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Abstract

This paper studies the occurrence of chaos in planar scattering systems and the means by
which this type of behaviour ensues. Of particular interest are some new analytical results which
will here be used to determine the existence of an abrupt bifurcation to chaos. This type of
bifurcation occurs when a nonattracting chaotic set is created from nothing, upon lowering the
energy parameter below a certain threshold.
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1 Introduction

Classical scattering describes the physical phenomena in which particles are forced to deviate from
a given trajectory by the non-uniformity of the space they are moving in. Particularly, scattering is
a study of asymptotic behaviour of such particles, by means of comparing how the motion of a free
particle deviates upon interacting with a localised potential, meaning that either the potential decays
fast towards infinity, or is zero outside of some compact region. Under the assumption that the energy
is conserved, these phenomena can be modelled via the Newton equation

ẍ = −∇V (x) (1.1)

which, rewritten as a first order system reads:

v̇ = −∇V (x)

ẋ = v
(1.2)

where V (x) is some arbitrary potential and x,v ∈ Rd for some d ∈ N. It should be noted that x
denotes position and v denotes momentum. The potential typically will have a number of hills, the
collection of which forms what we call the scattering region.

Systems like (1.1) are called Hamiltonian systems. That is, there exists a function:

H : R2d → R, H(x,v) =
1

2
v2 + V (x) (1.3)

called the Hamiltonian, which encodes the equations of motion:

dv

dt
= −∂H(x,v)

∂x
dx

dt
=
∂H(x,v)

∂v
.

A number of famous results have been found which apply to the generic class of Hamiltonian systems,
the most notable of which is that [5]:

d

dt
H(x(t),v(t)) = vv̇ + ẋ∇V (x) = ẋv̇ − ẋv̇ = 0

meaning that H is conserved. It is often the case that the energy of a system is the Hamiltonian,
hence why the assumption that energy is conserved is key in modelling scattering phenomena via (1.1).
Another important related theorem is the Liouville theorem, which states that Hamiltonian systems
preserve phase-space volumes [5]. The phase-space of a given dynamical system is the collection of all
possible states the system may exhibit.

In this article we shall see how chaos ensues in a number of scattering problems upon the variation
of a parameter. The reader may be familiar with the definition of chaos given by Devaney [5], which
states that:

Definition 1.1. A map F : X → X, where (X, d) is some metric space, is chaotic if:

1. the periodic points of F are dense in X, i.e. for any periodic point x0 and for all Bε(x0) there
exists a point x1 ∈ Bε(x0) such that x1 is also a periodic point;

2. F is topologically transitive, i.e. for any two open subsets U, V ⊂ X there exists an n > 0 such
that Fn(U) ∩ V 6= ∅;

3. F has sensitive dependence on initial conditions, i.e. there exists some β > 0 such that for all
x0 and Bε(x0) there exists a y0 ∈ Bε(x0) and n > 0 such that d(Fn(x0), Fn(y0)) > β.

While this definition captures the essence of chaos in systems which are measure preserving and
have a compact phase space, for scattering problems this does not apply: while it is true that phase-
space volumes are preserved (by the Liouville theorem) the phase space is not compact (indeed it is
typically Rd). We thus ignore topological transitivity and denseness of the periodic points and focus
solely on sensitive dependence on initial conditions. The resulting definition can be found in Ott [19]:

Definition 1.2. A dynamical system ẋ = F (x) is chaotic if, given an initial error ∆x0, the long-term
error between corresponding solutions obeys:

|∆x(t)| ≈ eΛt|∆x0|

where Λ is a diagonal matrix with nonzero entries λ1, λ2, . . . , λd. We call λi a Lyapunov exponent.

In section 2 we shall explore the four-hill scattering problem. The potential used in this problem
has π

2 rotational symmetry. We shall see that by varying a particular parameter, an abrupt bifurcation
[1] to chaos will occur. This will consist in the creation of a particular chaotic set within the phase
space, resulting from the intersection of the stable and unstable manifolds of orbits which never leave
the scattering region. A topological manifold is defined [20] as:
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Definition 1.3. A topological space M is a topological manifold of dimension n, or topological n-
manifold, if it has the following properties:

1. M is a Hausdorff space;

2. M is second countable (i.e. there exists a countable collection U of open subsets of M such that
any open set in M can be written as a union of elements from U);

3. M is locally euclidian of dimension n, that is, for any p ∈M there exists an open subset U ⊂M
with p ∈ U , and open subset V ⊂ Rn and a homeomorphism φ : U → V .

Later we will also talk about smooth manifolds. These are topological manifolds with an extra structure
that allows us to talk about derivatives. In particular at each x ∈ M we can attach a vector space
TxM ∼= Rn consisting of velocity vectors at the point x or, equivalently, of directional derivatives at
x.

The stable set of a given fixed point p of a map f : D → D′, is [5]:

Es(p) = {x ∈ D | lim
n→∞

fn(x) = p}

and the unstable set of such fixed point is [5]:

Eu(p) = {x ∈ D | lim
n→−∞

fn(x) = p}.

For a continuous dynamical system ẋ = f(x, t), the above sets translate to:

Es(p) = {x ∈ D | lim
t→∞

φt(x) = p}

Eu(p) = {x ∈ D | lim
t→−∞

φt(x) = p}

where φt(x) is the flow of such system (φt(x0) =
∫ t

0
ẋ(x0, t)dt). The stable (resp. unstable) sets of

a given orbit can be defined as the union of the stable (resp. unstable) sets of all the points which
the given orbit visits. It turns out that often these sets are manifolds, in such case they will be called
stable (resp. unstable) manifolds [10]. In the case they are not, it may be possible that many useful
local properties of Euclidian spaces do not apply.

As we shall see, the chaotic set is a strange saddle. This is a type of hyperbolic, nonattracting
invariant chaotic set, for which almost all points are saddle points. The following definition [3] should
aid in understanding what is meant by hyperbolic set :

Definition 1.4. Let M be a real, smooth manifold equipped with a positive definite inner product on
the tangent spaces at each point inM . Let U ⊂M be a non-empty open subset and h : U → f(U) ⊂M
be a C1 diffeomorphism. A compact, h-invariant subset Λ ⊂ U is called hyperbolic if there exist
λ ∈ (0, 1), C > 0 and families of subspaces Es(x), Eu(x) ⊂ TxM , x ∈ Λ such that, for all x ∈ Λ:

• TxM = Es(x)
⊕
Eu(x) (where

⊕
denotes the direct sum),

• d
dxh(vs, t) ≤ Cλt||vs|| for all vs ∈ Es(x) and t ≥ 0,

• d
dxh(vu,−t) ≤ Cλt||vu|| for all vu ∈ Eu(x) and t ≥ 0,

• d
dxh(Es(x)) = Es(f(x)) and d

dxh(Eu(x)) = Eu(h(x)).

The subspaces Es(x) and Eu(x) are, respectively, the stable and unstable spaces at x. By h−invariant
it is instead meant that

h(Λ) ⊆ Λ.

Another useful hyperbolic set is that created by iterating the horseshoe map. This is a particularly
useful map in describing how chaos occurs in dynamical systems. The map fundamentally takes a
square, stretches it vertically and folds it over itself once at each iteration. See figure (2.3) for an
illustration. It is also worth noting that an there exists an invariant set of the horseshoe map, which
is typically homeomorphic to a Cantor set (which we shall discuss shortly).

It should be added that typically strange saddles are homeomorphic to (multi-dimensional) Cantor
sets. A Cantor set C, built on the interval [0, 1], would be:

C = [0, 1] \
∞⋃
n=0

3n−1⋃
k=0

(
3k + 1

3n+1
,

3k + 2

3n+1
)

which essentially consists in iteratively removing the middle third of every segment starting from the
one segment [0, 1] up to the infinite number of segments given above (an illustration can be found
for this in figure 1.1). Other variations are also possible (for instance the removal of the second and
fourth fifth) and that Cantor sets may exists in multiple dimensions. For instance, the set

C2 := C × C (1.4)
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where C is defined as before and × denotes the Cartesian product, is a Cantor set in two dimensions
(see figure 1.2).

Figure 1.1: A one-dimensional Cantor set ob-
tained by iterating (1.4) up to n = 10.

Figure 1.2: A two-dimensional Cantor set ob-
tained by taking the Cartesian product of two
one-dimensional Cantor sets.

