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Abstract

The goal of this paper is to investigate the asymptotic properties of Z- and M-
estimators in the empirical process theory. The paper will demonstrate that the
empirical process theory is a very important tool in asymptotic statistics. Appli-
cations of the empirical process theory will be displayed accompanied by some
examples to serve as illustration. The applications will be used to approach Z-
and M-estimation in a non-parametric way. In practice, non-parametric regres-
sion is only called upon when other attempts have failed. It will be seen that
this non-parametric approach to regression analysis must be taken into account
and should be drawn upon a lot more in the future.
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Introduction

In statistics, there are often assumptions when estimating the relationships be-
tween a dependent variable and one or more independent variables. The most
common form of this kind of regression analysis is normal regression, but it is also
possible to assume that the observations follow from a linear regression. This
type of regression analysis, where the predictor takes a predetermined form, is
called parametric regression. The opposite, less-used regression analysis is called
non-parametric regression, which constructs the predictor according to the in-
formation from the observations. It is primarily used when the assumptions of
the parametric tests are violated. This paper will give a quick peek in the appli-
cations of non-parametric regression and show that this type of regression ought
to be used a lot more in the future.

Nowadays, the empirical process theory represents a significant part in non-
parametric asymptotic statistics. This theory originated from the study of
goodness-of-fit statistics. An example of a goodness-of-fit test, is the Kol-
mogorov–Smirnov test which quantifies the distance between the null distribu-
tion function and the so-called empirical distribution function. With introducing
the empirical distribution function, the empirical process theory became more
and more important. With applications like the bootstrap, the delta-method
and goodness-of-fit testing, the theory plays a key part in asymptotic statistics.

Now that the theory has shown its importance, the question arises what effect
this theory has on the asymptotic properties of Z- and M-estimators. Which con-
ditions are needed in order to satisfy uniform consistency for the least squares
estimator? And what is the convergence rate of this estimator? This is being
investigated by analyzing entropy conditions and researching if these entropy
conditions are enough to satisfy the Uniform Law of Large Numbers. To examine
the relation between the empirical process theory and Z-estimation, conditions
for P-Donsker classes need to be established. What are these conditions and
how are they related to asymptotic properties of Z-estimators?
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Literature review

It wasn’t untill the advent of goodness-of-fit tests that the empirical process
theory began taking shape. Before this, there was virtually no literature about
empirical processes. At the same time (1930’s), the Glivenko-Cantelli theorem
was discovered which introduced the empirical distribution function. Later, the
consideration of the empirical measure resulted in generalization of the theorem
for function classes. These classes are called Glivenko-Cantelli classes. In 1952,
the discovery of the Donsker’s theorem accounted for the emergence of a whole
new branche of the empirical process theory. It gave rise to P-Donsker classes.
In the 1970’s and 1980’s there were many studies into P-Donsker classes and em-
pirical processes and its applications by David Pollard, Evarist Giné, Joel Zinn
and many others. These studies have laid the foundation for further studies like
van der Vaart and Wellner (1996) [2] and van de Geer (2000) [9].

The book from van de Geer [9] presents the empirical process theory and its
applications with displaying the effectiveness of the theory in non-parametric
models. The main goal of the book is to demonstrate the relation between
empirical processes and the asymptotic properties of M-estimation. The book
starts with explaining the entropy of a function class and proofs the property of
finite entropy, is a necessary condition of a Glivenko-Cantelli class. The book
differs here from van der Vaart and Wellner [2]. Both proofs apply Hoeffd-
ing’s inequality and the symmetrization method, however, van der Vaart and
Wellner use the Hoeffding’s inequality with respect to an other norm and the
symmetrization method was used with respect to the expectation instead of the
probability. Another difference is that van de Geer covers P-Donsker classes but
doesn’t address Z-estimation, as van der Vaart and Wellner do. Van der Vaart
and Wellner demonstrate the applications of P-Donsker classes in Z-estimation.
Nonetheless, consistency and the convergence rates of M-estimators are covered
by both books.

Bodhisattva Sen [15] has made a document about the empirical processes the-
ory that is easier understood than other books about this topic. The proofs
for consistency of M-estimators and ensuring Glivenko-Cantelli are approached
from another point of view.
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Empirical process

This chapter will introduce the empirical process, which is the main topic of this
paper. We start with considering i.i.d random variables X1, X2, ..., Xn defined
on X with a common cumulative distribution function F . Before we can obtain
the empirical process, the empirical distribution function has to be defined. The
empirical distribution function is given by

Fn(x) =
1

n

n∑
i=1

1(−∞,x](Xi)

where 1 is the indicator function. In other words, the empirical distribution
function at a given point is equal to the proportion of observations that are less
than or equal to that point. If we fix x, 1(x)X can be seen as a random variable
with sample mean Fn(X) and expectation F (x). Recalling the Strong Law of
Large Numbers, we have

P
(

lim
n→∞

Fn(x) = F (x)
)

= 1

for each x ∈ X . Hence, Fn(x) converges almost sure to F . In chapter ’Glivenko-
Cantelli classes’, it will be seen that this convergence is uniform (see theorem
(1.1)). Now we know the definition of the empirical distribution function, we can
construct the corresponding empirical process. An empirical process indexed by
a particular function class F , is given by

(Gn(f))f∈F =

{
√
n

(
1

n

n∑
i=1

f(Xi)− Ef(x)

)
: f ∈ F

}

If we take F = {1(−∞,x] : x ∈ R}, then

(Gn(f))f∈F = (
√
n(Fn(x)− F (x)))x∈R

By the Central Limit theorem, all elements of this empirical process converge in
distribution to a normal random variable.

Gn(x)
d−→ N(0, F (x)(1− F (x))

We will discover later that this empirical process converges in distribution to a
standard Brownian motion (see Donsker’s theorem (3.1)).

Empirical measure

Let A ⊂ X , then the empirical measure is given as

Pn(A) =
1

n

n∑
i=1

1A(Xi)
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which is just 1/n times the number of variables Xi in A. Note that all indicator
functions can be written as Dirac measures, so

Pn(A) =
1

n

n∑
i=1

δXi(A)

Therefore if we let F be a class of functions defined on X , then for f ∈ F we
can write ∫

f dPn =
1

n

n∑
i=1

f(Xi)

Recalling the definition of the expectation E, we write

1

n

n∑
i=1

f(Xi)− Ef =

∫
f d(Pn − P) (0.1)

With this equation we can write the Uniform Law of Large Numbers in an other
way. This trick comes in handy for proofing theorems for certain classes. We
say a function class F satisfies the Uniform Law of Large Numbers if

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef

∣∣∣∣∣ a.s.−−→ 0

But now by equation (0.1), we can write

sup
f∈F

∣∣∣∣∫ f d(Pn − P)

∣∣∣∣ a.s.−−→ 0

A class satisfying this condition is called a Glivenko-Cantelli class (see definition
(1.1)). From earlier understandings, we know that the function class {1(−∞,x] :
x ∈ X} can be called Glivenko-Cantelli. But what about other function classes?
That will be figured out in the next chapter.
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Glivenko-Cantelli classes

This chapter will be about identifying Glivenko-Cantelli classes. Particular func-
tion classes will be proven to be Glivenko-Cantelli, but first we need to know
what a Glivenko-Cantelli class is.

Definition 1.1 (Glivenko-Cantelli class) A function class F is called Glivenko-
Cantelli if

‖Pn − P‖F := sup
f∈F

∣∣∣∣∫ f d(Pn − P)

∣∣∣∣ a.s.−−→ 0 (1.2)

i.e. it satisfies the Uniform Law of Large Numbers.

Later on, we will use lemma 2.4.5 from [2] to show that condition (1.2) is equiv-
alent to E‖Pn − P‖F −→ 0 (convergence in mean). This lemma will help us to
construct one of the two theorems which proof Glivenko-Cantelli for function
classes with certain entropy conditions. Before we will demonstrate these the-
orems, we will proof that the class {1(−∞,x] : x ∈ X} is Glivenko-Cantelli. To
proof this, we will make use of the following theorem.

Theorem 1.1 (Glivenko-Cantelli theorem)

‖Fn − F‖∞ = sup
x∈X
|Fn(x)− F (x)| a.s.−−→ 0

Proof See theorem (A1.1) from Appendix

To demonstrate that the function class {1(−∞,x] : x ∈ X} is Glivenko-Cantelli,
note that

Fn(x) =

∫
1(−∞,x] dPn

and

F (x) =

∫
1(−∞,x] dP

Therefore,
‖Pn − P‖{1(−∞,x]:x∈X} = sup

x∈X
|Fn(x)− F (x)|

Using theorem (1.1), we find that this class is Glivenko-Cantelli.

