter 3) before we
can build an equation for the relative intensities of the cross-peaks and the diagonal peaks. When we
calculate this, we will be consider this the results (Chapter 4).
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Chapter 2

Methods: Setting up Python and formulating
the Master equations

This is the methods chapter. Besides the version declarations of Python, this chapter can best be read
as a technical introduction: it will introduce all the exciton dynamics processes that are taken into
account. Each dynamics process is like a small puzzle piece. In the end (section 2.2.5), we bring all
the puzzle pieces together, and we can start building the Master equations. In section 2.2.4 we build
a small test code in Mathematica, for the B800/B850 system within LH2. The results of that section
allow us to generate some numbers for intensity for a doubly excited state, which we can use in our
Theory chapter. This makes the theory a little less dusty, and a little more visual.

2.1 Setup

I’m using Python version 3.6.3[16]. Within Python, I use the numpy package, with version 1.14.3[17].
The two dimensional electronic spectroscopy (2DES) plots of Chapter 3 are made with Mathematica

12[18]. This version of Mathematica is used to perform the simulations on the B800/B850 system in
section 2.2.4.
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2.2 Formulating The Master equations

For this master thesis, the master equations are evaluated. This sounds more complicated than it
actually is. The master equations are a set of equations which model the kinetics of excited states in
our system. In the following section, the master equations is built up, step by step.

Before we start, I will define an example system. Imagine 2 molecules, molecule A and molecule B,
which are close to each other. For each molecule, we can write a probability that the excited state is on
that molecule. If we were dealing with only one exciton, for each molecule we can write the probability
ρ that the exciton on that molecule. Since we will deal with multiple excitons later, we should label the
states. Let’s define these states rightaway:

• AA or A2 (describing the A2 +B0 state),

• BB or B2 (describing the B2 + A0 state),

• AB (describing the A1 +B1 state),

• AG (describing the A1 +B0 state),

• BG (describing the B1 + A0 state),

• GG (describing the A0 +B0 state).

The superscript indicates in which state each molecule is, 0 being the groundstate. We will solve
differential equations with respect to time on these variables. If we call

AG(0) = 1, we mean that on t=0, we have ρ(A) = 1 and ρ(B) = 0 (Eq. 2.2.1a)

BG(0) = 1, we mean that on t=0, we have ρ(A) = 0 and ρ(B) = 1 (Eq. 2.2.1b)

The simulation tracks the probability that the system has evolved from one state to another.
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2.2.1 Fluorescence.

Figure 2.1: Population density accord-
ing to a simulation which only includes
fluorescence. The fluorescence lifetime is
0.680 ns for LH1 and 0.986 ns for LH2[19].

When a molecule is in an excited state, there is a probability
that the molecule spontaneously emits a photon[20]. This
process, also known as fluorescence, takes both the radiative
rate and the nonradiative rate into account as follows:

kF = kR + kNR (Eq. 2.2.2)

The part of the rate equations dedicated to the spontaneous
emission looks as follows:

d(AG)

dt
= − kA→G · AG(t) (Eq. 2.2.3a)

d(BG)

dt
= −

X1 Fluorescence

kB→G · BG(t) (Eq. 2.2.3b)

If we consider molecule A to be LH1, with a fluorescence
lifetime of 0.680 ns, and molecule B to be LH2, with a flu-
orescence lifetime of 0.986 ns[19], the numerical solution for
these differential equations are:

LH1: AG(t) = e−
t

0.680 ns , (Eq. 2.2.4a)

LH2: BG(t) = e−
t

0.986 ns , (Eq. 2.2.4b)

also see plot in Figure 2.1.
Eventually, we will do photon-counting, and we will need to take the radiative rate kR into account.

This is given in literature[10, 19]. For completeness, the Nonradiative lifetime kNR can be calculated as
follows:

kNR = kF − kR =
1

τF
− 1

τR
, (Eq. 2.2.5)

and the results are listed in Table 2.1.

\
Fluorescence
Lifetime τF

Radiative
Lifetime τR

Radiative
Rate kR

Nonadiative
Rate kNR

Ref.

LH2 0.986 ns 10 ns 0.10 ns−1 0.91 ns−1 [19]
LH1 0.680 ns 8.4 ns 0.12 ns−1 1.35 ns−1 [19]

Table 2.1: Values for the LH1/LH2 (non)radiative rates. All numbers were found in Ref. [19].

15



2.2.2 Energy transfer.

(a) Starting from LH1 (molecule A).

(b) Starting from LH2 (molecule B).

Figure 2.2: Exciton population density,
according to a simulation on a LH1-LH2
dimer, with one excited state. The sim-
ulation includes energy transfer as de-
scribed in Eq. 2.2.9, with rates from
Rsp. photometricum[7]. Fluorescence is
included but not visible on this time-scale.

The excited state or exciton can move from molecule A to
molecule B and vise versa, see Eq. 2.2.6:

A + B*
kB→A−−−⇀↽−−−
kA→B

A* + B, or BG
kB→A−−−⇀↽−−−
kA→B

AG (Eq. 2.2.6)

in standard notation. The ratio between the two rates kA→B

kB→A

is dependent on the energy difference between the two energy
levels in the molecules, according to a Maxwell-Boltzmann
distribution,

kB→A
kA→B

=
gA
gB
· e

EB−EA
kBT , (Eq. 2.2.7)

in which gA
gB

is the ratio between the number of molecules A
and B in the system. This is relevant when we do simulations
on the B800/B850 system within LH2; as there are twice as
many B850 molecules than there are B800 molecules (recall
Figure 1.2 on page 3). For now, however, I’ve decided to
only focus on the LH1/LH2 system, and we will take gA

gB
=

1, as the other Light Harvesting complexes will be added
explicitly.
Eq. 2.2.7 is filled in (see Appendix Eq. A.1.3) to give:

kLH1→LH2

kLH2→LH1

= 21.34% (Eq. 2.2.8)

Note that the absolute rate also depends on distance.
The mean energy transfer rates are published in literature,
see Table 2.2.

Adding the energy transfer process to the rate equations, our master equations become as follows:

d(AG)

dt
= Eq. 2.2.3a− kA→B · AG(t) + kB→A · BG(t) (Eq. 2.2.9a)

d(BG)

dt
= Eq. 2.2.3b +

A1→B1

kA→B · AG(t)−
B1→A1

kB→A · BG(t) (Eq. 2.2.9b)

Species LH2→LH1 rate constant LH1→LH2 Reference
Rsp. photometricum 1.5 ps (670± 60 ns−1) 144± 10 ns−1 [7]

Rps. acidophila 3-5 ps (250± 70 ns−1) 53± 14 ns−1 [11]

Table 2.2: Values for LH2 −−⇀↽−− LH1 exciton transfer rate. Calculations are done in Appendix section
A.1 on page 70.
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The differential equations of Eq. 2.2.9, for a LH1/LH2 dimer system, with the numbers of Rsp. photo-
metricum, are solved with Mathematica, and gives Figure 2.2 on the preceding page.

Note that the energy transfer process between two Light Harvesting complexes is Förster Resonance
Energy Transfer (FRET)[21]. The rate (kFRET ) and efficiency (ηFRET ) of any FRET process is strongly
dependent on distance, because it is dependent on the dipole-dipole coupling between the donor and the
acceptor. The electric fields of a dipole scale as r−3, and therefore, FRET scales as (r−3)

2
= r−6.

ηFRET =
kFRET

kFRET + kF +
∑
ki

=
1

1 +
(

r
R0

)6 ↔ kFRET (r) ∝ kFRET (R0)

r6
(Eq. 2.2.10)

There are a lot more experiments published on the energy transfer process within LH2[22, 23, 24, 15]
than there are known experiments between one LH1 and one LH2 light harvesting complexes. There
is no experimental rate between two LH2 molecules, however, in 2014, Danielle E. Chandler and Klaus
Schulten et al did manage to determine these transfer rates using Hierarchical equations of motion
(HEOM) calculations[7], see Figure 2.3.

Figure 2.3: (A) Exciton transfer time as determined by Hierarchical equations of motion (HEOM)
calculations performed in ref. [7]. Reprinted with permission from Ref. [7].
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2.2.3 Nonlinear processes (Exciton annihilation).

Before I storm off with nonlinear optics, it’s good to point out that nonlinear optics is only possible in
systems with more than two states. In a real system with more than one electron, there is an infinite
number of states, but this is over-kill, as most of the states are not optically relevant. For the light
harvesting complexes, we typically only look at the ground state and the first excited state, but we now
need at least one more state. There is not so much information available on the other energy-levels of
the system, and therefore I assumed that the system only consisted of 3 energy-levels: ground state (0),
first excited state (1) and second excited state (2), in which the second excited state has twice as much
energy as the first excited state (ω02 ≈ 2ω01), similar to Figure 2.4. In reality, ω12 > ω01, because there
is a bit of anharmonicity2, but this will be discussed further discussed in section 3.2.3.

Figure 2.4: A 3-level-system with an example double sided Feynman diagram. The states |0〉, |1〉 and
|2〉 resonate with frequencies 0, ωA1 and ωA2

Typically, a nonlinear process occurs when there are two or more photons interacting with a crystal at
the same time. These interactions are indicated by the ∼∼∼∼∼ in the right-half of Figure 2.4. However,
as we work with a medium which is pretty good at absorbing photons and temporally storing this excited
state energy as a exciton, we could also take a look at the situation where there are more excitons instead
of more photons.

These double sided Feynman diagrams are further explained and described in detail in Chapter 3
because they can tell us many things about how the two-dimension electronic spectroscopy (2DES)

2 The anharmonicity constant is measured in Fig. 4a of Ref. [10] and is approximately 233 cm−1.
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graphs look like.

When there are two (or more) excitons in a network of light harvesting molecules, there is a prob-
ability that the two excited states end up on the same molecule, generating a higher excited state on
one molecule. When the energy levels are organized as in Figure 2.4, we will obtain the second excited
state. For light harvesting systems, the second excited state is short lived[10], which basically means
that this results in exciton annihilation. This process is outlined in Figure 2.5.

(a) When a photon is absorbed, an excited state is
generated. The excited state (or exciton) migrates over
the LH2 network.

(b) Another exciton is generated by absorption of a
second photon. The two excitons keep migrating over
the LH2 network, until they encounter each other on the
same LH2 unit.

(c) When the two excited states
(∣∣1〉+

∣∣1〉) end up on
the same LH2 unit, a higher excited state

∣∣2〉 is gener-
ated.

(d) The higher excited state
∣∣2〉 is unstable and very

rapidly decays to the first excited state
∣∣1〉 without emit-

ting a photon. The net effect is that one single excited
state

∣∣1〉 is annihilated.
Figure 2.5: Key-processes which cause nonlinear optic effects in our system, where instead of multiple
photons in the same femtosecond hitting the same light harvesting complex, we have multiple excitons.

As mentioned on page 14, for a dimer, we have 6 different states. The challenge is now to write out
the pathways how one state is converted to the other state.
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Figure 2.6: The kinetic model for the A/B dimer, in which
the key conversion rates between the states are indicated. The
numbers filled in are for A and B being LH1 and LH2 respec-
tively. For energy transfer, took the numbers of Rsp. photo-
metricum, see Table 2.2[7]. For fluorescence, I took the num-
bers of Table 2.1[19].

When we have both molecule A and
B in the excited state, one excited state
can hop from A to B with rate kA→B,
or from B to A with rate kB→A. These
rates (kA→B and kB→A) are tabulated in
Table 2.2 on page 16. When one exciton
hops from one excited light harvesting
complex to the other excited light har-
vesting complex, the 2nd excited state
is generated on that other light har-
vesting complex. This could either be
A1 + B1 → A2 + B0 or A1 + B1 →
A2 +B0.