Figure 1.3: First two iterations of the horseshoe
map [22].

Once we have obtained the stable and unsta-
ble manifolds of the orbits which never leave the
scattering region, we shall investigate a property
of these, known as the capacity dimension. We
shall define this in due time, for now it should
suffice to know that this is a measure of the
roughness of a set, in particular in the context
of subsets of a phase space, this gives us an idea
of how sparse such a set is. For instance, in the
case of the Cantor set in figure 1.1, the capacity
dimension tells us how far the set is from being a
line (which would have capacity dimension one)
and how far it is from being a point (capacity
dimension zero). Closely related to the concept
of capacity dimension is the concept of information dimension. Before we define this, we should talk
about the natural measure of a set. This is defined as:

Definition 1.5. If we cover a subset of a phase space by a disjoint union of (hyper) cubes Ci of side
ε and define T (x0, t, ε) to be the amount of time spent by a trajectory with initial condition x0 in Ci
then:

µ(x0, Ci) = lim
t→∞

T (x0, t, εi)

t
(1.5)

is called the natural measure of such a subset [8].

With this at hand, we may define the information dimension.

Definition 1.6. The information dimension of a given subset of a phase space [8] is defined as

dI = lim
ε→0

I(ε)

log(1/ε)
(1.6)

where I(ε) =
∑N(ε)
i=1 Pi log

(
1
Pi

)
with Pi = µ(x0, Ci) and N(ε) is the number of cubes of side ε required

to cover the subset in question.

We will calculate this property for the non-attracting chaotic set. The property itself is, intuitively,
a quantity describing how much the Shannon entropy grows upon refining the discretization of the
set it is calculated for. The Shannon entropy is defined as [21]:

Definition 1.7. Given a random variable X (i.e. a variable whose value depends on the outcome of
a random phenomenon) with probability measure pX(x), the Shannon information is

IX(x) = log

(
1

pX(x)

)
while the Shannon entropy of X is

s(X) = E[IX(X)].

Intuitively, the Shannon information tells us how surprising the outcome X is. The Shannon
entropy would then be a value telling us how frequent surprising outcomes of X are.

Finally, at the end of the next section, we shall review a numerical proof of the existence of the
aforementioned abrupt bifurcation given by Bleher et al. [1] and use some theorems developed by
Knauf [13, 14] to instead provide an analytical proof.
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In section 3 we shall study a number of other scattering problems. Of particular interest will be
problems which do not have rotational symmetries. We shall begin by briefly covering a scattering
problem with one hill, with the aim of deriving some useful results which will be applicable to non-
symmetric potentials. We shall then see a scattering problem associated with a potential with two
hills, in this case the theorems found at the end of section 2 will allow us to see that no chaos exists
for such problems. We will then briefly show the existence of an abrupt bifurcation in scattering
problems with three hills of the same height. Finally, we shall cover scattering systems associated
with potentials which have hills of different heights, in this case we shall see that routes to chaos other
than the abrupt bifurcations are possible. In this last scenario we shall see that Knauf’s theorems
prove useful to determine the existence of chaos under a particular set of sufficient conditions, but the
onset of chaos will not require all these conditions.

2 The four hill scattering problem

Figure 2.1: Plot of the four-hill potential.

Figure 2.2: Level curves of the four potential
hills with the trajectory of a particle (blue)
which enters from the left and leaves to the
right.

In this section we shall study the four equal potential hills scattering problem, firstly using numerical
tools and then analytically. The system we shall study is a Hamiltonian system of the form (1.1) with:

V (x, y) = x2y2e−(x2+y2). (2.1)

We integrated the system numerically using the Leapfrog algorithm, a second order method which
has the added benefit of guaranteeing the conservation of energy. See A.1 for the program used.

Intuitively, the problem consists of sending a particle of unit mass on a collision course with
four hills of equal height whose maximum is located at (−1,−1), (−1, 1), (1,−1), and (1, 1) under
the assumption that the energy is conserved (i.e. the collisions will be perfectly elastic), figure 2.16
demonstrates this behavior. This analogy is not entirely correct, since the potential defines a nontrivial
force along all the trajectory, but this force is also comparatively negligible far away from the hills
and for sufficiently high energies, thus the analogy is representative.

From (1.3) we see that |v| = (2(E − V (x)))
1
2 and, defining the variable θ to be the angle between

a given trajectory’s velocity v and the x−axis, we can reduce the system’s phase space to be (x, y, θ)
and treat E as a parameter.

It has been shown [1] that, letting Em = maxV (x) = e−2, for E
Em

< 1, the system exhibits chaotic
behavior. In the following subsections we shall investigate this.

2.1 Dynamics

We now consider trajectories which begin along a straight line perpendicular to the x−axis at the
point x0 = −4 and move towards the potential hills parallel to the x−axis (thus having θ0 = π). A
script (A.2) aids us in this process.

Our first observations concern the effects of varying b := y0 and E. As can be seen in figures 2.3
and 2.4, as the E decreases past Em, the system begins to exhibit sensitive dependence upon initial
conditions, a hallmark of chaotic behavior.

Defining φ to be the angle between the velocity and the x−axis, once a particular orbit leaves the
area enclosed by a circle of radius 3 around the origin, we examine the relationship between changes
in the impact parameter b and changes in the scattering angle φ. We find that the relationship seems
to be singular on a certain set of b−values (see fig. 2.5). This is particularly evident for values of
E/Em ≤ 0.26.

By considering the relationship between the time it takes for a trajectory to leave the scattering
region and the impact parameter (see A.3), we see that the set of singular values of φ(b) seems to
coincide with the set of values for which the delay time as a function of b is singular (see fig. 2.6).
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This would seem to indicate that the values of b for which φ(b) is singular are those for which orbits
remain in the scattering region for a longer period of time.

We are now interested in discussing a measure of the unpredictability of the set of singular values
of φ(b), this is known as the capacity of such set.

Definition 2.1. Let S be a set of points within a D-dimensional Euclidian space, consisting of real
numbers. Consider D-dimensional hypercubes of side ε covering the set S and define N(ε) to be the
minimum number of cubes needed to cover the set S. Then the capacity dimension is defined as [17]

dC = lim
ε→0

log(N(ε))

log(1/ε)

Bleher et al. described an efficient way of calculating the capacity dimension for Hamiltonian
systems where the orbits eventually leave the system [2]. This method is based on the following
theorem [16]:

Theorem 1. The uncertain fraction f of a finite region of a D−dimensional phase space associated
with initial condition error ε obeys

lim
ε→0

log(f(ε))

log(ε)
= α (2.2)

if and only if the basin boundary has capacity dimension dC = D − α.

This method relates the final state of an orbit and its perturbed counterpart to the perturbation
value, giving us a sense of the uncertainty of orbits within the set. The method, known as the final
state method, is adapted to the present problem as follows: letting S be the set of values of b where
φ(b) is singular, for a given ε

1. choose randomly a large number N of initial conditions within the set S;

2. randomly pick a value bi + ε or bi − ε for all initial conditions bi;

3. integrate both IVPs;

4. letting I1 = (0, π] and I2 = (π, 2π], if φ(bi) and φ(bi±ε) belong to the same interval for a fraction
k
N of the total number of pairs of chosen initial conditions and perturbed initial conditions, then

we define f(ε) = k
N ;

5. the capacity dimension is then

dC = 1− lim
ε→0

log(f(ε))

log(ε)

the script A.4, using this algorithm, gives a capacity dimension of dC ≈ 0.67 for E/Em = 0.26.

Figure 2.3: Three trajectories starting from
very similar initial conditions for E/Em = 1.

Figure 2.4: Same trajectories as in figure 2.3,
but now with E/Em = 0.26. It can be seen
that after five collisions the trajectories have
completely different behaviour.
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Figure 2.5: Scattering angle φ as a function of
the impact parameter b for E/Em = 0.26.

Figure 2.6: Time delay as a function of b for
E/Em = 0.26

Figure 2.7: f(ε) versus ε for random conditions
taken in the set of b−values for which φ(b) is sin-
gular for E/Em = 0.26.

