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Abstract: As a result of climate change, the forest fire season is becoming longer and more
ferocious. One technique for controlling and mitigating the damage of forest fires is to use heavy
machinery to clear paths of undergrowth, removing the fuel for the fire to continue spreading.
In this paper we investigate the feasibility of using a convolutional neural network (CNN) to
determine waypoints for multiple agents in a simulated environment, so that these agents can
dig the firebreaks between these points to contain the fire. The CNNs are trained by learning
from demonstration with the varying environmental conditions such as the wind direction and
propagation speed of the fire. Different CNN architecture designs were used to predict the way-
point position per agent and the overall results of each of these variants were compared. The
results show that this approach to controlling forest fires in the simulated environment is not only
possible but very effective for CNN-architectures that represent relative positions as continuous
values. While for discrete output representations there remains some improvement, this paper
provides ample foundations for future research to investigate the limitations of our approaches
and to model more realistic simulations.

1 Introduction

1.1 Wildfires and Motivation

Wildfires are a purely destructive phenomenon
when viewed through human eyes. Every year,
thousands of people suffer from the consequences
of the fires, through forced displacement, inhaling
toxic smoke or worse. One can also imagine the
consequences for animal wildlife, living in affected
areas without the benefits of technology. Neverthe-
less, fires are a normal environmental phenomenon
playing a role in natural selection processes and
leaving fertile soil and less competition for highly
adapted species. Fire-resistant trees such as cer-
tain species of pine have developed strategies such
as non-inflammable barks, fire-induced sprouts,
fire-activated seeds and dropping lower branches
to mitigate the effects of burning and even take
advantage of it NationalForestFoundation (2021).
Humans have been able to curb the dangers
of the inevitable outbreaks of wildfires through

different measures of containment. Next to the
more publicly known fire-fighting efforts on the
ground and from the air, so-called “fire-line” or
“firebreaks” are dug either using machinery or
with handheld tools.
However, the status quo is in the process of being
altered to our disadvantage through a different
kind of human interference. Climate scientists
around the world are increasingly concerned with
the destabilisation of global climate patterns
and the potential side effects which are set to
include extreme weather conditions. This is likely
leading to longer forest fire seasons in regions
affected and will result in larger as well as more
frequent forest fires, including in regions that are
hitherto unaffected. Already in the early 1990s
an estimated 1.4 billion tonnes of carbon dioxide
was released into the atmosphere by forest fires
each year Andreae and Goldammer (1992). These
effects are already measurable EPA (2021), at
least in the United States where there are reliably
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documented sources of data around this topic.
As it appears that the frequency and amount of
destruction of wildfires will increase in the future,
there is a considerable need to manage the risks
and improve isolation techniques. With Artificial
Intelligence (AI) already having played a major
role in optimising all kinds of processes in human
society, it is believed that it might be beneficial
to utilise it in automatising the coordination of
wildfire isolation.

1.2 Previous Work

Previous research has investigated the viability of
automating the coordination of agents construct-
ing the aforementioned firebreaks. Reinforcement
Learning algorithms Sutton, Barto, et al. (1998)
have been proposed as a possible solution Wiering
and Doringo (1998) and more recently, promising
results have been achieved using such techniques
Hammond, Schaap, Sabatelli, and Wiering (2020).
In Reinforcement Learning, for each action taken a
reward is generated the more desirable the action
the greater the reward, this encourages advanta-
geous behaviour. In our example, digging firebreaks
in appropriate positions may be rewarded, as op-
posed to losing more land, or even an agent, to the
fire.
Another approach is the use of Convolutional Neu-
ral Networks (CNN), first introduced by Yann Le-
Cun to classify handwritten digits Y. LeCun and
Jackel (1989). Since then, they have been confirmed
to be useful for a wide variety of applications asso-
ciated with image recognition, for example in the
game of Go Silver et. al. (2016). Previous work
on the topic of wildfires already employed CNNs
to predict actions on a timestep-per-timestep basis
Rocholl (2020). Multiple vision grids were used to
represent the state of the environment, including
the fire, firebreaks, current and previous positions
of active and inactive agents. Vision grids are the
pixel values of the environment through which a
CNN perceives relevant features, vision grid chan-
nels are separated and filtered to only display spe-
cific features, such as firebreaks. CNNs are able to
take multi-channel images as input and extract spa-
tial information, lending themselves well to such a
task. Using the state of the environment encoded in
a multi-channel image, again the immediate move-
ments of individual agents could be determined and

