
BACHELOR THESIS

A Systematic Mapping of Microservice
Patterns

Author:
Mahir HIRO RAMCHAND

Supervisors:
Prof. Dr. A. Capiluppi

Dr. F.J. Blaauw
Dr. V. Degeler

July 20, 2021

https://www.linkedin.com/in/mahirhiro/

i

UNIVERSITY OF GRONINGEN

Abstract

Bachelor of Science in Computing Science

A Systematic Mapping of Microservice Patterns

by Mahir HIRO RAMCHAND

Choosing the right architectural style and implementing it can save capital and hu-
man resources in a business environment. However, dealing with software archi-
tecture usually leads to more questions, such as the alternative patterns, what we
should expect after adoption, and the negative aspects of this pattern. The diffi-
culty of this process incentivizes teams to consider how to adopt particular mecha-
nisms carefully. Nevertheless, each business has diverse needs. Thus, with an ever-
growing rate of microservice patterns, this only leads to more confusion. This paper
attempts to map microservice patterns based on specific metrics, including main-
tainability and scalability, efficiency, coupling, complexity. The right combination
of patterns helps us build more loosely coupled, safer, more maintainable, and scal-
able services. This paper analyzes a case study for Researchable, aiming to maxi-
mize the maintainability of their application. The findings suggest the API gateway,
asynchronous messaging, and database per service patterns contributed to a more
maintainable architecture.

HTTPS://WWW.RUG.NL/?LANG=EN

ii

Acknowledgements
During the writing of this paper, I received a great deal of help.

I would first like to thank my first supervisor, Prof. Dr. A. Capiluppi, who guided
me during my writing in formulating my paper and results. Your feedback really
helped bring my work to a higher level. You answered my questions within such
short time frames, which help speed up my writing process. I would also like to
thank Dr. V. Degeler for being a part of this thesis and being available for questions
whenever needed.

I would also like to give a great deal of recognition to Dr. F.J. Blaauw from Research-
able. You helped me from decided on the topic all the way to my submission. Even
with your busy schedule, you offered me all the support I needed without questions.
You also helped me add a case study to my paper and be the only student to do their
bachelor thesis at a company in 2020/2021. I could not have had a better supervisor,
and source of inspiration.

Last but not least, I would like to thank my family: my parents Hiro Ramchand, and
Deepa Lokwani, for all the help and support throughout the past 20 years. None
of this would be possible without your wisdom and guidance. I would also like
to thank my sister, Karishma Hiro, for constantly motivating me throughout this
journey. Renly Baratheon once said:

"A man without friends is a man without power"

Thus, my thanks and appreciations go to my friends.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Motivation . 1
1.2 Example Study . 1
1.3 Research Question(s) and Contributions 2
1.4 Thesis Organization . 2

2 Background 3
2.1 Microservices Architecture . 3
2.2 Monolithic Architecture . 6
2.3 Service-Oriented Architecture . 8
2.4 Serverless Architecture . 10

3 Supporting technologies 13
3.1 Load Balancers . 13
3.2 Messaging Queues . 14
3.3 Containerization . 15
3.4 Orchestration . 16
3.5 Scaling Cube . 17

4 Architectural Patterns 19
4.1 Overview . 19
4.2 Decomposition Patterns . 19

4.2.1 Decompose by Business Capability 21
4.2.2 Decompose by Subdomain . 22
4.2.3 Decompose by Transactions . 23
4.2.4 Decompose by service per team pattern 24

4.3 Integration Patterns . 25
4.3.1 Aggregator Pattern . 26
4.3.2 API Gateway Pattern . 27
4.3.3 Chained Microservice Pattern . 28
4.3.4 Branch Pattern . 30
4.3.5 Asynchronous Messaging Pattern 31

4.4 Database Patterns . 32
4.4.1 Command Query Responsibility Segregation 33
4.4.2 Event Sourcing . 34
4.4.3 Database per Service . 35
4.4.4 Shared Database per Service . 37
4.4.5 Saga Pattern . 38

Orchestration based . 38

iv

Choreography based . 39
4.5 Observability Patterns . 40

4.5.1 Distributed Tracing . 41
4.5.2 Health Check API . 41
4.5.3 Log Aggregation . 41
4.5.4 Metrics . 42

4.6 Miscellaneous Patterns . 42
4.6.1 Service Discovery Pattern . 42

Server-side Service Discovery Pattern 43
Client-side Service Discovery Pattern 44

4.6.2 Circuit Breaker Pattern . 44
4.6.3 Canary Pattern . 45

5 Case Study: Researchable 46

6 Conclusion 51

7 Future Work 54

Bibliography 58

v

List of Abbreviations

API Application Programming Interface
CD Continuous Delivery
CQRS Command–query separation
HTTP Hypertext Transfer Protocol
SOA Service-oriented architecture
REST Representational State Transfer
VM Virtual machine
PaaS Platform as a service
ESB Enterprise service bus
SPOF Single point of failure
OSI Open Systems Interconnection
DevOps Development And Operations
DDD Domain Driven Design
ACID Atomicity, Consistency, Isolation, and Durability
GDPR General Data Protection Regulation
SDV Sports Data Valley
RPC Remote Procedure Call
CUD Create, Update, Delete

1

Chapter 1

Introduction

1.1 Motivation

At the start of the 20th century, monolithic architectures were widely used through-
out the industry, and yet to this very day are still a good choice based on certain
factors. Nevertheless, monolithic architectures had significant drawbacks: consider-
able downtimes, scalability, maintainability, extra cost for resource utilization, and
difficulty adopting DevOps practices [51]. These disadvantages led to the develop-
ment of service-oriented architectures (SOAs)

In the mid-2000s, SOA took the IT industry by storm [46]. Many companies adopted
this architectural design to provide organizational agility, improve application adapt-
ability and systems interoperability, and reuse legacy assets [29]. Unfortunately,
these firms learned the hard way that SOA did not live up to most of these promises
but instead led to a hugely complicated and expensive architecture style that took
too long to design and implement [46]. The drawbacks of SOA’s led to the develop-
ment of Microservices.

Microservices have since gained attention. Uber, Netflix, and Amazon [58] are just a
few companies that have adopted microservices, and have stated they have benefit-
ted from their well-known advantages. Now there is much debate whether the mi-
croservices are a subset of Service-oriented architecture (SOA) [14]. However, what
is clear is that SOA was introduced before microservices with the same intention to
address changing business requirements faster and easier through the medium of
services [44].

Deciding on the correct patterns becomes a challenging task that can cost the busi-
ness extra human and financial capital if not implemented correctly. Thus, figuring
out the suitable patterns based on business goals and specific metrics creates the
motivation for this research area.

1.2 Example Study

On Dec 14, 2020, Google across the globe suffered from an outage that lasted for ap-
proximately 45 minutes [22]. Nobody could access most of Google’s services using
the features of Account login and authentication to all Cloud services. Even though
the event only lasted for 45 minutes, this "outrage" went viral; because of the use of
a service-oriented architecture, the entire infrastructure for Gmail, YouTube, Google
Drive, Google Docs, Google Calendar, and Google Play were all still running since
the issue was isolated to a single service (fault isolation is described in section 2.1 for

Chapter 1. Introduction 2

microservices). Had it been for a monolithic architecture, all these Google services
would have been down. In layman’s terms, Google handled the incident very well
since most of its services were still running without its authentication service.

1.3 Research Question(s) and Contributions

As the concept of using services becomes even more popular, more companies aim
to adopt it. Likewise, Researchable1, a startup in Groningen, Netherlands, has re-
cently adopted the challenge of implementing a microservice architecture in one of
their projects. Researchable’s adoption of microservices was to maximize maintain-
ability (more on this in the case study). However, with many patterns for different
use cases, it can be challenging to digest the information and compare and contrast
the different patterns, precisely what this paper does. That being said, the research
question of this thesis is as follows:

Which microservice patterns maximize maintainability?

Answering such a research question should result in a more maintainable codebase
consisting of services that can be increase performance, fix bugs quickly and increase
usability. Moreover, the thesis aims to explain the building blocks that go into de-
veloping a microservice architecture. The goal is not to dive into deep detail of all
the patterns but rather just the ones relevant to the case study.

1.4 Thesis Organization

• Chapter 1: Introduction, this chapter will contain the motivation, research ques-
tions, contributions, and, last but not least, an overview of this thesis’s struc-
ture.

• Chapter 2: Background, this chapter aims to briefly describe the various alter-
natives to microservices in terms of software architectures.

• Chapter 3: Supporting Technologies, this chapter aims to discuss what other
components are involved in developing a microservice architecture.

• Chapter 4: Architectural Patterns, this chapter aims to describe the building
blocks of microservices and the available options based on different business
requirements.

• Chapter 5: Case Study, this section will also extensively cover the context and
implementations that Researchable will consider adopting in re-developing its
new architecture.

• Chapter 6: Conclusion, this chapter will summarize the paper to simplify the
points stated.

• Chapter 7: Future Work, this chapter will describe what the field of microser-
vice patterns entails and what would have been worked on given more time.

1See Researchable’s company page for more information regarding the company https://resear
chable.nl/

https://researchable.nl/
https://researchable.nl/

3

Chapter 2

Background

The following few subsections aim to compare and contrast the different available
architectures used to date. It is essential to understand why the advantages and
disadvantages are for each respective architecture. The following subsections will
also contain architectural diagrams for simplicity to convey a high-level diagram of
the architectural choices.

2.1 Microservices Architecture

Microservices are a relatively new concept. The term was introduced at a conference
in 2011 at a Venice workshop of software architects to describe what the participants
saw as a standard architectural style that many of them had been recently explor-
ing [18]. In today’s age, software is becoming increasingly bulkier and complex,
leading to difficulty maintaining, updating, and managing projects. The microser-
vices approach addresses applications becoming increasingly complex and more
challenging to manage, update and maintain. The solution is to split up complex
software into loosely coupled services. These modular services can be deployed and
controlled individually, making large applications more robust to change.

As stated by Martin Fowler [21], "A microservice architectural style is an approach
to developing a single application as a suite of small services, each running in its
process and communicating with lightweight mechanisms, often an HTTP resource
API. These services are built around business capabilities and independently de-
ployable by fully automated deployment machinery". However, the current con-
sensus is that no clear-cut definition of a microservice architecture is. Nevertheless,
there are however common characteristics around the term, which are stated by Mo-
hammad Hamzehloui [23] which are as follows:

• Small in size [7, 9, 36]

• Single-responsibility [26, 4]

• Loosely coupled [40, 26, 50]

• Explicitly published interfaces [26, 24]

• Lightweight [26, 8]

However, everything comes with a cost, and microservices are complicated to imple-
ment. There exist many possibilities for adopting a microservice-oriented architec-
ture. We will focus on specific patterns to encourage the key driver for Researchable,
namely, maintainability. The upcoming sections will elaborate on the advantages

Chapter 2. Background 4

and disadvantages of different architectural choices and then provide some more in-
formation about the components of building a microservice architecture. Figure 2.1
shows a high-level overview of how a microservice architecture would look. The
central aspect to note is how each service can communicate with each other and
their respective data stores through other services.

FIGURE 2.1: A microservice architecture in the simplest form

Advantages

The advantages we will look at will cover the main reasons for adoption. More
specifically, we shall look at maintainability, fault tolerance, scalability, experimen-
tation, reusability, and finally, continuous delivery.

1. Services are easily maintainable: As previously stated, a microservice archi-
tecture leads to a codebase with relatively small services that communicate
with one another. Therefore, the code is more manageable for developers to
understand and less stressful for the workforce about breaking the application
when deploying the latest tweaks [6]. Having a smaller codebase in contrast
to a monolithic application also allows for easier testability. Figure 2.2 demon-
strates how different teams can seamlessly work in different teams and test
and deploy their small, simple, and reliable applications.

2. Better fault isolation: In a monolithic application, one component with an
issue will most likely bring down the whole system. Microservices act inde-
pendently. Indicating that an issue in one service affects only that service, so all
the other services will continue as intended. For example, a memory leak [47]
would only affect one service.

3. Scalability: With an increasing rate of technological adaptation, scalability is
a goal of many organizations. In simple terms, scaling a microservice architec-
ture is as simple as adding multiple copies of a service receiving heavy traffic
behind a load balancer.

4. Allows for experimentation: Due to the size nature of microservices; it can be
implemented in a polyglot nature (i.e., different technologies and languages
can be used for different services). In layman’s terms, one project can use

Chapter 2. Background 5

FIGURE 2.2: A microservice application consisting of a set of loosely
coupled services [47]

different technological stacks for different services. For example, two sepa-
rate teams in an organization with different knowledge in their respective tech
stacks can work independently with knowledge of their own team’s tech stack.
This is in contrast to a monolithic system where the initial technological choices
affect the future of the product in terms of freedom regarding new languages
and frameworks [47].

5. Reusability: Reusability is not a promise microservices can consistently de-
liver. However, microservices can be implemented in a generic way which
leads to a non-project-specific service. It is essential to note that this depends
on the business workflow design because even a slight dependency on differ-
ent services will break the microservice concept. Thus the ideal scenario here
is to create an instance per custom build as we would like to avoid mixing
client-specific sensitive configurations and data boundaries.

6. Enables the continuous delivery of large, complex applications: According
to Chris Richardson, this is the biggest benefit of microservices [47]. The three
reasons which enable this benefit are

(a) Testability: An essential aspect of CD is automated testing. Automated
tests are easier to write and faster to execute when using microservices
because of their small nature. In theory, this should reduce the number of
bugs in an application [47].

(b) Deployability: The consensus is that the team who builds the service is
responsible for only that service. Since services can be deployed indepen-
dently of other services, no coordination is needed with other developers.
This is important for companies like Amazon, with thousands of services,
can now make a limitless above of changes per day by fixing old bugs,
maintaining the codebase, or adding new features [53].

(c) Enables development teams to be autonomous and loosely coupled: As stated
previously, teams are usually responsible for the development and de-
ployment of a single service. For example, a couple of services for a

Chapter 2. Background 6

supermarket delivery application would consist of a search recommen-
dation engine, messaging platform, notifications, payments. The lower
inter-team dependency encourages a faster development process which
is a significant factor in adopting a microservice architecture.

Disadvantages

All architectures have their disadvantages; otherwise, there would be no need to
develop other architectures. Microservices are not the default choice and should be
used when they can be maintained and developed correctly.