Adding one degree of freedom to our pa-
rameter space, we can gain further insight into
the fractal structure underlying the dynamics
of this scattering problem: we define θ to be
the angle between the x−axis and the initial
velocity of a particle, we then let y(0) = 0
and treat x(0) as a parameter. We can then
transform θ back into a function of vx(0) and
vy(0), which will allow us to use the Leapfrog
method developed in A.1 without changes. In
our change of variables, it is important to notice
that we must use vx(0) =

√
2E/(1 + tan2(θ))2

and vy(0) = tan(θ)vx(0) for θ ∈ [−π/2, π/2]

and vx(0) = −
√

2E/(1 + tan2(π − θ)), vy(0) =
−vx(0) tan(π − θ) for |θ| ∈ [π/2, π] to take the
tangent across all quadrants.

Picking initial conditions (θ, x0) ∈ [−π, π] ×
[−3, 3], we integrate the final state of trajectories
starting from these. The function A.4 will be
helpful henceforth. From figures 2.8 to 2.11, it can be seen that as E/Em decreases past 1 and
towards zero, a set of values of (θ, x0) emerges and grows which seems to resemble the stretching and
folding characteristic of the horseshoe map.

The fractal dimension of the region of singular values in figures 2.8 to 2.10 can again be calculated
using the final state method, this time the method is adapted as follows:

1. choose at random a large number N of initial conditions ξ0 = (θ, x0);

2. choose at random a δ such that |δξ0| ≤ ε;

3. obtain, again at random, either ξ0 + δξ0 or ξ0 − δξ0;

4. integrate both IVPs;

5. define f as before;

6. the capacity dimension is then

dC = 2− lim
ε→0

log(f(ε))

log(ε)

the dimension of this set of singular values has been found to be [1] dC ≈ 1.66, within numerical error
this is one more than the capacity of the fractal set of singular values of φ(b). Repeated calculations
of this dimension seem to show that the capacity of this set scales well as dC ∼ ln(1/(Em − E)) for
E/Em > 1.

Remark 2.1. It is important to note that the points of contact between the blue (red, respectively)
oval and the adjacent blue (red, respectively) regions in figure 2.8 coincide with orbits which begin
at one of the four hilltops (x0, y0) = (±1,±1) [1]. These orbits are periodic for E ≤ Em and never
leave the scattering region. Since any minor perturbation to the initial state of these aforementioned
orbits will leave the scattering region, they are also unstable. Since our potential (2.1) is symmetric,
all asymptotically trapped orbits spiral towards one of the unstable periodic orbits joining the four
hilltops, i.e. asymptotically trapped orbits move along the stable manifold of these periodic orbits [7].
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Figure 2.8: Upwards (blue) and downwards
(red) scattering orbits for E/Em ≈ 1.

Figure 2.9: Same plot as figure 2.7, but now
with E/Em = 0.6.

Figure 2.10: Same plot as figure 2.7, but for
E/Em = 0.26.

Figure 2.11: Same plot as figure 2.7, but for
E/Em = 0.03

Figure 2.12: Stable invariant manifold of
trapped orbits intersected with the two-
dimensional cross section y0 = 0 for E/Em =
0.26.

Figure 2.13: Unstable invariant manifold
of trapped orbits intersected with the two-
dimensional cross section y0 = 0 for E/Em =
0.26.

The similar fractal dimension obtained for the set of singular values of φ(b) and the set of uncertain
values we just investigated, together with the fact that the singular values of φ(b) coincide with orbits
which have greater time delay, suggests that perhaps also this latter investigated set is subject to
greater time delays. Indeed, by setting a minimum time delay of t = 35 in A.5, we obtain this set
isolated from its surroundings (see figure 2.12). From our previous remark, it follows that this set is
a stable invariant manifold of trapped orbits intersected with the cross section y0 = 0. To obtain the
unstable manifold of the invariant set of trapped orbits, it is sufficient to repeat the process through
which the stable manifold was obtained, but reversing the direction of time integration. This can
be done by simply choosing a negative time-step in A.5. Since the system resulting from (2.1) is
conservative and symmetric under time reversal, the unstable manifold is a mirror image of the stable
manifold (see figure 2.13).

2.2 The strange saddle
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Figure 2.14: Intersection of the strange saddle with
the cross section y0 = 0.

In this subsection we shall discuss the chaotic set
underlying the dynamics of the scattering prob-
lem resulting from (2.1) which results from the
intersection of the stable and unstable manifolds.
The set in question is a strange saddle, which is
defined as an invariant, non-attracting set such
that almost all its points are saddle points.

Far more accurate and efficient methods than
the one we will be using (A.6) have been de-
veloped to approximate strange saddles, partic-
ularly worthy of mention is that proposed by
Nusse and Yorke [18]. These methods are typ-
ically necessary, due to the fact that the exis-
tence of chaotic behaviour would imply exponen-
tial growth in the numerical error at each itera-
tion, which causes significant imprecision in the
approximation of the stable and unstable invari-
ant manifolds discussed in the previous section. Not using one of these methods would in turn cause
great errors in the calculations of properties of the chaotic set. However, given that we shall refer to
results derived elsewhere as far as properties of the particular set are concerned, a simple intersection
of the sets of points found in figures 2.12 and 2.13 will be sufficient.

We will now review some results concerning the dimensions of this chaotic set. We begin by
defining a generalization of the information dimension.

Definition 2.2. The order q Renyi dimension Dq of a subset of a phase space is defined as

Dq = lim
ε→0

Iq(ε)

log(1/ε)
(2.3)

where Iq(ε) = 1
q−1

∑N(ε)
i=1 P qi and Pi = µ(x0, Ci) as in definition 2.3.

Using a box-counting algorithm (typically used in the estimation of the capacity dimension), it
has been found [1] that the Renyi dimensions of the strange saddle in figure 2.14 are Dq ≈ 1.2 (with
error within (−0.1, 0.1)) for q ∈ (0, 2).

Another means of calculating the information dimension can be derived from the following theorem.

Theorem 2. Let S be a strange saddle for a map f and define B to be a compact set containing S.
Choose N0 uniformly distributed points in B and iterate the map f a number of times. Upon iteration,
all points except those on S and on its stable manifold will leave B. Hence define

1

τ
= lim
t→∞

lim
N0→∞

1

t
log(N0/N1)

to be the mean time required for the chosen points to leave B. Let χi be the ith Lyapunov exponent of
f , then the information dimension of the stable manifold of S is

ds = K − 1

τχ1
(2.4)

where K is the dimensionality of the map f [11, 1].

Using the fact that the stable and unstable manifolds are mirror images of each other and using
the fact that there is one expanding and one contracting direction of the map, and hence the second
Lyapunov exponent is χ2 = −χ1, we can derive from 2.7 that the information dimension of the
unstable manifold du is

du = ds = 3− 1

τχ1

where K = 3 since the phase space for our system is (x, y, θ) and is hence three-dimensional. It has
been found [1] that for E/Em = 0.26 the first Lyapunov exponent for the system resulting from (2.1)
is χ1 ≈ 0.3208 and τ ≈ 9.513± 0.005, this would give ds ≈ 2.67, which is one less than the value we
found for the fractal basin boundary (fig.2.12) and Dq ≈ 2ds − 4 (q ∈ (0, 2)), as expected.

2.3 Numerical proof of abrupt bifurcation

In this section we shall show that the value below which chaos occurs is indeed E = Em and that the
way it develops is abrupt, in that fully developed chaotic scattering appears as soon as E < Em. By
fully developed chaotic scattering, we here mean that a hyperbolic nonattracting invariant set (such
as the one studied in the previous section) exists.

We first show that for E > Em the scattering is not chaotic. Assume there exist periodic orbits
for energies E > Em. We notice that due to the symmetry of the four-hill even potential (2.1), the
minimum deflection from a hill must be π/2 for there to be any periodic behaviour. Thus the first
periodic orbit will have to bounce between the four hills either clockwise or counterclockwise without
returning to a hill twice before having visited all the others. We thus construct a map with the aim
of determining the existence of such an orbit as follows:

11



1. let ξ := −x(t = 0) and θ = arctan(vy(t = 0)/vx(t = 0));

2. define ξ′ = y(t = τ) and θ′ = arctan(vy(t = τ)/− vx(t = τ)), where τ is the time at which an
orbit intersects the positive y−axis;

3. then M(ξ, θ) = (ξ′, θ′).

We note that for a periodic orbit which moves (counter-)clockwise between hills, we should have
that M4(ξ, θ) = M−4(ξ, θ) = (ξ, θ), where we denote Mn(ξ, θ) = M(M(M(. . .M(ξ, θ) . . .))) to be the
nth iterate of M .