Another process which is present, is
fluorescence. Fluorescence can either
occur from the A1 or B1 state, leaving the BG or AG states behind. It must be noted that, for a
dimer, the fluorescence pathway is less dominant than second-excited state generation, e.g. see Figure
2.6, where the exciton diffusion pathways are at least 2 orders of magnitude greater than the fluorescence
pathways.

d(AB)

dt
= −(kA→A2 + kB→B2

X2 Formation

+ kA→G + kB→G
X1 Fluorescence

) · AB(t) (Eq. 2.2.11)

That already makes the first differential equation that needs to be solved. Other differential equations
are for the 2nd excited state:

d(A2)
dt

= kA→A2 · AB(t)− (kA2→A + kA2→G)A2(t) (Eq. 2.2.12a)

d(B2)
dt

=

X2 Formation

kB→B2 · AB(t)−
X2 Annihilation

(kB2→B + kB2→G)B2(t) (Eq. 2.2.12b)

and for the 1st excited state:

d(AG)

dt
= Eq. 2.2.9a−kA→G · AG(t) +kB→G · AB(t) +kA2→AA2(t) (Eq. 2.2.13a)

d(BG)

dt
= Eq. 2.2.9b

X1 Fluorescence

−kB→G · BG(t)

Y1 Fluorescence

+kA→G · AB(t)

X2 Annihilation

+kB2→BB2(t) (Eq. 2.2.13b)

For completeness, the full groundstate (GG) is expressed as:

d(GG)

dt
=

X1 Fluorescence

kB→G · BG(t) + kA→G · AG(t) +���
���

���
���

��XXXXXXXXXXXXXX

X2 Annihilation

kA2→GA2(t) + kB2→GB2(t) (Eq. 2.2.14)
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The only number I could find in literature for the rate at which the annihilation process takes place,
is for the LH2 complex of Rhodobacter sphaeroides[10]:

kB2→B =
1

0.59 ps
=

1

0.00059 ns
= 1695 ns−1, (Eq. 2.2.15)

but it’s the only number known, so we will assume that this number is also representative for LH1 and
for other species (e.g. acidophila strain 10050). We also assume that kA2→G = kB2→G = 0 (hence the
red cross in Eq. 2.2.14). This assumption is supported by the experiments performed in Ref. [25].

The result of a simulation of a dimer, in which both LH1 and LH2 are excited is shown in Figure
2.7.

Figure 2.7: The first 10 picoseconds of the population density, according to a simulation of a LH1 -
LH2 dimer. In this simulation, we start with an initial configuration in which both LH1 and LH2 hold
one excited state. This model also incorporates kinetic equations Eq. 2.2.11 to Eq. 2.2.14. The first 10
picoseconds show how the population changes due to the nonlinear processes. After that, fluorescence
takes over as the dominant process. After 10 nanoseconds, we obtain that only state populated is the
ground state (GG). Figure 3.10a on page 35 shows a similar simulation, but then upto 10 nanoseconds,
and for the B800/B850 system within LH2.
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2.2.4 Building a Mathematica simulation for B800/B850 within LH2

Figure 2.8: The B800/B850 system
within LH2. Reprinted from Ref. [10].

Figure 2.7 was made using Mathematica. The same code
used for the LH1/LH2 dimer could also be used (with a
few modifications) to simulate the B800/B850 bands within
LH2. Because the LH2 system can be considered as a closed
system, it is easier to understand, and therefore these sim-
ulations are an easy introduction to the bigger simulations
explained in the next section (Section 2.2.5).

In the Mathematica notebook, I use DSolve or NDSolve,
depending on whether we want an equation or a numerical
result. Both functions use the same differential equations
defined throughout this section (Formulating The Master
equations, starting on page 14) but with different settings
for exciton dynamics. The exciton transfer rate is different
because the energy of the B850/B800 bands is different from
the B850/B875 bands. The transfer rates used here are tabulated in Table 2.3.

Species B800→B850 rate constant B850→B800 Reference
Rb. sphaeroides 0.7 ps (1430± 100 ns−1) 24± 2 ns−1 [22] (via [26])

Rps. acidophila 10050 0.9 ps (1110± 60 ns−1) 19± 1 ns−1 [23, 24] (via [26])

Table 2.3: Values for the B800 −−⇀↽−− B850 exciton transfer rate.

We will be using the fluorescence lifetime for LH2 tabulated in Table 2.1 on page 15. The reason why
there is no separate lifetime for the B800 and B850 bands is because the dynamics within the LH2 is
faster than exciton decay, so the separate decay rates are simply impossible to measure experimentally.

The Mathematica simulation is available as a download3. The output of this notebook used through-
out this entire thesis. I will refer to this section when use of the Mathematica code was made.

3 Download link: https://www.dropbox.com/s/5zpv9bcnal4er7t/Teun%20Zijp%20-%20Master%20research%

20Mathematica%20-%20Simulating%20LH1%20vs%20LH2%20and%20B850%20vs%20B800%202DFES%20and%

20replotting%20old%20figs.nb?dl=0
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2.2.5 Building The Master equations

Now that I’ve described all relevant kinetic processes in a dimer, we can start writing out the Master
equation. The Master equation can be expanded so that it describes the processes in a network of many
molecules, so that we can describe the exciton dynamics taking place in an arbitrary or specific antenna
network.

Actually it’s quite easy: we put all the rate constants in a matrix K to find the time-derivative of
the populations ~P :

d~P

dt
= K~P (Eq. 2.2.16)

Since the rate constants are time-independent, the equation for the population matrix one timestep (dt)
ahead can be calculated via an integral as follows:∫ t′+ dt

t′

d~P (t)

dt
dt =

∫ t′+ dt

t′
K · ~P dt (Eq. 2.2.17)

~P (t+ dt)− ~P (t) = (��t′ + dt−��t′)K · ~P (t) (Eq. 2.2.18)

Note that we have ~P (t) both left and right. We can bring ~P (t) from left to right by adding I · ~P (t) to
both sides.

~P (t+ dt) = dt ·K + ~P = ( dt ·K + I) · ~P (t) (Eq. 2.2.19)

Let’s consider a dimer of one LH1 and one LH2 unit, and let’s take one simplification step: assume
kA2→A = kB2→B = ∞. This simplification applies, as the annihilation process is much faster than the
other processes. This allows us to reduce the number of states to take into consideration to n∗(n−1)+3

instead of n2 + 3. For the dimer, this means 4 states (instead of 6), and it allows us to take bigger
timesteps without introducing numerical errors or unphysical negative probabilities.

Before we can start to write out the K matrix, we need to decide the order of elements in the matrix.
I made the decision to write the identity matrix as follows:

I =



fgs A(LH1) B(LH2) AB Ph(LH1) Ph(LH2)
...

...
...

...
...

...
fgs . . . 1 0 0 0 0 0

A(LH1) . . . 0 1 0 0 0 0

B(LH2) . . . 0 0 1 0 0 0

AB . . . 0 0 0 1 0 0

Ph(LH1) . . . 0 0 0 0 1 0

Ph(LH2) . . . 0 0 0 0 0 1


(Eq. 2.2.20)

Next, we can start writing out the K-matrix, or actually, it makes more sense to write out the dt ·K+ I
matrix, since this is the matrix which we can raise to a certain power to obtain the probability of finding
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excitons there then. Since it becomes tedious and chaotic to write out dt · k... for each element, let’s
first define short hand notation for rate times timestep:

r = dt · k (Eq. 2.2.21)

With this little simplification step, we can write out two transformation matrices: one for exciton transfer
Ktr(movement over the antenna network), and one for fluorescence KF .

Ktr =



fgs A(LH1) B(LH2) AB Ph(LH1) Ph(LH2)
...

...
...

...
...

...
fgs . . . 1 0 0 0 0 0

A(LH1) . . . 0 1− rA→B rA→B 0 0 0

B(LH2) . . . 0 rB→A 1− rB→A 0 0 0

AB . . . 0 rB→A rA→B 1− (rA→B + rB→A) 0 0

Ph(LH1) . . . 0 0 0 0 1 0

Ph(LH2) . . . 0 0 0 0 0 1


(Eq. 2.2.22a)

KF =



fgs A(LH1) B(LH2) AB Ph(LH1) Ph(LH2)
...

...
...

...
...

...
fgs . . . 1 0 0 0 0 0

A(LH1) . . . rA→G 1− rA→G 0 0 fLH1 0

B(LH2) . . . rB→G 0 1− rB→G 0 0 fLH2

AB . . . 0 rB→G rA→G 1− (rA→G + rB→G) fLH1 fLH2

Ph(LH1) . . . 0 0 0 0 1 0

Ph(LH2) . . . 0 0 0 0 0 1


(Eq. 2.2.22b)

Equations Eq. 2.2.22a and b are shown in Figures 2.9a and b respectively. The values filled in to
make the equation numerical, are exciton transfer rates from Rsp. photometricum (Table 2.2[7]) and
exciton lifetimes from (Table 2.1[19]). The rates are listed here (for a time-step of 0.1 ps):

LH2→ LH1: 676 ns−1 → rB→A = 0.0676 per timestep. (Eq. 2.2.23)

LH1→ LH2: 144 ns−1 → rA→B = 0.0144 per timestep (Eq. 2.2.24)

LH1 fluorescence: rA→G = 0.000 147 per timestep → rA→G,R = 0.000 012 per timestep. (Eq. 2.2.25)

LH2 fluorescence: rB→G = 0.000 101 per timestep → rB→G,R = 0.000 010 per timestep. (Eq. 2.2.26)
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The last step in converting Eq. 2.2.22 to Figure 2.9 is applying some gradient-color-coding from
Excel: 0 = cyan , 0.07 = yellow , 1 = orange . This color scheme is used all over this Master-thesis.

(a) The matrix describing exciton transfer (or transport). (b) The matrix describing Fluorescence.

Figure 2.9: We are building the Master equations for LH1-LH2 dimer. Here we see the 2 components
which together build up one complete timestep: exciton transfer (or transport) and fluorescence.

Each of the matrices above represent half of a complete timestep. If we multiply the two matrices (via
matrix multiplication), we obtain the complete master equations for a dimer. The master-equations will
appear different if we first take a time-step in exciton transfer and then take a time-step in fluorescence,
or the other way around. Hiërarchically, it makes most sense to do the fastest step first, and then do
the slowest step, so exciton transfer first, and then fluorescence.

(a) Transport × Fluorescence. (b) Fluorescence × Transport.

Figure 2.10: There are two ways to build the Master equations, as there can only be one first process:
it either is exciton transfer (or transport) or fluorescence. Note that for visualization purpose, only 4
significant numbers are shown, while the actual calculation considers 7 significant numbers.
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If we raise this matrix to the power of 100,000, we obtain the situation after 10 nanoseconds. Figure
2.11 shows that the differences between taking the one or the other half-timestep first becomes negligible.

(a) Transport × Fluorescence. (b) Fluorescence × Transport.

Figure 2.11: There is very little difference between the final results, whether we simulate the
fluorescence- or exciton transfer-timestep first.

Which way is right? For the dimer, the difference in final result is negligible (∼4 orders of magnitude
less). For bigger systems, however, it turns out that the differences are larger, but this discussion will
quickly involve comparing different versions of working code, which will be discussed in Appendix B.6.

2.3 Concluding the methods

Now that we have built the Master equations for a dimer, we know which essential processes will be
going on, under the hood of our computational model. In the next chapter, we discuss some theory
which we need to interpret our computational results.
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Chapter 3

Theory

In this Chapter, I will introduce and discuss double sided Feynman diagrams. In order to be able to
interpret our computational results, we need to determine which diagrams are responsible for which
peak in our two dimensional electronic spectroscopic (2DES) images.

Note that 2DES and 2DIR and 2D-NMR are all related by the fact that they are two dimensional
spectroscopy techniques, which can be used to determine the coupling, connectivity or dynamics between
two (or more) states.

Figure 3.1: Figure explaining the key-observations possible with two dimensional electronic spec-
troscopy (2DES). Figure copied from the NIREOS website: https://nireos.com/2des/. Peaks I will
commonly refer to in this chapter are:
Lower cross peak (LCP) for peaks in the lower right quadrant.
Upper cross peak (UCP) for peaks in the top left quadrant.
Lower diagonal peak (LDP) the peak on the diagonal (green line) with a lower frequency.
Upper diagonal peak (UDP) the peak on the diagonal (green line) with a higher frequency.
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3.1 Fluorescence detected Two dimensional Feynman diagrams

This masterthesis looks into the fluorescence detected 2D spectroscopy. In this spectroscopy, we send 4
laser pulses to the sample. Then we wait and measure the photons emitted.

The way the laser pulses interact with the matter is summarized in Feynman diagrams. Each light-
matter interaction is indicated with an arrow, after which either the ket 〈a| or the bra 〈b| changes

state. Emission is indicated by
�00 �
11

, which is short for both

�00

10 �
11

and
00 �

�01

11

. A state for

which the bra and the ket are in different excited states, is an oscillating electric dipole, which allows
the molecule (or system) to absorb or emit a photon. Except for the emission interactions, all other 4
interactions can give rise to 24 = 16 interaction diagrams, but not all diagrams are resonant with states.
For Fluorescence detected 2D spectroscopy, we only need to consider the diagrams given in Eq. 3.1.1
[27].