Entropy

It is already mentioned that two theorems will be demonstrated based on entropy
conditions. To obtain the entropy of a function class F we first need to construct
a ε-net. A ε-net is defined on a metric space, so we consider for 1 ≤ p ≤ ∞ the
lebesgue space Lp(µ) = {f : X → R :

∫
|f |pdµ <∞} with respect to the measure
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µ. The p-norm on Lp(µ) will be referred to as ‖.‖p. Let F ⊂ Lp(µ), then for
f ∈ F we have

‖f‖p =

(∫
|f |pdµ

)1/p

if 1 ≤ p <∞ and
‖f‖∞ = sup

x∈X
|f(x)|

Now that everything is established, we can construct the ε-net.

Definition 1.2 (ε-net) Suppose ε > 0, then G is a ε-net for a function class F
with respect to the p-norm if there exist a g ∈ G for each f ∈ F such that

‖f − g‖p ≤ ε

Definition 1.3 (Covering number) The ε-covering number of F is

Np(ε,F , µ) = min{N ∈ N : ∃ a ε-net g1, g2, ..., gN of F

with respect to the p-norm}

We see that a function class G can be called a ε-net of F if all functions of F can
be contained in the union of the closed balls of radius ε around the functions of
G. Np(ε,F , µ) is the cardinality of the smallest ε-net. By taking the logarithm
of Np(ε,F , µ) we obtain the entropy Hp(ε,F , µ).

Definition 1.4 (Entropy) The entropy of F is defined as

Hp(ε,F ,P) = logNp(ε,F , µ)

and for the supremum norm

H∞(ε,F) = logN∞(ε,F)

The entropy for the supremum norm can be written this way, because the norm
doesn’t depend on the measure. F is totally bounded if the entropy H∞(ε,F)
is finite for all ε > 0.

Bracket entropy

Besides the normal entropy we also need the bracket entropy to construct the
two theorems. The computation of the bracket entropy is based on function
brackets that encapsulate the functions of the function class. Such a function
bracket is called a ε-bracket.

Definition 1.5 (ε-bracket) Let l, u denote functions such that l ≤ f ≤ u then
the bracket [l, u] is called a ε-bracket with respect to the p-norm if

‖u− l‖p ≤ ε
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Definition 1.6 (Bracket number) The bracket number Np,B(ε,F , µ) of F is the
minimal number of ε-brackets with respect to the p-norm needed to cover F .

Again is Np,B(ε,F , µ) defined as the smallest number of ε-brackets such that the
ε-brackets cover all of F . Taking the logarithm of again Np,B(ε,F , µ) will result
in the bracket entropy Hp,B(ε,F , µ).

Definition 1.7 (Bracket entropy) The bracket entropy of F is defined as

Hp,B(ε,F , µ) = logNp,B(ε,F , µ)

You probably figured out by now that the treated entropy’s are very alike. The
only difference is that the normal entropy depends on ε-nets and the bracket
entropy on ε-brackets, but the construction is almost the same. Logically, there
must be a relation between the two. The following lemma describes this relation.

Lemma 1.2 For all ε > 0 and 1 ≤ p <∞,

Hp(ε,F , µ) ≤ Hp,B(ε,F , µ)

and if µ is a probability measure, we have

Hp,B(ε,F , µ) ≤ H∞
( ε

2
,F
)

Proof See lemma (A1.2) from Appendix

From this lemma we can conclude that if the bracket entropy is finite, the normal
entropy has to be finite. Also, if the entropy for the supremum norm is finite,
the bracket entropy with respect to a probability measure has to be finite.

Symmetrization

Symmetrization is a very powerfull technique and plays an important role in
the empirical process theory. It involves i.i.d. random variables X1, X2, ..., Xn

called the test set and independent copies X ′1, X
′
2, ..., X

′
n called the training set.

The training set is used to calculate expectation and the test set to check the
performance, but the real trick of symmetrization relies on the fact that f(Xi)−
f(X ′i) has the same distribution as f(X ′i)−f(X) for all possible functions f and
all 1 ≤ i ≤ n. Here is where the Rademacher sequence comes in. A Rademacher
sequence W1,W2, ...,Wn is a sequence of independent variables satisfying

P(Wi = 1) = P(Wi = −1) =
1

2
, 1 ≤ i ≤ n

By the independence of Wi, one can tell that f(Xi)−f(X ′i) has the same distri-
bution as Wi(f(Xi) − f(X ′i)) for all i. This transformation is such a powerfull
technique because the symmetrized version is much easier to control than the
original version.
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Theorem 1.3 (Symmetrization) Let F be a class of functions, then

E‖Pn − P‖F ≤ 2E

∥∥∥∥∥ 1

n

n∑
i=1

Wif(Xi)

∥∥∥∥∥
F

where (W1,W2, ...,Wn) is a Rademacher sequence.

Proof See theorem (A1.8) from Appendix

ULLN conditions

Now we will construct two theorems that ensure the Uniform Law of Large Num-
bers for particular function classes. The entropy with respect to the empirical
measure will be used as a condition for these theorems.

Theorem 1.4 (Bracketing) Let F be a function class such that

H1,B(ε,F ,Pn) <∞, ∀ε > 0

then F satisfies the ULLN.

Proof From the supposition it follows that F can be covered by finitely many
pairs of functions {[gUi , gLi ]}Ni=1, so for every f ∈ F then there exist a function
pair

[
gLi , g

U
i

]
such that∥∥gLi − gUi ∥∥1 ≤ ε and gLi ≤ f ≤ gUi

Therefore ∫
f d(Pn − P ) ≥

∫
gLi d(Pn − P ) +

∫
(gLi − f) d(Pn − P )

≥
∫
gLi d(Pn − P)− ε

and ∫
f d(Pn − P) ≤

∫
gUi d(Pn − P) +

∫
(gUi − f) d(Pn − P )

≤
∫
gUi d(Pn − P) + ε

Consequently for every f ∈ F ,

min
0≤i≤n

∫
gLi d(Pn − P)− ε ≤

∫
f d(Pn − P) ≤ max

0≤i≤n

∫
gUi d(Pn − P) + ε

By the Strong Law of Large Numbers we have that the bounds converge to −ε
and ε. In other words,

sup
f∈F

∣∣∣∣∫ f d(Pn − P)

∣∣∣∣ ≤ ε, a.s.
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Because this holds for all ε > 0, we conclude that

‖Pn − P‖F
a.s.−−→ 0

From this theorem we can conclude that the bracket entropy is a necessary and
sufficient property of a Glivenko-Cantelli class. The next theorem will demon-
strate that the entropy combined with the envelope condition ensure the Uniform
Law of Large Numbers for a function class. The supremum of a function class
is called the envelope. The envelope condition is satisfied if the supremum is
finite.

Theorem 1.5 Let F be a class of functions such that the envelope condition
supf∈F‖f‖2 <∞ is satisfied. Assume for all ε > 0 that

1

n
H1(ε,F ,Pn)

n→∞−−−−→ 0 (1.3)

then F satisfies the ULLN .

Proof Let X1, X2, ..., Xn be i.i.d. random variables and assume G is a ε-net of
F such that the cardinality of G is N1(ε,F ,Pn). We can write∣∣∣∣∣ 1n

n∑
i=1

Wif(Xi)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

Wig(Xi)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

Wi(f(Xi)− g(Xi))

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

Wig(Xi)

∣∣∣∣∣+ ε

Therefore also ∥∥∥∥∥ 1

n

n∑
i=1

Wif(Xi)

∥∥∥∥∥
F

≤

∥∥∥∥∥ 1

n

n∑
i=1

Wig(Xi)

∥∥∥∥∥
G

+ ε

Take the expectation with respect to W1,W2, ...,Wn on both sides.

EW

∥∥∥∥∥ 1

n

n∑
i=1

Wif(Xi)

∥∥∥∥∥
F

≤ EW

∥∥∥∥∥ 1

n

n∑
i=1

Wig(Xi)

∥∥∥∥∥
G

+ ε (1.4)

To construct a bound for the right side of the equation, we are using the Orlicz
norm defined as

‖.‖ψ := inf {k ∈ (0,∞) : E [ψ(|.|/k)] ≤ 1}

for a monotone non-decreasing, convex function ψ : X → R. For convenience,
define

〈W, g〉Pn :=
1

n

n∑
i=1

Wig(Xi)
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where W = [W1,W2, ...,Wn]. Then note that

EW

[
ψ

(
|〈W, g〉Pn |
‖〈W, g〉Pn‖ψ)

)]
≤ 1

for all g ∈ G, which means that we can apply lemma (A1.7) with ψ(x) = ex
2 − 1

to bound the term with

√
1 + logN1(ε,F ,Pn) sup

g∈G

∥∥∥∥∥ 1

n

n∑
i=1

Wig(Xi)

∥∥∥∥∥
ψ

(1.5)

By Hoeffding’s inequality for the Orlicz norm (see lemma (A1.5) from Appendix),
we have

sup
g∈G

∥∥∥∥∥ 1

n

n∑
i=1

Wig(Xi)