1. Splitting the application: As Kalske et al. concluded, decomposition of a new
system or an existing monolithic application can be challenging [27]. This is
because each business has a different set of requirements and objectives, so
there is no universal algorithm or tool to solve it.

2. Data consistency complexity : Microservices should not share databases1. In-
stead, they should act independently; this leads to a problem that many devel-
opers face as they have to manage multiple databases and, more importantly,
data consistency amongst multiple services.

3. Deploying features spanning multiple services: Chris Richardson stated that
another challenge faced by teams is the careful coordination between the var-
ious development teams when a feature spans multiple services. This leads
to the creation of a rollout plan that orders service deployments based on the
dependencies between services [47].

4. Operational complexity: Microservices require a high level of automation to
ensure all the services are running smoothly and being monitored. A few of
the tools and technologies needed are an automated deployment tool, PaaS,
and a docker orchestration platform [47]

2.2 Monolithic Architecture

The most commonly implemented architecture in the past used by the industry is
undoubtedly a monolithic architecture; companies like Amazon and eBay used it2.
The architecture is intended to be tightly coupled, keeping all the logic for handling
a request runs in a single process [43]. This architecture may sound outdated but
should still be used for projects which do not need the added complexity based on
the business requirements. Figure 2.3 shows a high-level overview of how a mono-
lithic architecture would look; the central aspect to note is how the entire application
uses a shared database and that the business logic encapsulates the monolith appli-
cation.

Advantages

The advantages which shall be covered for a monolithic application will consist of
ease in testing, deployment, development, and scaling.

1See this link to find more data considerations for microservices https://docs.microsoft.com/e
n-us/azure/architecture/microservices/design/data-considerations

2Information about companies which started with a monolithic architecture http://highscalabil
ity.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.h
tml

https://docs.microsoft.com/en-us/azure/architecture/microservices/design/data-considerations
https://docs.microsoft.com/en-us/azure/architecture/microservices/design/data-considerations
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html

Chapter 2. Background 7

FIGURE 2.3: A monolith architecture in the simplest form

1. Simplicity in integration testing: Integration testing is a method of testing
how separating functionalities in an application work synchronously with one
another. Integration testing is arduous when using microservices because of
the per database service used. In contrast, a monolithic application usually
has one or a couple more databases with a clear structure (depending on the
application).

2. Deployment: When an organization only has one application to deploy, the
complexity is significantly reduced compared to microservices.

3. Simplicity in development: Since developers are used to programming mono-
lithic applications and are less familiar with lots of inter-service communica-
tion, less time is spent on the learning process, and more time is used on the
development process.

4. Scaling: To scale a monolithic architecture, all one needs to do is run multiple
instances behind a load balancer that manages the load based on default or
customer configurations set by the developer(s).

Disadvantages

One of the main reasons for adopting microservices is the drawbacks of monolith
architectures since they often have bad fault isolation. They scale too much, have
limited flexibility in terms of a tech stack, and finally, have large size and complexity
limitations.

Chapter 2. Background 8

1. Bad fault isolation: Essentially, since the entire project is all running in one
process, a bug in a single module, such as a memory leak, can potentially crash
the entire application, which is catastrophic.

2. Scaling too much: As previously stated, to scale a monolithic application, mul-
tiple instances need to be running behind a load balancer. This could be con-
sidered a waste of resources if only specific system components need to be
scaled. For example, in a social media application, the recommendations page
may need to be scaled in contrast to the user profile; a monolithic architecture
does not offer this flexibility.

3. Size and complexity limitations: It is no surprise that after a certain period,
the application becomes too large in terms of size and complexity to under-
stand how the code works. This makes it hard for existing employees and new
employees, especially junior developers with a lack of experience in megalithic
applications.

4. No tech stack flexibility: Flexibility in monolithic applications is minimal be-
cause the entire application has to be rewritten in a new language or frame-
work, unlike a microservice architecture.

2.3 Service-Oriented Architecture

A Service-Oriented Architecture dates back to older than microservices since they
originated from SOAs. Both architectures divide the system into multiple services.
However, they do them in different ways [14]. The main goal with SOA is reusabil-
ity at the enterprise scope. This contrasts with microservices, where it is preferred
to reuse code by copying and accepting duplication to reduce dependencies and in-
crease decoupling between components [15]. SOA’s are primarily known for their
common communication mechanism, namely, enterprise service buses. Despite the
ESB, it is also a single point of failure similar to what may occur in a monolithic ar-
chitecture. Figure 2.4 shows a high-level overview of how a SOA architecture would
look. The key message here is how an ESB communicates the multiple services avail-
able, and yet these services combined share one data source.

Advantages

The three advantages described below are reusability, polyglot services, and the
easability of introducing modifications.

1. Reusability: The primary objective of SOA is incorporation reuse, and at the
enterprise level, aiming for some level of reuse is critical [15]. SOA focuses
on application service reusability, whereas microservices are more focused on
decoupling components of a system.

2. Polyglot services: Due to the separation in services, teams can develop appli-
cations through different technology stacks, which allows for experimentation.

3. Scope of services allows for easy changes: Due to the application structure,
services in SOA are not as small as services in microservices. However, they
are not as big as a monolithic application. This means they can easily be un-
derstood and edited by developers to add new features or fix bugs.

Chapter 2. Background 9

FIGURE 2.4: A SOA architecture in the simplest form

Disadvantages

The downsides of SOA’s consist of poor fault tolerance, sizeable initial investment,
and problems with the call stack.

1. Bad fault tolerance: Unlike in microservices, a bug or corruption that arrives
in service(s) can take out the entire system [30].

2. Large investment: SOA’s generally require a large upfront investment [30]
through technology, development and staff deployment. Small/medium com-
panies are less likely to adopt this type of architecture due to the business in-
centive from a business perspective.

3. Call Stack: Unlike monolithic applications where a call stack is a benefit in
SOA’s, it can turn into a hindrance for loosely coupled distributed system ap-
plications [25]. This is because they must wait for a remote component to com-
plete a process before starting execution at the source, which causes distributed
architectures to be unresponsive and fragile.

Černý and Donahoo examined the differences between these two architectures and
their features, the table below lists the most important key aspects between the two
architectures (visible in table 2.1).

Chapter 2. Background 10

Concern Microservices SOA
Deploy Individual service deploy Monolithic deploy, all at once
Architecture scope One project The whole company/enterprise
Flexibility Fast independent service deploy Business process adjustments on

top of services
Management Distributed Centralized
Data storage Per Unit Shared
Scalability Horizontally better scalable.

Elastic
Limited compared to microser-
vices. A bottleneck in the inte-
gration unit or a message pars-
ing overhead. Limited elasticity

Unit Autonomous, un-coupled, own
container, independently scal-
able

Shared Database, units linked
to serve business processes.
Loosely coupled.

Service size Fine-grained, small Fine or coarse-grained
Versioning Should be part of architecture,

more open to changes
Maintaining multiple same ser-
vices of different version

TABLE 2.1: A comparison of attributes between microservices and
SOA. [14]

2.4 Serverless Architecture

Similar to microservices, serverless has no clear definition. However, a (subjective)
would be as follows: Serverless computing can be defined by three characteristics [20]

• Granular billing: Costs will only be incurred while the functions are running

• Near to none operational logic: Resource management, auto-scaling, and similar
operational logic is delegated to the infrastructure provider

• Event-Driven: Interactions with serverless applications are designed to be short-
lived

The term serverless is not because there are no servers involved. It came about be-
cause the cloud provider manages and provisions the infrastructure. Thus, leaving
more time for development and not for configurations. The powerful part about
serverless is that if an organization currently has a microservice architecture, a hy-
brid architecture can be used to handle lighter tasks such as resizing an image (since
this feature is likely needed once in a while instead of being full active).

Figure 2.5 shows a high-level overview of how a serverless architecture would func-
tion in practice. Here, the key message is how the API gateway stands in front of
the lambda functions and redirects the flow accordingly. It is also important to note
that the functions here are even smaller than microservices and have a smaller goal
to complete. Finally, as seen in the figure 2.5, only one database currently exists, but
that is just a case-specific implementation.

Advantages

The three main advantages of serverless architectures are the lack of management
needed for server provisioning, auto-scaling handled by the provider, and only pay-
ing for resources when the functions are invoked.

Chapter 2. Background 11

FIGURE 2.5: A serverless architecture in the simplest form

1. No server provisioning: A significant advantage of using a serverless architec-
ture is that the cloud provider handles all the provisioning and management
of the infrastructure. This leads to less time worrying about setting up a server,
thus saving costs and reducing the time to production.

2. Auto scaling: Another great advantage of having a cloud provider handle
most of the DevOps section of a project means auto-scaling is handled directly
by the provider based on the load each function receives.

3. ‘Pay-per-use’ model: No resources are only charged when a function is in-
voked [19]. This indicates that using this architecture means payment is only
needed for what is used. For example, when auto-scaling, the provider auto-
matically scales up and down functions based on the load it receives, which
is cost-effective instead of running multiple instances of a server or projects
behind a load balancer.

Disadvantages

Latency, issues with time-consuming tasks, and difficulty with monitoring and de-
bugging are the three main disadvantages of utilizing a serverless architecture.

1. Latency: A significant drawback in serverless computing is the startup latency
per-invocation to handle a request. These startup latencies can range from tens
to hundreds of milliseconds and possibly longer depending on if the invoked
function was a ‘warm’ or ‘cold’ start and the underlying virtualization tech-
nology being used [3].

2. Monitoring and Debugging: Since serverless functions run for shorter peri-
ods, several orders of magnitude are running, yielding it more challenging to
detect bottlenecks and problems. When the functions are completed, the only
trace of their execution is the serverless platform monitoring [11].

3. Issues with time-consuming tasks: Another reason why serverless comput-
ing has not been adopted in massive projects is that serverless is more suited
for short-term tasks. For example, AWS lambda offers clients 15 minutes to

Chapter 2. Background 12

execute a task, and if it takes longer, it has to invoke another function; this can
be seen as an issue when performing tasks such as video uploading.

13

Chapter 3

Supporting technologies

3.1 Load Balancers

Load balancing is an efficient technique to distributed application traffic across mul-
tiple servers to increase the overall processing load. The easiest way to conceptualize
a load balancer is to see a visual representation in figure 3.1. Fundamentally, when
the client sends a request to a server, the load balancer first receives the request.
Based on a distribution technique such as Round Robin, it forwards the request to a
dedicated server, returning a response to the client through the load balancer. The

FIGURE 3.1: A simple load balancer distributing work to different
servers

following lines show a load balancer for multiple clients trying to request informa-
tion from a server using the round-robin approach.

1. Client A gets response from server 1

2. Client B gets response from server 2

3. Client C gets response from server 3

4. Client D gets response from server 1

5. Client E gets response from server 2

6. ...

Two of the main types of load balancers which exist are layer four and layer seven
load balancer. A layer four load balancer operates at the transport layer. This ap-
proach handles traffic based on network information such as IP addresses and ports,

Chapter 3. Supporting technologies 14

the routing here is done without reading the contents of the actual messages, so it
can not make ‘smart’ routing decisions. Since it can not read the contents of the
request, it can not be used for microservices since it does not know which specific
set of servers to forward the request to. In contrast, it can be used for a monolithic
architecture since it does not require knowledge about which server to forward the
request to.

On the other hand, a layer seven load balancer that works at the OSI model’s ap-
plication layer can make decisions based on more information from the headers,
message content, URL type, and cookie data. This means it is suitable for microser-
vices since it can make content-based routing decisions. In summary, load balancing
helps reducing downtime and helps make applications more flexible and scalable.

3.2 Messaging Queues

Messaging queues are a fundamental backbone to making asynchronous event-driven
applications. For businesses with hundreds to thousands of users, messaging queues
are not beneficial since a simple architecture can likely work just as well without a
messaging queue. However, companies like Amazon and Alibaba, which receive
hundreds of thousands of orders in a short span, require resiliency and scalability,
which is precisely what messaging queues offer.

Why do we need it?

Regarding figure 3.2, the order flow with messaging queue would go as follows. If a
customer places a new delivery request through the orderingService. Following this
event, the cookingService to start cooking the respective order. An email or SMS will
be sent through a notificationService, and then the deliveryService gets an alert to start
the delivery.

1. Scalability: Imagine a scenario where Tesla had to confirm more than five hun-
dred thousand orders to release a new car model. Utilizing a messaging queue,
Tesla could increase the number of instances which is receiving the higher load,
namely, notificationService, it is vital to keep in mind this is only possible due to
the nature of asynchronous communication

2. Reliability: Consider a microservice application with no messaging queue but
rather communication only through a synchronous method like HTTP in con-
trast to figure 3.2 which uses a messaging queue for communication, making
the application asynchronous. If the cookingService went down for a while, the
application without a messaging queue could result in a cancelation since all
the steps are part of a single transaction. Thus a failure in one service would
affect the other services causing the customer to reorder the desired order.
Whereas, if a messaging queue were used as soon as the cookingService is avail-
able, it would find the pending order event and process it. Likewise, it can
now continue processing all the similar requests while the cookingService was
down.

3. Flexibility: Using queues allow more services to be added into the future
with minimum downtime. Assuming a messaging broker like Kafka is imple-
mented a new service, all that is left to do is subscribe to the topic(s) it wants
to consume.

Chapter 3. Supporting technologies 15

FIGURE 3.2: An application utilizing a messaging queue

3.3 Containerization

Before the invention of VMs, running a single main service was deployed to each
machine, meaning if one server failed, other server availabilities would not be af-
fected. The result leads to a massive increase of servers in data centers, which, as
we know today, is unmanageable with many servers being underused, especially
if a service was deployed and only dealt with light computations. The following
method that arose was VMs when a physical server is divided into multiple virtual
servers. There are many drawbacks to using VMs. While this paper will not elab-
orate on the issues, two of the main issues are as follows. Firstly, there is the over-
head required to set up and manage a VM, and secondly, each VM is self-contained:
higher memory and storage requirements and making software development more
complex.

One method of deploying microservices is through containerization. Put container-
ization is a lightweight method of virtualization applications [41]. Sharing the kernel
of the host OS in containerization also means avoiding infrastructure overhead of an
entire OS, as only the necessary resources, such as installations, dependencies, and
code, are provided. Essentially, containerization leads to faster starting and stopping
timings which provided better performance results compared to VMs [28].