R
ep
ha

si
ng


t3
[

t1
[

GB
�00 �
11

10 �

� 00 �
01

00 �

SE
�00 �
11

10
�

�

11

� 01

00 �

EA1
�00 �
�11

21

� 11

� 01

00 �

EA2
�11 �
22

21 �

� 11

� 01

00 �

]
t3

]
t1


(Eq. 3.1.1a)
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(Eq. 3.1.1b)

As discussed in section 1.3 on page 6, the spectrum of the pulse is tuned to be resonant with the states
in the system. In a 2D electronic spectroscopy experiment, the waiting times t1 and t3 are varied. The
Fourier transform of t1 and t3 give rise to ω1 and ω3, which are the two axes of our image.

A common misconception is that we would be able to select a diagram we want to measure. t1 and
t3 are the only two knobs we can turn, and nature will reply with an adequate response for the intensity
at that point. By scanning both over t1 and t3 and collecting the intensity in each point, a 2D spectrum
can be measured.

“So, how does the 2D IR spectrum look like?”, Peter Hamm and Martin Zanni asked on page 72 of
their “Concepts and Methods of 2D IR Spectroscopy” book[14]4. They derived the response functions
4 Note that we are not looking at 2DIR but at 2DES, but these two techniques are very similar, and the response
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to be as follows:

Rephasing: R1(ω1, ω3) ∝ 1

i(−ω1 + ω01)− Γ2

· 1

i(ω3 − ω01)− Γ2

(Eq. 3.1.2)

Non-rephasing: R4(ω1, ω3) ∝ 1

i(ω1 − ω01)− Γ2

· 1

i(ω3 − ω01)− Γ2

(Eq. 3.1.3)

For the ground state bleach (GB) diagrams, it is just as likely that a photon is emitted from the
rephasing GB diagram as from the nonrephasing GB diagram. The total intensity is therefore given by
summing the contributions of both the rephasing and the nonrephasing diagram. This can be written
as a complex sum, but it’s actually more elegant to simplify this equation a bit.

R1 +R4 ∝
(

1

i(−ω1 + ω01)− Γ2

+
1

i(−ω1 + ω01)− Γ2

)
We will work this part out in Eq. 3.1.6

· 1

i(ω3 − ω01)− Γ2

(Eq. 3.1.4)

Next, we use Eq. 3.1.5 to simplify the part between brackets5.

1

iδω − Γ
=

1

iδω − Γ
· −iδω − Γ

−iδω − Γ
=

−iδω − Γ

(iδω − Γ) · (−iδω − Γ)
=

−Γ− iδω
−i2(δω)2 + Γ2

=

Real

−Γ

Imaginary

−iδω
(δω)2 + Γ2

(Eq. 3.1.5)

1

iδω − Γ
+

1

−iδω − Γ
=

Real

−Γ

Imaginary

−iδω
(δω)2 + Γ2

+

Real

−Γ

Imaginary

+iδω

(−δω)2 + Γ2
=

Real

−Γ

Imaginary

−iδω
Real

−Γ

Imaginary

+iδω

(δω)2 + Γ2
=

Real

−2Γ

(δω)2 + Γ2

(Eq. 3.1.6)

This makes

R1 +R4 ∝
(

1

i(−ω1 + ω01)− Γ
+

1

i(−ω1 + ω01)− Γ

)
This part was worked out in Eq. 3.1.6

· 1

i(ω3 − ω01)− Γ
(Eq. 3.1.4)

=

Real

−2Γ

(δω)2 + Γ2
· 1

i(ω3 − ω01)− Γ
(Eq. 3.1.7)

We now have 3 equations: for rephasing (Eq. 3.1.2), for nonrephasing (Eq. 3.1.3), and for rephas-
ing+nonrephasing (Eq. 3.1.7). The real part of these equations is plotted in Figure 3.2 on the next
page.

functions are identical.
5 I dropped the subscript 2 on Γ2. Officially, this is to declare that it’s the dephasing constant during t2, however,

currently t2 is the only time interval for which dephasing is relevant, so suffices to say that Γ2 = Γ.
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(a) Rephasing, R1, Eq. 3.1.2 (b) Nonrephasing, R4, Eq. 3.1.3 (c) Rephasing + Nonrephasing, R1 + R4, Eq. 3.1.7

Figure 3.2: Spectral shapes observed in 2DES spectroscopy. Ref. [14] shows similar graphs for 2DIR spectroscopy. In the example
above, the spectroscopic region is 800 nm is near infrared, and therefore the above isn’t infrared spectroscopy. Note that I chose ωX
to be 12 000 cm−1, which is arbritrary, except for the fact that we will use this plot region more frequently, and this is exactly the
middle of the graph.
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3.2 Double Sided Feynman diagrams for 2 molecules

We can fill out an Feynman diagram with numbers to indicate how the excited states are probed of one
molecule, recall Eq. 3.1.1 on page 28. Next step is to fill in these diagrams for two molecules, however,
we use A and B for first excited state, and A2 and B2 for the second excited state.

3.2.1 Groundstate Bleach (GB)

Figure 3.3: Weighted 2DES in-
tensity profile of the Groundstate
Bleach (GB) Feynman diagrams
(Eq. 3.2.1). The intensities for the
AA and BB states are calculated with
the Mathematica script outlined in
section 2.2.4.

The first diagram to discuss is Groundstate Bleach (GB).
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00 �

No peak

(Eq. 3.2.1)

I wrote a Mathematica script which can show the two dimen-
sional electronic spectrum (2DES) for isolated Feynman diagrams.
Because I just want to have a system with two energy-states,
I’ve chosen to perform these simulations on the B800/B850 sys-
tem within LH2, recall section 2.2.4. The resulting Groundstate
Bleach (GB) spectrum is shown in Figure 3.3.

Diagram (GB.B) gives rise to the lower diagonal peak, and
has the fluorescence intensity of one molecule of A. For the upper
diagonal peak, all A’s must be replaced by B’s, and therefore,
that peak has the fluorescence intensity of one molecule of B.

Diagram (GB.C) gives rise to the upper cross peak, and has
the fluorescence intensity of one molecule of B. Similarly, the di-
agram for the lower cross peak has A’s must be replaced by B’s
and vise versa, and therefore has the fluorescence intensity of one
molecule of A.
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3.2.2 Stimulated Emission (SE)

Figure 3.4: Weighted 2DES inten-
sity profile of the Stimulated Emis-
sion (SE) Feynman diagrams (Eq.
3.2.2). This Figure was produced by
the Mathematica script described in
section 2.2.4.

Figure 3.5: Beating intensity of the
crosspeaks in the stimulated emis-
sion (SE) diagram. Plotted is Eq.
3.2.3.

The next diagram to discuss is Stimulated Emission (SE).
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(Eq. 3.2.2)

Stimulated Emission (SE) only gives diagonal peaks, see Figure
3.4. Diagram SE.C is in an oscillating state (|AB| or |BA|) during
t2. These oscillating states have strong tendency to dephase to
an incoherent state. The dephasing isn’t instantaneous, but is
proportional to

signal ∝ cos
(
t2 · (ωB − ωA)

)
· e−t2·Γ (Eq. 3.2.3)

Note that ω and Γ are typically given in cm−1, and therefore,
in we need to convert the frequency from cm−1 to Hz. We can
convert from cm−1 to Hz via the energy:

E = hf =
hc

λ
= hcω̃ (Eq. 3.2.4)

f = cω̃ = 299 792 458
m
s
× ω̃(in m−1) (Eq. 3.2.5)

f = cω̃ = 29 979 245 800
cm

s
× ω̃(in cm−1) (Eq. 3.2.6)

Eq. 3.2.3 is plotted in Figure 3.5.
The next diagrams to test are Excited State Absorption (EA)

diagrams. There are two types of EA diagrams:
- EA1: with an excited-state bleach step, after which the

system is in either one of the two first-excited states.
- EA2: in which both the bra- and the ket-side absorb two

photons, after which the system is in a double-excited state.
These two diagrams are discussed on the next two pages!
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3.2.3 Excited State Absorption 1 (EA1)

Figure 3.6: Weighted 2DES in-
tensity profile of Excited State Ab-
sorption 1 (EA1) Feynman diagrams
(Eq. 3.2.7). This Figure was pro-
duced by the Mathematica script de-
scribed in section 2.2.4.

Figure 3.7: Beating intensity of the
crosspeaks in the EA1 diagram, as
described by Eq. 3.2.8.

Next, let’s discuss Feynman diagrams for excited-state absorption
#1, see Eq. 3.2.7 and Figure 3.6.
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(Eq. 3.2.7)

Diagram EA1.B gives rise to overtone peaks. Diagram
EA1.C gives rise to normal cross-peaks7, and diagram EA1.D
contributes to the blinking of the same cross peaks. Together,
EA1.C and EA1.D make the intensity of these cross-peaks to
beat as follows:

signal ∝
(EA1.C)

1 +

(EA1.D)

cos
(
t2 · (ωB − ωA)

)
· e−t2·Γ, (Eq. 3.2.8)

Recall how we changed frequency ω in cm−1 to frequency f in
Hz via Eq. 3.2.6). Eq. 3.2.8 is plotted in Figure 3.7.

The overtone peak (due to the |A2, A| state, see EA1.B) res-
onates with a similar (but not the same) frequency as the |A, 0|
state; the difference in frequency is caused by the fact that the
second excited state is not exactly twice the energy of the first
excited state. This is due to anharmonicity. This was shortly
touched upon in section 2.2.3. The frequency at which this |A2〉
state vibrates is:

ωA2 = 2ωA + ∆ (Eq. 3.2.9)

in which ∆ is the anharmonicity constant. In this section, ∆ is
assumed to be 233 cm−1, which is based on a measurement in
Fig. 4a of Ref. [10]. The frequency at which the |A2, A| state
resonates is

ωA2 − ωA = 2ωA + ∆− ωA = ωA + ∆ (Eq. 3.2.10)

As a result, the overtone peak is located ∆ = 233 cm−1 above the diagonal peak in the 2DES diagram,
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see Figure 3.6. To make reading the Feynman diagrams a bit easier, overtone peaks will be marked with
an Y (similar to that oscillating states will be marked with ∼).

3.2.4 Excited State Absorption 2 (EA2)

Figure 3.8: Weighted 2DES in-
tensity profile of Excited State Ab-
sorption 2 (EA2) Feynman diagrams
(Eq. 3.2.11). This Figure was pro-
duced by the Mathematica script de-
scribed in section 2.2.4.

The next Feynman diagrams to discuss are those for excited-state
absorption #2, see Eq. 3.2.11 and Figure 3.8.
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(Eq. 3.2.11)

Diagram EA2.B puts one molecule in the second excited state.
Diagrams EA2.C and EA2.D put both molecules in the first
excited state.

The diagram that brings one molecule to the second excited
state (Diagram EA2.B), gives rise to an overtone peak. The sec-
ond excited state quickly decays towards the first exited state6,
so the overtone intensity can be calculated by integrating the in-
tensity emitted by the first excited state.

The diagram that brings both molecules to the first excited state (EA2.C7), gives rise to cross-peaks.
However, since both excited states are present, the intensity must be calculated via a kinetic model. For
now I will which is of course done with the Mathematica notebook of section 2.2.4.

6 Although it is theoretically possible that a fraction of the second exited state decays directly towards the groundstate,
we assumed the rate for this process to be 0.

7 Note that the |A + B,A| state in EA1.C, EA1.D, EA2.C and EA2.D are relatively as stable as the 0, B state,
because molecule A completely in the first excited state (|A,A| = A1).
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3.2.4.1 Note on sign

Figure 3.9: When Figures 3.6
(EA1) and 3.8 (EA2) are added,
they merely entirely cancel each
other, because they display the same
peaks with almost the same inten-
sity, but with opposite sign, see dis-
cussion in leading text.

The sign of the diagram is calculated as

sign = (−1)n (Eq. 3.2.12)

in which n is the number of photons on the bra side of the diagram.
The EA1 diagram (Eq. 3.2.7) has 2 arrows on the bra-side,

meaning that the sign is +. The EA2 diagram (Eq. 3.2.11) has
3 arrows on the bra-side, meaning that the sign is negative.