∥∥∥∥∥
ψ

≤
√

6

n
sup
g∈G
‖g‖2

Hence we can bound term (1.5) with√
1 + logN1(ε,F ,Pn)

n

√
6 sup
g∈G
‖g‖2 (1.6)

From assumption (1.3) and because supg∈G‖g‖2 < ∞, we can conclude that
term (1.6) converges to zero. We chose ε arbitrary, so we can choose ε such that
the left side of (1.4) converges to zero. If we take

hn = EW

∥∥∥∥∥ 1

n

n∑
i=1

Wif

∥∥∥∥∥
F

we have that hn is bounded by M for all n ∈ N and converges pointwise to zero.
Using the Dominated Convergence Theorem, deduce that

ExEW

∥∥∥∥∥ 1

n

n∑
i=1

Wif(Xi)

∥∥∥∥∥
F

=

∫
X
hn dP

n→∞−−−−→ 0

Then by symmetrization (see theorem (1.3)), we have

E‖Pn − P‖F ≤ 2E

∥∥∥∥∥ 1

n

n∑
i=1

Wif(Xi)

∥∥∥∥∥
F

n→∞−−−−→ 0

Conclude that ‖Pn − P‖F converges in mean to zero. Applying lemma 2.4.5
from [2] to the reverse-martingale ‖Pn − P‖F with respect to a suitable filtration
ensures convergence in probability to zero.
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Examples

Here there will be function classes shown that are or aren’t Glivenko-Cantelli.
The first two examples are demonstrated and proven by checking if the Uniform
Law of Large Numbers is satisfied. The other examples will make use of the
theorem that is discussed. We will construct upper bounds for the entropy such
that condition (1.3) is met.

Theorem 1.6 Let D be a Glivenko-Cantelli class. The class {1D : D ∈ D} is
also Glivenko-Cantelli.

Proof For convenience, denote F = {1D : D ∈ D}. Then

‖Pn − P‖F = sup
f∈F

∣∣∣∣∫ f d(Pn − P)

∣∣∣∣ = sup
D∈D

∣∣∣∣∫ 1D d(Pn − P)

∣∣∣∣
= sup
D∈D

∣∣∣∣∫
D

d(Pn − P)

∣∣∣∣ = ‖Pn − P‖D

We know D is Glivenko-Cantelli, so the last obtained term converges in proba-
bility. Therefore,

‖Pn − P‖F = ‖Pn − P‖D
n→∞−−−−→ 0

i.e. F is Glivenko-Cantelli.

Theorem 1.7 There exist a function class that satisfies the law of large num-
bers, but isn’t Glivenko-Cantelli.

Proof Take F = {1D : D ⊂ R, |D| < ∞}, hence F consists of all indica-
tor functions of sets with finite cardinality. Let P be a continuous probability
measure, then for a f ∈ F we have∫

f dP =

∫
1D dP =

∫
D

dP = 0

The last equality follows from the fact that the D has finite cardinality, so the
integral exist only of points. These points have zero probability for a continuous
probability measure. Also, supf∈F

∫
f dPn = 1 for all n ∈ N, hence F is not

Glivenko-Cantelli. We only need to proof that

max
f∈F

∣∣∣∣∫ f d(Pn − P)

∣∣∣∣ a.s.−−→ 0

Note that

max
f∈F

∫
f dPn =

1

n
max
f∈F

n∑
i=1

f(Xi) =
1

n
max
D∈D

n∑
i=1

1D(Xi)
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We have |D| <∞, hence

1

n
max
D∈D

n∑
i=1

1D(Xi)
a.s.−−→ 0

Therefore, F satisfies the strong law of large numbers.
Now there will be examples shown which have finite entropy. We proof that by
obtaining an upper bound. To understand how such a bound is derived, we start
with an easy example.

Theorem 1.8 Let F be a class of all increasing bounded functions f : X →
[0, 1], such that X has n elements. Then

H∞(ε,F) ≤ 1

ε
log

(
n+

1

ε

)
, 0 ≤ ε ≤ 1

n

Proof Let x1 ≤ x2, ... ≤ xn denote all elements of X , then define

g(xi) = ε ∗
⌊
f(xi)

ε

⌋
, i = 1, 2, ..., n

Note that

|g(xi)− f(xi)| =
∣∣∣∣ε ∗ ⌊f(xi)

ε

⌋
− f(xi)

∣∣∣∣ ≤ ε
for all i = 1, 2, ..., n. The number of possibilities g can be chosen is(

n+ b1/εc
b1/εc

)
because we need to pick b1/εc elements out of n + b1/εc elements. Expanding
Stirling approximation for a binomial coefficient gives

log

(
n+ b1/εc
b1/εc

)
≈ (n+ b1/εc)log(n+ b1/εc)− nlog(n)− b1/εclog(b1/εc)

≤ 1

ε
log

(
n+

1

ε

)
where the last inequality follows from the fact that 1

ε ≥ n.

Because this class consists of bounded functions, they must have bounded norms.
Hence applying lemma (1.2) gives that this class satisfies both conditions of the-
orem (1.5). Applying this theorem, proofs that this function class is a Glivenko-
Cantelli class. The same holds for the following example.

Theorem 1.9 Assume f : [a, b] → [0,M ] is a Lipschitz continuous bounded
function. Let F be the class generated by f , i.e. F consists of all Lipschitz
continuous bounded functions. Then for some constant A,

H∞(ε,F) ≤ A1

ε
, ∀ε ≥ 0
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Proof We consider the class of all Lipschitz continuous bounded functions. Let
F := {f : [a, b] → [0,M ] : |f(x)− f(y)| ≤ K|x− y|, ∀x, y ∈ [a, b]} denote this
class. Before we can find the entropy number, we first need to construct a ε-net
which covers the class.

To construct a ε-net, we start with a sequence (xi)i≥0 such that

xi+1 = xi +
ε

K

with initial values x0 = a and xn = b. From the definition of xi it follows that

n =

⌈
K(b− a)

ε

⌉
For a f ∈ F , we can define

g(x) =

n−1∑
i=0

f(xi) ∗ 1Ii (1.7)

where Ii = [xi, xi+1]. This just means that g(x) = f(xi) with i the number
satisfying x ∈ Ii. We know that

|f(xi)− f(x)| ≤ K|xi − x| ≤ K
∣∣∣ ε
K

∣∣∣ = ε, for x ∈ Ii

hence from (1.7) it follows that

|g(x)− f(x)| = |f(xi)− f(x)| ≤ ε, for x ∈ Ii

This confirms that the family generated by (1.7) is a ε-net for F . To establish
an upper bound for the entropy number we need to count the number of ways g
can be chosen. It is easy to see that there are dM/εe possible choices for g(x0).
We also have

|g(xi+1)− g(xi)| = |f(xi+1)− f(xi)| ≤ ε

This means that there are at most 3 choices for g(xi+1), if g(xi) is known.
Therefore

N∞(ε,F) ≤
⌈
M

ε

⌉
∗ 3bK(b−a)/εc

15



Least Squares Estimation

Problem description

In regression analysis is least square estimation a very valuable tool to approxi-
mate the solution of a regression model. This regression model exist of observed
response variables Y1, Y2, ..., Yn of random variables z1, z2, ..., zn (covariates) out
of a space Z, independent errors W1,W2, ...,Wn with expectation zero and finite
variance, and finally the unknown regression function f0 which will be approxi-
mated.The model is given by

Yi = f0(zi) +Wi, i = 1, 2, ..., n (2.8)

The aim of least square estimation is to find the correct f0, which will be done
by minimizing the errors Wi. If F is a function class and we assume f0 lies in
F , then the least squares estimator f̂n is given by

f̂n = arg min
f∈F

n∑
i=1

(Yi − f(zi))
2 (2.9)

If we assumed the errors were normally distributed the least square estimator was
equal to the maximum likelihood estimator, but we only assume zero expectation
and finite variance. Recall the definition of the empirical measure Pn, then

Pn(A) =
1

n

n∑
i=1

1A(zi)

denotes the empirical measure of the covariates z1, z2, ..., zn for A ⊂ Z. The
norm with respect to the empirical measure of a function f : Z → R is written
as

‖f‖2Pn =
1

n

n∑
i=1

f2(zi)

For convenience, we write

‖Y − f‖2Pn =
1

n

n∑
i=1

(Yi − f(zi))
2

and for W = [W1,W2, ...,Wn],

〈W, f〉Pn =
1

n

n∑
i=1

Wif(zi)

The least squares problem aims to minimize
∥∥∥f̂n − f0∥∥∥

Pn
. This means we need

to figure out the conditions of F for which the norm converges in probability to
zero.

16



Consistency

We say the estimator f̂n is a consistent estimator of f0, if

lim
n→∞

P
(∥∥∥f̂n − f0∥∥∥

Pn
> δ

)
= 0, ∀δ > 0

i.e. if it converges in probability to the unknown regression function. To establish
certain conditions for consistency of the least square estimator, we will be using
this following inequality.