Considering M on the domain DM := (0, 1.1) × (0, π), where the upper ξ limitation is due to the
fact that M−1 is not defined for values of ξ above that limit, iterating the whole domain once and
subsequently iterating DM ∩M j(DM ), for E = Em it has been shown [1] that DM ∩M3(DM ) = ∅.
This would show that for E > Em there are no periodic orbits, given that if an orbit is periodic it
must return to DM indefinitely. It is the case that under one iteration of M , DM ∩M(DM ) is not
empty for E > Em, however the order of this intersection shrinks as E increases, rapidly becoming
empty, thus showing that for any E > Em there are no periodic orbits and hence there is no chaos.

By contrast we shall now see that for E < Em chaotic behavior appears abruptly. When E < Em,
the (conserved) energy is now insufficient in some cases for a particle to go over the hilltop of a given
potential hill. Thus, orbits which join the four hilltops at (x, y) = (±1,±1) and are periodic and
unstable, come into existence when E < Em. The placement of these periodic orbits can be derived
directly from V (x, y), since

∂V (±1, y)

∂x
= −2(±1)((±1)2 − 1)y2e−(±1)2−y2 = −2(±1)(1− 1)y2e−1−y2 = 0

and likewise for ∂V (x,±1)
∂y (see figure 2.15). It is a known result [4] that a sufficient condition for

the stable and unstable manifolds of any two non-parallel periodic orbits which join the hilltops
to have a heteroclinic intersection, is the existence of an orbit which enters the scattering region
by crossing one of these periodic orbits and leaves by crossing the other. Indeed, many of these
”crossing orbits” exist already at E = Em, for instance that in figure 2.16 which has initial conditions
(x0, y0, θ0) = (−4,−0.5, 0). By symmetry of the potential, it must then hold that all the periodic
orbits lying along the lines shown in figure 2.15 must have a heteroclinic intersection of their stable
and unstable manifolds. This indicates the existence of a chaotic set for E < Em.

Finally, we show that the bifurcation is abrupt, in the sense described at the beginning of this
section. Labelling the four potential hills counterclockwise starting from the upper-left quadrant as
”0”, ”1”, ”2” and ”3”, we can associate each orbit with a sequence of these numbers that represents
the order in which the hills are visited (the validity of this symbolic dynamics will be proven in the
next section). Clearly only sequences which don’t repeat a number twice are possible. We call these
sequences admissible. It has been found [1] that the number of distinct periodic sequences of period
l increases exponentially as Nl v 3l. These orbits are all points on the strange saddle studied in the
previous section, since they form an invariant set. Thus there is fully developed chaos as soon as
periodic orbits come into existence.

Figure 2.15: Lines along which the first-
appearing periodic orbits lie. Figure 2.16: A crossing orbit with E/Em = 1.

2.4 Analytical proof of abrupt bifurcation

In this subsection we shall use tools developed by Knauf et al. [13, 14] to provide an analytical proof
of the numerical results found by Bleher et al. which we described in the previous subsection. Before
we begin our discussion however, we need to introduce some key concepts. We begin by defining a
number of sets. These sets are defined for an arbitrary Hamiltonian system H : Rd → R of the form
H = 1

2 |v|
2 + V (x).

12



Definition 2.3.

ΣE := {(x,v) ∈ Rd × Rd | H(x,v) = E} = H−1(E)

P := {(x,v) ∈ Rd × Rd | H(x) > 0}, (the positive energy part of the phase space)

b± := {(x0,v0) ∈ P | x(±R+,x0,v0) is bounded}, b±E := b± ∩ ΣE

b := b+ ∩ b− (the bound states), bE := b ∩ ΣE

s± := P \ b±, s±E = s± ∩ ΣE

s := s+ ∩ s− (the scattering states), sE := s ∩ ΣE

t := P \ (b ∪ s) (the trapped states), tE := t ∩ ΣE

T E := {E ∈ R+ | tE 6= ∅} (the set of trapping energies)

NT := R+ \ T E (the set of non-trapping energies).

Next, we define a region of the potential (hyper-)surface which will be central to the remainder of
this proof.

Definition 2.4. For E > 0, we call the set

RE := {x ∈ Rd | V (x) ≤ E} (2.5)

Hill’s Region. Intuitively, this is the region of the surface in figure 2.1 which is below the plane z = E.

Remark 2.2. It is possible that Hill’s region be unbounded, while having a boundary (this follows
directly from the definition of bounded set in real analysis). For instance in our case, for E < Em the
boundary ∂RE = {x ∈ R2 | V (x) = E} is well defined but the set extends to infinity in every other
direction. We call the unbounded component of Hill’s region RuE . In our case it is easy to see that
RE = RuE .

Another important concept is the topological degree of a map. In Hirsch [10], this is defined
pointwise as follows:

Definition 2.5. Let (M,ω), (N, θ) be compact oriented manifolds of the same dimension, without
boundaries. Assume N is connected. Let f : M → N be a C1 map and x ∈ M be a regular point
of f . Put y = f(x). Letting Txf denote the tangent of f at x, we say f has positive type if the
isomorphism1 Txf : TxM → TyN preserves orientation (i.e. if it sends ωx to θy). In this case we
write degx f = 1. In the case f has negative type (i.e. Tx does not preserve orientation), we write
degx f = −1. We call degx f the degree of f at x.

Intuitively, this is the number of times that f wraps M around N . It is also stated that the degree
of a map is the same for all its regular points (hence generalizing the above definition to suit our
purposes).

With these definitions at hand we can finally present the first of the two theorems which will be
crucial in proving the abrupt bifurcation described in the previous subsection. The theorem [14] holds
for potentials V ∈ C2(Rd,R) which obey the estimate:∫ ∞

R

sup
||x||≥r

||∂mF (x)||r|m| dr <∞ (|m| ≤ 1)

for some R ∈ R, m here is a (multi-)index m ∈ Nd0 and F := −∇V .

Theorem 3. For non-trapping energies E ∈ NT , the following holds true:

1. if ∂RuE = ∅ and d ≥ 2, then deg(E) = 0;

2. if ∂RuE ∼= Sd−1, then deg(E) = 1.

The second theorem [13] we need holds for potentials V ∈ C∞0 (Rd,R), d ≥ 2, for which all x ∈ Rd
such that V (x) 6= 0 are contained in the union of n disjoint balls

Bl := {x ∈ Rd | ||x− sl|| ≤ rl}, (l = 1, . . . , n)

and which are non-shadowing (i.e. every straight line in Rd meets at most two of these balls).
Moreover, defining

v± : s± → Rd, v±(x0) := lim
t→±∞

v(t,x0)

v̂± : s± → Sd−1, v̂±(x) :=
v±(x)

||v±(x)||

and ŝk,l := (sk − sl)/||sk − sl||, we restrict the initial and final directions (v̂) to the set

S̃d−1 := {v̂ ∈ Sd−1 | ](v̂, ŝk,l) > arcsin (
rk + rl
||sk − sl||

), 1 ≤ k 6= l ≤ n}

1Note that TxM and TyN are as in definition 1.3.
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Where ] denotes the angle between v̂ and ŝk,l. Finally, we generalize the symbolic dynamics described
in the previous section to potentials with an arbitrary number of hills. To this purpose, we use the
symbol sequences

k = (ki)i∈I ∈ SI over the alphabel S := {0, . . . , n− 1},

where
I ≡ Irl := {i ∈ Z | l ≤ i ≤ r}.

Again, we call a sequence admissible if ki 6= ki+1. We also define Xr
l to be the admissible sequences

in SI .
With the above information at hand, we can finally present the second of Knauf’s theorem’s which

we shall be using [13].

Theorem 4. Let n ≥ 2. E be non-trapping for the individual potentials Vl (E ∈ ∩nl=1NT ) and
degl(E) 6= 0, 1 ≤ l ≤ n.

Then for every interval Irl , k ∈ Xr
l and p̂± ∈ S̃d−1 there is a trajectory in ΣE meeting exactly

the balls Bki , i ∈ Irl in succession.

• If l 6= −∞ then this trajectory in s−E has initial direction p̂−. Otherwise it belongs to b−E.

• If r 6=∞, then this trajectory in s+
E has final direction p̂+. Otherwise it belongs to b+E.