Now we know that the lower overtone peak (LOP) has posi-
tive fluorescence intensity of B850’ or A (see EA1 Eq. 3.2.7B),
and negative fluorescence intensity of B850” or A² (see EA2 Eq.
3.2.11). We know the intensities from the Mathematica simula-
tion, see Figure 3.10. If we subtract the numbers, we come to:

LOP (EA1) = +AG =− 0.0985962 (Eq. 3.2.13)

LOP (EA2) = −A² =− 0.0985961+ (Eq. 3.2.14)

− 0.0000001, (Eq. 3.2.15)

which is impossible to measure. This outcome isn’t surprising: we
discussed that the A² state decays very rapidly to the AG state.

(a) Starting from AB:
TotalIntensityA = 0.097113
TotalIntensityB = 0.00171871
TotalPhotons = 0.0988317

(b) Starting from A²:
TotalIntensityA = 0.0969972
TotalIntensityB = 0.00159889
TotalPhotons = 0.0985961

(c) Starting from A:
TotalIntensityA = 0.0969973
TotalIntensityB = 0.00159889
TotalPhotons = 0.0985962

Figure 3.10: Relevant simulations from the Mathematica model of Section 2.2.4.

For the cross-peaks, it is a similar story:

LOP (EA1) = +AG = + 0.0985962 (Eq. 3.2.16)

LOP (EA2) = AB =− 0.0988317+ (Eq. 3.2.17)

− 0.0002355. (Eq. 3.2.18)
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This means that EA1 and EA2 will almost completely cancel each other, see Figure 3.9. Note that
Figure 3.9 is a factor 500 less intense than Figures 3.6 & 3.8.

But then the story gets a twist: when we switch to the LH1/LH2 system, it is not longer always true
that the two molecules ’A’ and ’B’ are neighbors, so the intensity from the ’A+B’ state might actually
give significantly more photons than the single exciton A state.

And then the discussion still isn’t complete yet, because we have way more diagrams that give cross
peaks. Let’s analyze/summarize all the contributions to the crosspeaks!

3.3 Analyzing the contributions to the crosspeaks

Let’s start by analyzing how much each diagram contributes to the intensity to either of the two cross-
peaks. The diagrams that give a permanent upper cross-peak (UCP) contribution are given by:

Figure 3.11: 2DES intensity profile
of R1 +R4 cross peaks, coming from
diagrams Eq. 3.3.1 and Eq. 3.3.2.
Shape defined by Eq. 3.1.7.
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(Eq. 3.3.2)

As the rephasing diagrams (with 2D intensity profile R1) and nonrephasing diagrams (with 2D intensity
profile R4) have the same intensity (BB,AA,A+B), we know that the peaks will appear with the shape
as shown in Figure 3.11.
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Figure 3.12: 2DES intensity profile
of R1 rephasing cross-peaks, coming
from diagram Eq. 3.3.3 (shape de-
fined by Eq. 3.1.2).

Figure 3.13: 2DES intensity profile
of R4 nonrephasing diagonal-peaks,
coming from diagram Eq. 3.3.4
(shape defined by Eq. 3.1.3).

The diagrams that give a beating upper cross-peak (UCP)
are:
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(Eq. 3.3.3)

An attempt to convert the rephasing beating cross-peak diagrams
(Eq. 3.3.3) into nonrephasing diagrams resulted in beating diag-
onal peaks, see Eq. 3.3.4 below.
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The diagrams which give rise to intensity for the lower right
cross-peak (LCP) are given by similar diagrams as Eq. 3.3.1,
Eq. 3.3.2 and Eq. 3.3.3, except that all A’s are replaced by B ’s
and vise versa. This means that, there where the diagrams for
the upper cross peak (UCP) have intensity of int(AA), LCP has
intensity of int(BB), and where UCP has intensity of int(BB),
LCP has intensity of int(AA), see Table 3.1 on the next page.

Now if we want to know the total intensity of each cross-peak,
we need to sum the intensity of all diagram. All the intensities are
calculated via a kinetic simulation, which can be from an isolated
LH2 molecule (this Chapter) or from an entire Light Harvesting
network (see Results, Chapter 4).
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Note that the sign depends on the number of interactions n with the bra 〈A|.

sign = (−1)n

sign(GB) = (−1)4 = +1 sign(SE) = (−1)4 = +1 (Eq. 3.3.5)

sign(EA1) = (−1)2 = +1 sign(EA2) = (−1)3 = −1

The total intensity of the cross peaks is summarized in Table 3.1

The upper left cross-peak (UCP)
Type Static Beating (1+Beat) (1+Beat)
Origin GB SE EA1 EA2

−2Γ

(ω1 − ωA)2 + Γ2
·

1

i(ω3 − ωB)− Γ Intensity +BB +BB +AA -(A+B)
The lower right cross-peak (LCP)

Type Static Beating (1+Beat) (1+Beat)
Origin GB SE EA1 EA2

−2Γ

(ω1 − ωB)2 + Γ2
·

1

i(ω3 − ωA)− Γ Intensity +AA +AA +BB -(A+B)

Table 3.1: The components of the two cross-peaks. Note that “AA” means that the diagram is in state
AA after 4 interactions, meaning that only molecule A is in the excited state.

Now we can sum all the contributions to calculate the upper-to-lower cross-peak ratio in Eq. 3.3.6.

UCP = BG + BG · Beat + AG · (1 + Beat)− AB · (1 + Beat)

= BG · (1 + Beat) + AG · (1 + Beat)− AB · (1 + Beat)

= (AG + BG− AB) · (1 + Beat) (Eq. 3.3.6a)

LCP = AG + AG · Beat + BG · (1 + Beat)− AB · (1 + Beat)

= AG · (1 + Beat) + BG · (1 + Beat)− AB · (1 + Beat)

= (AG + BG− AB) · (1 + Beat) = UCP (Eq. 3.3.6b)

According to this calculation, the upper cross peak intensity (Eq. 3.3.6a) is by definition equal to
the lower cross peak intensity (Eq. 3.3.6b). However, we could look closer at the ratio between the
cross-peak and the diagonal peak. In order to do so, we first need to sort out which Feynman diagrams
give intensity to the diagonal peaks. This is discussed in the next section.

38



3.4 Analyzing the contributions to the diagonal peaks

Figure 3.14: 2DES intensity profile of R1 + R4

diagonal peaks, coming from diagrams Eq. 3.4.1 and
Eq. 3.4.2. Shape defined by Eq. 3.1.7.
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(Eq. 3.4.2)

As the rephasing diagrams (with 2D intensity profile R1) and nonrephasing diagrams (with 2D intensity
profile R4) have the same intensity (AA), we know that the peaks will appear with the shape as shown
in Figure 3.14.

Stationary Lower Diagonal Peak (LDP) = AG + AG = 2AG (Eq. 3.4.3)

Stationary Upper Diagonal Peak (UDP) = BG + BG = 2BG (Eq. 3.4.4)

Beating diagonal peaks = AG + BG− AB =
UCP

(1 + Beat)
(Eq. 3.4.5)
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3.5 Calculating the cross-peak : diagonal peak ratio

The intensity is also proportional to the dipole moment.

For the diagonal peaks: IA ∝ µ4
A and IB ∝ µ4

B (Eq. 3.5.1)

For the cross peaks: Icp ∝ µ2
A · µ2

B (Eq. 3.5.2)

The values of µA and µB can be determined by linear absorption spectroscopy, but I’m not sure if
this is relevant right now. We could also take a look at the relative intensity, as in:

LCP ∗ UCP

LDP ∗ UDP
=

(AG + BG− AB)2

2AG ∗ 2BG
=

(Ph(Ex.1) + Ph(Ex.2)− Ph(Ex.12))2

4 ∗ Ph(Ex.1) ∗ Ph(Ex.2)
(Eq. 3.5.3)

Then we know for sure that the contribution of dipole moments will all cancel.

Small spoiler

If we use the photon counter values from a simulation of a trimer (see section 4.1 on the next page), we
would obtain:

LCP ∗ UCP

LDP ∗ UDP
=

(AG + BG− AB)2

2AG ∗ 2BG
=

(7.541 + 7.535− 7.619)2

(2 ∗ 7.541) ∗ (2 ∗ 7.535)
=

7.457 ∗ 7.457

15.081 ∗ 15.070
= 24.47%

(Eq. 3.5.4)
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Chapter 4

Results

With the simulation code written in Chapter 3, we are able to simulate all possible starting configurations
for a certain LH1/LH2-configuration at once. Certain configurations are highlighted here.

Color-coding: In this chapter, the following color-coded abbreviations are used: Exciton = yellow
LH1 = LH1 = 1 Trimer matrix identity with exciton on A: A -B-C
LH2 = LH2 = 2 Trimer with excitons on A and B: A - B -C = AB

4.1 Trimers: LH1-LH2-LH1 and LH1-LH2-LH2

As the dimer was already studied intensively in Chapter 1, the first notably different simulation we
could perform is a trimer. Because the rate constant between two LH1 units is unknown, the only
well-defined trimer-systems are LH1 - LH2 - LH1 and LH1 - LH2 - LH2 . My hypothesis for these two
simulations would be that the LH1 - LH2 - LH1 simulation is much better at keeping two excited states
separate than LH1 - LH2 - LH2 . This will lead to a higher photon-count than LH1 - LH2 - LH2 , and
subsequently lead to a lower cross-peak intensity.

A few frames of the simulation are shown in Figure 4.1 on the following page.
The way how we convert photon intensity in the last frame (n = 100k or t = 10 ns), to cross-peak-

to-diagonal-peak ratio was explained in Eq. 3.5.3 on the preceding page. We can apply Eq. 3.5.3 to
each of the double excited states (e.g. AB, AC and BC) to calculate the cross-peak to diagonal-peak
ratio, see Table 4.1 and Table 4.2. It turns out my hypothesis is wrong. Apparently the gradient which
causes the excited state(s) to accumulate on LH1 is because diffusion from LH1 towards the central
LH2 is slowed down, but more because the diffusion from LH2 towards LH1 is speed up.

Another thing is that the simulation was set to be symmetrical, with no fluctuations in the rates. This
means that, when we look at the simulation of LH1 - LH2 - LH1 and start from exciton distrubution AC
( LH1 -LH2- LH1 ), that the same amount of exciton flows from the left LH1 to the central LH2 as from
the right LH1 unit, always causing the central LH2 unit to receive two excitons, which immediately
decays to the ground state. Probably the excited states are easier to keep apart if we introduce more
spacers between the left and the right LH1 unit. This experiment is done in the next section.
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Figure 4.1: Selection of frames from the simulations on trimers (LH1-LH2-LH1 vs LH1-LH2-LH2).
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Ex.12 Ph(Ex.1) Ph(Ex.2) Ph(Ex.12) LCP = UCP LDP UDP ratio*
AB 7.541E-02 7.535E-02 7.619E-02 7.457E-02 1.508E-01 1.507E-01 24.47%
AC 7.541E-02 7.541E-02 7.697E-02 7.385E-02 1.508E-01 1.508E-01 23.97%
BC 7.535E-02 7.541E-02 7.619E-02 7.457E-02 1.507E-01 1.508E-01 24.47%

Table 4.1: Calculating the cross peak to diagonal peak ratio for the LH1 - LH2 - LH1 trimer. The
numbers I use here are for the photon counters on LH1 after 10 ns of collecting time.

Ex.12 Ph(Ex.1) Ph(Ex.2) Ph(Ex.12) LCP = UCP LDP UDP ratio*
AB 6.263E-02 6.244E-02 6.282E-02 6.225E-02 1.253E-01 1.249E-01 24.78%
AC 6.263E-02 6.207E-02 6.318E-02 6.152E-02 1.253E-01 1.241E-01 24.34%
BC 6.244E-02 6.207E-02 6.287E-02 6.164E-02 1.249E-01 1.241E-01 24.51%

Table 4.2: Calculating the cross peak to diagonal peak ratio for the LH1 - LH2 - LH2 trimer. Again
I use the photon counters on LH1 after 10 ns of simulated time. The ratio is calculated via Eq. 3.5.3.
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4.2 Linear chains

The next simulation I did was on 6 different types of Light Harvesting chains, depicted in Figure 4.2.

Figure 4.2: Chain configurations used for simulations in this section. The simulation results are
depicted in Figure 4.3 on the facing page. The number on the left indicates the amount of LH1 units in
that simulation.