Lemma 2.1 Let f̂n be the estimator (see (2.9)) for the function f0. Suppose
W = [W1,W2, ...,Wn] is the random error sequence of the observed variable
sequence Y , then ∥∥∥f̂n − f0∥∥∥2

Pn
≤ 2〈W, f̂n − f0〉Pn

Proof See lemma (A2.1) from Appendix

Using this inequality we can establish conditions for which consistency of the
least square estimator is guaranteed. These conditions are not dependent on the
full class F , but only the subclass Fn(R) defined as

Fn(R) = {f ∈ F : ‖f − f0‖Pn ≤ R} (2.10)

In other words, Fn(R) denotes all functions of F that are in the ball around
f0 with radius R. This class will be used to proof the following theorem. This
proof relies on condition (2.11) which is met, because we assumed that all errors
have finite variance and zero expectation.

Theorem 2.2 Let Fn(R) defined as (2.10) for a function class F . For all errors
of the observed variables, assume that

lim
K→∞

lim
n→∞

sup
1

n

n∑
i=1

E(W 2
i ∗ 1{|Wi|>K}) = 0 (2.11)

and for Fn(R), we have

1

n
H1(δ,Fn(R),Pn)→ 0, ∀δ,R > 0

Then the the least square estimator f̂n is consistent, i.e.∥∥∥f̂n − f0∥∥∥
Pn

P−→ 0

.

17



Proof To proof consistency we need to show that P
(∥∥∥f̂n − f0∥∥∥

Pn
> δ

)
goes to

zero when n goes to infinity. We have that R > 0, hence

P
(∥∥∥f̂n − f0∥∥∥

Pn
> δ

)
≤ P

(
δ <

∥∥∥f̂n − f0∥∥∥
Pn
≤ R

)
+ P

(∥∥∥f̂n − f0∥∥∥
Pn
> R

)
We start with first term of the right equation. From lemma (2.1), it follows that

P
(
δ <

∥∥∥f̂n − f0∥∥∥
Pn
≤ R

)
≤ P

(
2〈r, f̂n − f0〉 > δ

)
We have that f̂n ∈ Fn(R), so we can write

P
(

2〈r, f̂n − f0〉 > δ
)
≤ P

(
sup

f∈Fn(R)

〈r, f − f0〉Pn ≥
δ2

4

)

≤ P

(
sup

f∈Fn(R)

〈r ∗ 1{|r|>K}, f − f0〉Pn ≥
δ2

4

)

+ P

(
sup

f∈Fn(R)

〈r ∗ 1{|r|≤K}, f − f0〉Pn ≥
δ2

4

)
(2.12)

Using Cauchy-Schwarz on the first term, we find

P

(
sup

f∈Fn(R)

〈r ∗ 1{|r|>K}, f − f0〉Pn ≥
δ2

4

)
≤ P

(
sup

f∈Fn(R)

‖f − f0‖Pn
∥∥r ∗ 1{|r|>K}∥∥Pn ≥ δ2

4

)

≤ P
(∥∥r ∗ 1{|r|>K}∥∥Pn ≥ δ2

4R

)
where the last inequality follows from the fact that supf∈Fn(R)‖f − f0‖Pn ≤ R.
Applying Markov’s inequality bounds the last term,

P
(∥∥r ∗ 1{|r|>K}∥∥Pn ≥ δ2

4R

)
≤
(

4R

δ2

)2

E
∥∥r ∗ 1{|r|>K}∥∥Pn

so we can write

P

(
sup

f∈Fn(R)

〈r ∗ 1{|r|>K}, f − f0〉Pn ≥
δ2

4

)
≤
(

4R

δ2

)2

E
∥∥r ∗ 1{|r|>K}∥∥Pn = η

The term from (2.12) can also be bounded by Markov’s inequality,

P

(
sup

f∈Fn(R)

〈r ∗ 1{|r|≤K}, f − f0〉Pn ≥
δ2

4

)
≤ 4

δ2
E
∥∥〈r ∗ 1{|r|≤K}, f − f0〉Pn∥∥Fn(R)

18



Let G be a ε-net of Fn(R) with cardinality N1(δ,Fn(R),Pn), then

E
∥∥〈r ∗ 1{|r|≤K}, f − f0〉Pn∥∥Fn(R)

≤ E
∥∥〈r ∗ 1{|r|≤K}, g − g0〉Pn∥∥G +Kε

In almost the same way as before, we can construct a bound for the right side
of the equation using the Orlicz norm. For convenience we assume that all
Wi ∗ 1{|r|≤K} are symmetric, so all expectations remain zero. It can also be
proven without this assumption, but we will not get into that. Note that the
inner product is bounded,

〈r ∗ 1{|r|≤K}, g − g0〉Pn =
1

n

n∑
i=1

r ∗ 1{|r|≤K}(g(zi)− g0(zi))

≤ 1

n

n∑
i=1

K(g(zi)− g0(zi)) ≤ K‖g − g0‖Pn

for all g ∈ G. Now we can apply lemma (A1.3) (from Appendix), such that

es〈r∗1{|r|≤K},g−g0〉Pn ≤ es
2σ2/2

where σ = 1√
2n
K‖g − g0‖Pn . The condition of lemma (A1.9) (from Appendix)

is satisfied, hence applying this lemma gives

E
∥∥〈r ∗ 1{|r|≤K}, g − g0〉Pn∥∥G ≤√log(N1(δ,Fn(R),Pn))

1√
n
K sup

g∈G
‖g − g0‖Pn

Bringing it all together we can bound P
(∥∥∥f̂n − f0∥∥∥

Pn
> δ

)
with

δ2

4
K

(√
log(N1(δ,Fn(R),Pn))

1√
n
R+ ε

)
+ η

From the second condition we know that the square root of the entropy divided
by n converges to zero. Besides this condition, ε is chosen arbitrary, so we can
make the left side smaller than η such that

P
(∥∥∥f̂n − f0∥∥∥

Pn
> δ

)
≤ 2η

By the first condition we can make K so large that η converges to zero, so we
have

P
(∥∥∥f̂n − f0∥∥∥

Pn
> δ

)
n→∞−−−−→ 0

Convergence rate

Our first approach to the least squares problem presumed the general case where
the errors Wi were randomly chosen with zero expectation and finite variance.
We will now assume that the errors are uniformly sub-Gaussian, but not neces-
sary independent.
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Definition 2.1 A sequence of random variables W1,W2, ...,Wn is called uni-
formly sub-Gaussian if there exist a σ0 > 0 such that

max
1≤i≤n

m2
(
Ee|Wi|2/m2

− 1
)
≤ σ2

0

for a constant m > 0.

Lemma 2.3 If a sequence of random variables W1,W2, ...,Wn is uniformly sub-
Gaussian, then

E‖W‖2Pn ≤ σ
2
0

where
W = [W1,W2, ...,Wn]

Proof Note that

E‖W‖2Pn = E

(
1

n

n∑
i=1

W 2
i

)
≤ max

1≤i≤n
E|Wi|2

From the fact that ln(y) ≤ y − 1 for all y ∈ R, it follows that

max
1≤i≤n

E|Wi|2 = max
1≤i≤n

m2

(
E
(
|Wi|2

m2

))
≤ m2

(
max
1≤i≤n

eE(|Wi|2/m2)
)

Applying Jensen’s inequality (see theorem (A1.6)) gives

m2

(
max
1≤i≤n

eE(|Wi|2/m2)
)
≤ m2

(
max
1≤i≤n

Ee|Wi|2/m2

)
≤ σ2

0

We will use the assumption that all errors are uniformly sub-Gaussian to calcu-

late the convergence rate of
∥∥∥f̂n − f0∥∥∥

Pn
, along with the function J(δ,Fn(δ),Pn)

defined for a fixed σ > 0, as

J(δ,Fn(δ),Pn) =

∫ δ

δ2/(26σ)

H1/2(u,Fn(δ),Pn) du

where 0 < δ < 26σ. Besides that, we will also make use of the so called peeling
device.

Lemma 2.4 If a sequence of random variables W1,W2, ...,Wn with zero expec-
tations is uniformly sub-Gaussian, then for all 1 ≤ i ≤ n

E|Wi|k ≤
k!

2
mk−2σ2

0 , k = 3, 4, ...

P roof See lemma (A2.2) from Appendix
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Lemma 2.5 (Peeling device) Let τ be a function which takes its input from a
function class F . Suppose {ms}Ss=0 is a strictly increasing sequence such that

F ⊆
S⋃
s=0

Fs

where
Fs = {f ∈ F : ms−1 ≤ τ(f) < ms}

then for a stochastic process Zn indexed by F , we have

P

(
sup
f∈F

|Zn(f)|
τ(f)

> a

)
≤

S∑
s=0

P

(
sup

f∈F, τ(f)<ms
|Zn(f)| > ams−1

)

Proof See lemma (A2.3) from Appendix

With this lemma, we can split the function class Fn(R) in subclasses so it be-
comes easier to calculate the convergence rate.