In particular E is a trapping energy for V (E ∈ T E).

Figure 2.17: A cutoff function. The yellow disk at
(a) is the projection of K onto the plane z = 1.
The disk at (b) is U and the plane (c) is M .

Before delving into the proof, we need to clar-
ify one more concept: cutoff functions. These
are a means to study only a certain portion of a
given geometrical structure while preserving the
smoothness of it. The formal definition follows
from a theorem found in [20].

Theorem 5. Let M be a smooth manifold and
K ⊂ U ⊂ M two subsets such that K is closed
and U is open, then there exists a smooth func-
tion χ : M → R, called a cutoff function, with
the following properties:

1. 0 ≤ χ ≤ 1 for all p ∈M ;

2. for all p ∈M such that χ(p) 6= 0, p ∈ U ;

3. χ(p) = 1 for all p ∈ K.

It should be noted that the cutoff function in
figure 2.17 has circular K and U , but this need
not necessarily be the case as we shall see shortly.
For the sake of this proof, we will be using an
extension of a particular cutoff function, which
we shall now define. We now pick the norms

||x||1 = max{|x1 −R|, |x2 −R|} (2.6)

||x||2 = max{|x1 −R|, |x2 +R|} (2.7)

||x||3 = max{|x1 +R|, |x2 +R|} (2.8)

||x||4 = max{|x1 +R|, |x2 −R|} (2.9)

we then define

h : R→ R, h(t) :=

{
e−1/t t > 0

0 t ≤ 0

from which

χi(x) :=
h(R− ||x||i)

h(R− ||x||i) + h(||x||i − (R− δ))
is a cutoff function for any fixed, R > 0 and 0 < δ < R. In particular, χi(t) defines a cutoff function
with K and U having square boundary (in the L∞ sense and not in the taxicab - or L1 - sense), with
height 2R − 2δ and 2R respectively, centered at (±R,±R). This would imply that U touches the
x-axis (resp. y-axis) at (x, y) = (k, 0) (resp. (x, y) = (0, k)) for any k ∈ R.

Lemma 2.1. Let x ∈M and χi be a cutoff function as defined above, then in the limit

lim
R→±∞

χi(x)

the boundary of U remains along the axes of the quadrant within which U is centered.
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Proof. We consider without loss of generality χ1 and the associated ||.||1 norm. Clearly the boundary
of U is made up of all the points which are a distance R from (R,R). The closest points to the x-axis
(resp. y-axis) are the points (0, k) and (k, 0) for any k ∈ R. At these points we have that:

||(0, k)|| = ||(k, 0)|| = R

since any point in U is at a distance less than R from (R,R) and thus

χ1(0, R) = χ1(R, 0) =
h(R−R)

h(R−R) + h(R− (R− δ))
=

h(0)

h(0) + h(δ)
= 0

showing that
lim

R→±∞
χ(||(0, R)||1) = lim

R→±∞
χ(||(R, 0)||1) = lim

R→±∞
0 = 0

and hence that (0, k), (k, 0) /∈ ∂U . Since the shape of U will not be altered by taking this limit, this
completes the proof.

We hence define for all norms (2.6-9)

||x||qi := lim
R→∞

||x||i

and the functions
χ̃i(x) = lim

R→∞
χi(x).

Remark 2.3. It should be noted that χ̃i(x) is no longer a proper cutoff function (at least in the sense
described in theorem 5), since the boundary in the (±∞,±∞) direction is no longer defined. However
smoothness around the x and y-axes in the cutoff is preserved, which suffices for our purposes.

We now consider the potential (2.1) expressed as the sum of the individual potentials

V (x) = (

4∑
i=1

χ̃i(x) + ψ(x))V (x)

where

ψ(x) = 1−
4∑
i=1

χ̃i(x)

and, given that we may take δ arbitrarily small, ψ(x) is near trivial and defines an arbitrarily small
correction in the slope of the potential around the x and y axes. It has been stated that for such small
corrections to the overall potential, the correction itself can be ignored in the application of theorem
4 [14].

We consider without loss of generality (due to simmetry) the potential χ̃i(x)V (x). We note that
the boundary of Hill’s region will remain the same as for the individual hill in the potential (2.2) upon
choosing δ small enough. With this in mind, we have the following lemma:

Lemma 2.2. The boundary of Hill’s region, when nonempty, for any potential Vi = χ̃i(x)V (x) is
homeomorphic to S1.

Proof. We again consider without loss of generality the potential χ̃1(x)V (x). The map

π : {x ∈ R | V (x) = E} → S1, π(x) =
x− 1√

(x1 − 1)2 + (x2 − 1)2
(2.10)

is continuous and invertible. Moreover, it shifts the center of the potential hill to the origin and projects
the points of the corresponding Hill’s region onto the unit circle, thus defining a homeomorphism
between the two sets.

We may hence apply theorem 3. We note that since the potential only has one hill, no energy is
trapping. Furthermore, we note that the boundary of Hill’s region only comes into existence as E
is lowered past Em. Thus, for E > Em we have that degi(E) = 0, while for E < Em we have that
degi(E) = 1. The same will hold for all other potentials in the sum that gives V (x). Thus:

1. for E > Em, the deflection angle will be near zero (since degi(E) = 0) and hence no periodic
orbits may exist;

2. for E < Em, E ∈ T E , thus showing that trapped orbits (and hence the chaotic set) appear as
soon as E < Em;

3. for any sequence of the symbols ”0”, ”1”, ”2”, ”3”, such that no symbol repeats twice (e.g. 001)
there exists an orbit visiting the hills in the order specified by such sequence, thus showing that
the chaos is fully developed as soon as it appears.
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Figure 2.18: The first-quadrant potential
V1(x) = χ̃1(t)V (x) Figure 2.19: Contour plot of figure 2.18

3 Other scattering systems

In this section we explore a number of other scattering systems with the aim to gain further insight
as to whether or not chaos occurs in them and the means by which it occurs. As we shall see, the
abrupt bifurcation to chaos seen in the problem associated with (2.1) is not the only route to chaos
for planar scattering systems and chaos in not present in every scattering system either.

3.1 One-Hill potential

In this subsection, we consider the problem associated with the quadratic potential

V (x, y) = −1

2
(x2 + y2) + Em

in order to derive a particular result. The associated IVP has solution:

x(t) = Aet +Be−t,

y(t) = Cet +De−t

where

A =
1

2
(x0 + px0),

B =
1

2
(x0 − px0),

C = −1

2
(1− py0),

D = −1

2
(1 + py0).

The scattering angle for initial conditions along the line y0 = −1 with px0 = 0 is:

φ = arctan

(
x0

py0 − 1

)
= arctan

(
x0√

2(E − Em) + x2
0 + 1− 1

)

which has maximum

φM =

√
1 +

1

2
(E − Em)−1

at x0 =
√

2(E − Em)(2(E − Em) + 1). Clearly if E > Em, φM < π
2 and φM → π

2 as E → Em from
above. For E < Em, the maximum deflection angle instead suddenly jumps to

φM = π.

This is a useful result as we shall see later.

3.2 Two-Hill potential

In this subsection we shall consider the two-hill potential:

V (x, y) = y2e−(x2+y2) (3.1)

which this time has maximum Em = e−1. The potential and its level sets are shown in figures 3.1-2.
One can again define two cutoff functions (the same way we did in section 2.4) for the potential

at hand. These would again be:

χi(x) :=
h(R− ||x||i)

h(R− ||x||i) + h(||x||i − (R− δ))
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where h too is defined as in section 2.4. However we would now use the norms:

||x||1 = max{|x1|, |x2 −R|}
||x||2 = max{|x1|, |x2 +R|}

and using an analogous argument to that used to prove lemma 2.1, we may define:

||x||hpi := lim
R→∞

||x||i

and the functions
χ̃i(x) = lim

R→∞
χi(x).

and using the homeomorphisms

π : {x ∈ R | V (x) = E} → S1, π(x) =
x± e1√

(x1)2 + (x2 ± 1)2
(3.2)

where e1 = (0, 1), we may again show that the boundary of Hill’s region for both potentials

V1(x) = V (x)χ̃1(x)

V2(x) = V (x)χ̃2(x)

is homeomorphic to the unit circle for E < Em and empty for E > Em, thus showing that:

1. E is a trapping energy;

2. for any admissible sequence of the symbols ”0”, ”1”, there exists an orbit visiting the corre-
sponding hills in the order specified by the sequence.