The chains are designed to test the what the influence of LH1 concentration is.
I applied Equation Eq. 3.5.3 on page 40 to calculate the ratio between the cross-peaks and the
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diagonal peaks intensity, and plotted the ratio as a function of exciton-exciton distance, see Figure 4.3.
This ratio is measurable in 2DES experiments.

(a) According to photon counter measuring LH1.

(b) According to photon counter measuring LH2.

Figure 4.3: Cross-peak to Diagonal-peak ratio according to photon counters measuring either the
fluorescence intensity on LH1 or LH2. This Figure is the result of simulating the chains defined in
Figure 4.2 on the preceding page.
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4.3 Embedded chains

Figure 4.4: Embedded chain configurations used for simula-
tions in this section. These are same chains as in Figure 4.2
but with one LH2 unit of padding around it. The number on
the left of each simulation indicates the number of LH1 units in
this simulation. The simulation results are depicted in Figure
4.5 on the next page.

I taught that the previous simula-
tion (on linear chains) might not have
been very realistic, since these simu-
lations were one dimensional, and one
can easily imagine that the probability
that two excitons annihilate in a one-
dimensional system is much higher than
in a two dimensional system. Therefore,
the linear chains (Figure 4.2) were em-
bedded in a bath of LH2 molecules.

The first exciton is placed in the
top left corner, but the second exci-
ton can be placed anywhere, so I de-
veloped some algorithm which deter-
mines the distance of the second exci-
ton with respect to the first exciton.
The distance in units of LH1 or LH2,
but this would only give a distance in
integers. Since we have many more
data points (3x15=45) than we have
distance-points (15), the plot points got
on top of each other, which made very
ugly graphs. In order to make it nicer,
I’ve decided to subtract some scoring
1
n
if there are multiple (n) pathways of

getting from the first to the second ex-
citon. The offset is little, and it causes
saw-toothed-graphs, which are still not
the nicest looking graphs, but it’s better
than stick-figures.

Again, I applied Equation Eq. 3.5.3
on page 40 to calculate the ratio be-
tween the cross-peaks and the diagonal
peaks intensity, and plotted the ratio as a function of exciton-exciton distance, see Figure 4.5 on the
next page.
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(a) According to photon counter measuring LH1.

(b) According to photon counter measuring LH2.

Figure 4.5: Cross-peak to Diagonal-peak ratio according to photon counters measuring either the
fluorescence intensity on LH1 or LH2. This Figure is the result of simulating the embedded chains
defined in Figure 4.4 on the preceding page.
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4.4 Squares

I thought that the embedded chains were a bit unrealistic, and I thought of a little fix to get rid of
the saw-toothed graphs (Figure 4.5): let’s try a square simulation box in which the configuration of
LH1’s/LH2 is symmetrical with respect to the diagonal on which the first exciton is placed. Since the
previous simulation was starting to get slow, I didn’t want to add much more molecules, as it might
mean that the simulations would be running forever.

The simulated square configurations are shown in in Figure 4.6. One small note: I represented
these configurations as squares, because I use square grids in numpy, as square grids are cheaper than
hexagonal grids. In reality, however, I use a mathematical trick which cause the squares to sense 6
neighbors, just like a hexagonal grid. This is better explained in Figures B.2 and B.3 on page 74 of the
Appendix.

(a) Square 1. (b) Square 2. (c) Square 3.

(d) Square 4. (e) Square 5. (f) Square 6.

Figure 4.6: Simulated square configurations. Note that the first excitation will always be placed in the
top left corner. The second excitation will be placed everywhere, and the cross-peak to diagonal-peak
ratio will be calculated and plotted as a function of distance, see Figure 4.7 on the facing page.
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(a) According to photon counter measuring LH1.

(b) According to photon counter measuring LH2.

Figure 4.7: Cross-peak to Diagonal-peak ratio
(
UCP∗LCP
UDP∗LDP

)
according to photon counters measuring

either the fluorescence intensity on LH1 or LH2. This Figure is the result of simulating the squares
defined in Figure 4.6 on the facing page.

Unfortunately, it’s very hard to find a trend which correlates to either distance or LH1 concentration,
and it is more dependent on whether in the first frame, LH1 or LH2 is excited. This claim is underwritten
by the fact that square 5 and 6 are significantly different to squares 1-4 in Figure 4.7b.
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It becomes easier to find the trends if we calculate the UCP∗LCP
UDP∗LDP photon counter ratio’s between all

pairs of Light Harvesting unit’s, and display the mean ± standard deviation, see Figure 4.8

(a) According to photon counter measuring LH1.

(b) According to photon counter measuring LH2.

Figure 4.8: Cross-peak to Diagonal-peak ratio, averaged over all double excitations possible in the
Light Harvesting antenna. This Figure is the result of simulating the squares defined in Figure 4.6.
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Since experimentalists cannot select the distance at which the two excited states are placed, I decided
to also make a graph in which all simulation data that comes out of one simulated square of Figure 4.6
will be reduced to one data-point: a mean peak ratio ± a standard deviation, see Figure 4.9.

Figure 4.9: Cross-peak to Diagonal-peak ratio, as a function of LH1 concentration.
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4.5 Introducing vacancies

The simulation from the previous section is nice, but it only shows 6 cherry picked simulations, and it says

nothing about the
nLH1=49∑
nLH1=0

49!

(49− nLH1)!× (nLH1)!
≈ 5.6295 × 1014 other configurations in which the

system could have been arranged. Therefore I decided to test more randomly generated configurations.
These simulated configurations will look a lot more like those which could be encountered in nature.

As I will later point out in the discussion (section 5.2), we cannot perform experiments in which we
explicitly put two excitons on different locations in the light harvesting network. Therefore the distance
dependence graphs will be omitted. Which is actually great, since graphs containing more than 10 lines
are typically a mess anyways.

Natural light harvesting systems change their LH1/LH2 concentrations based on the amount of light
available. Under very low light conditions, the organism can survive with very little reaction centers
(LH1), as long as it has plenty of light antenna (LH2) to catch the light. When there is more light, more
reaction centers are required. I already demonstrated in the previous sections that I can easily model
this by replacing an LH2 unit with an LH1 unit. When there is too much light, however, vacancies are
introduced. This reduces the amount of light that will be captured.

I added the vacancy option in the simulation code by introducing the “nLH0” option in the makeLH1LH2grid()
module. This introduces more “0” elements, which act as walls, placed at random positions in the LHgrid.

Figure 4.10: The content of each simulation. Left of the black line, the simulation number corresponds
to the number of LH1 units in the 6x6 light harvesting network. After the black line, vacancies are
introduced, deleting either an LH1 or an LH2 entity. nLH1 = max_nLH2 - int(nLH0 / 1.4).
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(a) Configuration 1. (b) Configuration 5. (c) Configuration 10.

(d) Configuration 15. (e) Configuration 20. (f) Configuration 25.

(g) Configuration 30. (h) Configuration 34. (i) Configuration 35.

Figure 4.11: The configurations of a few simulations of the experiment in which we continuously
change the LH1/LH2 concentration, over a very wider range than we did in previous experiments.
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(a) Cross peak data

(b) Diagonal peak data

Figure 4.12: The (A) cross peaks and (B) diagonal peaks, both as a function of LH1/LH2 concen-
tration. Similar to indicated in Figure 4.10, the black line indicates where the simulations switch from
replacing LH2 with LH1 to introducing vacancies.
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We can see a clear trend between increasing the LH1 concentration and a decreasing cross peak
intensity, irrispective of whether we measure

Now, ideally, I would include even more simulations with even more vacancies. Unfortunately how-
ever, these simulations have the tendency to not generate stable information on the cross peaks. One
of the ways it would crash was by having islands on which only one LH1 or LH2 would be found, which
causes an 1/0 error in the previous way we calculated the cross peak ratio.

LCP ∗ UCP

LDP ∗ UDP
=

(AG + BG− AB)2

2AG ∗ 2BG
1

← If either AG or BG = 0, we encounter the 1
0
problem

(Eq. 4.5.1)

This is why I have implemented the less scientifically accurate, but more robust

Cross peak ratio =
LCP

LDP + UDP + LCP
=

(AG + BG− AB)

3AG ∗ 3BG− AB
(Eq. 4.5.2)

Although the above equation is more robust, the 1
0
-issue will still occur at very low light harvester

concentration (so when a simulation box contains a lot of vacancies). The most robust thing is to add
some very small number, say 1E-99 to the denominator. This will ensure that the 1

0
-issue will be gone

forever, regardless of the value in the nominator or denominator. Unfortunately, the author didn’t have
time to implement this idea before the deadline of this thesis.
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Chapter 5

Discussion & Conclusion & Outlook

This is the concluding chapter of this thesis. We will start with a small summary, then postulate the
limitations, emphasize what we can do, and then finish with a conclusion and an outlook.

5.1 In short

Fluorescence Detected Two Dimensional electronic Spectroscopy (FD-2DES) is a new multidimensional
spectroscopy technique which allows for the detection of 2D electronic spectra, with a higher signal to
noise ratio than obtained in regular 2DES experiments. Both normal 2DES and FD-2DES images are
hard to interpret, but FD-2DES is still a very new spectroscopy technique, therefore, it makes sense to
develop a model which predicts the outcome of the FD-2DES experiment.

The FD-2DES experiment is quite advanced. It’s increased signal-to-noise ratio allows this technique
to measure light sensitive photobacteria before they photo-bleach. It allows to measure and compare the
light harvesting systems in bacteria grown under low light (LL) and high light (HL) conditions. This
comparison is done in Section 5.4.
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5.2 What cannot be mea-

sured? (Limitations)

As you can see from Figures 4.3, Fig. 4.5 and Fig.
4.7, the diagonal/cross-peak ratio is very sensitive
to the initial double exciton configuration. It’s so
sensitive to the configuration, that it became hard
to see the trend versus LH1 concentration.
Unfortunately, 2DES experiments are currently

unable to repeat the experiments performed in
those simulations, because the volume probed by
the laser is approximately 1 µm³, which is much
greater than one LH1 (� of ∼10 nm) or one LH2
(� of ∼5-6 nm). This is because the resolution in
a fluorescence microscope is diffraction limited:

r =
λ

2 ·N.A.
=

λ

2n sin(α)
, (Eq. 5.2.1)

where r is the maximum resolution, λ is the wave-
length of light and N.A. is the numerical aperture.
The numerical aperture is calculated as n (the in-
dex of refraction of the imaging medium; typically
immersion oil, n = 1.51) times sin(α) (in which α
is the half-angle by which light still hits the lens).
A good first guess of the maximum resolutions is
r ≈ λ

2
≈ 500nm. Much larger than an LH1 or LH2

anyways.
There is a technique which allows to for higher reso-
lution: stimulated emission depletion (STED) flu-
orescence microscopy. This uses one pulse to ex-
cite the molecules, and then a second pulse with a
doughnut-shaped light beam, see Figure 5.2. The
second pulse induces stimulated emission, thus,
photobleaching the molecules which are not in the
center of the doughnut. The problem of STED is
that it’s probably not compatible with 2DES, be-
cause STED is a time-resolved experiment itself al-
ready.

Figure 5.1: Confocal fluorescence image of a 0.5
µm fluorescent bead in the SR-FD-2DES setup[9].
This experiment is typically done in fluorescence
microscopes to demonstrate the maximum resolu-
tion one can achieve with that microscope. The res-
olution is diffraction limited, see discussion in the
leading text. Creative commons licence applies8.

Figure 5.2: Schematic diagram of an optical stim-
ulated emission depletion (STED) microscope. The
phase plate shapes the depletion beam ( red ) into
a doughnut-shape. This depleation beam then de-
pleates the excited state (induced by the excitation
beam ( blue ), to leave only fluorescence emission
( green ) from a small spot. Reprinted with per-
mission from Ref. [28].
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5.3 What can we measure?

Experimentally, it’s most easy to measure one dimensional absorption spectra, see middle part of Figure
5.3.

Figure 5.3: High light vs low light experiment. Figure reprinted with permission from Ref. [6].

The thing I concluded from Figure 5.3 is actually the two discs on the left. The main difference is
that samples grown under high light (HL) samples contain more reactive centers (LH1), whihe samples
grown under low light (LL) samples contain more light antenna’s (LH2). Intuitively this makes sense.