Figure 3.3 demonstrates an example of a containerized application. At the app, layer
containers are an abstraction that packages code and dependencies together. The di-
agram shows that multiple containers can share the same OS and machine while
running in isolation from the other apps.

Chapter 3. Supporting technologies 16

FIGURE 3.3: The architecture of a containerized application1

3.4 Orchestration

While many companies still rely on traditional deployment methods, Container or-
chestration is becoming an increasingly popular decision of any system since it au-
tomates deployment, scaling, networking, and management of containers. At first
thought, this might sound redundant, especially when managing a few containers
requires minimal effort. However, companies such as AWS, which deploy hundreds
of thousands of containers at any given period, require orchestration. Microservices
with containerization make security, scaling, resource allocation, load balancing, and
similar features more easily operatable.

An ever-so-increasing rate of containers managing all these resources (memory, CPU
power, and similar resources) becomes a significant challenge. Container orchestra-
tion work by providing several instances of services, and then the orchestration tools
take care of the essential tasks. For example, Kubernetes has three essential functions
for scalable microservice applications:

• Load balancing: Kubernetes can auto-scale and distribute the network traffic
so that the deployment is stable.

• Resource management: Treats a cluster of machines as a pool of CPU, mem-
ory, and storage volumes, thereby combining the machines into a single ma-
chine [47].

• Self-healing: Kubernetes can auto-heal by replacing a failed container with
a new one and killing containers that do not live up to user-defined health
checks.

Since microservices are often deployed with containers, these containers need to
be managed from a more prominent grouping method orchestration tools are an
essential component when building microservices.

1See the url for the original figure https://www.docker.com/resources/what-container

https://www.docker.com/resources/what-container

Chapter 3. Supporting technologies 17

3.5 Scaling Cube

X Axis Scaling:

X-Axis scaling, also known as horizontal scaling, is the easiest method of scaling.
The idea is to run multiple instances of an application that stands behind a load bal-
ancer, as seen previously in section 3.1. This should lead to a decrease of the load on
a single application and spread the load. Horizontal scaling is also how monolithic
applications can scale since the other methods require attributes that only SOAs or
microservices can offer. The drawback of allowing fast scaling of transactions is the
cost of duplicate data and functionality. In summary, X-axis scaling is not suitable
for data scalability but can allow for transaction scalability [1].

Y Axis Scaling:

Y-Axis scaling, also known as functional decomposition, works by splitting up an
application, such as a monolith, into services. Functional decomposition is needed
when there are large data sets without relations between each other. In summary,
functional decomposition allows for efficient scaling of transactions, extensive data
records, which can help is fault isolation [1].

Z Axis Scaling:

Z-axis scaling, also known as sharding, is similar to X-axis scaling because it also
runs multiple instances of an application. However, the main difference is that each
instance is now only responsible for a subset of data. Sharding is functional when
there are significant and similar data sets with a quickly growing rate of records.
Sharding works by identifying customer information such as customerFirstName
based on this information; one can partition the data and service routing. In sum-
mary, Z-axis scaling is excellent for scaling customer bases and similar large data
sets, which can not be solved using Y-axis scaling [1].

FIGURE 3.4: The cube depicts three distinct methods of scaling an
application: X-axis scaling aims to distribute the load over multiple
identical instances; Y-axis scaling aims to decompose an application
into smaller components, namely, services; Z-axis scaling aims to dis-

tribute requests based on information contained in the request.

Figure 3.4 visualizes the three distinct methods of scaling an application. Overall, X

Chapter 3. Supporting technologies 18

and Z-axis scaling help improve availability and an application’s capacity with the
cost of increasing application complexity [35]. Nevertheless, as previously seen to
deal with application complexity, the solution is to use Y-axis scaling. It is essen-
tial to clearly state that the three methods are not alternatives but instead go hand
in hand. Martin L. Abbott and Michael T. Fisher created figure 3.5 which perfectly
demonstrates the effects of the three methods. In figure 3.5, X-axis split functions by
duplicating instances here. Y-axis split works by separating functionality. Finally,
Z-axis works by sending load to different instances based on the customers the first
letter.

FIGURE 3.5: This figure shows an example of how load is split up on
the three axes. [2]

19

Chapter 4

Architectural Patterns

4.1 Overview

The following sections many microservice patterns. In order to categorize each at-
tribute with a simple value a mapping is created using the rules mentioned below:

• GREEN→ this pattern encourages the respective attribute

• RED→ this pattern discourages the respective attribute

• YELLOW → this pattern could encourage or discourage the respective at-
tribute based on different aspects

• GREY→ there is not enough information in the literature to make a decision

In the following subsection, we will describe a handful of patterns for different con-
texts. Each subsection has its patterns in comparison to its alternatives. By the end
of this chapter, the following questions listed below should be answered in their
respective sections.

1. How should one re-architecture a large codebase into a microservice-oriented
architecture? → decomposition patterns

2. With so many services present, how should services interact with each other?
→ integration patterns

3. What different methods of communication should be used to store and query
data in a safe, reliable, and efficient way? → database patterns

4. How should one make sure applications are operating reliably?→ observability
patterns

5. How can we design more secure and performant applications? Is there a safe
way to update services? → miscellaneous patterns

Combining all the sections, we will have a collection of over more than twenty pat-
terns ranging from the initial setup of microservices to maintaining them in produc-
tion.

4.2 Decomposition Patterns

This section will elaborate on the different approaches to moving a monolithic ap-
plication into a microservice-oriented application. However, some of these ideas
can also be utilized to design microservices from scratch. However, this generally

Chapter 4. Architectural Patterns 20

leads to duplicating the existing functionality and additional risk from a business
perspective. Hence, it is better to decompose an existing application, which is what
this section aimed to solve. To put it simply,

"If you do a big bang rewrite, the only thing you are certain of is a big bang!" - Martin
Fowler

The following section will discuss decomposition patterns: Decompose by Business
Capability, Decompose by Subdomain, Decompose by Transactions, and Decompose
by service per team pattern with the respective drivers.

Stability Coupling Easability
of split

Reduction in
the number of
microservices

Improved
Availability

Data consistency

Each of the following metrics was selected for a specific use case or requirement,
which are described as follows:

• Stability: Is important in the case that business functions change in an organi-
zation which affects the structure of microservices.

• Coupling: Having a loosely coupled set of services is crucial to ensure an orga-
nization is benefiting from the advantages of microservices.

• Easability of split: Is important because the opportunity cost of moving from a
monolith to microservices may be too costly even to consider adopting.

• Reduction in the number of microservices: Being able to complete transactions
with fewer microservices is almost always a better alternative due to the effort
extra effort otherwise needed to deploy, clone, and manage extra services.

• Improved Availability: Is crucial in microservices to avoid downtime because it
is very costly for a business. If we assume the system has an uptime of 99.999%
our downtime is calculated so follows:

– 365 days a year and 24 hours per day = 8760 hours per year

– 8760 hours per year × 60 minutes per year = 525,600 minutes per year

– 99.999% uptime means the downtime accepted is = 0.001%

– 525,600 minutes per year × 0.001% downtime accepted = 5.256 minutes

– Assume there are a 100 services, 100 services × 5.256 minutes = 525.6
minutes = 8.76 hours of downtime

8.76 hours of downtime very expensive when the cost can range between $140K
to $540K per hour1.

• Data consistency: It is important to ensure the state of data in different microser-
vices are synchronized often to not provide or work with stale data.

1See the link below for more information about the cost of downtime https://blogs.gartner.co
m/andrew-lerner/2014/07/16/the-cost-of-downtime/

https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/

Chapter 4. Architectural Patterns 21

4.2.1 Decompose by Business Capability

A standard method of decomposing a monolith can be by business capabilities. The
term ‘business capability’ has a variety of definitions. Thus Michell [32] concluded
a uniform definition accounting from different industries; "Potential of a business
resource to produce customer value by acting on their environment via a process
using other tangible and intangible resources." Thus, the modularity of a service is
defined by business capabilities. Figure 4.1 shows how an E-commerce monolith
application be broken down into six different microservices based on the decompo-
sition by business capability pattern.

FIGURE 4.1: The architecture of splitting an application based on de-
composition by business capability

The benefits are that services will remain in a loosely coupled manner. Additionally,
given that business capabilities are relatively stable, the architecture of the microser-
vices will similarly have a stable architecture (stability) [47]. Finally, development
teams are created not around technical features but rather ones that deliver busi-
ness value. On the other hand, understanding the business capabilities can be pretty
complex and challenging to map to a set of services (easability of split). This pat-
tern will also lead to a tightly coupled architecture with the overall business model
(coupling). The result is table 4.1 which illustrates this pattern offers the attributes.
The (reduction in the number of microservices) is implementation specific, so the
metric outcome is neutral. Lastly, a widespread problem that is encountered in most
decomposition patterns in maintaining data consistency across services [47] (data
consistency).

Stability Coupling Easability
of split

Reduction in
the number of
microservices

Improved
Availability

Data consistency

TABLE 4.1: Ranking metrics based on decomposition by business ca-
pability attributes

Advice when to use: Decomposing by business capability should be used if a team
has enough insight into the organization’s business units with additional experts on
subject matters for each business unit2.

2See AWS documentation for more information about decomposition by business capability
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-m
onoliths/decompose-business-capability.html

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/decompose-business-capability.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/decompose-business-capability.html

Chapter 4. Architectural Patterns 22

4.2.2 Decompose by Subdomain

Decompose by Subdomain models microservices around Domain-Driven Design
(DDD). The DDD approach to software development builds around Object-Oriented
Analysis and Design principles. This pattern works well when there is an exist-
ing monolithic system that has well-defined boundaries between subdomain-related
modules. Hence, one can repackage the existing modules in the monolith into mi-
croservices without the expense of rewriting code. Figure 4.2 is similar to figure 4.1
where the e-commerce application is split using decomposition by business capabil-
ity pattern; however, after this, is done the e-commerce application is decomposed
into subdomains. As seen below, the Ordering Service and Payment Service are broken
down into smaller microservices.

FIGURE 4.2: The architecture of splitting an application based on de-
composition by subdomain

The benefits are similar to decomposition by business capability since the architec-
ture is stable since the subdomains are relatively stable; likewise, services are cohe-
sive and loosely coupled that, most importantly, provides maintainability (stability
& coupling) [47]. The difference is that systems become more scalable and pre-
dictable due to the nature of subdomains. Finally, the last advantage is that de-
velopment teams are created not around technical features but rather ones that de-
liver business value. On the other hand, splitting domains can lead to an excess
in microservices, creating integration and service discovery issues, thus, affecting
maintainability (reduction in the number of microservices). Last but not least,
similar to decomposition by business capabilities, business subdomains are chal-
lenging to identify because they require an in-depth understanding of the overall
business (easability of split). Ultimately, table 4.2 summaries the information into
a digestible format. Similar to decomposition by business capability (data consis-
tency) is an issue when there is an increase in the number of microservices present.

Stability Coupling Easability
of split

Reduction in
the number of
microservices

Improved
Availability

Data consistency

TABLE 4.2: Ranking metrics based on decomposition by subdomain
attributes

Advice when to use: Since this pattern expands on the decomposition by business

Chapter 4. Architectural Patterns 23

capability pattern as described above, the team planning to adopt decomposition by
subdomain must adhere to the previous attributes mentioned. Additionally, it is ad-
vised only when enough teams can be responsible for single services present in an
organization to design such a complex architecture.

4.2.3 Decompose by Transactions

Microservices need to communicate with each other to complete a single transac-
tion. This can introduce problems if one of the services goes down in the middle of
a transaction, usually referred to as two-phase commit problems. The solution is to
group microservices that are involved in a single transaction.

Figure 4.3 demonstrates how an e-commerce monolith can be broken down into
multiple microservices based on transactions. In this case, the Purchase Service is
comprised of many otherwise different services. An example of order flow is if a
user clicks "checkout", then the cart first must be retrieved, followed by an order
creation. After which, payment is required, which sends a notification, updates the
inventory status, and initiates the shipping process. Note that the Notification Service
is used after the payment is complete, and for the Marketing Service hence it is ex-
tracted into a separate service.

FIGURE 4.3: The architectural structure of the decomposition by
transactions

The first benefit is that data consistency is less of an issue since services are grouped
according to transactions (data consistency). Decomposition by transactions also re-
duces the number of microservice communications needed, which leads to a reduc-
tion in latency issues. Since there are fewer microservices alone but instead grouped
(reduction in the number of microservices), there is an improvement in availability
(improved availability). Hence, fewer microservices result in a smaller chance of
downtime in a single service, which would otherwise interrupt the ongoing trans-
action causing a halt in the system, affecting availability. As seen in Figure 4.3, the
more modules become packaged together, the more likely a distributed monolithic

Chapter 4. Architectural Patterns 24

application arises (coupling). There is also an increase in complexity due to multi-
ple features being implemented in a single microservice. Last but not least, the final
disadvantage is that transaction-oriented microservices will expand if the number of
business domains and their dependencies is large (stability). In conclusion, table 4.3
summaries the information into a digestible format. AWS documented the reduc-
tion in the number of microservices, improved availability, and data consistency (all
green metrics) in their AWS Prescriptive Guidance3.

Stability Coupling Easability
of split

Reduction in
the number of
microservices

Improved
Availability

Data consistency

TABLE 4.3: Ranking metrics based on decomposition by transactions
attributes

Advice when to use: An organization, should utilize this pattern if response times
are crucial for customers (for example, in a reservation service). If different modules
do not create a monolith after being packaged, this pattern is likely suitable for a
team’s needs4.

4.2.4 Decompose by service per team pattern

Unlike the previous decomposition patterns, decomposition by service per team
breaks down a monolith into microservices managed by individual teams. Each
team is solely responsible for the code base of a business capability. In other words,
each team is responsible for the development, deployment, testing for their capabil-
ity and ideally interacts with other teams to negotiate APIs. Figure 4.4 shows how a
monolith is split into microservices that are managed, maintained, and delivered by
individual teams.