It should be noted though that the latter conclusion implies that in this case, there is only one
periodic orbit. This would in turn imply that the set of trapped orbits includes only this orbit, which
is hyperbolic [12]. Thus there is no chaotic set underlying the dynamics of this system.

Figure 3.1: The two-hill potential Figure 3.2: Contour plot of figure 3.1

3.3 Potentials with Three Equal Hills

We now consider the example potential

V (x, y) = (x2 + y2)2 sin2(
3

2
arctan

(y
x

)
− π

4
)e−x

2−y2

which, in polar coordinates, translates to:

V (r, θ) = r4 sin2(
3

2
θ − π

4
)e−r

2

. (3.3)

This potential has maximum Em = 4e−2. There does exist a strange saddle for this problem, which
has been found to be hyperbolic [1] (see figure 3.5).

Figure 3.4: The three equal-height hills po-
tential Figure 3.5: Contour plot of figure 3.3
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Figure 3.3: A rough approximation of the strange
saddle for the problem associated with the poten-
tial (3.3) using E/Em = 0.185.

Again, applying theorems 3 and 4 from the
last section, we may conclude that the bifurca-
tion will be abrupt in this case too. We take

χi(x) :=
h(R− ||x||i)

h(R− ||x||i) + h(||x||i − (R− δ))

with norms

||x||1 = |x1|+ |x2 +R|
||x||2 = |x1 −R|+ |x2|+ max{|x1 −R|, |x2 −R|}
||x||3 = |x1 +R|+ |x2|+ max{|x1 +R|, |x2 −R|}

we again define

||x||hpi := lim
R→∞

||x||i

and the functions

χ̃i(x) = lim
R→∞

χi(x).

We now consider without loss of generality the hill in the upper half-plane. For this peak, the map

π : {x ∈ R | V (x) = E} → S1, π(x) =
x− (0,

√
2)√

(x1)2 + (x2 −
√

2)2

(3.4)

defines a homeomorphism between the boundary of Hill’s region for the upper half-plane potential
and the unit circle. Because of the 2π

3 rotational symmetry of the potential (3.3), the same can be
found for all other hills. This would show that the bifurcation is abrupt in this case too.

Figure 3.6: Three colinear hills.

It can be inferred, by applying the Knauf cri-
teria, that all potentials with more than two hills
always present the abrupt bifurcation, on condi-
tion that it is impossible to draw a straight line
segment through all the hilltops (i.e. the hill-
tops must not be colinear) and that the height
of all hills is the same. Thus in the next subsec-
tion, we explore the case of potentials with hills
of unequal height.

Remark 3.1. In case the potential is colinear we
have a situation which is analogous to that de-
scribed in section 3.2: in this case the only peri-
odic orbits will be between two hills, thus if we
let N be the number of hilltops, the strange sad-
dle will be composed of a finite number of points,
precluding the possibility of chaos.

3.4 Potentials with Hills of Unequal Height

Figure 3.7: disposition of the three hills in the
plane.

In this subsection we consider the general class
of scattering systems with three hills of unequal
height. A schematic of the disposition of these
hills can be seen in figure 3.7. In this figure,
we have labelled the hills ”0”, ”1” and ”2”. The
angle φm represents the minimum deflection nec-
essary for an orbit which begins by moving from
hill 1 to hill 0 to be deflected back to hill 2. We
assume that all the individual hills’ contours are
homeomorphic to the unit circle, which guaran-
tees that we may apply theorems 3 and 4. Label-
ing the maximum height of each hill: Em0 (max-
imum height of hill 0), Em1 (maximum height
of hill 1) and Em2 (maximum height of hill 2),
we may assume without loss of generality that
Em0 < Em1 ≤ Em2. We now divide the problem
into the following cases:

• Case 1: φm > π
2 ;

• Case 2: φm < π
2 .
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This is a meaningful distinction: as we have seen in section 3.1, the maximum possible deflection
angle reaches the separation value π

2 when RE(Vl) is a point. For case 1, this would imply that chaos
is impossible for E > Em0 and (by applying theorems 3 and 4) that chaos is fully developed as soon
as E < Em0, thus defining an abrupt bifurcation.

Case 2 is a little more complicated than case 1. As we have seen in section 3.1, the maximum
deflection angle of a single hill φM is a smooth, monotonically increasing function of the energy E for
E > Em0. It would thus be possible to have orbits which go from hill 1 to hill 2 (or viceversa) while
being deflected by hill 0. To this purpose, we define two subcases:

• Case 2.a: Em0 is sufficiently small that φm > φM0(Em1);

• Case 2.b: φm < φM0(Em1).

In case 2.a, there will be an energy Ecm ∈ (Em0, Em1) such that φM0(Ecm) = φm. In this case, there
will be two types of orbits joining hills 1 and 2: one will be the orbit passing through hill 0, the
other will be the orbit connecting hills 1 and 2 directly. In this case using the symbols ”0”, ”1” and
”2” to denote each hill in the potential, we can describe the two types of orbits by a sequence of the
symbols ”ai” and ”bi” where A = {12, 21} = {a1, a2} and B = {102, 201} = {b1, b2}. All sequences
of the symbols ai and bi are possible, with exception to those which have two distinct elements of the
same set following each other (e.g. a1a2 . . .) and fully developed chaos is present [1]. A key difference
with every other case we have treated insofar where fully developed chaos exists, is the way in which
it is developed: Hill’s region will not develop a third boundary before fully developed chaos ensues.
Thus for this case there is no abrupt bifurcation. Instead we expect to see a sequence of saddle-center
bifurcations (the sudden appearance of periodic orbits out of nothing), resonance bifurcations (which
happen when the eigenvalues of the linearized system are complex numbers such that zp = 1 for some
p ∈ N near a center) and period-doubling bifurcations depending on the number of hills present in the
potential and their relative height.

In case 2b the periodic orbits discussed in the last paragraph appear as soon as E < Em2. Thus,
in this case, the bifurcation is abrupt and happens at E = Em2.

3.4.1 Example: case 1

We consider the potential

V (x, y) = 0.15e−x
2−(y−2)2 + 0.2e(−(x+

√
3)2−(y+1)2) + 0.2e(−(x−

√
3)2−(y+1)2)

Figure 3.8: The example potential for case 1.

the distance between the peaks of the two hills of
maximum height (the second and third terms in
the summation) can be found to be dM = 2

√
3.

Thus the radius of the circle whose diameter
is the distance between these two potentials is
r =
√

3 < 2 = dm which is the distance from the
circle’s center of the hill with minimum height.
The maximum heights of each peak are (in as-
cending order) Em1 = 0.15, Em2 = 0.2 and
Em3 = 0.2. Figure 3.8 shows the deflection func-
tion for the problem associated with this poten-
tial for E = 1.14 · Em1 ≈ 0.17 < Em2 = Em3.
The function would appear to be smooth, show-
ing no sign of chaotic behaviour. Figure 3.9
is instead the deflection function calculated for
E = 0.86 · Em1, which shows a number of sin-
gularities, implying the presence of chaos. It is
easy to see, using theorems 3 and 4 that the chaos in fully developed in this case.

Figure 3.9: Deflection angle as a function of
the impact parameter for E = 1.14 · Em1.

Figure 3.10: Deflection angle as a function of
the impact parameter for E = 0.86 · Em1.
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3.4.2 Example: case 2

We now consider a four-hill potential again, this time given by:

V (x, y) =
1

10
e−x

2−(y−2)2 +
1

10
e−x

2−(y+2)2 +
1

5
e−(x−3)2−y2 +

1

5
e−(x+3)2−y2 . (3.5)

This potential has four hills, two of which have maximum Em1 = 0.1 + 0.1 · e−8 + 0.4 · e−13 and two of
which have maximum Em2 = 0.2 + 0.2 · e−36 + 0.2 · e−13. Figures 3.11-3.13 show successive blowups of
the scattering angle as a function of the impact parameter for E/Em1 = 1.02. The function appears to
be singular on a fractal set, hence suggesting fully developed chaotic scattering for only two exposed
peaks. Numerical experiments (A.7) show that Ecm ≈ Em1 · 1.052 within third decimal accuracy.