For a two dimensional spectroscopy technique like 2DES or FD-2DES, it is experimentally possible
to measure the average spectroscopy image of the volume probed. This is also what is simulated in
Figure 4.8 on page 50 and Figure 4.12 on page 54. When all UCP∗LCP

UDP∗LDP peak ratio’s for all double exciton
configurations are calculated, as done in Figure 4.12a, we can observe a trend of lower UCP∗LCP

UDP∗LDP peak
ratio at higher LH1 concentration. The correlation is stronger when LH2 is measured, but it is also
there when LH1 is measured.

Another limitation. When we are introducing vacancies (which are present in high light samples,
see Figure 5.3), the simulation becomes less reliable, because sometimes there is an island with no LH1
or LH2 entity. The photon counter for that molecule (either LH1 or LH2) will be 0. When applying
Eq. 3.5.3, 1

0
or 0

0
might occur. This could be resolved by adding a very small number, e.g. 1E-99 to the

denominator Unfortunately, the author didn’t have time to implement this simple solution. For now, I
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just don’t perform the simulations with very low light harvesting concentation. The observation remains
that that the same trend continues; higher LH1 concentration results in lower cross peak intensity, see
Figure 4.12a on page 54.

5.4 Comparison with an FD-2DES experiment

As the signal-to-noise ratio for FD-2DES is higher than for the conventional 2DES experiment, FD-2DES
allows us to measure photobacteria grown under low light (LL) conditions. We can now compare the
spectroscopy images of these bacteria with bacteria grown under high light (HL) conditions, see Figure
5.48.

When I saw Figure 5.4 for the first time, it struck me that there is more upper diagonal peak in the
high light sample than in the low light sample, while Figure 4.12b on page 54 predicted that there was
no relation between the ratio between the two diagonal peaks, and the LH1:LH2 and vacancy ratio.

The thing with Figure 5.4 is that the samples only contained Light Harvesting system 2 (LH2). The
main discovery of Ref. [9] is that LH2 changes upon different light conditions. This is something I did
not include in my model.

5.5 Conclusion

Fluorescence detected two dimensional electronic spectroscopy (FD-2DES) is a relatively new spec-
troscopy technique. With the help of the code developed in this thesis, one can predict various ob-
servables from FD-2DES images, like cross-peak to diagonal peak ratio or the ratio at which the two
diagonal peaks occur. These observables can be simulated and correlated with any adjustable parameter
at choice, which gives the simulation operator infinite possibilities for simulations. This makes it hard
to demonstrate the full potential of the code in just a few pages.

8 Figures 5.1 and 5.4 are from Ref. [9] with creative commons licence, see https://creativecommons.org/licenses/
by/4.0/.
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Figure 5.4: Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy (SR-FD-
2DES)[9]. The red dots in (a) are the places where the 2D spectrum are measured. The maximum
resolution of SR-FD-2DES is measured in Figure 5.1. Creative commons licence applies8.
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5.6 Outlook

The code can easily be adjusted for experiments with different light harvesting systems. The code is not
limited by the boundaries of what nature has to offer. With a few adaptations, the code can be used to
simulate exciton dynamics in a PN-heterojunction in an organic solar cell.

Figure 5.5: Photocurrent generation processes in two bulk heterojunctions with very different mor-
phologies: a bad morphology (A) and a good morphology (B). Figure reprinted from Ref. [29]. This
Figure was published under the Creative Common CC BY licence.

Together with the knowledge gained by studying natural light harvesting systems, we might be able
to optimize organic solar cells.
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Chapter 6

Contributions

The author proposed the research question and designed the research together with T.L.C. Jansen.
Simulations were done using Python[16] and Mathematica from Wolfram Research[18]. The author
wrote the code for all simulations and performed all debugging themselves. The conclusions presented
in the conclusion section were all drawn by the author with feedback from T.L.C. Jansen.
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Appendix A

Energy transfer rates rates

In this appendix-chapter, I will elaborate on the
energy transfer rate. There are many inter-
esting things going on, e.g. between equiva-
lent light harvesting complexes (LH2*+LH2 −−⇀↽−−
LH2+LH2*), between unequal light harvest-
ing complexes (LH2*+LH1 −−⇀↽−− LH2+LH1*),
and within light harvesting complex 2 (LH2:
B800*+B850 −−⇀↽−− B800+B850*).
In this appendix-chapter, I will elaborate a bit on

how the numbers of are derived, and what further
implications there are for the spectroscopic mea-
surement. Figure A.1: (A) Schematic representation of an

antenna network. The subsystem of one RC-LH1
(with B875 in blue) and three LH2 units (with B850
in green) is later used in (C) to illustrate the trans-
fer rates. Reprinted with permission from [7].
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A.1 Calculating asymmetric

kinetic rates

As discussed in section 2.2.2 on page 16, the energy
transfer rates between molecules A and B is asym-
metric if A and B have a different HOMO-LUMO
energy gap.

A + B*
kB→A−−−⇀↽−−−
kA→B

A* + B (Eq. A.1.1)

kA→B
kB→A

= e
EA−EB

kBT (Eq. A.1.2)

The diffusion between LH2 (B850) and LH1 (B875)
is shown in Figure A.2.
Unfortunately, literature often only reports the

rate for the most dominant process. To make
our simulations more complete, however, we want
to include diffusion in the opposite direction as
well. The reverse rate is easily calculated from
the forward rate by scaling the rate down by the
kA→B

kB→A
ratio. We calculate these ratios for both the

LH1/LH2 system and for the B800/B850 system.

Figure A.2: A zoomed snapshot of Figure A.1
on the previous page. Note that the kinetics is
symmetric between two molecules of B (B850 in
green), but asymmetric between a molecule of A
(B875 in blue) and a molecule of B. The ratio kA→B

kB→A

is described by the Maxwell-Boltzmann equations,
however, the absolute rate also depends on distance
and relative orientation.

The calculation is performed as follows:

LH2 −−→ LH1 B800 −−→ B850

EA = EB875 = hc
875 nm

= 1.417 eV EA = EB850 = hc
850 nm

= 1.459 eV
EB = EB850 = hc

850 nm
= 1.459 eV EB = EB800 = hc

800 nm
= 1.550 eV

EB − EA = 0.042 eV EB − EA = 0.091 eV

At T=313K (40◦C), kBT = 0.027 eV At T=313K (40◦C), kBT = 0.027 eV
EB − EA
kBT

=
0.042 eV
0.027 eV

= 1.545
EB − EA
kBT

=
0.091 eV
0.027 eV

= 3.379

kLH2→LH1

kLH1→LH2

= e1.545 = 4.686
kB800→B850

kB850→B800

=
18

9
× e3.379 = 2× 29.33 = 58.67

kLH1→LH2

kLH2→LH1

= e−1.545 = 21.34%
kB850→B800

kB800→B850

=
9

18
× e−3.527 =

1

2
× 3.4% = 1.7%

(Eq. A.1.3)

These are the conversion factors used to build Table 2.2 on page 16.
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From Figure A.1 on page 69, we can also determine what the mean and standard deviation of the
rate constant for hopping from one LH2 to another LH2 is, by calculating the kinetic rate three times
between LH2 complexes. Actually we are not really interested in the individual rates, but more so in
the mean and standard deviation of the population of rates.

kLH2LH2min = 1/0.0083

kLH2LH2meh = 1/0.0063

kLH2LH2max = 1/0.0043

kLH2LH2mean = np.mean([kLH2LH2meh,kLH2LH2min,kLH2LH2max])

kLH2LH2stdef = np.std([kLH2LH2meh,kLH2LH2min,kLH2LH2max])

print("kdif(LH2LH2) = ", kLH2LH2mean, " +- ", kLH2LH2stdef)

(Eq. A.1.4)

which prints
kdif(LH2LH2) = 170.59 +- 46.517 (Eq. A.1.5)

in unit’s of ns−1, just like Eq. B.1.3e on page 77.
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Appendix B

Explaining the code

In Chapter 2 (Methods), the Master equations are given. In this Appendix chapter, I demonstrate a
few ideas how to program the Master equations in Python.

B.1 Initialization

Before we can run any simulation, we
need to define a system. In the end,
wanted to perform simulations which re-
semble the antenna networks encoun-
tered in nature as close as possible. See
Figure B.1 for an AFM picture of the
light harvesting antenna network. I
make the following observations:

1. LH1 typically has 7 neighbors and
LH2 typically has 6 neighbors.

2. There are more LH2 complexes
(about 2 ∼ 6×[6]) than there are
LH1 molecules.

3. Sometimes, two LH1 complexes are
neighbors.

Figure B.1: (A) AFM topograph of the native Rhodospir-
illum photometricum photosynthetic membrane. (B) is a
schematic representation, with LH1 in blue (with red reaction
center) and LH2 in green. Reprinted with permision from [7].

B.1.1 Hexagonal grids

In our model, let’s make a first simplification: let’s assume that both LH1 and LH2 have 6 neighbors.
This simplification allows us to use a honeycomb-like lattice with 6-fold symmetry instead of a compli-
cated pseudo-lattice in which some sites have 7 neighbors. In this hexagonal grid, the exciton can move
in 6 directions; each movement is described with a distinct rate, see Figure B.2.

The next simplification is actually just a convention: a rectangular matrix will be used to model the
probability to find an excited state in the hexagonal lattice. The dynamics is made similar by ensuring
the interaction between 2 diagonal neightbors, see Figure B.3.
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(a) kup1 and kdown1 (b) kup2 and kdown2 (c) kLeft and kRight

Figure B.2: Movements in the hexagonal lattice

(a) kup1 (b) kup2 (c) kLeft

(d) kdown1 (e) kdown2 (f) kRight and kRight

Figure B.3: Square matrix movements.
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The first thing to do is to make an LH1/LH2 grid with n LH1 complexes. The script below places
them in random positions.

def makeLH1LH2grid(nx, ny, nLH1, max_try=100, sigmarescale=1):

“‘This function makes the LH grid. 2 means LH2, 1 means LH1, 0 means no LH molecule.

It also makes the kinetic (k) grids”’

LHgrid = np.zeros([(nx+2),(ny+2)])

#set edge-sites to 0:

LHgrid[ 0:, 0] = LHgrid[ 0:,-1] = 0

LHgrid[ 0, 0:] = LHgrid[-1, 0:] = 0

#Make the code fail-safe: see safety-measure #1: Eq. B.1.2

try_count = 0

for i in range(0, nLH1):

placed = False

while placed == False and try_count < max_try:

acceptable = True

x_try = round(1 + random.random() * nx)

y_try = round(1 + random.random() * ny)

if LHgrid[x_try,y_try] == 1 or LHgrid[x_try,y_try] == 0:

acceptable = False

try_count += 1

if acceptable = True:

LHgrid[x_try,y_try] = 1

placed = True

break

... # code goes on to make k-grids... Eq. B.1.3.

return LHgrid, kmatL, kmatR, kmatupp, kmatdwn, kma2upp, kma2dwn (Eq. B.1.1)

The while placed == False loop ensures that the final LHgrid contains exactly nLH1 units of LH1’s.
Without this loop, it could occur that the same randomly generated location is location is assigned to
be LH1 multiple times.

The code is double fail-safe. Without safety measures, the code would get stuck in this loop forever
if nLH1 >= nx * ny. One way to block it from looping forever that the while try_count < max_try

statement is no longer satisfied. The other safety measure is to explicitly check that nLH1 < nx * ny.
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if nLH1 >= nx * ny:

print("The number of LH1 molecules (",nLH1,")

exceeds the number of grid points (",nx*ny,").

This is unacceptable!")

return

(Eq. B.1.2)

The next thing is to set rates between each of the grid points. In order to make this a bit realistic,
the rates are pulled from a normal distribution, with a mean and width calculated from the numbers
encountered in Figure A.1 on page 69[7].

kLH2LH2min = 1/0.0083

kLH2LH2meh = 1/0.0063

kLH2LH2max = 1/0.0043

kLH2LH2mean = np.mean([kLH2LH2meh,kLH2LH2min,kLH2LH2max])

kLH2LH2stdef = np.std([kLH2LH2meh,kLH2LH2min,kLH2LH2max]) * sigmarescale

print("kdif(LH2LH2) = ", kLH2LH2mean, " +- ", kLH2LH2stdef)

(Eq. B.1.3a)

which prints
kdif(LH2LH2) = 170.59 +- 46.517 (Eq. B.1.3b)

in unit’s of ns−1. Note that sigmarescale = 1 by default, but can be set to 0 if we are doing test-
simulations in order to see of our code is working at all.