FIGURE 4.4: The architecture of splitting an application based on de-
composition by service per team pattern

In this pattern, microservices are not shared by multiple teams, which is a big advan-
tage. Meaning development can occur independently with minimal coordination
(coupling) [48]. Which inevitability means teams can quickly innovate and iterate
product features. Conversely, aligning teams to business capabilities can be chal-
lenging (easability of split). If there are circular dependencies between teams, extra

3See AWS prescriptive guidance for more information regarding the attributes of decompose by
transactions https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-dec
omposing-monoliths/decompose-transactions.html

4See footnote 3

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/decompose-transactions.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/decompose-transactions.html

Chapter 4. Architectural Patterns 25

effort is required to deliver coordinated application increments. Table 4.4 summaries
the content above into a simple format. The stability of the split is case specific, and
thus, depends on the business functions and how they change over time (stability).
Regarding a reduction in the number of microservices and improved availability,
there is not enough research on the pattern. So much so, that there are no literature
reviews or books which contain information on the pattern (reduction in the num-
ber of microservices & improved availability).

Stability Coupling Easability
of split

Reduction in
the number of
microservices

Improved
Availability

Data consistency

TABLE 4.4: Ranking metrics based on decomposition by service per
team attributes

Advice when to use: Applications that have 5-9 people [48] working on them with
multiple teams who want to be autonomous and loosely coupled should consider
this pattern. On the one hand, it brings added complexity, but on the other hand, it
brings the drawbacks discussed above in table 4.4.

4.3 Integration Patterns

After understanding the different methods of decomposing an application, integra-
tion patterns are the next important task to understand. This is essentially about
adding more services or structuring an application such that the services can quickly,
but more importantly, efficiently communicate with each other and the client. Thus
the following section will discuss the following integration patterns: Aggregator
Pattern, API Gateway Pattern, Chained Microservice Pattern, Branch Pattern, Shared
Data Microservice Design Pattern, and finally, the Asynchronous messaging design
pattern. The table below contains the key metrics, which will define the characteris-
tics of each integration pattern.

Encapsulation Scalability Reduced complexity to
orchestrate data

Low latency Debugging code Maintainability

Each of the following metrics was selected for a specific use case or requirement,
which is described as follows:

• Encapsulation: helps to make sure that it does not expose the internals of a
service which is important.

• Scalability: Is important if there is an increase in load, which starts to affect the
service performance.

• Reduced complexity to orchestrate data: Handling transactions between multiple
services can be very complex, so it is important to know which patterns mini-
mize the complexity.

• Low latency: It is important to reduce the communication delay between ser-
vices.

• Debugging code: It is important to be able to isolate issues in services quickly.

Chapter 4. Architectural Patterns 26

• Maintainability: Is an important requirement for a good codebase, which can
be sustainable in the long run.

4.3.1 Aggregator Pattern

A microservice architecture can consist of tens to hundreds of services. The issue,
however, is that to get information about a specific product requires many extra calls
to other services to gather the information required. The Aggregator Pattern functions
by collecting pieces of data from various micro services and returns an aggregate for
processing. As seen in figure 4.5 the new aggreator service can keep a joint collec-
tion of information from different services in its own database. The various services
can then push events onto a messaging queue/ bus to which is then recorded in the
aggregator.

FIGURE 4.5: The architectural structure of the aggregator pattern

A significant benefit is that there is a single point of access for the microservices. This
pattern also leads to a higher degree of encapsulation (encapsulation) [39]. How-
ever, it most importantly can scale in the x- and z-axis (scalability) [39]. The cost of
implementing the aggregator pattern is that there is a higher level of latency in com-
munications between microservices, which means there is an increase in complexity
to orchestrate data (low latency). Last but not least, this pattern requires much ex-
perience to implement; thus, the aggregator pattern can turn into a bottleneck anti-
pattern if it is not optimized. Unfortunately, the maintainability is not perfect here
as there is an extra service to maintain (debugging code). However, from another
perspective, there is a central service to add service calls so it could enhance main-
tainability (maintainability). Receiving data from n services with maintaining and
updating a database to hold this information is generally very difficult. Thus this
metric is not a good reason for adoption (reduced complexity to orchestrate data).

Advice when to use: A good idea when to utilize the aggregator pattern is when
the outcome of possible outages result in a low business casualty. Apart from that,

Chapter 4. Architectural Patterns 27

Encapsulation Scalability Reduced complexity to
orchestrate data

Low latency Debugging code Maintainability

x y z

TABLE 4.5: Ranking metrics based on the aggregator pattern

if the benefits outweigh the downfalls of this pattern, and the teams have experi-
enced developers due to the complexity of orchestrating data the pattern is useful to
consider.

4.3.2 API Gateway Pattern

An API Gateway is the single entry point that aggregates the calls to the individ-
ual microservices. While this may sound very similar to the Aggregator Pattern,
there are some distinct features. Most importantly, this new service does not store
data but instead becomes responsible for API composition, request routing, and new
features such as authentication. From figure 4.6, the API gateway can serve differ-
ent clients across several communication channels. The API gateway can expose an
API depending on the client’s needs. The gateway can then handle requests using
API composition and then invoking multiple services and aggregating the results.
Diving deeper, figure 4.7 demonstrates the multiple API calls made after the client
requests for getOrderDetails()

FIGURE 4.6: The architectural structure of the API gateway pattern

Similar to the aggregator pattern, encapsulation of the internal structure is offered by
this pattern (encapsulation) [33]. When considering the (low latency)5 metric, intro-
ducing a new layer to the overall architecture decreases the response time, however
as services scale stating whether this amount is significant is problem specific. The
API gateway simplifies the client-side code and reduces the number of network calls

5See AWS prescriptive guidance for more information regarding the attributes of decompose by
transactions https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-int
egrating-microservices/api-gateway-pattern.html

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/api-gateway-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/api-gateway-pattern.html

Chapter 4. Architectural Patterns 28

needed between the client and the application. The downside, however, is the ex-
tra component that has to be managed with development and deployment, which
also increases the difficulty in debugging (debugging code). The most problem-
atic issue that could turn into a bottleneck is that updating the API gateway is not
lightweight since developers will be forced to wait in line to update the gateway
when they need to update the gateway API to expose each microservice endpoint.
Similar to the aggregator pattern, there is extra management and maintainability
effort required to keep the gateway running as there is an extra service present to
handle, however adding a few microservices to act for the API gateway should re-
quire low maintenance assuming service discovery and orchestration of the services
are automated(maintainability) [57]. Last but not least, scaling API gateways are
generally not an issue considering providers such as AWS can optimize configura-
tions to help your application (scalability) [16].

Encapsulation Scalability Reduced complexity to
orchestrate data

Low latency Debugging code Maintainability

x y z

TABLE 4.6: Ranking metrics based on the API gateway pattern

Advice when to use: If a client has low latency requirements, as well as if the num-
ber of dependencies for a microservice is manageable and does not grow over time,
this pattern is useful6. Another reason for adoption is that the API gateway offers
a cleaner interface for clients to interact. Most importantly, where high availabil-
ity is required, this pattern should be used to handle load balancing as previously
mentioned, but it can also be combined with rate limiting and throttling [60].

FIGURE 4.7: This figure shows how an API gateway often does API
composition, enabling a client such as a mobile device to efficiently

retrieve data using a single API request. [47]

4.3.3 Chained Microservice Pattern

The Chained microservice pattern is a sub-pattern on the Aggregator pattern men-
tion at the start of this section. The similarity lies in that it aims to provide a single

6See footnote 5

Chapter 4. Architectural Patterns 29

access point for information [39]. While the aggregator works by evaluating and
triggering concurrent processes for the microservices responsible for composing the
response to the request, the chained pattern works by services calling other services
and combined their previous responses to return a concatenated response without
an orchestrator.

Regarding figure 4.8, imagine a scenario where Service A receives a request but
needs to call more endpoints to get all the client’s information. Thus it executes a
request for Service B. Interestingly enough; Service B calls Service C to receive all
the information Service A requested. Likewise, Service C calls Service D to com-
plete its information request by Service B. However, Service D does not require any
more information, so Service C’s information is passed on to Service B, which is
then returned to Service A and ultimately sent back to the client.

FIGURE 4.8: The architectural structure of the chained microservice
pattern

The most apparent benefit of the chained microservice pattern is the practicality of
implementation; because of the chain call’s synchronous nature, understanding the
network calls becomes less mixed up. We prefer not to use asynchronous communi-
cation since the response composition control could have a callback system, which
grows in complexity and compromises scalability [39]. The obvious issue is that
this pattern struggles to handle asynchronous communication increasing complex-
ity and compromising scalability. Debugging code and understanding data owner-
ship are more downsides to this pattern which grow in complexity when using the
chain microservice pattern (debugging code & reduced complexity to orchestrate
data). Last but not least, the longer the communication channel is, the higher the
chance of an increase in latency areas can occur (low latency). When a service goes
down in the middle of communication, it is a good idea to implement the circuit
breaker pattern described in section 4.6.2.

Chapter 4. Architectural Patterns 30

As the chained microservice pattern does not require an extra service for data or-
chestration, maintainability is a positive metric. However, since the communication
is synchronous, adding a new service to the chain would require more maintainabil-
ity effort. (maintainability). While this pattern also offers encapsulation of access to
microservices (encapsulation) [56], it also offers independent scalability in all three
axes, all of which are linked to the number of instances of a service that may be ac-
cessed using a proxy to reroute requests as stated by V. F. Pacheco (scalability) [5].

Encapsulation Scalability Reduced complexity to
orchestrate data

Low latency Debugging code Maintainability

x y z

TABLE 4.7: Ranking metrics based on the chained microservice pat-
tern

Advice when to use: The chained microservice pattern is helpful if the current scope
of the application is too large to add in extra microservices. If the current scope of
an application has crucial functional requirements to be scalable, then this pattern is
possibly suitable for their needs.

4.3.4 Branch Pattern

The Branch pattern is an extended version created from the aggregator and chained
design patterns to better serve the application’s business layer, and thus, aims to
combine the positive aspects of both patterns. The pattern allows simultaneous re-
quest/response processing from two or more microservices. To put it simply in fig-
ure 4.9 we can see the developer is allowed to configure service calls dynamically.
All the calls in this pattern can occur in a contemporary fashion. Hence, service A
can call Service B and Service C simultaneously.

FIGURE 4.9: The architectural structure of the branch pattern

Chapter 4. Architectural Patterns 31

The branch pattern also offers scalability in all three axes, with the feature of en-
capsulating access to the microservices (similar to the chain microservice pattern)
(scalability & encapsulation) [39]. However, the main advantages offered in the
adoption of this pattern are the flexibility of implementation, compositional ability,
and orchestration [39]. Since the pattern combines the aggregator pattern and the
chain pattern, we have many similar disadvantages, the first one being an increased
chance of latency with long communication chains (low latency). Debugging code
is also growing in complexity with this pattern, but so does the difficulty in un-
derstanding the codebase (debugging code & Reduced complexity to orchestrate
data). Thus, while the branch pattern can solve many communication problems, it is
vital to consider the use case where this will apply. In terms of maintainability, there
is a lack of literature on the branch pattern (maintainability).

Encapsulation Scalability Reduced complexity to
orchestrate data

Low latency Debugging code Maintainability

x y z

TABLE 4.8: Ranking metrics based on the branch pattern

Advice when to use: It is first advised to begin with the chained microservice pat-
tern. However, at some point, one realizes that the chain is too long and can be
possibly be split up using this pattern, thus creating a sense of concurrency in the
microservices calling.

4.3.5 Asynchronous Messaging Pattern

The foundation of the Asynchronous Messaging Pattern was discussed in section 3.2.
The Asynchronous Messaging Pattern is primarily based on communication that
does not require immediate attention (i.e., no response back).

This pattern is unquestionably the most scalable of all due to the asynchronous
character of microservices. Thus not only is it very scalable, but it is also inde-
pendently scalable in all three axes (scalability)7. Additionally, it also provides en-
capsulation of accesses to microservices to benefit from lazy process information.
Conversely, understanding the architecture initially can be quite complex (reduced
complexity to orchestrate data). Debugging asynchronous architectures can also be
hard to manage as there is complexity in the monitoring of requisitions (debugging
code). While adding a messaging queue can increase latency in an application,
there are solutions to try and overcome this within the messaging systems config-
urations themselves (low latency). Valdivia et al. concluded that the three main
benefits of this pattern are reliability, maintainability, and performance efficiency
(maintainability) [57]. Last but not least, this pattern also encapsulates access to
microservices (encapsulation) [39].

Encapsulation Scalability Reduced complexity to
orchestrate data

Low latency Debugging code Maintainability

x y z

TABLE 4.9: Ranking metrics based on the asynchronous messaging
pattern

7See the link below for more benefits regarding messaging queues https://aws.amazon.com/mes
sage-queue/benefits/

https://aws.amazon.com/message-queue/benefits/
https://aws.amazon.com/message-queue/benefits/

Chapter 4. Architectural Patterns 32

Figure 4.10 may look familiar as it utilizes the aggregator pattern where Service A
acts as an orchestrator, collection information from service Service B and Service C
and communicating directly back to the client. The noticeable difference is that Ser-
vice A also writes data to the message broker, and Service D consumes the data in the
queue, which may then synchronously communicate with the client.

FIGURE 4.10: The architectural structure of the asynchronous mes-
saging pattern

Advice when to use: Asynchronous communication is helpful when an event re-
quires multiple consequences based on what occurred. For example, some more
sub-events should occur after the payment is completed, such as a delivery service
processing the shipping information. The notification service should alert the cus-
tomer about the status of the payment and other similar occurrences.

4.4 Database Patterns

Databases are a big part of any application. Hence, this section will cover different
methods for handling data with the following patterns: Command Query Respon-
sibility Segregation, Event Sourcing, Database per Service, Shared Database per Ser-
vice, Saga Pattern. The table below contains the key metrics, which will describe the
characteristics of the respective patterns.

Chapter 4. Architectural Patterns 33

Efficient implementation Reduced
complexity

Maintainability Reduced
monitoring

Scalability Loosely
coupled

Each of the following metrics was selected for a specific use case or requirement
which are described as follows:

• Efficient Implementation: It Is important to be able to query information quickly.

• Reduced complexity: It is important that querying the data from different mi-
croservices in an understandable method.

• Maintainability: Is an important requirement for a good codebase, which is
sustainable in the long run.

• Reduced monitoring: Is important to ensure the databases work without lots of
trouble.

• Scalability: Is important if there is an increase in load which starts to affect the
read and write performance of the database (s)

• Loosely coupled: Is an important aspect to consider because it helps with the
current and future development.