Figure 3.11: The potential (3.5).
Figure 3.12: Deflection angle as a function of
the impact parameter for E = 1.02 · Em1.

Figure 3.13: Zoom-in of figure 3.12. Figure 3.14: Zoom-in of figure 3.13.

4 Conclusion

In this paper we have studied a collection of planar scattering systems, with particular interest directed
towards the qualitative change in behaviour resulting from the variation of a particular parameter,
namely the energy.

In section 2 we have seen how chaotic behaviour can occur in a planar scattering system with π
2

rotational symmetry and for which all hills were of equal height. In these conditions, we have noticed
that chaos occurs via the abrupt bifurcation route to chaos. This consists in the sudden creation of
a hyperbolic chaotic set out of nothing upon lowering the energy parameter below the value of the
maximum height of a given number of hilltops (at least three). We have studied some properties of
this set and its stable and unstable invariant manifolds. We then used new analytic criteria to obtain
a formal proof of the existence of this bifurcation for the system studied.

In section 3 we have briefly investigated a number of other planar scattering systems. Of particular
interest, we have seen that for potentials with two hills, there can be no chaotic behaviour. We also
found alternatives to the abrupt bifurcation route to chaos occurring in planar scattering systems with
three potential hills, where not all hills were of the same height and the lowest one - which must be of
a sufficiently low height - was within a circle containing all three hills and whose diameter was equal
to the distance between the two tallest hills. In this case we have seen that the route to chaos will
not be via an abrupt bifurcation, but rather via some combination of period-doubling bifurcations,
resonance bifurcations and saddle-center bifurcations (i.e. the remaining types of bifurcations present
in generic Hamiltonian systems). Future research in the filed of classical potential scattering could be
aimed at deriving criteria useful for determining the existence of a particular collection of these other
types of bifurcations, the order in which they may occur and the type of set responsible for the chaotic
dynamics exhibited by systems similar to that associated with the potential (3.5). Restricting the
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discussion to the existence of abrupt bifurcations, it would instead be of interest to derive analytical
criteria to determine if the deflection angle of a hill is sufficient for an orbit crossing it to be deflected
to a neighboring higher hill, in systems associated with potentials with hills of unequal height.

A MATLAB scripts and programs

A.1 Numerical Integration of (2.1) by Leapfrog method

1 f unc t i on [ r , phi , t , y , x]= s c a t t e r i n g 2 ( x0 , y0 , dx0 , dy0 , h , p)
2 x (1 )=x0 ;
3 y (1 )=y0 ;
4 dx (1)=dx0 ;
5 dy (1)=dy0 ;
6 gradV1 (1)=y (1) ˆ2∗(−2∗exp(−x (1 )ˆ2−y (1 ) ˆ2) ∗x (1 ) ˆ3+2∗exp(−x (1 )ˆ2−y (1 ) ˆ2) ∗x

(1) ) ;
7 gradV2 (1)=x (1) ˆ2∗(−2∗exp(−x (1 )ˆ2−y (1 ) ˆ2) ∗y (1 ) ˆ3+2∗exp(−x (1 )ˆ2−y (1 ) ˆ2) ∗y

(1) ) ;
8 t (1 ) =0;
9 r (1 ) =0;

10 i =2;
11 whi le r ( i −1)<=5.1
12

13

14 x ( i )=x ( i −1)+dx ( i −1)∗h−gradV1 ( i −1)∗h ˆ 2∗0 . 5 ;
15 y ( i )=y ( i −1)+dy ( i −1)∗h−gradV2 ( i −1)∗h ˆ 2∗0 . 5 ;
16

17 gradV1 ( i )=y ( i ) ˆ2∗(−2∗exp(−x ( i )ˆ2−y ( i ) ˆ2) ∗x ( i ) ˆ3+2∗exp(−x ( i )ˆ2−y ( i ) ˆ2)
∗x ( i ) ) ;

18 gradV2 ( i )=x ( i ) ˆ2∗(−2∗exp(−x ( i )ˆ2−y ( i ) ˆ2) ∗y ( i ) ˆ3+2∗exp(−x ( i )ˆ2−y ( i ) ˆ2)
∗y ( i ) ) ;
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20 dx ( i )=dx ( i −1) −0.5∗h∗( gradV1 ( i )+gradV1 ( i −1) ) ;
21 dy ( i )=dy ( i −1) −0.5∗h∗( gradV2 ( i )+gradV2 ( i −1) ) ;
22

23 r ( i )=s q r t ( x ( i )ˆ2+y ( i ) ˆ2) ;
24 t ( i )=t ( i −1)+h ;
25 phi ( i )=atan2 ( y ( i ) , x ( i ) ) ;
26 i=i +1;
27 end
28

29 x=x ;
30 y=y ;
31 t=t ;
32

33 i f p==1
34 f i g u r e (1 )
35 hold on
36 p lo t (x , y )
37 x l a b e l ( ’ x ’ )
38 y l a b e l ( ’ y ’ )
39

40 X = l i n s p a c e ( −2.2 , 2 . 2 , 100) ;
41 Y = l i n s p a c e ( −2.2 , 2 . 2 , 100) ;
42 [ x , y ] = meshgrid (X, Y) ;
43 fxy = ( x . ˆ 2 ) . ∗ ( y . ˆ 2 ) .∗ exp(−x.ˆ2−y . ˆ 2 ) ;
44 contour (X,Y, fxy ) ;
45 xlim ([ −2.5 2 . 5 ] )
46 ylim ( [ − 2 . 5 , 2 . 5 ] )
47

48 hold o f f
49 end
50 end

A.2 Scattering angle vs impact parameter

1 % Plot phi as a func t i on o f the impact parameter
2 c l e a r a l l
3 d e l t a =10ˆ(−3) ;
4 b0=−3;
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5 bend=3;
6 t o t i t e r=abs ( bend−b0 ) / d e l t a ;
7 Em=1/exp (2 ) ;
8 E=0.26∗Em;
9 %E=1.626∗Em;

10 f o r i =1: t o t i t e r
11 x0=−4;
12 y0=b0+de l t a ∗ i ;
13 vx0=s q r t ( (E−(x0 ˆ2) ∗ ( ( y0 ) ˆ2) ∗exp(−x0ˆ2−(y0 ) ˆ2) ) ∗2) ;
14 vy0=0;
15 [ r , phi ]= s c a t t e r i n g 2 ( x0 , y0 , vx0 , vy0 , 0 . 2 , 0 ) ;
16 phi p ( i )=phi ( end ) ;
17 b( i )=y0 ;
18 end
19

20 f i g u r e (2 )
21 %plo t (b , phi p )
22 s c a t t e r (b , phi p , 1 )
23 x l a b e l ( ’b ’ )
24 y l a b e l ( ’ phi ’ )
25 %txt = { ’E/Em=0.26 ’} ;
26 %text ( −2.25 ,2 , txt )

A.3 Delay time

1 % Plot time−delay as a func t i on o f the impact parameter
2 c l e a r a l l
3 d e l t a =0.001;
4 b0=−3.001;
5 Em=1/exp (2 ) ;
6 E=0.9∗Em;
7 %E=1.626∗Em;
8 %phi=atan2 (y , x ) ;
9

10 f o r i =1:6000
11 x0=−4;
12 y0=b0+de l t a ∗ i ;
13 vx0=s q r t ( (E−(x0 ˆ2) ∗ ( ( y0 ) ˆ2) ∗exp(−x0ˆ2−(y0 ) ˆ2) ) ∗2) ;
14 vy0=0;
15 [ r , phi , t ]= s c a t t e r i n g 2 ( x0 , y0 , vx0 , vy0 , 0 . 2 , 0 ) ;
16 delay ( i )=t ( end ) ;
17 b( i )=y0 ;
18 end
19

20 f i g u r e (3 )
21 %plo t (b , de lay )
22 s c a t t e r (b , delay , 1 )
23 x l a b e l ( ’b ’ )
24 y l a b e l ( ’ time de lay ’ )
25 xlim ( [ −3 ,3 ] )
26 ylim ( [ 0 , 1 2 5 ] )

A.4 Fractal dimension of the singular values of φ(b)

1 % f r a c t a l dimension us ing the unce r ta in ty method
2 c l e a r a l l
3 Em=exp(−2) ;
4 E=0.26∗Em;
5 x0=−3;
6 s a m p l e s i z e =1000;
7 a=−0.535;
8 b=−0.24;
9 m=b−a ;