Theorem 2.6 Suppose all errors are uniformly sub-Gaussian. Take ψ(δ) ≥
J(δ,Fn(δ),Pn) such that ψ(δ)/δ2 is a non-decreasing function. Then for a δn >
0 such that √

nδ2n ≥ cψ(δn)

there exist constants c1, c2 > 0 depending on m and σ0 such that for all δ ≥ δn,

P
(∥∥∥f̂n − f0∥∥∥

Pn
> δ

)
≤ c1e−nδ

2/c2

for the least square estimator f̂n of f0.

Proof Fix σ > 0, then we have

P
(∥∥∥f̂n − f0∥∥∥

Pn
> δ

)
≤ P

(∥∥∥f̂n − f0∥∥∥
Pn
∗ 1{‖W‖≤σ} > δ

)
+ P

(
‖W‖Pn > σ

)
By applying the Cauchy-Schwarz inequality to lemma (2.1), we get∥∥∥f̂n − f0∥∥∥2

Pn
≤ 2〈W, f̂ − f0〉 ≤ 2‖W‖Pn

∥∥∥f̂n − f0∥∥∥
Pn

Hence on {‖W‖Pn ≤ σ}, we have∥∥∥f̂n − f0∥∥∥
Pn
≤ 2‖W‖Pn ≤ 2σ

Which means that on {‖W‖Pn ≤ σ} we only need to consider δ ≤ 2σ. Therefore

P
(∥∥∥f̂ − f0∥∥∥

Pn
∗ 1{‖W‖≤σ} > δ

)
≤ P

(
sup

f∈Fn(2σ)
‖f − f0‖Pn ∗ 1{‖W‖≤σ} > δ

)
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≤ P

(
sup

f∈Fn(2σ)

〈W, f − f0〉Pn
‖f − f0‖Pn

∗ 1{‖W‖≤σ} > 2−1δ

)
where the last inequality follows from using lemma (2.1) again. Now we divide
the function class Fn(2σ) such that we can apply the peeling device. Define

Fs = {f ∈ F : 2sδ ≤ ‖f − f0‖Pn < 2s+1δ}

then

F ⊆
S⋃
s=0

Fs

where
S = min{s ∈ N : 2sδ > 2σ}

Applying the peeling device (see lemma (2.5)) gives

P

(
sup

f∈Fn(2σ)

〈W, f − f0〉Pn
‖f − f0‖Pn

∗ 1{‖W‖≤σ} > 2−1δ

)
≤

S∑
s=0

P

(
sup

f∈Fn(2s+1δ)

〈W, f − f0〉Pn ∗ 1{‖W‖≤σ} ≥ 22s−1δ2

)

Take C = 1
16c, then

1

16

√
nδ2n ≥ Cψ(δn)

which means for 0 ≤ s ≤ S,

√
n22s−1δ2 ≥ Cψ(2s+1δ)

If we define

Ps = P

(
sup

f∈Fn(2s+1δ)

〈W, f − f0〉Pn ∗ 1{‖W‖≤σ} ≥ 22s−1δ2

)

we can apply Corollary 8.3 from [9] to all Ps, to obtain

S∑
s=0

Ps ≤
S∑
s=0

Ce−(n2
4s−2δ4)/(4C222s+2δ2) =

S∑
s=0

Ce−n(2
2s−5δ2)/C2

So we can write,

P
(∥∥∥f̂n − f0∥∥∥

Pn
> δ

)
≤

S∑
s=0

Ce−n(2
2s−5δ2)/C2

+ P
(
‖W‖Pn > σ

)
We assumed the errors were sub-Gaussian, so applying lemma (2.3) and (2.4)
gives

E‖W‖2Pn ≤ σ
2
0 and

1

n

n∑
i=1

E|Wi|m ≤
k!

2
mk−2σ2

0
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Using Bernstein’s inequality (see theorem (A2.4) from Appendix), we get

P(‖W‖2Pn > 2σ2
0) ≤ 2e−(n(2σ

2
0)

2)/(2(2σ2
0m+σ2

0) ≤ e−(nσ
2
0)/m

≤ e−(n2
S−1δ2)/m ≤ e−(n2

S−1δ2)/m

Taking σ = 2σ0 shows that there exist constants c1, c2 > 0 depending on m and
σ0 such that

P
(∥∥∥f̂n − f0∥∥∥

Pn
> δ

)
≤ e−n(2

S−1δ2)/m +

S∑
s=0

Ce−n(2
2s−5δ2)/C2

≤ c1e−nδ
2/c2
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P-Donsker classes

The study of empirical processes has led to the discovery of P-Donsker classes
which represent a whole new branch in the empirical process theory. The main
cause was Donsker’s theorem, which can be seen as a functional extension of the
Central Limit theorem. This theorem states that the empirical process indexed
by F = {1(−∞,x] : x ∈ R} converges in distribution to a standard Brownian
motion.

Definition 3.1 (Brownian motion) A Brownian process is a random process
(B(t))t≥0 satisfying these conditions

(i) The process has stationary increments. That is, for every 0 ≤ s < t the
distribution of B(t)−B(s) is the same as the distribution of B(t− s).
(ii) The process has independent increments. That is, for all 0 < t1 < ... < tn
the random variables B(t1), B(t2) − B(t1), ..., B(tn) − B(tn−1) are all indepen-
dent.
(iii) For all t ∈ (0,∞), B(t) is normally distributed with zero mean and variance
t.
(iv) With probability 1, the function t 7→ B(t) is continuous.

We speak of a standard Brownian motion if B(0) = 0. The function classes
whose empirical process converges in distribution to a tight Brownian motion
are called P-Donsker. Portmanteau lemma (see (A3.1) from Appendix) states
that for all empirical processes Gn, we have

Gn
d−→ G ←→ Ef(Gn)→ Ef(G)

for all continuous bounded functions f .

Definition 3.2 (P-Donsker class) A function class F is called P-Donsker if the
empirical process {Gn(f) : f ∈ F} converges in distribution to a tight Brownian
motion G in the space L∞(F) of uniformly bounded functions on F . In other
words,

Ef(Gn)→ Ef(G)

for every continuous bounded function f : L∞(F) → R and a tight Brownian
process G.

An example of a P-Donsker class is the function class {1(−∞,x] : x ∈ R}.
Donsker’s theorem proofs that the empirical process of this function class con-
verges in distribution to a tight Brownian motion in the space of uniformly
bounded functions.

Theorem 3.1 (Donsker’s theorem) The function class F = {1(−∞,x] : x ∈ R}
is P-Donsker.
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Proof The empirical process of F is given by

(Gn(f))f∈F = (
√
n(Fn(x)− F (x)))x∈R

where Fn(x) = Pn(Xi ≤ x) denotes the empirical distribution function and
F (x) = P(Xi ≤ x) the true distribution function. By the Central Limit theorem,
Gn indexed by x ∈ R converges in distribution to a Gaussian process G with
zero mean and variance F (x)(1−F (x)). Therefore, F can be called P-Donsker.

P-Donsker conditions

One of the necessary conditions of P-Donsker classes is asymptotic equicontinu-
ity. Asymptotic equicontinuity is defined for functions with elements from any
normed metric space. We consider a metric space with norm ‖·‖.

Definition 3.3 (asymptotic equicontinuity) An empirical process {Gn(f) : f ∈
F} can be called asymptotic equicontinuous at f0 if for each η, δ > 0 there exist
a ε > 0 such that

lim
n→∞

sup
n

P

(
sup

f∈F,‖f−f0‖≤ε
|Gn(f)−Gn(f0)| > η

)
< δ

Asymptotic equicontinuity and totally boundedness are sufficient and necessary
conditions of P-Donsker classes. The following theorem will only proof the ne-
cessity of the properties.

Theorem 3.2 Suppose that F is totally bounded and that the empirical process
Gn of F is asymptotic equicontinuous at all f0 ∈ F , then F can be called P-
Donsker.

Proof We know that there exist a process G such that Gn
d−→ G. Let Fk with

k ∈ N be finite sets increasing to a finite subset F0 of F .