the multi-agent system (MAS) could successfully
contain fires in simplified environments of a maxi-
mum grid side length of 61 cells.
It is important to use MAS in research striving to
contain wildfires because in the real world the rates
of spread of the fire and the limitations of digging
speed do not allow for single-agent solutions. Sim-
ulations and algorithms thus need to take into ac-
count a group of agents that work together to con-
tain fires effectively.
Both Hammond et al. (2020) and Rocholl (2020)
combined their techniques with Learning from
Demonstration (LfD) where their agents could
learn offline from pre-generated data, before engag-
ing with the simulation. LfD is useful in these cases
in order to reach a human-level performance. In
other situations, like Silver et. al. (2016), it can be
used to kick-start learning and then reach super-
human performance by incorporating other tech-
niques, such as reinforcement learning to optimise
for desirable behaviour through a reward function.

1.3 This Research

This research is predominately inspired by Ro-
choll (2020), but instead of predicting the opti-
mal action to take for every timestep, different
CNN architectures have been implemented to pre-
scribe appropriate waypoints for each agent over a
longer time frame. This may come closer to reality,
where AI may coordinate the different agents, but
the agents themselves are not fully autonomous or
even simply made up by a team of humans with
shovels. It would not be feasible then to update
their behaviour on a second-to-second basis, but
rather achieve coordination through the assignment
of sub-goals. Hence, the research question we aim
to answer is: ”Can a waypoint generating convo-
lutional neural network coordinating a multi-agent
system be effective at containing wildfires in a sim-
ulated environment?”.
In order to find answers to that, a new versatile
wildfire simulation was built to collect LfD-data
and test CNN predictions. Four different CNN vari-
ants are compared, providing new waypoints rela-
tive to the active agent in different output encod-
ings.
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2 Methods

2.1 Environment

In order to simulate a forest fire we created a 256
by 256 grid of interconnected cells, each with the
properties needed to represent somewhat realistic
forest fires. The properties are as follows (for exact
parameter values see Table 4.2):

• Fuel: This is the amount of fuel that could be
burnt in a fire, once ignited the fire consumes
the fuel until it is exhausted, meaning it cannot
catch fire again.

• Temperature: Each cell starts with a tem-
perature of zero, apart for the centre cell that
is initially set on fire. Burning cells transfer
heat to adjacent cells at each time step.

• Ignition threshold: When a cell heats up
enough, it reaches the ignition threshold and
combusts.

Figure 2.1: A section of the 256 by 256 environ-
ment during the data gathering process.

Green: Forest Red: Fire
Gray: Burnt out cells Brown: Firebreak

Blue: Agents Black: Waypoint
White: Centre point

As can be seen in Figure 2.1, the graphical
user interface (GUI) gives information on how
the simulation progresses, either by the directions
of a human or a trained CNN. We differentiate
between cell types and cell states, which is a
design choice benefiting adaptability and reusabil-
ity. All of our cells are initialised as forest cells
with specific properties. The possible cell states are:

• Normal: The cell type is displayed by the GUI
in its original colour and treated by the simu-
lation according to its initial properties.

• Firebreak: These cells cannot be ignited any-
more, therefore they prevent the fire spreading
from neighbouring cells.

• On fire: Cell types with a finite ignition
threshold will start burning once the thresh-
old is reached.

• Burnt out: Cells which have exhausted their
fuel and cannot be reignited.

• Agent: Showing the user where the agents are
located.