4.4.1 Command Query Responsibility Segregation

The CQRS pattern is about separating the create, update, and delete operations from
the get operations. The idea is that the query-side model retains updated informa-
tion by subscribing to the events published by the command side (CUD operations).
Due to the difficulty in implementing queries from multiple services when using the
database per service pattern, the CQRS pattern helps implement queries.

The most significant benefit CQRS offers is the improved separation of concerns,
which means commands and queries are not handled by the same data model (efficient
implementation). Seo et al. demonstrated the power of efficiency in CQRS queries [52]
being approximately eleven times faster than non-CQRS queries in the context of
their weather data application. Furthermore, CQRS enables an efficient implemen-
tation of queries, as previously mentioned. Last but not least, querying becomes
a possibility in an event sourcing-based application. The most considerable price
to pay for these advantages is the complex architecture, since developers not only
need to write query-side services that update and query the views but also manage
and operate different databases (maintainability & reduced complexity) [45]. To
repeat, having two separate databases could also mean having a relational database
for writing and a non-relational database for reading, which can increase the perfor-
mance of an application and scalability (scalability) [45]. Also, with event-driven
architecture, another general problem that arises is replication lag, although there
are known solutions to overcome the problem (reduced monitoring).

Efficient implementation Reduced
complexity

Maintainability Reduced
monitoring

Scalability Loosely
coupled

TABLE 4.10: Ranking metrics based on the CQRS pattern

From figure 4.11 it is visible that the service utilizes event handlers that are sub-
scribed to domain events published by services who own their data, which is how

Chapter 4. Architectural Patterns 34

the leading service holds direct access to the query database can perform efficiently.

FIGURE 4.11: The architectural structure of the CQRS pattern

Advice when to use: The CQRS pattern should be used alongside event sourcing
since the two patterns complement each other. When systems have different loads
on the read and write aspects of a database, CQRS helps with separation concerns.
When complex domain models are present where reading data needs query into
multiple data stores, the pattern offers many benefits, as seen above. Although if the
volume of events is insignificant, this pattern should not be used.

4.4.2 Event Sourcing

The idea behind event sourcing is not to store the state but rather to store events in a
system that can be replayed when required. Since each event is irremovable and im-
mutable, no updates or deletes are needed enabling good write performance these
factors lead to better performance (efficient implementation) [12].

Event sourcing is reliable because it publishes events whenever the state of aggre-
gate changes. Another great addition to using event sourcing in a platform is that
it preserves the history of aggregates, which is valuable for auditing and regula-
tory purposes. Since event sourcing stores the history of an application, it helps
developers implement new features with existing data, which otherwise would not
be possible since traditional applications do not preserve this information. On the
other hand, there is added complexity since it has a different programming model
with a learning curve that may take developers time to adjust to (reduced complex-
ity). Given that events are stored for an indefinite period, deleting data for GDPR
reasons can be challenging (maintainability). As previously mentioned, this pattern
goes along with CQRS for the sole reason that queries are complex and most likely
inefficient. Thus there is additional development required for implementing queries

Chapter 4. Architectural Patterns 35

with CQRS. Event-sourced systems strive for the minimum amount of synchronous
interaction, which results in loosely coupled scalable systems (loosely coupled &
scalability). As Diakov et al. stated, one of the most glaring benefits of event sourc-
ing is its scalability [17]. According to Valdivia et al., the two main benefits found in
their literature research were security and performance efficiency (efficient imple-
mentation) [57].

Efficient implementation Reduced
complexity

Maintainability Reduced
monitoring

Scalability Loosely
coupled

TABLE 4.11: Ranking metrics based on the event sourcing pattern

From figure 4.12 we can visualize a shift from previously stored as a state into a sys-
tem that stores events now.

FIGURE 4.12: An example of how event sourcing stores events in a
system

Advice when to use: Event sourcing is most commonly used for classic message-
driven or event-driven systems (e-commerce and reservation systems). This pattern
should also be considered when building a large-scale system that needs a secure
audit log. However, adopting it only for having a secure log is not a good idea, con-
sidering the maintenance and complexity required to keep an event sourcing system
running.

4.4.3 Database per Service

This pattern may sound simple in practice since it essentially keeps each microser-
vice’s persistent data private to that service and accessible only via its API. Thus, a
service transaction only involves its database. Figure 4.13 shows an example of how
multiple services keep track of their private databases.

Chapter 4. Architectural Patterns 36

FIGURE 4.13: This figure shows how how the database per service
pattern would function in an application [48]

The database per service is offers enhanced loose coupling since each database only
serves one service making, them independent (loosely coupled) [55]. Some databases
may require higher security requirements. For example, Researchable has to comply
with GDPR. Hence having separate databases for sensitive data can increase security
safety. However, it may also lead to a more efficient implementation since different
types of databases can have different use cases (efficient implementation).

Last but not least, this pattern leads to a more granular control of scaling (scalability) [56].
The downside is that implementing complex transactions and queries that span mul-
tiple microservices has becomes very challenging (reduced complexity). Managing
multiple forms of databases, such as relational and non-relational databases, become
a challenge for companies, so maintainability is not a good feature offered by this
pattern (maintainability). The extra databases need to be maintained and moni-
tored, which is additional overhead to consider (reduced monitoring).

Efficient implementation Reduced
complexity

Maintainability Reduced
monitoring

Scalability Loosely
coupled

TABLE 4.12: Ranking metrics based on the database per service pat-
tern

Advice when to use: The database per service pattern should be taken advantage
of where teams require complete ownership of their microservices for scaling and
velocity development. It is also recommended to use this pattern in large-scale en-
terprise applications. Nevertheless, in small-scale applications where one team man-
ages all the microservices, this pattern should be analyzed since the disadvantages
possibly outweigh the advantages for this specific case.

Chapter 4. Architectural Patterns 37

4.4.4 Shared Database per Service

As the name suggests, this pattern leads to the same database being shared by mul-
tiple microservices. This pattern often leads to microservices become a distributed
monolith which can become a nightmare for developers. While this pattern means
sharing a database, it does not mean single tables should ever be shared among mul-
tiple microservices (which should be avoided).

From the diagram, it is noticeable that implementing this pattern leads to minor
refactoring of an existing code base, with the benefit of maintaining and manag-
ing a single database (reduced monitoring). As previously seen, this pattern is
complex because of interdependencies amongst existing microservices. However,
that helps reduce the need to redesign the existing data layer (reduced complex-
ity) [56]. This pattern also helps with maintainability due to the decrease in con-
figurations and overwatch required (maintainability) [56]. Most importantly, this
pattern helps enforce data consistency by using transactions that are ACID. How-
ever, sharing databases means tightly coupling the available services (loosely cou-
pled) [34]. If the entire application relied on a single shared database, it would turn
into an Anti-pattern. Although, it is acceptable to use this pattern in parts of a more
prominent application to gain the benefits listed above. In terms of scalability, it
can highly depend on the configurations and other technical details in a codebase
(scalability) [37].

Efficient implementation Reduced
complexity

Maintainability Reduced
monitoring

Scalability Loosely
coupled

TABLE 4.13: Ranking metrics based on the shared database pattern

In figure 4.14 one can see how multiple services share the same database but not the
tables

FIGURE 4.14: The figure depicts how a single database with multiple
tables can be utilized my multiple services when using the shared

database pattern

Advice when to use: A large majority of the advice on when to adopted is listed

Chapter 4. Architectural Patterns 38

above. Nonetheless, it is essential to reiterate that if an organization prefers not to
refactor an existing code base by many changes due to business requirements or
other limitations, this pattern can be encouraged.

4.4.5 Saga Pattern

A well-known issue in the microservice world is dealing with distributed transac-
tions (when a transaction spans multiple services). The saga pattern can be applied
after one has used the database-per-service pattern. Essentially a saga is a chained
series of local transactions, where a local transaction can trigger another (local) trans-
action through an event. The fail-safe mechanism is to execute a series of compen-
sating transactions that undo the changes made by the initial local transactions.

There are two approaches to developing sagas:

1. Orchestration based: Local transactions take advantage of a messaging queue
to publish domain events that trigger local transactions in other services.

2. Choreography based: An orchestrator informs the participants what local trans-
actions to execute.

Orchestration based

Each implementation approach has its own merits and demerits. However, first, the
implementations work as follows. Figure 4.15 demonstrates how the orchestration-
saga approach would function in practice for an e-commerce application. The order
flow would act as follows (The services communicate with each other through a
messaging broker):

FIGURE 4.15: The order of communication which occurs in the saga
orchestration is shown in this this figure

1. The inventory service provides information to the ordering service about the
availability.

2. The Ordering Service asks the Payment Service to complete the transaction for
the goods ordered, with a returned response stored in the Ordering Service.

3. The Payment Service, if successful, calls the product service to get the right
products into the pipeline for delivery. Which in turn returns the information
of that Ordering Service

4. Finally, if the Product Service was successfully called, the Shipping Service
will be alerted, and then the Ordering Service will receive an update with the
required information.

Chapter 4. Architectural Patterns 39

The orchestration-saga approach offers a simplistic easy to understand approach
(reduced monitoring). Since each service can implement an API that the orches-
trator invokes, there is less coupling because the orchestrator does not need to be
aware of the events released by the saga participants (loosely coupled) However,
this approach can quickly get out of hand if one keeps adding extra steps between
a transaction process (reduced complexity). On average, the recommended num-
ber of steps is two to four. Having another service that communicates with the
rest of the services also introduces a single point of failure (when there is one co-
ordinator) (reduced monitoring). The upside is that cyclic dependencies cannot oc-
cur; the price is that handling state and coordinating transactions can be complex
(maintainability).

Efficient implementation Reduced
complexity

Maintainability Reduced
monitoring

Scalability Loosely
coupled

TABLE 4.14: Ranking metrics based on the saga orchestration pattern

Choreography based

From figure 4.16 the steps taken for services to communicate to each other based on
a messaging queue.

FIGURE 4.16: When using the saga choreography pattern the services
communicate through a messaging queue to communicate to each

other

1. The Order Service pushes an ORDER_PLACED event to the queue

2. The Billing Service consumes an ORDER_PLACED event from the queue

3. The Billing Service pushes an ORDER_BILLED event to the queue

4. The Shipping Service consumes an ORDER_BILLED event from the queue and
creates a shipping level

5. The Shipping Service pushes a SHIPPING_LABEL event to the queue

Chapter 4. Architectural Patterns 40

6. The Order Service consumes the SHIPPING_LABEL event and updates the sta-
tus to READY_TO_SHIP

Each service will produce and consume events of other services and decide what ac-
tions to take based on the message type (efficient implementation). Thus there is no
central coordination. Unlike the orchestration-saga, the choreography-saga-based
approach offers no SPOF, which aligns closely with the theme of microservices. The
lack of an orchestrator (loosely coupled) [47] in the application implies no additional
coordination logic is needed, which improves maintainability (maintainability) [49].
The downside, however, is that the workflow can get complex as the architecture
grows (reduced complexity) [47]. Not having an orchestrator also increases the risk
of a cyclic dependency arising between services. Since services publish events when
they perform CUD operations on business objects, monitoring does not have to be-
come necessarily complex and can depend on the implementation (reduced moni-
toring).

Efficient implementation Reduced
complexity

Maintainability Reduced
monitoring

Scalability Loosely
coupled

TABLE 4.15: Ranking metrics based on the saga choreography pattern

Advice when to use: As previously stated, cyclic dependencies are an issue with
this pattern, so it should generally be avoided in systems where cyclic dependency
exists among services. If an organization needs to ensure data consistency in a dis-
tributed system without tight coupling, the pattern should be adopted. Another
scenario is when one needs to compensate if one of the operations in the sequence
fails. Lastly, the pattern should be avoided when transactions are tightly coupled
since it brings added complexity for no benefit whatsoever. Ideally, when there are
less than (and including) three services where data can be lost on rare occasions, the
Choreographer is the right approach. Otherwise, the Orchestrator should be used
when dealing with four or more services.

4.5 Observability Patterns

This subsection will lay out the patterns that make sure applications are operating
reliably. No matter how careful developers are, issues during production are in-
evitable. The four methods which individually can help a microservice application
in terms of reliability are as follows:

• Distributed Tracing

• Health Check API

• Log Aggregation

• Metrics

(NOTE: the four patterns are not alternatives of each other, but rather can be com-
plementary).

This section does not contain any tables because each pattern attempts to provide
a different aspect to improving a microservice application. Thus, each table would
have different metrics for each pattern, unlike the previous patterns. The main focus

Chapter 4. Architectural Patterns 41

for deciding on these patterns was maintainability. Valdivia et al. concluded in her
research that the health check, log aggregation, and metrics all have the benefit of
improving maintainability in microservice applications [57], although her research
lacked information regarding distributed tracing.

4.5.1 Distributed Tracing

Distributed tracing is a commonly used pattern of in-service monitoring. Distributed
tracing follows and observes requests in a distributed environment, giving the abil-
ity to pinpoint failures and performance issues to fix them quickly. Hence, to reiter-
ate, the problem is understanding the behavior of an application and troubleshoot-
ing problems. The pattern offers three main benefits [42]:

1. By providing visibility into changes decreases the overhead necessary for roll-
backs and deploys.

2. It supports polyglot development. Due to the agnostic nature of distributed
tracing, a single trace can propagate through different clients.

3. It can help with productivity because developers will spend less time trou-
bleshooting and debugging with distributed tracking than without it.

The most prominent disadvantage is that aggregating and storing traces can require
significant infrastructure, which is expensive in human capital and monetarily.

4.5.2 Health Check API

Health monitoring is critical to multiple aspects of operating microservices. Essen-
tially, it can allow near real-time information about the state of containers and mi-
croservices. The main issue to solve is how should a live service detect that it is
unable to handle requests. The solution is implemented as an API endpoint that re-
turns the health status of the microservice. More specifically, they can be configured
for three prominent use cases of real-time monitoring scenarios8:

1. The API can test the dependencies of an application (external services and
databases) to check availability levels and for expected responses

2. The use of memory and other physical server resources can be pinged for a
healthy status

3. Health checks can be used by container orchestrators to check an app’s status.

While it is easy to see the benefits the pattern offers, it is essential to remember
that the health check service instance might fail between health checks, and thus,
requests might still be routed to a failed service.