P
(

max
f1,f2∈Fk, ‖f1−f2‖≤ε

|G(f1)−G(f2)| > η

)
≤ lim
n→∞

inf
n

P
(

max
f1,f2∈Fk,‖f1−f2‖≤ε

|Gn(f1)−Gn(f2)| > η

)

≤ lim
n→∞

inf
n

P

(
sup

f1,f2∈F0, ‖f1−f2‖≤ε
|Gn(f1)−Gn(f2)| > η

)
Taking k →∞ for the left side of the equation gives

P

(
sup

f1,f2∈F0, ‖f1−f2‖≤ε
|G(f1)−G(f2)| > η

)
≤ lim
n→∞

inf
n

P

(
sup

f1,f2∈F0, ‖f1−f2‖≤ε
|Gn(f1)−Gn(f2)| > η

)
From the assumption of asymptotic equicontinuity there exist a sequence εr > 0
with εr

r→∞−−−→ 0 such that

Pr = P

(
sup

f1,f2∈F0, ‖f1−f2‖≤εr
|G(f1)−G(f2)| > 2−r

)
≤ 2−r
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Note that,
∞∑
r=0

Pr ≤
∞∑
r=0

2−r <∞ (1.13)

Hence from applying Borel-Cantelli lemma, conclude that there exist a r(w) <∞
almost surely, such that for all w

sup
f1,f2∈F0, ‖f1−f2‖≤εr

|G(f1;w)−G(f2;w)| ≤ 2−r, ∀r > r(w)

Therefore, G(f ;w) is uniformly continuous for the norm ‖·‖ for almost all w. F
is totally bounded, so G(f ;w) is also bounded. (1.13) can be extended to all of
F on the w set where G is uniformly continuous. This extension is a version
of G whose trajectories are all uniformly continuous in F which proofs through
applying proposition 2.1.7 from [8] that F is P-Donsker.

Z-estimation

One of the fields where P-Donsker classes can be applicable lies in Z-estimation.
It will be used to ensure asymptotical normality for Z-estimators.

Definition 3.4 (Z-estimator) θ̂n is called a Z-estimator of θ0 for an estimating
function ψθ(·) if

P(ψθ0) = 0 and Pn(ψθ̂n)
n→∞−−−−→ 0

Z-estimators look a lot like M-estimators, but not every M-estimator can be
written as a Z-estimator. One of the asymptotic properties of a Z-estimator
is asymptotic normality. It shows the relation between the estimator and the
estimated parameter.

Definition 3.5 A Z-estimator θ̂n of θ0 is called asymptotically normal if

√
n(θ̂n − θ0)

d−→ N(0, σ2
0)

for a constant σ2
0 > 0.

The following lemma states a property for P-Donsker classes. We will apply this
lemma in the proof that ensures asymptotic normality for Z-estimators.

Lemma 3.3 Suppose the function class F is P-Donsker. Let f̂n ∈ F depending
on X1, X2, ..., Xn be such that ∥∥∥f̂n − f0∥∥∥ P−→ 0 (1.14)

for a fixed function f0, then also∣∣∣Gn(f̂n)−Gn(f0)
∣∣∣ P−→ 0
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Proof F is P-Donsker, hence for all η, δ > 0, there exist a ε > 0 such that

lim
n→∞

sup
n

P

(
sup

f∈F,‖f−f0‖≤ε
|Gn(f)−Gn(f0)| > η

)
< δ

Take
Ωn =

{∥∥∥f̂n − f0∥∥∥ ≤ ε}
and

Ω̃n =

 sup
‖f̂n−f0‖≤ε

∣∣∣Gn(f̂n)−Gn(f0)
∣∣∣ ≤ η


then by the property of asymptotic equicontinuity and assumption (1.14),

P(Ωn)
n→∞−−−−→ 1 and P(Ω̃n)

n→∞−−−−→ 1

Note that
{∣∣∣Gn(f̂n)−Gn(f0)

∣∣∣ ≤ η} ⊂ Ωn ∩ Ω̃n, thus

P
(∣∣∣Gn(f̂n)−Gn(f0)

∣∣∣ ≤ η) ≥ P
(

Ωn ∩ Ω̃n

)
n→∞−−−−→ 1

which concludes the proof.

Theorem 3.4 Suppose θ̂n ∈ Θ is a Z-estimator of θ0 for a function ψθ ∈ {ψθ :
Θ}, where {ψθ : θ ∈ Θ} is P-Donsker. If P(ψθ) is differentiable at θ0 and∣∣∣θ̂n − θ0∣∣∣ P−→ 0

then θ̂n is asymptotically normal.

Proof From supposition it follows that we can apply lemma (3.3), so∣∣∣Gn(ψθ̂n)−Gn(ψθ0)
∣∣∣ P−→ 0

Which is equivalent to∣∣∣√n(Pn (ψθ̂n)− P(ψθ̂n)
)
−
√
n (Pn (ψθ0)− P(ψθ0))

∣∣∣ P−→ 0

Rearrange the terms, to obtain∣∣∣√n(P(ψθ̂n)− P(ψθ0)
)
−
√
n
(
Pn
(
ψθ̂n

)
− Pn(ψθ0)

)∣∣∣ P−→ 0

By definition of a Z-estimator, note that

√
n
(
Pn
(
ψθ̂n

)
− Pn(ψθ0)

)
P−→ −

√
n (Pn(ψθ0))
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= −
√
n (Pn(ψθ0)− P(ψθ0)) = −Gn(ψθ0)

Substituting this, yields∣∣∣√n(P(ψθ̂n)− P(ψθ0)
)

+ Gn(ψθ0)
∣∣∣ P−→ 0

Take m(θ) = P(ψθ), then

√
n
(
P
(
ψθ̂n

)
− P(ψθ0)

)
=
√
n(m(θ̂n)−m(θ0))

=
√
n(θ̂n − θ0)

m(θ̂n)−m(θ0)

θ̂n − θ0

We know that
∣∣∣θ̂n − θ0∣∣∣ P−→ 0, hence

m(θ̂n)−m(θ0)

θ̂n − θ0
P−→ −m′(θ0)

where m′(θ) denotes the derivative of m(θ0). Conclude that∣∣∣m′(θ0)
√
n
(
θ̂n − θ0

)
−Gn(ψθ0)

∣∣∣ P−→ 0

{ψθ : θ ∈ Θ} is P-Donsker, so Gn(ψθ0) converges in distribution to a tight
Brownian motion. Therefore,

√
n
(
θ̂n − θ0

)
d−→ N(0,m′(θ0)−1)

Note that m′(θ0) is the Fisher information matrix if ψ is set to be the deriva-
tive of the likelihood. This means that this theorem proofs that the maximum
likelihood estimator is asymptotically normal.
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Conclusion

The goal of this paper was to investigate the asymptotic properties of Z- and M-
estimators in the empirical process theory. Properties like asymptotic equicon-
tinuity, asymptotic normallity, consistency, convergence rate have been treated
according to the empirical process theory. It has been demonstrated that asymp-
totic equicontinuity is a necessary conditions of P-Donsker classes and has been
used to proof asymptotic normality for Z-estimators. This has been applied
to the maximum likelihood estimator. Furthermore we have established con-
sistency for the least square estimator and computed the convergence rate of
the estimator. With these applications of the empirical process theory in Z-
and M-estimation, it has been shown how influenceable this theory can be on
non-parametric models.
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Appendix

Theorem A1.1 (Glivenko-Cantelli theorem)

‖Fn − F‖∞ = sup
x∈X
|Fn(x)− F (x)| a.s.−−→ 0

Proof By the Strong law of large numbers, we know

max
x∈X
|Fn(x)− F (x)| a.s.−−→ 0

Therefore we only need to proof that there exist a uniform bound for supx∈X |Fn(x)− F (x)|
that converges to zero. Before we can construct the bound, we define the se-
quence (xi)i≤m such that,

F (xi)− F (xi−1) =
1

m
, 0 ≤ i ≤ m

with −∞ = x0 < x1 < ... < xm =∞. Now for x ∈ [xi−1, xi] we have

Fn(x)− F (x) ≥ Fn(xi−1)− F (xi) = Fn(xi−1)− F (xi−1)− 1

m

and

Fn(x)− F (x) ≤ Fn(xi)− F (xi−1) = Fn(xi)− F (xi) +
1

m

hence

sup
x∈X
|Fn(x)− F (x)| ≤ max

x∈X
|Fn(x)− F (x)|+ 1

m

a.s.−−→ 1

m

The result follows from the fact that m is chosen arbitrary, so 1/m can be made
as small as possible.

Lemma A1.2 For all ε > 0 and 1 ≤ p <∞,

Hp(ε,F , µ) ≤ Hp,B(ε,F , µ)

and if µ is a probability measure, we have

Hp,B(ε,F , µ) ≤ H∞
( ε

2
,F
)

Proof Let F be a function class with bracket number Np,B(ε,F , µ) with respect
to the p-norm and measure µ for a ε > 0. Then F can be covered by Np,B pairs

of functions {[gUi , gLi ]}Np,Bi=1 . Which is equal to saying that there exist a pair of
functions [gUi , g

L
i ] for every f ∈ F such that∥∥gLi − gUi ∥∥p ≤ ε and gLi ≤ f ≤ gUi
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Therefore, ∥∥gLi − f∥∥p ≤ ε
Which means that {gLi }

Np,B
i=1 is an ε-net of F , so we can conclude thatHp(ε,F , µ) ≤

Hp,B(ε,F , µ).