While the simulation progresses, the state of
the cells may change but the underlying type re-
mains. This has the advantage that the simula-
tion can be expanded with additional cell types
representing water area or infrastructure, as done
by Ywema (2020). We followed the model-view-
controller (MVC) paradigm, allowing us to easily
switch between gathering data and testing trained
CNNs. There are two parts of the controller, one
for human input and one for CNN-generated way-
points.
In the following paragraphs the dynamics of the en-
vironment are described. At the beginning of the
simulation, a fire is started in the centre cell of
the environment. From here on the burning cells
heat up their neighbours in the four compass di-
rections. As the cells heat up and reach a temper-
ature threshold, they will ignite, unless they are a
firebreak, situated beyond the borders of the envi-
ronment or if the fuel has been exhausted. There is
a multiplication parameter guiding this process. It
is in the range [0, 1] and represents the chance that
heat is spread in a particular time step, thereby lin-
early influencing the fire propagation speed. Cells
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may receive heat from multiple neighbours and
once they exceed the ignition threshold specific to
their cell type, they will ignite and spread the heat
in the following time steps.
Letting the fire expand in the grid only in the four
compass direction prevents the fire from spreading
evenly in a circular fashion, which is why we intro-
duced a random heat spread parameter sampled
from a uniform distribution. It provides a baseline
factor in range [0.5, 1.5] for the spread from cell-to-
cell which is then multiplied corresponding to wind
direction and speed.
The simulation allows for setting one of eight possi-
ble wind directions that are assigned upon initiali-
sation of the environment. These represent the car-
dinal and inter-cardinal compass directions. There
are 5 discrete integer wind speed values from [0, 4],
the first of which does not affect the fire propaga-
tion at all, leading to a circular spread. The other
values linearly increase the effect of the wind, by
directing the fire spread faster in the direction of
the wind and slower against it. Wind speed and di-
rection influence the heat spread from cell to cell
so that the propagation speeds up in the direction
of the wind and vice versa.
Perpendicular to the direction of the wind the heat
that spreads between cells is a value from the uni-
form distribution H = U(0.5, 1.5). In the direction
of the wind the heat value H is again dependent on
an arbitrary value from U but the value is guided
by the formula: H = U(0.5, 1.5) · (1 + windspeed

3 ).
Against the wind the dissipation of heat between
neighbouring cells is changed according to:

H = U(0.5,1.5)

1+windspeed
3

.

In all our simulations the initial settings remain
constant until the end of the fire containment
episode. All our code, data and results are pub-
lically available. 1

2.2 Representation of Environment

Finding an appropriate representation of the envi-
ronment to use as CNN-input is a crucial step in
constructing the waypoint generation pipeline. One
wants to encode all the necessary information with-
out cluttering the input, possibly leading to slower
network performance and less predictive capabili-
ties. The CNNs of the kind we are using take inputs

1https://github.com/markus-brln/

BachelorThesisForestFireControl

Figure 2.2: Representation of the state of the
environment from Figure 2.1 for the CNN. 1.
Active fire, 2. Firebreaks, 3. Wind direction, 4.
Wind speed, 5. Other agents, 6. Active agent
x-position, 7. Active agent y-position. The val-
ues for the cells are in the range [0, 1], where 0
corresponds to white, and 1 to black.

of the form [batchsize, columns, rows, channels]
where the batch size is simply the amount of images
that pass per training cycle (see section 3.1). There-
fore it is practical to provide multi-channel images,
similar to how the bitmap format contains three
different values for each pixel. Figure 2.2 shows the
representation of the included input information.
Since our activation functions, which we will discuss
later, are not suitable for non-normalised input, all
values of the multi-channel input image are nor-
malised between [0, 1]. Our approach is inspired by
earlier work where so-called ”binary vision grids”
were used to encode the environment of the Atari
game Tron Knegt, Drugan, and Wiering (2018).
Channel one is the only channel providing infor-