We can now pull numbers from the gaussian distribution with µ = 170.59 ns−1 and σ = 46.517 ns−1

using np.random.normal(...), see below. This is exactly what we do to generate 6 k-grids (up, down,
left, right, and the two diagonals upleft downright, recall Figure B.3), e.g. like this:

#rates vertical:

kmatupp = np.random.normal(loc=kLH2LH2mean, scale=kLH2LH2stdef, size=(nx+2,ny+2))

#correct edges:

kmatupp[ 0:, 0] = 0

kmatupp[ 0:,-1] = 0

kmatupp[ 0, 0:] = 0

kmatupp[-1, 0:] = 0

#LH2 <=> LH2 is symmetric:

kmatdwn = np.copy(kmatupp)

kmatupp[1:-1,1:-1] = kmatdwn[1:-1,2: ]

(Eq. B.1.3c)
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As it is very important that the wall remains free of excited state, and because I thought that we might
at some point include vaccuum bubbles (so a wall-unit (0) in the middle of the simulation box), I actually
over-engineered the code with some extra lines to ensure that the diffusion both from the wall, as well
as towards the wall is zero, see Eq. B.1.3d.

....# continuation of makeLH1LH2grid

for i in range(0, nx+2)

for j in range(0, ny+2)

if LHgrid[i,j] == 0: # If this is vacuum or the wall

kmatdwn[i,j] = 0

kmatupp[i,j] = 0

try:

kmatdwn[i,j+1] = 0

except Exception:

pass

try:

kmatupp[i,j-1] = 0

except Exception:

pass

(Eq. B.1.3d)

The above subroutines (Eq. B.1.3c and Eq. B.1.3d) are also done for horizontal movement (kmatL and
kmatR) and diagonal movement (kma2upp and kma2dwn).

The next step is to see if there are any sites other than LH2 in this grid. There are! We have LH1,
and we also set the diffusion toward the wall (if LHgrid[x,y] == 0) to 0.

The rates between LH1 and LH2 are again pulled from a distribution:

kLH1LH2min = 1/0.0073

kLH1LH2max = 1/0.0066

kLH1LH2mean = np.mean([kLH1LH2min,kLH1LH2max])

kLH1LH2stdef = np.std([kLH1LH2min,kLH1LH2max]) * sigmarescale

print("kdif(LH1LH2) = ", kLH1LH2mean, " +- ", kLH1LH2stdef, " ns-1")

(Eq. B.1.3e)

which prints
kdif(LH1 to LH2) = 144.25 +- 10.27 (Eq. B.1.3f)

in unit’s of ns−1. The assymetry is simply set by multiplying the number with LH1LH2_ratio = 4.686

(calculated at T = 40◦C), so that

kdif(LH2 to LH1) = 675.96 +- 48.14 ns−1. (Eq. B.1.3g)
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I implement a function which loops over all the LH1-entries, and corrects the rates accordingly.

....# continuation of makeLH1LH2grid

for i in range(1, nx+1)

for j in range(1, ny+1)

if LHgrid[i,j] == 1:

if LHgrid[i,j+1] == 2: # LH1 <=> LH2

test_LH1_to_LH2_rate = np.random.normal(loc=kdifLH1LH2mean,

scale=kdifLH1LH2stdef)

kmatupp[i,j ] = test_LH1_to_LH2_rate

kmatdwn[i,j+1] = test_LH1_to_LH2_rate * LH1LH2_ratio

if LHgrid[i,j-1] == 2: # LH1 <=> LH2

test_LH1_to_LH2_rate = np.random.normal(loc=kdifLH1LH2mean,

scale=kdifLH1LH2stdef)

kmatdwn[i,j ] = test_LH1_to_LH2_rate

kmatupp[i,j-1] = test_LH1_to_LH2_rate * LH1LH2_ratio (Eq. B.1.3h)

Again, similar routines for horizontal movement (kmatL and kmatR) and diagonal movement (kma2upp
and kma2dwn) is done in Eq. B.1.3h, but note that they sense different locations relative to the reference
molecule (e.g. LHgrid[i±1,j] and LHgrid[i±1,j±1].

Code-wise, this is all that comes into play to initialize the rate-matrices. We can now end our def
makeLH1LH2grid(): with

return LHgrid, kmatL, kmatR, kmatupp, kmatdwn, kma2upp, kma2dwn (Eq. B.1.4)

Note that later versions of makeLH1LH2grid() are adapted to also generate the k-grids for specific/predefined
LH1/LH2 configurations, by feeding this function of list with LH1 positions. This modification will not
be elaborated here, but can be seen/used in the publicly available code.
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B.2 Taking a time-step

Now that we have our k-grids, it’s time to define a time-step.

def time_step():

“‘Update the excited state concentrations according to nearest neighbor diffusion”’

in1 = kmatL[2: ,1:-1] * singleexcitedstate[2: ,1:-1]

in2 = kmatR[0:-2,1:-1] * singleexcitedstate[0:-2,1:-1]

in3 = kmatdwn[1:-1,2: ] * singleexcitedstate[1:-1,2: ]

in4 = kmatupp[1:-1,0:-2] * singleexcitedstate[1:-1,0:-2]

in5 = kma2upp[0:-2,0:-2] * singleexcitedstate[0:-2,0:-2]

in6 = kma2dwn[2: ,2: ] * singleexcitedstate[2: ,2: ]

out = (kmatL[1:-1,1:-1] + kmatR[1:-1,1:-1] + kmatdwn[1:-1,1:-1] +

kmatupp[1:-1,1:-1] + kma2dwn[1:-1,1:-1] + kma2upp[1:-1,1:-1])

* singleexcitedstate[1:-1,1:-1]

singleexcitedstate[1:-1,1:-1] = singleexcitedstate[1:-1,1:-1] +

dt * (in1 + in2 + in3 + in4 + in5 + in6 - out)

# Code goes on with photon counting, see Eq. B.3.5

return

(Eq. B.2.1)

Upto now, our simulations are accurate for a single exciton, and has a faster diffusion towards LH1
units than towards LH2 units. Figure B.4 shows a test-simulation.

(a) 1 single excited state, frame 0 (t = 0.000 ns) (b) 1 single excited state, frame 10 (t = 0.010 ns)

Figure B.4: Example of a single excited state which moves over the Light Harvesting network. On
the left you see the initial state. On the right you see the state after 10 000 timesteps (dt = 1 fs). In
pannel (b) we can see that the excited state starts accumulating on one molecule in the (6,4) position
in the grid; this is the random location where the algorithm decided to put the LH1 unit.
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B.3 Fluorescence & photon counting

Section B.1 generates almost all k-grids which we will need in the future. There is one k-grid which I
programmed in a slightly different way: the k-grids for fluorescence.

Since I will be dragging around many matrices through many different modules, I try to keep the
information in the matrices as compact as possible. However, sometimes we don’t want compact infor-
mation. Below, we have a function which splits the LH-matrix in two matrices: one for LH1 and one
for LH2.

def sep_LH_grid(LHgrid):

nx = len(LHgrid)

ny = len(LHgrid.T)

LH1grid = np.zeros([(nx),(ny)])

LH2grid = np.zeros([(nx),(ny)])

for i in range(1, nx-1)

for j in range(1, ny-1)

if LHgrid[i,j] == 1:

LH1grid[i,j] = 1

elif LHgrid[i,j] == 2:

LH2grid[i,j] = 1

return LH1grid, LH2grid

(Eq. B.3.1)

Next, we need the rates at which fluorescence takes place. All numbers are from Ref. [19].

kLH1toG = 1/0.680 # Ref. [19]

kLH2toG = 1/0.986 # Ref. [19]

kLH1toGR = 1/8.4 # Ref. [19]

kLH2toGR = 1/10. # Ref. [19]

(Eq. B.3.2)

Now, we can generate the following k-grids:

k_fluorescence_grid = LH1grid * kLH1toG + LH2grid * kLH2toG

k__Radiative___grid = LH1grid * kLH1toGR + LH2grid * kLH2toGR
(Eq. B.3.3)

These are the two grids we will be using to calculate the fluorescence and photon counting in the future.
Speaking of photon counting; let’s initialize the photon counting grids:

LH1_photon_counter = np.zeros([(nx),(ny)])

LH2_photon_counter = np.zeros([(nx),(ny)])
(Eq. B.3.4)
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And our time-step can be expanded to include fluorescence + photon counting as follows:

def time_step():

# ... see Eq. B.2.1 on page 79

fluorescence = dt * singleexcitedstate[1:-1,1:-1] * k_fluorescence_grid

photons = dt * singleexcitedstate[1:-1,1:-1] * k__Radiative___grid

LH1_photon_counter[1:-1,1:-1] += photons * LH1grid

LH2_photon_counter[1:-1,1:-1] += photons * LH2grid

singleexcitedstate[1:-1,1:-1] -= fluorescence

fullgroundstate[1:-1,1:-1] += fluorescence

return

(Eq. B.3.5)

Photon counting becomes slightly more difficult when we have to consider two excited states in the Light
Harvesting network, and my best guess would be that it should look something like this:

def time_step():

# modified version of Eq. B.2.1 on page 79 to include dynamics for multiexcitedstates

fluorescence1 = dt * multiexcitedstate1[1:-1,1:-1] * k_fluorescence_grid

fluorescence2 = dt * multiexcitedstate2[1:-1,1:-1] * k_fluorescence_grid

fluorescence3 = dt * singleexcitedstate[1:-1,1:-1] * k_fluorescence_grid

photons1 = dt * multiexcitedstate1[1:-1,1:-1] * k__Radiative___grid

photons2 = dt * multiexcitedstate2[1:-1,1:-1] * k__Radiative___grid

photons3 = dt * singleexcitedstate[1:-1,1:-1] * k__Radiative___grid

totalphotons = (photons1 + photons2 + photons3)

LH1_photon_counter[1:-1,1:-1] += totalphotons * LH1grid

LH2_photon_counter[1:-1,1:-1] += totalphotons * LH2grid

addto1excitedstate = np.sum(fluorescence1) * multiexcitedstate2[1:-1,1:-1]

addto2excitedstate = np.sum(fluorescence2) * multiexcitedstate1[1:-1,1:-1]

multiexcitedstate1[1:-1,1:-1] -= (fluorescence1 + addto2excitedstate)

multiexcitedstate2[1:-1,1:-1] -= (fluorescence2 + addto1excitedstate)

singleexcitedstate[1:-1,1:-1] += addto1excitedstate + addto2excitedstate

singleexcitedstate[1:-1,1:-1] -= fluorescence3

fullgroundstate[1:-1,1:-1] += fluorescence3

return

(Eq. B.3.6)

However, the main problem then actually is: how do we describe a two photon system? This is exactly
the question I will address in the next section.
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B.4 Converting the matrices to vector

Table B.1: The number of
double excited states can be
calculated as the surface of a
triangle: 1

2
n2, except for that

the diagonal elements are fully
missing instead of half, so we
need to subtract n red-triangles
with area 1

2
, so the total num-

ber of double excited states is
calculated as: 1

2
n2 − 1

2
n = 1

2
n ∗

(n− 1).

How do we describe two excited states?

The most easy approximation is that each of the two excited states
behave just like the single excited state. And that is true for most part.
The only exception you’ll have to deal with is: what happens if the two
excited states end up on the same molecule? Well, as we discussed in
Section 2.2.3 on page 18, the second excited state is generated, which
decays very rapidly towards the first excited state. In fact, for as far as
we know, it’s the only decay path. I thought to myself, do we actually
need to describe the population present in the second excited states in
of each of the Light Harvesting complexes? Then I thought, well, no.
We can do without it. Then, when two excited states end up on the
same unit, we immediately observe the single excited state. Of course
this would be an approximation, but the approximation is assumed to
be a fairly accurate one.

How would we do it?

We need to imagine one very long vector or array which contains all of the possible states where
the system can be in. If it helps, imagine the example of a LHgrid containing n = 4 Light Harvesting
complexes, A,B,C,D.