Lemma A1.3 Let X be a random variable with EX = 0 and X ∈ [a, b] then

E
[
esX

]
≤ e

s2(b−a)2
8

Proof X can be written as a convex combination of a and b, because X is
bounded by a and b. Therefore for α = X−a

b−a , we have

X = αb+ (1− α)a

The function x→ esx is also convex, hence

esX = αesb + (1− α)esa =

(
X − a
b− a

)
esb +

(
1− X − a

b− a

)
esa

=

(
X − a
b− a

)
esb +

(
b−X
b− a

)
esa

Taking the expectation on both sides gives

E
(
esX

)
≤
(
E(X)− a
b− a

)
esb +

(
b− E(X)

b− a

)
esa

By the supposition,

E
(
esX

)
=

(
−a
b− a

)
esb +

(
b

b− a

)
esa = ef(y)

with y = t(b− a) and

f =

(
a

b− a

)
y + log

(
1 +

a

b− a
−
(

a

b− a

)
ey
)

Because we have f(0) = f ′(0) = 0 and f ′′(y) ≤ 1/4 for all y > 0, we can apply
Taylor’s theorem. Therefore, there exist a m ∈ (0, y) such that

f(y) = f(0) + yf ′(0) +
y2

2
f ′′(m) =

y2

2
f ′′(m) ≤ y2

8
=
s2(b− a)2

8

Conclude that

E(esX) ≤ e
s2(b−a)2

8
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Lemma A1.4 (Hoeffding’s inequality for the Rademacher sequence) Let a =
(a1, a2, ..., an) be a n-dimensional vector where a1, a2, ..., an are constants. If
W1,W2, ...,Wn is a Rademacher sequence, then

P

(∣∣∣∣∣
n∑
i=1

aiWi

∣∣∣∣∣ ≥ t
)
≤ 2e−t

2/(2‖a‖22)

Proof For any s ≥ 0 and Rademacher value Wi, we have

EesWi =
es + e−s

2

Writing this in power series, we obtain

EesWi =
1

2

( ∞∑
n=0

sn

n!
+

∞∑
n=0

(−1)n
sn

n!

)
=

∑
n even

sn

n!
=

∞∑
n=0

s2n

(2n)!
≤
∞∑
n=0

( s2 )2n

n!
= es

2/2

For any s ≥ 0 we have

P

(∣∣∣∣∣
n∑
i=1

aiWi

∣∣∣∣∣ ≥ t
)

= P
(
es|

∑n
i=1 aiWi| ≥ est

)
By the Markov inequality and the obtained upper bound, we get

P
(
es|

∑n
i=1 aiWi)| ≥ est) ≤ est

)
≤ e−stE

[
es(

∑n
i=1 aiWi)

]
≤ e(s

2/2)‖a‖22−st

where the last inequality follows from the Cauchy-Schwarz inequality. The proof
is complete if we substitute s = t

‖a‖22
in the already obtained upper bound.

Lemma A1.5 (Hoeffding’s inequality for the Orlicz norm) Let W1,W2, ...,Wn

be Rademacher variables and a = (a1, a2, ..., an) be a constant n-dimensional
vector. Then ∥∥∥∥∥

n∑
i=1

aiWi

∥∥∥∥∥
ψ

≤
√

6‖a‖2

where ‖.‖ψ denotes the Orliz norm with ψ(x) = ex
2 − 1.

Proof Define X = |
∑n
i=1 aiWi| then the Orlicz norm is defined as

‖X‖ψ = inf{p > 0 : E [ψ(X/p)] ≤ 1}

Therefore ‖X‖ψ ≤ p means E [ψ(X/p)] ≤ 1.

E [ψ(X/p)] = E
[
eX

2/p2
]
− 1 =

∫ ∞
0

P (eX
2/p2 > x) dx− 1 =

∫ ∞
1

P (X > p
√
log(x)) dx
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From the Hoeffding’s inequality (see lemma (A1.4)) we know that

P (X ≥ t) ≤ 2e−t
2/(2‖a‖22)

So if we pick t = p
√
log(x) and p =

√
6‖a‖2 then we get

P(X ≥ p
√
log(x)) ≤ 2e−3log(x)

If we substitute that we have

E [ψ(X/p)] ≤ 2

∫ ∞
1

e−3log(x)dx < 2

∫ ∞
1

x−3dx = 1

This means that
‖X‖ψ ≤

√
6‖a‖2

Theorem A1.6 (Jensen’s inequality) Suppose f is a convex function and X is
a random variable, then

f(E[X]) ≤ E[f(X)]

Proof f is a convex function, hence for all λ ∈ [0, 1] we have

f(λy + (1− λ)x) ≥ λf(y) + (1− λ)f(x), x, y ∈ R

Rewriting gives,

f(x+ λ(y − x) ≥ f(x) + λ(f(y)− f(x))

=⇒ f(y)− f(x) ≥ f(x+ λ(y − x))− f(x))

λ

Letting λ go to zero gives that there exist an a ∈ R such that

f(y)− f(x) ≥ a(y − x)

Therefore, we have that

f(x)− f (E [X]) ≥ a (x− E [X])

Define b := aE [X] + f (E [X]), then

f(x) ≥ ax+ b

and
f (E [X]) = aE [X] + b
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for all x ∈ R. This also means that

f (X(x)) ≥ aX(x) + b

Using this inequality will get us the result.

E [f (X)] =

∫
f(X(x)) dP ≥

∫
aX(x) + b dP

= a

∫
X(x) dP + b

∫
dP = aE [X] + b = f (E [X])

Lemma A1.7 Let X1, X2, ..., Xn be random variables and f a strictly increas-
ing, convex, non-negative function such that for all 1 ≤ i ≤ n,

E [f(Xi/ci)] ≤ L

where c1, c2, ..., cn and L are positive constants, then

E max
1≤i≤n

|Xi| ≤ f−1(Ln) max
1≤i≤n

|ci|

Proof From the fact that

Emax |Xi|
max ci

≤ Emax
|Xi|
ci

and Jensen’s inequality (see theorem (A1.6)) it follows that

f

(
Emax |Xi|

max ci

)
≤ E

[
f

(
max

|Xi|
ci

)]
Because f is strictly increasing, we have that

f

(
Emax |Xi|

max ci

)
≤

n∑
i=1

E
[
f

(
|Xi|
ci

)]
≤ Ln

Taking f−1 on both sides and multiplying with max ci gives the result.

Theorem A1.8 (Symmetrization) Let F be a class of functions, then

E‖Pn − P‖F ≤ 2E

∥∥∥∥∥ 1

n

n∑
i=1

Wif(Xi)

∥∥∥∥∥
F

where (W1,W2, ...,Wn) is a Rademacher sequence.

Proof LetX ′1, X
′
2, ..., X

′
n be independent copies of i.i.d. random variablesX1, X2, ..., Xn
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defined on the same probability space. If we apply Jensen’s inequality (see
(A1.6)) on the norm we get

‖Pn − P‖F = sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

f(Xi)− Ef(X ′i)

∣∣∣∣∣ ≤ EX′ sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

f(Xi)− f(X ′i)

∣∣∣∣∣
Because f(X ′i)− f(Xi) has the same distribution as f(Xi)− f(X ′i), we can also
write

‖Pn − P‖F ≤ EWEX′ sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

Wi(f(Xi)− f(X ′i))

∣∣∣∣∣
where (W1,W2, ...,Wn) is a Rademacher sequence. If we take the expectation
E with respect to X1, X2, ..., Xn on both sides, we get

E‖Pn − P‖F ≤ E sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

Wi(f(Xi)− f(X ′i))

∣∣∣∣∣ = E

∥∥∥∥∥ 1

n

n∑
i=1

Wi(f(Xi)− f(X ′i))

∥∥∥∥∥
F

Using the triangle inequality we derive the final expression

E‖Pn − P‖F ≤ 2E

∥∥∥∥∥ 1

n

n∑
i=1

Wif(Xi)

∥∥∥∥∥
F

Lemma A1.9 Let X1, X2, ..., Xn be i.i.d. random variables such that for all
λ > 0,

E
[
eλXi

]
≤ eλ

2σ2/2, for all 1 ≤ i ≤ n
then

E max
1≤i≤n

Xi ≤ σ
√

2logN

Proof Taking Jensen’s inequality (see theorem (A1.6)) for the convex function
eλx, it follows that

eλEmaxiXi ≤ EeλmaxiXi ≤
n∑
i=1

EeλXi ≤ neλ
2σ2/2

Taking the logarithm on both sides, we conclude that

E max
1≤i≤n

Xi ≤
logN

λ
+
λσ2

2

Now define

g(x) =
logN

x
+
xσ2

2

then its derivative is given by

g′(x) = − logN
x2

+
σ2

2
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and its second derivative by

g′′(x) =
2logN

x3

Note that g′′(x) > 0 which means that g′(λ) = 0 gives the maximum value.
Hence substituting λ =

√
2logN/σ in the upper bound yields the result.