4.5.3 Log Aggregation

Log Aggregation is used when a microservice architecture is in place, and one needs
to debug problems that span multiple components. The issue it attempts to solve
is how to effectively view and search different log files resulting from individual
distributed runtimes in a microservice environment [13]. The solution is to use a

8See Microsoft documentation regarding more information on health checks https://docs.micro
soft.com/en-us/aspnet/core/host-and-deploy/health-checks

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks

Chapter 4. Architectural Patterns 42

centralized logging service that aggregates logs from individual service instances,
thus, allowing users can search and analyze the logs or configure alerts based on
certain output logs. According to Rosa et al. [38], log aggregation increases coupling
at a service level, although similar to the other observability patterns, it helps de-
velopers spend less time troubleshooting and debugging. Unlike the other patterns,
logging is the most accessible type of data to generate [54].

4.5.4 Metrics

Metrics are a numerical representation of data, giving developers insights into the
past and current state of a system. It offers the ability to perform statistical analy-
sis and predictions on a system’s future behavior since it deals with numeric data.
The problem which metrics attempt to solve is how to understand the behavior of
an application. Using some tools to gather statistics about individual operations be-
comes possible. When comparing metrics to logs, a significant advantage is that the
cost of metrics does not increase concerning user traffic or similar system activity
that could result in a significant increase in data [54]. Metrics are also better for trig-
gering alerts because running queries against an in-memory, time-series database is
far more efficient, not to mention more reliable. Thus, it contrasts running queries
against a distributed system such as Elasticsearch and then aggregating the results
before deciding whether or not an alert should be triggered [54].

4.6 Miscellaneous Patterns

While there are many patterns for microservices as described in the following re-
sources (which inspired patterns in this paper):

• Design Patterns for Microservices by Mike Wasson [59]

• Microservices Migration Patterns, by Armin Balalaie, Abbas Heydarnoori, Pooyan
Jamshidi, Damian A. Tamburri, Theo Lynn [10]

• Implementation Patterns for Microservices Architectures, by Kyle Brown and
Bobby Woolf [13]

• Microservice Architecture - A Pattern Language for Microservices, by Chris
Richardson [48]

• Microservice Patterns and Best Practices, by Vinicius Feitosa Pacheco [39]

We can not describe all of them; hence, the following subsections will describe four
patterns used for different use cases in the context of microservices.

4.6.1 Service Discovery Pattern

The two primary forms of discovery patterns are server and client-side discovery
patterns. Service discovery patterns are helpful since they help us find the locations
of services required to be invoked. While a traditional distributed system meant ser-
vices ran at a fixed location in terms of hosts and ports, it was easy to call another
service using HTTP/REST or some RPC mechanism. Unfortunately, with the rise
of virtualized or containerized environments, this becomes a new challenge since
the number of service instances and their locations change dynamically [48]. The

Chapter 4. Architectural Patterns 43

solution introduces a service that can be invoked by other services to retrieve crit-
ical information about other components. Thus, microservices communicate to the
registry to publish their locations, whereas clients address the registry to discover
registered services [33].

Server-side Service Discovery Pattern

Taking a look at how server-side discovery would function, from diagram 4.17 be-
fore a request is sent to the load balancer, the client makes a request through a load
balancer. The load balancer invokes the service registry (a database of services, their
instances, and their locations), which forwards the request to an available service
instance [31].

Advantages

1. Less Code: A benefit in contrast to client-side discovery, the client code is sim-
pler since it does not have to deal with discovery. Instead, a client requests the
router

Disadvantages

1. More Network Calls: Requires more network calls than using client-side dis-
covery, which is a considerable drawback.

2. Extra Complexity: Another drawback if it is not integrated into the cloud en-
vironment, the router is another component that must be installed and config-
ured that needs replicated for availability.

FIGURE 4.17: An overview of the server-side service discovery pat-
tern architecture

Chapter 4. Architectural Patterns 44

Client-side Service Discovery Pattern

The Client-side Service Discovery Pattern functions as follows when a request is
created. First, the client obtains the location of a service instance by invoking the
service registry and then can communicate directly with one of the service instances,
as seen in figure 4.18.

FIGURE 4.18: An overview of the client-side service discovery pattern
architecture

Advantages

1. Lower Latency: Since the client communicates directly with service registry
there are fewer moving parts and network hops compared to server-side Dis-
covery.

Disadvantages

1. Extra Development: A significant disadvantage of this pattern is the extra
client-side service discovery logic required for each programming language/framework
used by the application.

2. Coupling: The client becomes tightly coupled with the service registry

4.6.2 Circuit Breaker Pattern

The Circuit Breaker Pattern is a reliability pattern. The term circuit breaker comes
from the electrical switch in houses that automatically protects an electrical circuit
from damage done by an overload. The pattern becomes relevant because, in an ap-
plication where one service synchronously invokes another, there is a possibility that
another service is unavailable, so requests will continuously be pining that service.

Chapter 4. Architectural Patterns 45

In the meantime, if the services are still pining unavailable services, it could lead to
network resource exhaustion, leading to a lower performance and user experience.
As a result, the pattern aims to prevent a single component’s failure from cascading
beyond its limits and bringing the entire system down with it [33].

The solution is that when several consecutive failures cross a threshold, the circuit
breaker gets triggered; thus, for the duration of the timeout, all the attempts invok-
ing the service will fail immediately. After which, the circuit breaker will allow a
subset of test requests. Conditional on a successful response, the circuit breaker re-
sumes regular operation; otherwise, a timeout period occurs again. The pattern is
beneficial since it has the advantage of handling the failure of services it invokes.
However, it does bring the challenging disadvantage of selecting timeout values
without introducing extra latency or creating false positives [48].

4.6.3 Canary Pattern

The Canary Pattern is a deployment pattern that introduces new updates in mi-
croservices in a safe and reliable method. The concept is to release a new deployment
to a subset of users. The increments can be set in the target environment and gen-
erally are updated in small increments such as 5%, 25%, 50%, 75%, and 100%. This
deployment pattern has a lower risk of failure (in contrast to the other deployment
patterns [48]). If an application has an app-breaking bug introduced into production
after a new release, only a subset of users will be affected due to its incremental na-
ture.

This pattern shines in allowing organizations to test in production with real users
and compare the performance of both versions live. It creates an easier way to trig-
ger a rollback and faster since a subset of users exposed to the updated version must
be re-routed.

On the other hand, scripting a canary release can be very complex. There also is
an increase in required monitoring, and instrumentation for testing in production
may involve additional research. From figure 4.19, we can see how requests would
be distributed through the load balancer onto the two live versions based on a user
ratio threshold.

FIGURE 4.19: A simple example of how using the Canary deployment
would distribute load

46

Chapter 5

Case Study: Researchable

This section will attempt to apply some real-life scenario patterns after learning
about the different patterns microservices can leverage to create safer, scalable, and
robust microservices.

Background

Researchable is a startup in Groningen, Netherlands that focuses on developing soft-
ware solutions for improving scientific research and helping researchers to spend
their time on more valuable tasks. While they have many client projects that mainly
involve a monolithic architecture, in one of their projects, they have implemented a
microservice architecture that creates a case study for this paper.

Context

The project using a microservice-oriented approach is called Sports Data Valley1 (SDV),
the largest national data platform for data analysis and sport and physical exercise
research. The project was created as a sizeable scalable data platform that can safely
manage, analyze and access data through a central infrastructure.

Area of improvement

The section up for improvement in the whole application is the data ingestion ser-
vice. Essentially, as there are so many data sources to connect and retrieve data from,
a service must be present to handle this data for either storing or some extra cleaning
of the data (post-processing).

Main Challenge

The main challenge is many different data sources: Garmin, Fitbit, Strava, and simi-
lar sources. Each platform has a different interface/ API to pull data for customers.
For example, some sources may have the option to export all the data for a spe-
cific user, whereas others may require pinging an endpoint several times. While this
may sound simple in practice, developers are often faced with more profound issues
such as rate-limiting thresholds for APIs. Thus, the final question we shall attempt
to answer is:

Should SDV keep its current architecture where there is a single data ingestion service
where all the data pulling happens in one service, or should there be a dedicated service for

each respective source to pull data?
1See the link below more description regarding SDV https://researchable.nl/projects/sport

datavalley

https://researchable.nl/projects/sportdatavalley
https://researchable.nl/projects/sportdatavalley

Chapter 5. Case Study: Researchable 47

Analysis

Let us start by analyzing the positive aspects of using a single service.

1. Less microservices: As this paper has mentioned, having fewer microservices
present is not bad. Having fewer microservices leads to

• Fewer services to deploy

• Less service discovery issues

• Fewer resources needed

All of which are issues that developers and organizations would prefer not to
happen.

2. Less development time: In this case, since the single data ingestion service
is already running, there is less development time spent on splitting the cur-
rent service into their respective services for each source. For startups such as
Researchable, this is quite important since they have clients for other projects.

Now for the advantages of having individual services for each source to retrieve
data for SDV.

1. Easier to pinpoint failure in a service: Because we have a service running
for each respective source, it becomes easier to pinpoint failure. For example,
suppose Strava’s API is facing downtime, and all the other services acting as
connectors are pulling data smoothly with no errors. In that case, it is easy
to see which service is not running properly due to its single responsibility
nature.

2. No single point of failure: Assuming microservices have no downtime would
be a naive statement. If Researchable kept having one service to pull data,
then a severe bug or memory leak in that services would entail that none of
the data sources can pull information as they are all coupled in one service.
However, if Researchable kept n different services and, for example, the Strava
service (which pulls data from a Strava API) had a memory leak, the other
services such as the Fitbit service and Garmin service would remain functioning
as intended.

3. Easier to add new connector services in the future: This advantage is quite
opinionated. Nevertheless, suppose each data source has it is on service which
is responsible for pulling data. In that case, there is a clear separation between
services, which means if there is a new requirement to connect a new source
like Runtastic. All that is needed is a new service for Runtastic. Whereas, if all
the code was coupled in a since service adding new methods in possible long
files could create more confusion if not a mini monolith.

A new aspect, one might argue, is that each team should only be responsible for
a single service. However, there is more detail to this statement. The real intent
is that multiple teams should never own a microservice. Otherwise, the goal of
ensuring rapid and total control over the service would not be present if the service
spans multiple teams. Thus, as long as one team owning multiple services does not
break the rule above, there should not be any worries. That is, if the team has the
capacity and ownership to handle the microservices end-to-end from development,
integration, testing, versioning, and deployment, then it should be fine.

Chapter 5. Case Study: Researchable 48

Utilizing Patterns

As we have two different ways of approaching the data ingestion problem, let us
start by reiterating the useful patterns for both cases and then dive deeper into the
patterns useful for individual cases. The decomposition patterns are not helpful in this
case since the application is also split up using a method suitable for Researchable.
Regarding the observability patterns, we have four options that possibly go well to-
gether, as we have seen. Since we are requesting information on external APIs, the
health check API is likely implemented from our external data sources. Researchable
has already implemented log aggregation, which means they should consider using
distributed tracing and metrics. Distributed tracing is generally relevant when data
gathering is done across services and not just when pulling data. However, they can
consider adopting it in a different section of the application. Metrics are beneficial in
both approaches. Thus, it is recommended that Researchable consider adopting this
observability pattern.

When considering the miscellaneous patterns, we visited three patterns. The service
discovery pattern is an essential part of a microservice architecture. It ensures loca-
tions of microservices are not fixed when using containers (since they often are spun
based on load and other factors). This pattern is not specific to the data ingestion
problem but rather the entirety of the application. Likewise, the circuit breaker pat-
tern is useful when microservices communicate between 3 or more services. While
this is not the case for our current case study, it can and should be considered a dif-
ferent case of the SDV application. Last but not least, the canary pattern is applicable
for this case study. When Researchable wants to test our new features, they can use
this pattern to safely test features and gradually roll them into production, minimiz-
ing a significant failure for all customers.

Moving forward to the integration patterns, Researchable should consider adopting
the asynchronous messaging pattern. This pattern helps with creating scalable services,
which are also maintainable. For example, after the data is retrieved from a particu-
lar data source, we can produce messages onto the messaging queue. The final data
processing service can consume the data written in the queue. The key aspect to
note is how this pattern ensures the final destination is not coupled to the sources. A
specific integration pattern that Researchable should consider if they decide to have
a service per source is the API gateway pattern. This pattern ideally stands in front
of the services encapsulating their behaviors. It can also handle authentication, se-
curity, and routing, all of which are useful if there are services for each source. We
have already seen the benefits and drawbacks of introducing an API gateway in the
previous section. Thus, after careful analysis, Researchable should consider adopt-
ing this pattern should they change their data ingestion service structure.

Finally, yet importantly, it is time to consider the database patterns. For either case
(single service versus multiple services), the Database per Service is useful and a
good idea. While it does reduce more monitoring in multiple databases, there are
many benefits such as scalability, efficiency, and loosely coupling, as previously seen.
Maintainability is a crucial aspect of Researchable’s decisions on patterns. One pos-
sibility if the data ingestion service is split into multiple services is the shared database
pattern since the maintainability is low since there is only one database to monitor.
However, to reiterate, this does couple the microservices through the database. For
example, suppose one needs to change any table, relation, as similarly because one

Chapter 5. Case Study: Researchable 49

service needs it. In that case, modification and redeployment are required for the
other microservices to adapt to the changes. Thus, depending on what needs to be
stored in the databases. For example, suppose the only data that needs to be per-
sisted and shared between the services is the token. In that case, Researchable could
consider using a distributed cache like Redis since it is faster than a traditional rela-
tional database.

Conclusion

The honest answer here is that it depends. Researchable could maintain their single
service with heavily modularized sources, each implementing the same interface as
an easier option. However, if they have the resources and the three benefits listed
previously sound appealing and the new patterns to implement, they should work
on a service per source solution in SDV. A good reason for adoption will be if Re-
searchable needs to scale resources of different aspects independently. My opinion of
this case is that Researchable should move over to have multiple services where each
service is only responsible for one source. The most significant advantage is that
we are making sure not to couple the different sources. The APIs of the different
providers can change, or some of them disappear, or more sources appear, and the
rest of the sources will not be affected. No source code changes and no new releases
would be needed to fix the issue.