0. Element 0 is describing the full ground state (fgs).

1. Elements 1 to n are describing the single excited states (A, B, C, D...)

2. Elements n+ 1 to 1
2
n ∗ (n+ 1) + 1 are describing the double excited states (AB, AC, AD, BC, BD,

CD...). The boundaries are set this way so that there exactly 1
2
n∗ (n−1) double exciton elements,

just as much as we need according to the calculation in the caption of Table B.1

3. Elements n ∗ (n+ 1)/2 + 2 and n ∗ (n+ 1)/2 + 3 are reserved for the photon counters for LH1 and
LH2 respectively.

Now that we roughly know which elements goes where, we can start looping over the different grid
elements to put all elements in the place where they belong in the vector. In order to know which
element I stored where, I keep a dictionary.
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def convert_grid_to_vector(LHgrid, multiexcitedstate1, multiexcitedstate2, singleexcitedstate,

fullgroundstate, LH1_photon_counter, LH2_photon_counter, tag = ""):

nx = len(LHgrid) -2

ny = len(LHgrid.T) -2

number_of_elements_in_grid = nx * ny

number_of_elements_in_vector = round((number_of_elements_in_grid) *

(number_of_elements_in_grid + 1) / 2 + 3) # incl. photon counter

new_population_vector = np.zeros(number_of_elements_in_vector)

vec_index_dict = {}

vec_index_dict_inv = {}

vec_index_new = 0

vec_index_dict[vec_index_new] = "fgs"

vec_index_dict_inv["fgs"] = vec_index_new

# Code updates new_population_vector with singleexcitedstate elements, see Eq. B.4.2.

# Code updates new_population_vector with multiexcitedstates elements, see Eq. B.4.3.

# Code updates new_population_vector with LH1 and LH2 photon-counters, see Eq. B.4.4.

return new_population_vector, singleexcitedstate
(Eq. B.4.1)

For the single excited states, note that this is the excellent place to calculate annihilation, as we are
looping over the single excited states anyways now.

for i in range(1,nx+1): # single excited states

for j in range(1,ny+1):

vec_index_new += 1

vec_index_dict[vec_index_new] = "[" + str(i) + "," + str(j) + "]"

vec_index_dict_inv["[" + str(i) + "," + str(j) + "]"] = vec_index_new

annihilatexy = min(multiexcitedstate1[i,j], multiexcitedstate2[i,j])

singleexcitedstate[i,j] += annihilatexy

multiexcitedstate1[i,j] -= annihilatexy

multiexcitedstate2[i,j] -= annihilatexy

new_population_vector[vec_index_new] = singleexcitedstate[i,j]

(Eq. B.4.2)

Next, we update the double excitons, have the risk of being double counted (e.g. AB = BA be-
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cause we don’t care which of the two excited state is where). Note that also keep an inverse dictio-
nary, to which I also add the other combination. The second loop will only add an element to the
new_population_vector if that element is not present in the dictionary yet.

for i in range(1,nx+1): # multi excited states

for j in range(1,ny+1):

for k in range(1,nx+1):

for m in range(1,ny+1):

if [i,j] != [k,m] and "[" + str(i) + "," + str(j) + "],[" + str(k)

+ "," + str(m) + "]" not in vec_index_dict_inv:

vec_index_new += 1

vec_index_dict[vec_index_new] = "[" + str(i) + "," + str(j) +

"],[" + str(k) + "," + str(m) + "]"

vec_index_dict_inv["[" + str(i) + "," + str(j) + "],[" +

+ str(k) + "," + str(m) + "]"] = vec_index_new

vec_index_dict_inv["[" + str(k) + "," + str(m) + "],[" +

+ str(i) + "," + str(j) + "]"] = vec_index_new

new_population_vector[vec_index_new] = min(multiexcitedstate1[i,j],

multiexcitedstate2[k,m])

(Eq. B.4.3)

Last but not least, the final two elements in the population vector are

vec_index_new += 1

vec_index_dict[vec_index_new] = "[LH1_photon_counter]"

vec_index_dict_inv["[LH1_photon_counter]"] = vec_index_new

new_population_vector[ vec_index_new ] = LH1_photon_counter

vec_index_new += 1

vec_index_dict[vec_index_new] = "[LH2_photon_counter]"

vec_index_dict_inv["[LH2_photon_counter]"] = vec_index_new

new_population_vector[ vec_index_new ] = LH2_photon_counter

(Eq. B.4.4)

And if everything is good now, we should have converted a state which was initially described by
three matrices and two photon counters and a ground state counter, to one vector containing all this
information!

Unfortunately, however, if we go on to the next step, to combine all these states to huge K-matrix,
we encounter a normalization problem: for some reason, after one fluorescence time-step with multiple
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excited states (Eq. B.3.6), the state is no longer normalized, meaning that the total amount of state in
one array is no longer equal to 1. This is very inconvenient, and I’ve wasted a lot of time to investigate
if I could program the time-step better, but for so far I haven’t solved the issue yet. I did find a
work-around tho: simply normalize the rows which are not normalized.

if np.sum(new_population_vector[0:-2]) != 0:

if np.sum(new_population_vector[0:-2]) != 1:

print(tag + "np.sum(new_population_vector[0:-2]) = ",

np.sum(new_population_vector[0:-2]), " != 1, let’s normalize this.")

new_population_vector = new_population_vector / np.sum(new_population_vector[0:-2])

(Eq. B.4.5)

I use the print and tag for debugging, and for so far I still have not managed to perfectionalize this,
but maybe if someone else stares at the code for a few days, they will figure it out. At least you now
know why this is taking so long. You could comment out the printing step if you want to accelerate the
code.
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B.5 Converting the vectors to one big ~K-matrix

Now that we have a way to convert a state to a vector, we can make big transformation matrix ~K so
that:

~P (t+ dt) = ~K · ~P (t). (Eq. B.5.1)

We can actually do this for many timesteps at the same time, by raising the transformation matrix ~K
to some power:

~P (t) =
(
~K
)t/dt
· ~P (0). (Eq. B.5.2)

Now, note that if we calculate
(
~K
)t/dt

one time, we can see how any system has evolved from its initial

state ~P (0) to a final state ~P (t). This is called a Master-equation, and has been introduced in Sections
2.2-2.2.5. For a recap, see Figure B.5.

(a) The ~K matrix for 1 timestep (dt = 0.1 ps). (b)
(
~K
)100000

matrix for 10 ns.

Figure B.5: The Master equations for a dimer. Note that the tag labeling each row indicates it’s
starting configuration, and it ends up in many other states. The output states are labeled in the top
row of each column. Reprint of Figures 2.10 and 2.11.

Let’s start simple. We modify the definition of a timestep (Eq. B.2.1 on page 79) to include
the movement of the population density of each of the separate excited states: singleexcitedstate,
multiexcitedstate1, multiexcitedstate2. We basically copy all the lines and just interchange the
tag for each block of code.

Then we cycle through all the loops of Section B.4 again, in exactly the same order, keeping track
of the vec_index_new, which now corresponds to the row-number of our ~K matrix. But now, we set
the matrices (singleexcitedstate, multiexcitedstate1, multiexcitedstate2) up to match the
corresponding state, and we take a time-step. The formed situation is converted to a vector using the
convert_grid_to_vector(LHgrid, multiexcitedstate1, multiexcitedstate2, singleexcitedstate,

fullgroundstate, LH1_photon_counter, LH2_photon_counter) command.
From here onwards, I tested and wrote many variations on the code. One could probably also think

of more efficient algorithms for setting up the k-matrix, but since I assumed time stepping would take
the core of the CPU time, I didn’t focus on optimizing the part in which the equations are set up.
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B.6 Testing different versions of the code

Recall the discission on whether to do the fluorescence or the exciton transfer step first. When I did
simulations on the dimer (Figure 2.11 on page 26, reprinted here for convenience), it turned out that
there was barely any difference between taking the exciton fluorescence or the exciton transfer step first.

(a) Transport × Fluorescence. (b) Fluorescence × Transport.

Figure B.6: When simulating the dimer, there is very little difference in the final result, whether we
do the fluorescence- or exciton transfer-timestep first. Reprint of Figure 2.11 on page 26.

In versions 18 & 19 of the code, we first do a time-step in fluorescence and then do a time-step in
exciton transfer, and then apply the conversion from 3 matrices to 1 vector (see section B.4), which in
practise gives the exact same matrix as doing KF ×Ktr.

In version 20 of the code, I first do a time-step in exciton transfer, and then convert 3 matrices to
a vector, then back to 3 matrices (exciton annihilation is done in the conversion step), and then do
a fluorescence-time-step. In practise, this gives the same matrix as doing Ktr × KF . As the exciton
transfer is fast (compared to fluorescence), it makes most sense to perform that step first.

B.7 Version 18/19 vs Version 20/21

As I described in section 4.2, I did simulations on different kinds of Light Harvesting chains, depicted
in Figure 4.2 on page 44. Something which I didn’t discuss in the main results, is that I actually did it
this simulation multiple times with different versions of the code, because I noticed that my assumption
that which can be downloaded here:

Version 19: https://www.dropbox.com/s/5ii7vnaso6snuz8/Kinetics%20simulation%20on%20grid%
20step%2019%20cleanup.py?dl=0

Version 21: https://www.dropbox.com/s/t6fig25j3f0qbon/Kinetics%20simulation%20on%20grid%
20step%2021%20include%20LH1-LH1.py?dl=0

In version 19, I first take a fluorescence time-step before I take a dynamics time-step, while in version
20 I take a dynamics timestep first, then do a (recall comparison in Figure 2.11 on page 26).

Now I must admit that I initially thought that the difference was going to be insignificant, but it
turns out that there is a difference. The reason why I present the results from the bit less accurate code
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anyways, is because the graphs are conveniently not overlapping constantly, which is the case for the
21th version.

(a) This graph was made with version 19 of the code,
in which the k-grid is generated via Fluorescence ×
Transport.

(b) This graph was made with version 21 of the code,
in which the k-grid is generated via Transport × Fluo-
rescence.

Figure B.7: Cross-peak to Diagonal-peak ratio according to photon counters calibrated to LH1.

(a) This graph was made with version 19 of the code,
in which the k-grid is generated via Fluorescence ×
Transport.

(b) This graph was made with version 21 of the code,
in which the k-grid is generated via Transport × Fluo-
rescence.

Figure B.8: Cross-peak to Diagonal-peak ratio according to photon counters calibrated to LH2.

The kinks are an indication that this Light Harvesting complex is neighboring a LH1 complex on
the right. Personally I feel like these kinks are slightly better visible in version 19 than in version 20 of
the code, but then I also have in the back of my mind that version 20 is a more accurate simulation.
But in the end I think that the conclusion is that we can simulate whatever we like, but there will be
very little contrast for experiments, because the overlap between the different simulations is huge.

Version 21 includes the LH1 −−⇀↽−− LH1 exciton dynamics as an option9.
Version 24 includes the option to gradually add vacancies10.

9 Download: https://www.dropbox.com/s/1k1ffgh4cpohtua/Kinetics_simulation_v.21_incl_LH1-LH1.py?dl=0
10 Download: https://www.dropbox.com/s/il9u71znubwzxhw/Kinetics_simulation_v.24_incl_vacancies.py?

88

https://www.dropbox.com/s/1k1ffgh4cpohtua/Kinetics_simulation_v.21_incl_LH1-LH1.py?dl=0
https://www.dropbox.com/s/il9u71znubwzxhw/Kinetics_simulation_v.24_incl_vacancies.py?dl=0
https://www.dropbox.com/s/il9u71znubwzxhw/Kinetics_simulation_v.24_incl_vacancies.py?dl=0


B.8 Timing

For each simulation, the k-matrix is raised to the 100 000’th power, in order to obtain the situation
(mainly the photon counters) after 10 nanosecond. I did some tests to see if the code would actually
run faster if I were to take fewer timesteps.

Figure B.9a concludes that there is no sensitivity for more CPU time at higher power’s after roughly
n = 1000. Probably this has to do with the fact that the matrix_power() function is optimized to deal
with higher powers.

(a) As a function of k-power (kn) (b) As a function of number of elements in the grid.

Figure B.9: Determination on what has a higher sensitivity towards more CPU time: more elements
in the LHgrid, or raising the k-grid higher power.

But how is the CPU sensitivity for having more elements in the light harvesting grid (which I called
LHgrid in the Python code)? This is something which I tracked in the very last simulations, I timed
each simulation, also when we had a vacancy introduced. Note that the spike at x is an artifact. It is
simply the overlay of many data points at n = 49, since this was a similar experiment as performed in
section 4.5 on page 52 (introducing vacancies).

Note that a full simulation is actually a lot more than just raising the k_grid to the n-th power:
constructing the k_grid also consumes a lot of time. I put a timer around a few simulations, the results
are plotted in Figure B.10.

dl=0
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(a) Till max 64 entries

(b) Till max 81 entries

Figure B.10: Investigating full CPU time as a function of the number of elements in the LH grid.
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