Lemma A2.1 Let f̂n be the estimator (see (2.9)) for the function f0. Suppose
W = [W1,W2, ...,Wn] is the random error sequence of the observed variable
sequence Y , then ∥∥∥f̂n − f0∥∥∥2

Pn
≤ 2〈W, f̂n − f0〉Pn

Proof From (2.8) we know that

2〈W, f̂n − f0〉Pn = 2〈Y − f0, f̂n − f0〉Pn

Expanding this, we get

2〈W, f̂n − f0〉Pn = ‖Y − f0‖2Pn +
∥∥∥f̂n − f0∥∥∥2

Pn
−
∥∥∥Y − f̂n∥∥∥2

Pn

f̂n minimizes the norm of the difference with Y , hence∥∥∥Y − f̂n∥∥∥2
Pn
≤ ‖Y − f0‖2Pn

Therefore ∥∥∥f̂n − f0∥∥∥2
Pn
≤ 2〈W, f̂n − f0〉Pn

Lemma A2.2 If a sequence of random variables W1,W2, ...,Wn with zero
expectations is uniformly sub-Gaussian, then for all 1 ≤ i ≤ n

E|Wi|k ≤
k!

2
mk−2σ2

0 , k = 3, 4, ...

P roof From supposition, we know

max
1≤i≤n

m2
(
Ee|Wi|2/m2

− 1
)
≤ σ2

0

Expanding the exponential function gives

max
1≤i≤n

E

[ ∞∑
k=1

|Wi|2k

k!m2k−2

]
≤ σ2

0
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Hence,

max
1≤i≤n

E

 ∑
k even, k≥2

|Wi|k

k!mk−2

 ≤ max
1≤i≤n

E

[ ∞∑
k=1

|Wi|2k

(2k)!m2k−2

]
≤ 1

2
σ2
0

Therefore, we must have

max
1≤i≤n

E|Wi|k ≤
k!

2
mk−2σ2

0 , k = 2, 4, ...

Besides that, note that

max
1≤i≤n

E

[
|Wi|k

k!mk−2

]
≤ max

1≤i≤n
E

 ∑
k even, k≥2

|Wi|k

k!mk−2

 ≤ 1

2
σ2
0 , k = 3, 5, ...

Again, we see that

max
1≤i≤n

E|Wi|k ≤
k!

2
mk−2σ2

0 , k = 3, 5, ...

Finally, conclude that

max
1≤i≤n

E|Wi|k ≤
k!

2
mk−2σ2

0 , k = 3, 4, ...

Lemma A2.3 (Peeling device) Let τ be a strictly increasing function which
takes its input from a function class F . Suppose {ms}Ss=0 is a strictly increasing
sequence such that

F ⊆
S⋃
s=0

Fs

where
Fs = {f ∈ F : ms−1 ≤ τ(f) < ms}

then for a stochastic process Zn indexed by F , we have

P

(
sup
f∈F

|Zn(f)|
τ(f)

> a

)
≤

S∑
s=0

P

(
sup

f∈F, τ(f)<ms
|Zn(f)| > ams−1

)

Proof We have

F ⊆
S⋃
s=1

Fs

hence

P

(
sup
f∈F

|Zn(f)|
τ(f)

> a

)
≤

S∑
s=0

P

(
sup
f∈Fs

|Zn(f)|
τ(f)

> a

)
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Furthermore, from the definition of Fs it follows

S∑
s=0

P

(
sup
f∈Fs

|Zn(f)|
τ(f)

> a

)
≤

S∑
s=0

P

(
sup
f∈Fs

|Zn(f)|
ms−1

> a

)

=

S∑
s=0

P

(
sup
f∈Fs
|Zn(f)| > ams−1

)

Theorem A2.4 (Bernstein inequality) Let Z1, Z2, ..., Zn be random variables
with zero expectation such that

E |Zi|k ≤
k!

2
mk−2σ2

0 , k = 2, 3, .... (2.15)

then for all t > 0,

P

(
1

n

∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ ≥ t
)
≤ 2e−(nt

2)/(2(σ2+mt))

Proof Using Markov’s inequality, we get

P

(
1

n

∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ ≥ t
)

= P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ ≥ nt
)

≤ P
(
eλ|

∑n
i=1 Zi| ≥ eλnt

)
≤ e−λntE

(
eλ|

∑n
i=1 Zi|

)
≤ e−λntE

(
enλmax1≤i≤n|Zi|

)
From the power series expansion of the exponential function, we can write for
Z = max1≤i≤n Zi,

E
(
eλZ

)
= 1 + λEZ +

∑
k≥2

λkEZk

k!

From the supposition, it follows that

E(Z) = E

(
n∑
i=1

Zi

)
=

n∑
i=1

E(Zi) = 0

which means that

E
(
eλZ

)
≤ 1 +

∑
k≥2

λkEZk

k!
≤ 1 +

(
λ2σ2

0

2

)∑
k≥2

(λm)k−2

where the last inequality follows from (2.15). Now if we take λ such that 0 <
λ < 1/m, then ∑

k≥3

(λm)k−2 ≤ λm

1− λm
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Hence,

E
(
eλZ

)
≤ 1 +

(
λ2σ2

0

2

)(
1 +

λm

1− λm

)
= 1 +

λ2σ2
0

2(1− λm)
≤ e(λ

2σ2
0)/(2(1−λm))

where the last inequality follows from the fact that ln(y) ≤ y − 1 for all y ∈ R.
Take λ = t/(σ2

0 +mt), then λ < 1/m, because

λ =
t

σ2
0 +mt

=
1

σ2

t +m
<

1

m

Conclude that,

P

(
1

n

n∑
i=1

Zi ≥ t

)
≤ e−(nt

2)/(2(σ2
0+mt))

Do the same with −Z1,−Z2, ...,−Zn and conclude that

P

(
1

n

∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ ≥ t
)
≤ 2e−(nt

2)/(2(σ2
0+mt))

Lemma A3.1 (Portmanteau’s lemma) Let (Xi)1≤i≤n be a sequence of random

variables, then Xn
d−→ X for a random variable X if and only if Ef(Xn)→ Ef(X)

for all continuous bounded functions f .

Proof Assume limn→∞ Ef(Xn) = Ef(Xn), then define

fx,ε(y) =


1, y ≤ x
0, y ≥ x+ ε
y−x
ε x ≤ y ≤ x+ ε

fx,ε is continuous, so

lim
n→∞

sup
n

P(Xn ≤ x) ≤ lim
n→∞

sup
n

Ef(Xn) = Ef(Xn)

≤ P(X ≤ x) + P(x ≤ X ≤ x+ ε)

(
x+ ε− x

ε

)
= P(X ≤ x+ ε)

Let ε→ 0, then
lim
n→∞

sup
n

P(Xn ≤ x) ≤ P(X ≤ x)

In the same way, we can proof that

lim
n→∞

inf
n

P(Xn ≤ x) ≥ P(X ≤ x)

Therefore,
lim
n→∞

P(Xn ≤ x) = P(X ≤ x)
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which means
Xn

d−→ X

We only need to proof the other way, so assume now that Xn
d−→ X. Let Yn be a

sequence of variables with the same distribution as all Xn, but converges almost
surely to Y . f is continuous, so we have f(Yn) → f(Y ). Applying the bounded
convergence theorem gives

Ef(Xn) = Ef(Yn)→ Ef(Y ) = Ef(X)

This concludes the proof.

Lemma A3.2 (Portmanteau’s second lemma) Let (Xi)1≤i≤n be a sequence of
random variables, such that

Xn
d−→ X (3.16)

then
lim
n→∞

inf
n

P(Xn ∈ G) ≥ P(X ∈ G), for all open G ⊂ R

Proof Condition (3.16) implies that for all uniform bounded functions f , we
have

lim
n→∞

P(f(Xn) ≤ x) ≥ P(f(X) ≤ x), ∀x ∈ R

For a ε > 0 and a closed set S, take

f(x) = (1− mins∈S |x− s|
ε

)+

where the plus sign means that f(x) can’t be less than zero. Note that,

|f(x)− f(x)| ≤ mins∈S |x− s|
ε

, ∀x, y ∈ R

which means f is uniform continuous. f is also bounded,

1S(x) ≤ f(x) ≤ 1Sε(x)

where
Sε = {x : min

s∈S
|x− s| ≤ ε}

Therefore,
lim
n→∞

sup
n

P(Xn ∈ S) = lim
n→∞

sup
n

P(1S(Xn) = 1)

≤ lim
n→∞

sup
n

P(f(Xn) = 1) = P(f(X) = 1) ≤ P(X ∈ Sε)

Letting ε→ 0 gives

lim
n→∞

sup
n

P(Xn ∈ S) ≤ P(X ∈ S)

Taking the open set G as the complement of S concludes the proof.
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