Nevertheless, I would suggest designing a subset of the system, as seen in figure 5.1.
The aspect to note here is that the rest of SDV communicates to the API gateway,
handling more functions. After the data is pulled from the suitable sources, it is
being produced to a messaging queue, and from there, a data processing service
consumes the data in the queue. In this (opinionated) recommended approach, each
service maintains there own databases to ensure the microservices are loosely cou-
pled.

Chapter 5. Case Study: Researchable 50

FIGURE 5.1: An architectural overview of SDV with the recom-
mended patterns from this paper (NOTE: the fitness sources are just

an example, and there could likely be more services integrated)

51

Chapter 6

Conclusion

This paper started by analyzed different architectures, namely, monolithic, SOA, mi-
croservice, and serverless architectures. We stated the advantages and disadvan-
tages for each of the architectures and understood how the components interact with
each other. Before diving into the architectural patterns, this paper listed supporting
technologies such as load balancers, messaging queues, containers, orchestration,
and scaling cube. These technologies laid out the foundation before getting into the
technical specifications of the architectural patterns in chapter 3.

The section containing the architectural patterns has by far the most content present.
For the first three sub-patterns, they each had a mark for each metric to categorize
them.

Stability Coupling Easability
of split

Reduction in
the number of
microservices

Improved
Availability

Data consistency

Decompose
by Business
Capability
Decompose by
Subdomain
Decompose by
Transactions
Decompose
by service per
team pattern

TABLE 6.1: Collection of decomposition patterns with the relevant
metrics categorized

Some of the main observations from table 6.1 regarding the decomposition patterns
are as follows:

• All the easability of split results were red, indicating there is no easy or clear-cut
method of moving over to a microservice architecture.

• Stability is indicated as green for decomposition by business capability and
subdomain.

• The current scope of literature lacks information on the availability for all but
decomposition by transactions.

• Decomposition by transactions is the most robust pattern when focusing on
reducing the number of microservices, increasing availability, and data consistency.

• The least amount of coupling occurs in decomposition by subdomain and ser-
vice per team pattern.

Chapter 6. Conclusion 52

• There is a lack of information on the decompose by service team pattern. Thus,
the metric results are likely to fluctuate until more research arises on the pat-
tern.

In this paper, we also categorized the integration pattern (how services interact with
each other) in table 6.2. The conclusions were as follows:

• All the patterns are good at encapsulating the internals of the services.

• All the patterns are good at scalability in all three axes, with a slight exception
of the aggregator pattern scaling in the y axis.

• While the API gateway and the chained microservice lack data regarding re-
ducing complexity to orchestrate data, the rest of the patterns face a challenge in
this metric.

• The two main patterns which promote good maintainability are the API gate-
way and asynchronous messaging patterns.

• Debugging code in all but the aggregator pattern is a challenging process.

• The API gateway is the only pattern that certainly has low latency.

Encapsulation Scalability Reduced complexity to
orchestrate data

Low latency Debugging code Maintainability

Aggregator Pattern x y z
API Gateway Pattern x y z
Chained Microservice
Pattern

x y z

Branch Pattern x y z
Asynchronous Messag-
ing Pattern

x y z

TABLE 6.2: Collection of integration patterns with the relevant met-
rics categorized

Finally, the last table 6.3 listed below was concerning the database patterns. Sim-
ilarly, they were categorized on specific metrics described previously in chapter 3.
The conclusion derived from table 6.3 are as follows:

• All the patterns are efficient apart from the shared database per service, which
depends on the implementation.

• The shared database per service pattern has the least complexity issues and mon-
itoring requirements than the rest of the patterns.

• The three most scalable patterns are CQRS, event sourcing, and the database
per service pattern.

• The three most maintainable patterns are CQRS, choreography-based saga, and
the shared database per service.

• The four most loosely coupled patterns were event sourcing, database per ser-
vice, and the choreography and orchestration-based saga patterns.

The paper then dove into observability patterns which help us ensure applications
are operating reliably. It was comprised of distributed tracing, health check API, log
aggregation, and metrics. Each of these patterns attempted to maximize the ability
to monitor our microservices.

Chapter 6. Conclusion 53

Efficient implementation Reduced
complexity

Maintainability Reduced
monitoring

Scalability Loosely
coupled

CQRS
Event sourcing
Database per Service
Shared Database per
Service
Saga (Orchestration)
Saga (Choreography)

TABLE 6.3: Collection of database patterns with the relevant metrics
categorized

Last but not least, we finished the chapter with some miscellaneous patterns cov-
ering a reliability pattern, which was the circuit breaker pattern. In our deploy-
ment pattern (canary pattern), we understood how to reliably deploy applications
to users to minimize the chance of a large failure. This subsection also explained
how microservices should automatically store their location on a service registry to
maximize maintainability through the service discovery patterns. Finally, the circuit
breaker helps us design microservices in which faults may occur in communication
chains and how to deal with similar situations safely.

The following chapter described and attempted to solve a case study for Research-
able. In the case study, we analyzed the different perspectives. We then recom-
mended the approach and patterns they should utilize to maximize their goal of
maintainability, which was also the research question of this paper. The three main
patterns consisted of:

1. API gateway pattern

2. Asynchronous messaging pattern

3. Database per service pattern

It was also mentioned that Researchable should consider adopting at least one ob-
servability pattern. To reiterate, the three patterns which focused on improving
maintainability was:

1. Health check API

2. Log aggregation

3. Metrics

Finally, when considered the miscellaneous patterns, Researchable should consider
their current deployment method and compare it to the canary deployment for the
reasons mentioned earlier. The circuit breaker pattern could also be helpful if Re-
searchable has a chain communication in another part of their application; however,
there was no such scenario for the scope of the case study.

In conclusion, after deriving the results from the literature to create the tables and
results, it was a simple task to apply it to Researchable’s case, having known their
goals by adopting. Similarly, for a new business, if the goals of implementing a
pattern are scalability, it becomes a more manageable task having the results in this
paper. Using the metrics and results, the company has to decide its priorities, thus,
creating ease in deciding the patterns for consideration.

54

Chapter 7

Future Work

A question to be answered at this stage is:

What are the following steps to be taken after this research?

Thankfully this is a straightforward answer. One key separator between this paper
and the current literature is that this paper ranked patterns based on their character-
istics for what they are and are not good at. While this is helpful when companies
have the same metrics in mind, there lies a gap when a metric is not listed in one
of the tables. Thus, motivation is created for metrics not listed in the tables for this
paper. As the more metrics become listed out per pattern, the easier a comparison
can be made for an argument of adoption.

Additionally, with an ever-increasing rate of deployment patterns, namely six so far
from Chris Richardson [48], one’s research could categorize metrics for those pat-
terns, similar to this paper. For future analysis, implementing each pattern based on
a fixed set of case studies would create a stronger argument for ranking the metrics
how they currently stand instead of basing the outcomes on current literature, case
studies, and implementations.

55

List of Figures

2.1 A microservice architecture in the simplest form 4
2.2 A microservice application consisting of a set of loosely coupled ser-

vices [47] . 5
2.3 A monolith architecture in the simplest form 7
2.4 A SOA architecture in the simplest form 9
2.5 A serverless architecture in the simplest form 11

3.1 A simple load balancer distributing work to different servers 13
3.2 An application utilizing a messaging queue 15
3.3 docker . 16
3.4 The cube depicts three distinct methods of scaling an application: X-

axis scaling aims to distribute the load over multiple identical in-
stances; Y-axis scaling aims to decompose an application into smaller
components, namely, services; Z-axis scaling aims to distribute re-
quests based on information contained in the request. 17

3.5 This figure shows an example of how load is split up on the three
axes. [2] . 18

4.1 The architecture of splitting an application based on decomposition
by business capability . 21

4.2 The architecture of splitting an application based on decomposition
by subdomain . 22

4.3 The architectural structure of the decomposition by transactions 23
4.4 The architecture of splitting an application based on decomposition

by service per team pattern . 24
4.5 The architectural structure of the aggregator pattern 26
4.6 The architectural structure of the API gateway pattern 27
4.7 This figure shows how an API gateway often does API composition,

enabling a client such as a mobile device to efficiently retrieve data
using a single API request. [47] . 28

4.8 The architectural structure of the chained microservice pattern 29
4.9 The architectural structure of the branch pattern 30
4.10 The architectural structure of the asynchronous messaging pattern . . 32
4.11 The architectural structure of the CQRS pattern 34
4.12 An example of how event sourcing stores events in a system 35
4.13 This figure shows how how the database per service pattern would

function in an application [48] . 36
4.14 The figure depicts how a single database with multiple tables can be

utilized my multiple services when using the shared database pattern 37
4.15 The order of communication which occurs in the saga orchestration is

shown in this this figure . 38
4.16 When using the saga choreography pattern the services communicate

through a messaging queue to communicate to each other 39

List of Figures 56

4.17 An overview of the server-side service discovery pattern architecture . 43
4.18 An overview of the client-side service discovery pattern architecture . 44
4.19 A simple example of how using the Canary deployment would dis-

tribute load . 45

5.1 An architectural overview of SDV with the recommended patterns
from this paper (NOTE: the fitness sources are just an example, and
there could likely be more services integrated) 50

57

List of Tables

2.1 A comparison of attributes between microservices and SOA. [14] . . . 10

4.1 Ranking metrics based on decomposition by business capability at-
tributes . 21

4.2 Ranking metrics based on decomposition by subdomain attributes . . 22
4.3 Ranking metrics based on decomposition by transactions attributes . . 24
4.4 Ranking metrics based on decomposition by service per team attributes 25
4.5 Ranking metrics based on the aggregator pattern 27
4.6 Ranking metrics based on the API gateway pattern 28
4.7 Ranking metrics based on the chained microservice pattern 30
4.8 Ranking metrics based on the branch pattern 31
4.9 Ranking metrics based on the asynchronous messaging pattern 31
4.10 Ranking metrics based on the CQRS pattern 33
4.11 Ranking metrics based on the event sourcing pattern 35
4.12 Ranking metrics based on the database per service pattern 36
4.13 Ranking metrics based on the shared database pattern 37
4.14 Ranking metrics based on the saga orchestration pattern 39
4.15 Ranking metrics based on the saga choreography pattern 40

6.1 Collection of decomposition patterns with the relevant metrics cate-
gorized . 51

6.2 Collection of integration patterns with the relevant metrics categorized 52
6.3 Collection of database patterns with the relevant metrics categorized . 53

58

Bibliography

[1] M. L. Abbott and M. T. Fisher. Scalability Rules: 50 Principles for Scaling Web
Sites. 1st. Addison-Wesley Professional, 2011, pp. 25–33. ISBN: 0321753887.

[2] M. L. Abbott and M. T. Fisher. The Art of Scalability: Scalable Web Architecture,
Processes, and Organizations for the Modern Enterprise. 2nd. Addison-Wesley Pro-
fessional, 2015, p. 351. ISBN: 0134032802.

[3] P. Aditya et al. “Will Serverless Computing Revolutionize NFV?” In: Proceed-
ings of the IEEE 107.4 (2019), pp. 667–678. DOI: 10.1109/JPROC.2019.2898101.

[4] M. Ahmadvand and A. Ibrahim. “Requirements Reconciliation for Scalable
and Secure Microservice (De)composition”. In: Sept. 2016, pp. 68–73. DOI: 10
.1109/REW.2016.026.

[5] A. Akbulut and H. G. Perros. “Performance Analysis of Microservice Design
Patterns”. In: IEEE Internet Computing 23.6 (2019), pp. 19–27. DOI: 10 . 1109
/MIC.2019.2951094.

[6] N. Alshuqayran, N. Ali, and R. Evans. “A Systematic Mapping Study in Mi-
croservice Architecture”. In: 2016 IEEE 9th International Conference on Service-
Oriented Computing and Applications (SOCA). 2016, pp. 44–51. DOI: 10.1109
/SOCA.2016.15.

[7] N. Alshuqayran, N. Ali, and R. Evans. “A Systematic Mapping Study in Mi-
croservice Architecture”. English. In: 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications. 2016 IEEE 9th International Con-
ference on Service-Oriented Computing and Applications ; Conference date:
04-11-2016. IEEE, Nov. 2016, pp. 44–51. DOI: 10.1109/SOCA.2016.15.

[8] N. Ashikhmin, G. Radchenko, and A. Tchernykh. “RAML-Based Mock Service
Generator for Microservice Applications Testing”. In: Nov. 2017. ISBN: 978-3-
319-71254-3. DOI: 10.1007/978-3-319-71255-0_37.

[9] T. Asik and Y. E. Selcuk. “Policy enforcement upon software based on mi-
croservice architecture”. In: 2017 IEEE 15th International Conference on Software
Engineering Research, Management and Applications (SERA). 2017, pp. 283–287.
DOI: 10.1109/SERA.2017.7965739.

[10] A. Balalaie et al. “Microservices migration patterns.” English. In: Software :
Practice and Experience 48.11 (Nov. 2018), pp. 2019–2042. ISSN: 0038-0644. DOI:
10.1002/SPE.2608.

[11] I. Baldini et al. “Serverless computing: Current trends and open problems”. In:
Research advances in cloud computing. Springer, 2017, pp. 1–20.

[12] D. Betts et al. Exploring CQRS and Event Sourcing: A journey into high scalability,
availability, and maintainability with Windows Azure. 2013.

[13] K. Brown and B. Woolf. “Implementation Patterns for Microservices Architec-
tures”. In: Monticello, Illinois: The Hillside Group, 2016, pp. 1–35.

https://doi.org/10.1109/JPROC.2019.2898101
https://doi.org/10.1109/REW.2016.026
https://doi.org/10.1109/REW.2016.026
https://doi.org/10.1109/MIC.2019.2951094
https://doi.org/10.1109/MIC.2019.2951094
https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.1007/978-3-319-71255-0_37
https://doi.org/10.1109/SERA.2017.7965739
https://doi.org/10.1002/SPE.2608

Bibliography 59

[14] T. Černý, M. Donahoo, and J. Pechanec. “Disambiguation and Comparison of
SOA, Microservices and Self-Contained Systems”. In: Sept. 2017, pp. 228–235.
DOI: 10.1145/3129676.3129682.

[15] A. Chun et al. Accelerating Modernization with Agile Integration. IBM Redbooks,
2020, p. 18. ISBN: 9780738458366. URL: https://books.google.nl/books?id
=DurNDwAAQBAJ.