10 f o r m=1:100
11 f o r j =2:8
12 J=j −1
13 dummy1=0;
14 eps ( j −1,m)=10ˆ(− j ) ;
15 b ( 1 : s a m p l e s i z e )=m∗ rand ( sample s i z e , 1 )+a ;
16 b( s a m p l e s i z e +1:2∗ s a m p l e s i z e )=−m∗ rand ( sample s i z e , 1 )−a ;
17 b( randi ( [ 1 , s a m p l e s i z e ] , s a m p l e s i z e ) ) ;
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18 f o r k=1: l ength (b)
19 b perturbed ( k )=b( k )+(−1)ˆ( randi ( [ 1 , 2 ] , 1 , 1 ) ) ∗ eps ( j −1) ;
20 end
21 f o r i =1: s a m p l e s i z e
22 [ r , phi ]= s c a t t e r i n g 2 ( x0 , b( i ) , s q r t ( (E−(x0 ˆ2) ∗ ( ( b( i ) ) ˆ2) ∗exp(−

x0ˆ2−(b( i ) ) ˆ2) ) ∗2) , 0 , 0 . 2 , 0 ) ;
23 [ r eps , ph i eps ]= s c a t t e r i n g 2 ( x0 , b perturbed ( i ) , s q r t ( (E−(x0 ˆ2)

∗ ( ( b perturbed ( i ) ) ˆ2) ∗exp(−x0ˆ2−( b perturbed ( i ) ) ˆ2) ) ∗2)
, 0 , 0 . 2 , 0 ) ;

24 i f s i gn ( phi ( end ) )==s ign ( ph i eps ( end ) )
25 dummy1=dummy1 ;
26 e l s e
27 dummy1=dummy1+1;
28 end
29 end
30 f e p s ( j −1,m)=dummy1/ s a m p l e s i z e ;
31 end
32 end
33 f e p s=mean( f ep s , 2 ) ;
34 eps=mean( eps , 2 ) ;
35 c o e f f=p o l y f i t ( l og ( eps ) , l og ( f e p s ) ,1 ) ;
36 d c=1−c o e f f ( 1 ) ;
37 l o g l o g ( eps , f e p s )
38 x l a b e l ( ’ \ e p s i l o n ’ )
39 y l a b e l ( ’ f (\ e p s i l o n ) ’ )

A.5 Final states as a function of θ and x0

1 f unc t i on [ mani fo ld ]=SvUM( n points , min t ime delay , h , s c a l i ng , x int ,
t h e t a i n t , p l t )

2

3 x i n t s i z e=x i n t (2 )−x i n t (1 ) ;
4 t h e t a i n t s i z e=t h e t a i n t (2 )−t h e t a i n t (1 ) ;
5

6 de l ta1=x i n t s i z e / n po in t s ;
7 de l ta2=t h e t a i n t s i z e / n po in t s ;
8

9 y0=0;
10

11 Em=1/exp (2 ) ;
12 E=s c a l i n g ∗Em;
13

14 j =1;
15 k=1;
16 f o r i =1: n po in t s
17 x0=x i n t (1 )+i ∗ de l ta1 ;
18 f o r l =1: n po in t s
19 theta0=t h e t a i n t (1 )+l ∗ de l ta2 ;
20

21 i f abs ( theta0 )<=pi && abs ( theta0 )>pi /2
22 vx0=−s q r t (2∗ (E−(x0 ˆ2) ∗( y0 ˆ2) ∗exp(−x0ˆ2−y0 ˆ2) ) /(1+tan ( pi−

theta0 ) ˆ2) ) ;
23 vy0=−tan ( pi−theta0 ) ∗vx0 ;
24 e l s e
25 vx0=s q r t (2∗ (E−(x0 ˆ2) ∗( y0 ˆ2) ∗exp(−x0ˆ2−y0 ˆ2) ) /(1+tan ( theta0 )

ˆ2) ) ;
26 vy0=tan ( theta0 ) ∗vx0 ;
27 end
28

29

30 [ r , phi , t ]= s c a t t e r i n g 2 ( x0 , y0 , vx0 , vy0 , h , 0 ) ;
31 phi p=phi ( end ) ;
32 i f abs ( t ( end ) )>min t ime de lay
33 i f phi p>0 && phi p<=pi
34 x0 up ( j )=x0 ;
35 theta0 up ( j )=theta0 ;
36 j=j +1;
37 e l s e
38 x0 down ( k )=x0 ;
39 theta0 down ( k )=theta0 ;
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40 k=k+1;
41 end
42 end
43

44 end
45 end
46 i f p l t==1
47 f i g u r e (4 )
48 s c a t t e r ( x0 up , theta0 up , 1 , ’ f i l l e d ’ )
49 hold on
50 s c a t t e r ( x0 down , theta0 down , 1 , ’ f i l l e d ’ )
51 x l a b e l ( ’ x0 ’ )
52 y l a b e l ( ’ theta0 ’ )
53 alpha ( 0 . 7 )
54 end
55 x0=[x0 up , x0 down ] ;
56 theta0 =[ theta0 up , theta0 down ] ;
57 manifo ld =[ theta0 ’ , x0 ’ ] ;

A.6 Obtaining the strange saddle

1 % obta in the chao t i c s e t
2

3 % obta in s t a b l e & unstab le i n v a r i a n t mani fo lds
4 [ s t a b l e i n v a r i a n t m a n i f o l d ]=SvUM( 5 1 2 , 3 5 , 0 . 2 , 0 . 2 6 , [ −3 , 3 ] , [ 0 , p i ] , 0 ) ;
5 [ u n s t a b l e i n v a r i a n t m a n i f o l d ]=SvUM(512 ,35 , −0 .2 , 0 . 26 , [ −3 ,3 ] , [ 0 , p i ] , 0 ) ;
6 % i n t e r s e c t the former two
7 c h a o t i c s e t=i n t e r s e c t ( s t a b l e i n v a r i a n t m a n i f o l d ,

u n s ta b l e i n v a r i a n t m a n i f o l d , ’ rows ’ ) ;
8

9 % e x t r a c t the x coo rd ina t e s
10 x 0 c h a o t i c s e t=c h a o t i c s e t ( : , 2 ) ;
11 % e x t r a c t the y coo rd ina t e s
12 t h e t a 0 c h a o t i c s e t=c h a o t i c s e t ( : , 1 ) ;
13

14 % plo t
15 f i g u r e (5 )
16 s c a t t e r ( x 0 c h a o t i c s e t , t h e t a 0 c h a o t i c s e t , 1 , ’ f i l l e d ’ )
17 x l a b e l ( ’ x0 ’ )
18 y l a b e l ( ’ theta0 ’ )

A.7 Minimum energy required to get a sufficient scattering angle for (3.5)

Note: when calling to the function scattering 2.m, this script is in truth calling to a variation of
this function where we have changed the sixth, seventh, seventeenth and eighteenth lines of code to
suit the problem (3.5).

1 % Finding minimum energy such that d e f l e c t i o n ang le meets requi rements
2 c l e a r a l l
3 d e l t a =0.1 ;
4 b0=0;
5 Em=0.1+0.1∗ exp(−8)+0.4∗ exp(−13) ;
6 s c a l i n g (1 ) =2;
7 E=s c a l i n g ∗Em;
8 theta0 =−0.187167041810999∗ pi ;
9 PHI=−10;

10 k=2;
11 whi le PHI<−theta0
12 s c a l i n g ( k )=s c a l i n g (k−1) −0.001;
13 E=Em∗ s c a l i n g ( k ) ;
14 f o r i =1:10
15 x0=−2.95+ d e l t a ∗ i ;
16 y0=0;
17 V=0.1∗ exp(−x0ˆ2−(y0−2)ˆ2) +0.1∗ exp(−8)+0.4∗ exp(−13) ;
18 vx0=s q r t (2∗ (E−V) /(1+tan ( theta0 ) ˆ2) ) ;
19 vy0=tan ( theta0 ) ∗vx0 ;
20 [ r , phi , t , y tes t , x t e s t ]= s c a t t e r i n g 2 ( x0 , y0 , vx0 , vy0 , 0 . 2 , 0 ) ;
21 PHI temp ( i )=phi ( end ) ;
22 end
23 PHI=max( PHI temp ) ;
24 k=k+1
25 end
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