[16] S. Coleman et al. “Architecture of a Scalable, Secure and Resilient Translation
Platform for Multilingual News Media”. English. In: Proceedings of the 1st In-
ternational Workshop on Language Technology Platforms. Marseille, France: Eu-
ropean Language Resources Association, May 2020, pp. 16–21. ISBN: 979-10-
95546-64-1. URL: https://aclanthology.org/2020.iwltp-1.3.

[17] S. Diakov, T. Zubrei, and A. Samoidiuk. “Application of event sourcing and
CQRS patterns in distributed systems”. In: (2019). DOI: https://doi.org/10
.20535/1560-8956.1.2019.178224.

[18] N. Dragoni et al. “Microservices: yesterday, today, and tomorrow”. In: CoRR
abs/1606.04036 (2016). arXiv: 1606.04036. URL: http://arxiv.org/abs/1606
.04036.

[19] A. Eivy and J. Weinman. “Be Wary of the Economics of "Serverless" Cloud
Computing”. In: IEEE Cloud Computing 4.2 (2017), pp. 6–12. DOI: 10.1109/MCC
.2017.32.

[20] E. van Eyk et al. “The SPEC Cloud Group’s Research Vision on FaaS and
Serverless Architectures”. In: Proceedings of the 2nd International Workshop on
Serverless Computing. WoSC ’17. Las Vegas, Nevada: Association for Comput-
ing Machinery, 2017, pp. 1–4. ISBN: 9781450354349. DOI: 10.1145/3154847.31
54848.

[21] M. Fowler and J. Lewis. Microservices a definition of this new architectural term.
2014. URL: https://martinfowler.com/articles/microservices.html (vis-
ited on 02/14/2021).

[22] “Google Cloud Infrastructure Components Incident 20013”. In: (2020). URL:
https : / / status . cloud . google . com / incident / zall / 20013 (visited on
02/28/2021).

[23] M. Hamzehloui, S. Sahibuddin, and A. Ashabi. “A Study on the Most Promi-
nent Areas of Research in Microservices”. In: International Journal of Machine
Learning and Computing 9 (Apr. 2019), pp. 242–247. DOI: 10.18178/ijmlc.2019
.9.2.793.

[24] S. Haselböck and R. Weinreich. “Decision Guidance Models for Microservice
Monitoring”. In: IEEE. Apr. 2017, pp. 54–61. DOI: 10.1109/ICSAW.2017.31.

[25] G. Hohpe. “Developing software in a service-oriented world”. In: Datenbanksys-
teme in Business, Technologie und Web, 11. Fachtagung des GIFachbereichs “Daten-
banken und Informationssysteme” (DBIS). Ed. by G. Vossen et al. Bonn: Gesellschaft
für Informatik e.V., 2005, pp. 476–484.

[26] B. Jambunathan and K. Yoganathan. “Microservice design for container based
multi-cloud deployment”. In: Journal of Advanced Research in Dynamical and
Control Systems 2017 (June 2017).

[27] M. Kalske, N. Mäkitalo, and T. Mikkonen. “Challenges When Moving from
Monolith to Microservice Architecture”. In: Feb. 2018, pp. 32–47. ISBN: 978-3-
319-74432-2. DOI: 10.1007/978-3-319-74433-9_3.

https://doi.org/10.1145/3129676.3129682
https://books.google.nl/books?id=DurNDwAAQBAJ
https://books.google.nl/books?id=DurNDwAAQBAJ
https://aclanthology.org/2020.iwltp-1.3
https://doi.org/https://doi.org/10.20535/1560-8956.1.2019.178224
https://doi.org/https://doi.org/10.20535/1560-8956.1.2019.178224
https://arxiv.org/abs/1606.04036
http://arxiv.org/abs/1606.04036
http://arxiv.org/abs/1606.04036
https://doi.org/10.1109/MCC.2017.32
https://doi.org/10.1109/MCC.2017.32
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1145/3154847.3154848
https://martinfowler.com/articles/microservices.html
https://status.cloud.google.com/incident/zall/20013
https://doi.org/10.18178/ijmlc.2019.9.2.793
https://doi.org/10.18178/ijmlc.2019.9.2.793
https://doi.org/10.1109/ICSAW.2017.31
https://doi.org/10.1007/978-3-319-74433-9_3

Bibliography 60

[28] E. Kisller. THE BASICS: The Role of Containers in Your Microservice Architecture.
Apr. 2021. URL: https://jfrog.com/knowledge- base/the- basics- the-
role- of- containers- in- your- microservice- architecture/ (visited on
04/26/2021).

[29] G. Lewis et al. “Common Misconceptions about Service-Oriented Architec-
ture”. In: 2007 Sixth International IEEE Conference on Commercial-off-the-Shelf
(COTS)-Based Software Systems (ICCBSS’07) (2007), pp. 123–130.

[30] Z. Mahmood. “The promise and limitations of service oriented architecture”.
In: International journal of Computers 1.3 (2007), pp. 74–78.

[31] A. Messina et al. “A Simplified Database Pattern for the Microservice Archi-
tecture”. In: June 2016. DOI: 10.13140/RG.2.1.3529.3681.

[32] V. Michell. “A focussed approach to business capability”. In: First International
Symposium on Business Modelling and Software Design–BMSD. 2011, pp. 105–
113.

[33] F. Montesi and J. Weber. Circuit Breakers, Discovery, and API Gateways in Mi-
croservices. 2016. arXiv: 1609.05830 [cs.SE].

[34] K. Munonye and P. Martinek. “Evaluation of Data Storage Patterns in Mi-
croservices Archicture”. In: 2020 IEEE 15th International Conference of System
of Systems Engineering (SoSE). IEEE. 2020, pp. 373–380.

[35] D. Namiot and M. sneps-sneppe. “On Micro-services Architecture”. In: Intere-
national Journal of Open Information Technologies 2 (Sept. 2014), pp. 24–27.

[36] S. Newman. Building Microservices: Designing Fine-Grained Systems. 1st. O’Reilly
Media, Feb. 2015, p. 280. ISBN: 978-1491950357.

[37] E. Ntentos et al. “Supporting architectural decision making on data manage-
ment in microservice architectures”. In: European Conference on Software Archi-
tecture. Springer. 2019, pp. 20–36.

[38] T. de Oliveira Rosa et al. “A Method for Architectural Trade-off Analysis Based
on Patterns: Evaluating Microservices Structural Attributes”. In: Proceedings of
the European Conference on Pattern Languages of Programs 2020. EuroPLoP ’20.
Virtual Event, Germany: Association for Computing Machinery, 2020. ISBN:
9781450377690. DOI: 10.1145/3424771.3424809. URL: https://doi-org.prox
y-ub.rug.nl/10.1145/3424771.3424809.

[39] V. F. Pacheco. Microservice Patterns and Best Practices. Packt Publishing, 2018.
ISBN: 1788474031.

[40] C. Pahl and P. Jamshidi. “Microservices: A Systematic Mapping Study”. In:
Jan. 2016, pp. 137–146. DOI: 10.5220/0005785501370146.

[41] C. Pahl et al. “Cloud Container Technologies: A State-of-the-Art Review”. In:
IEEE Transactions on Cloud Computing PP (May 2017), pp. 1–1. DOI: 10.1109
/TCC.2017.2702586.

[42] A. Parker et al. Distributed Tracing in Practice: Instrumenting, Analyzing, and De-
bugging Microservices. O’Reilly Media, Incorporated, 2020. ISBN: 9781492056638.
URL: https://books.google.nl/books?id=fgfIyAEACAAJ.

[43] F. Ponce, G. Márquez, and H. Astudillo. “Migrating from monolithic architec-
ture to microservices: A Rapid Review”. In: 2019, pp. 1–7. DOI: 10.1109/SCCC4
9216.2019.8966423.

https://jfrog.com/knowledge-base/the-basics-the-role-of-containers-in-your-microservice-architecture/
https://jfrog.com/knowledge-base/the-basics-the-role-of-containers-in-your-microservice-architecture/
https://doi.org/10.13140/RG.2.1.3529.3681
https://arxiv.org/abs/1609.05830
https://doi.org/10.1145/3424771.3424809
https://doi-org.proxy-ub.rug.nl/10.1145/3424771.3424809
https://doi-org.proxy-ub.rug.nl/10.1145/3424771.3424809
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
https://books.google.nl/books?id=fgfIyAEACAAJ
https://doi.org/10.1109/SCCC49216.2019.8966423
https://doi.org/10.1109/SCCC49216.2019.8966423

Bibliography 61

[44] V. Power. Microservices vs. Service Oriented Architecture (SOA). July 2020. URL:
https://www.sumologic.com/blog/microservices-vs-service-oriented-
architecture-soa/ (visited on 03/01/2021).

[45] P. Rajkovic, D. Jankovic, and A. Milenkovic. “Using CQRS Pattern for Improv-
ing Performances in Medical Information Systems”. In: BCI. 2013.

[46] M. Richards. Microservices Vs. Service-oriented Architecture. O’Reilly Media, 2015.
ISBN: 9781491975657. URL: https://assets.openshift.com/hubfs/pdfs/Mic
roservices_vs_SOA_OpenShift.pdf?hsLang=en-us.

[47] C. Richardson. Microservices Patterns: With examples in Java. Manning Publica-
tions, 2018, pp. 16–17, 51–55, 121, 261, 399. ISBN: 9781617294549. URL: https:
//books.google.nl/books?id=UeK1swEACAAJ.

[48] C. Richardson. A pattern language for microservices. 2019. URL: https://micros
ervices.io/patterns/ (visited on 02/13/2021).

[49] Saga distributed transactions - Azure Design Patterns. URL: https://docs.micros
oft.com/en-us/azure/architecture/reference-architectures/saga/saga
(visited on 07/17/2021).

[50] A. Sampaio Junior et al. “Supporting Microservice Evolution”. In: Sept. 2017.
DOI: 10.1109/ICSME.2017.63.

[51] A. Selmadji. “From monolithic architectural style to microservice one : structure-
based and task-based approaches”. PhD thesis. Oct. 2019.

[52] B. Seo et al. “Implementation of query model of CQRS pattern using weather
data”. In: Journal of the Korea Institute of Information and Communication Engi-
neering 23.6 (2019), pp. 645–651.

[53] A. Singleton. “The Economics of Microservices”. In: IEEE Cloud Computing 3.05
(Sept. 2016), pp. 16–20. ISSN: 2372-2568. DOI: 10.1109/MCC.2016.109.

[54] C. Sridharan. Distributed Systems Observability: A Guide to Building Robust Sys-
tems. O’Reilly Media, 2018. ISBN: 9781492033424. URL: https://books.google
.nl/books?id=07EswAEACAAJ.

[55] T. D. Stojanovic et al. “Identifying microservices using structured system anal-
ysis”. In: 2020 24th International Conference on Information Technology (IT). 2020,
pp. 1–4. DOI: 10.1109/IT48810.2020.9070652.

[56] D. Taibi, V. Lenarduzzi, and C. Pahl. “Architectural Patterns for Microservices:
A Systematic Mapping Study”. In: Mar. 2018. DOI: 10.5220/000679830221023
2.

[57] J. A. Valdivia et al. “Patterns Related to Microservice Architecture: a Multi-
vocal Literature Review”. In: Programming and Computer Software 46.8 (2020),
pp. 594–608.

[58] M. Villamizar et al. “Evaluating the monolithic and the microservice archi-
tecture pattern to deploy web applications in the cloud”. In: Oct. 2015. DOI:
10.1109/ColumbianCC.2015.7333476.

[59] M. Wasson. Design patterns for microservices. July 2017. URL: https://azure.m
icrosoft.com/en-in/blog/design-patterns-for-microservices/ (visited
on 05/19/2021).

[60] J. Zhao, S. Jing, and L. Jiang. “Management of API Gateway Based on Micro-
service Architecture”. In: Journal of Physics: Conference Series 1087 (Sept. 2018).
DOI: 10.1088/1742-6596/1087/3/032032.

https://www.sumologic.com/blog/microservices-vs-service-oriented-architecture-soa/
https://www.sumologic.com/blog/microservices-vs-service-oriented-architecture-soa/
https://assets.openshift.com/hubfs/pdfs/Microservices_vs_SOA_OpenShift.pdf?hsLang=en-us
https://assets.openshift.com/hubfs/pdfs/Microservices_vs_SOA_OpenShift.pdf?hsLang=en-us
https://books.google.nl/books?id=UeK1swEACAAJ
https://books.google.nl/books?id=UeK1swEACAAJ
https://microservices.io/patterns/
https://microservices.io/patterns/
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://doi.org/10.1109/ICSME.2017.63
https://doi.org/10.1109/MCC.2016.109
https://books.google.nl/books?id=07EswAEACAAJ
https://books.google.nl/books?id=07EswAEACAAJ
https://doi.org/10.1109/IT48810.2020.9070652
https://doi.org/10.5220/0006798302210232
https://doi.org/10.5220/0006798302210232
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://azure.microsoft.com/en-in/blog/design-patterns-for-microservices/
https://azure.microsoft.com/en-in/blog/design-patterns-for-microservices/
https://doi.org/10.1088/1742-6596/1087/3/032032

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Example Study
	Research Question(s) and Contributions
	Thesis Organization

	Background
	Microservices Architecture
	Monolithic Architecture
	Service-Oriented Architecture
	Serverless Architecture

	Supporting technologies
	Load Balancers
	Messaging Queues
	Containerization
	Orchestration
	Scaling Cube

	Architectural Patterns
	Overview
	Decomposition Patterns
	Decompose by Business Capability
	Decompose by Subdomain
	Decompose by Transactions
	Decompose by service per team pattern

	Integration Patterns
	Aggregator Pattern
	API Gateway Pattern
	Chained Microservice Pattern
	Branch Pattern
	Asynchronous Messaging Pattern

	Database Patterns
	Command Query Responsibility Segregation
	Event Sourcing
	Database per Service
	Shared Database per Service
	Saga Pattern
	Orchestration based
	Choreography based

	Observability Patterns
	Distributed Tracing
	Health Check API
	Log Aggregation
	Metrics

	Miscellaneous Patterns
	Service Discovery Pattern
	Server-side Service Discovery Pattern
	Client-side Service Discovery Pattern

	Circuit Breaker Pattern
	Canary Pattern

	Case Study: Researchable
	Conclusion
	Future Work
	Bibliography