mation about the fire spread. We did not include
channels for the cell temperature or the amount
of available fuel since these values can effectively
be inferred from the first channel. Arguably, they
would not contribute much to the overall picture of
the environment. There was no need for channels
containing the forest and burnt out cells either, as
this information can be derived from the actively
burning and agent position channels. The second
channel contains the firebreaks, which are set to
have a width of at least three pixels to increase
”visibility” for the network. The next two channels
encode the eight different wind directions and five
wind speeds. The south direction is associated with
a value of 0 and going clockwise increasing values
are assigned to the direction until reaching south-
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east with a value of 1.
In the example, the wind direction was set to be
north, which is assigned the index 4, resulting in
a pixel value of 4/7. Likewise, the wind speed was
at level three out of five, yielding 0.5. The inactive
agents are placed on the fifth channel according to
their x and y positions, but are represented as 10
by 10 boxes with value 1. The intention is to in-
crease the prominence of the agent position in the
environment image when it is processed by the con-
volutional and pooling filters of the CNN.
While binary encoding might have decreased the
cost of computation and memory requirements, we
decided to represent the active agent’s x and y po-
sitions in separate continuous channels. The values
are normalised to the range [0, 1], meaning that all
pixels of channel 6 in Figure 2.2 have the value
0.38 = 97

256 which corresponds to x = 97, with our
environment size of 256 pixels. This makes it easier
for the CNN to pick up the exact location of the
most important agent.

2.3 Input Data

Following the principle of learning from demonstra-
tion, all training and validation data is gathered
by humans. While the simulation runs, the active
agent is indicated visually and a new waypoint is
assigned to that agent via a mouse click. The dis-
tance of the waypoints to the agents is capped at
the distance the agents can travel in the given time
frame, leading to more homogeneous data. The suc-
cess of the algorithm is determined by the contain-
ment strategy humans use when collecting training
data. For the different levels of difficulty the focus
of the human controllers is more on successfully
containing the fire than minimising the area burnt,
thereby avoiding risky behaviour of agents operat-
ing close to the fire.
In order to make results comparable, there is a com-
mon pool of data for each experiment. Furthermore,
all four architectures receive training and test input
of the form described earlier.

3 Convolutional Neural Net-
work

Convolutional Neural Networks are seen as the gold
standard of computer vision, inspired by animal vi-
sion and based on existing neural networks. They
were first developed for handwriting recognition

and rely on sequences of layers to extract key fea-
tures from an input image Y. LeCun and Jackel
(1989). This section covers the background from
neural networks and the purposes of each of the
layers.

3.1 Neural Network

Neural networks store information with mathe-
matical models generated by an algorithmic learn-
ing process which propagates activation signals
through a series of connected layers of nodes, that
generates a function to map an input and to an
output a simplified example can be seen in Figure
3.1.

Figure 3.1: Diagram of a 3 layer artificial neural
network, displaying how the nodes(circles) and
weights(lines) are interconnected.

The layer(s) between the input nodes X and
the output nodes Y is (are) known as the hidden
layer(s) H and the connections W between them
can be adjusted during training, after the network
has taken the input and made an output prediction.
This allows for information to be represented and
propagated through each layer of the network. The
value of a node (Hj) in the hidden layer, connected
to a node (Xi) from the input layer by a weight
(Wij) is calculated by the following equation, the
subscript denotes a specific node from a layer:

Hj = f(

n∑
i=1

Wij ·Xi) (3.1)
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where f() represents a non linear activation
function described further in Section 3.2. The
propagation through the network occurs as the
sum of all the previous layer’s activation functions.
In addition to the weighted sum of all inputs and
weights to the activation function, a bias term is
added as an intercept (similar to a linear equation)
to allow for a better fit of the prediction to the
input data by shifting the origin of the activation
function horizontally.

Since the training relies on constant feedback, a
series of inputs and corresponding outputs are col-
lected. This set is then split at a point into train-
ing data and testing data. The network is given
an example from the training data and makes a
prediction. The difference between the predicted
output and the desired output is measured using
a mathematical function to compute the loss. The
weights between nodes are adjusted subsequently
to account for the loss using an optimization al-
gorithm, such as back-propagation. Over time, the
network will react to certain features in the input
and be able to predict the output more accurately
Plaut, Nowlan, and Hinton (1986).

3.1.1 Convolution layer

A convolutional layer is the defining feature of
a CNN. Our network accepts input of the form
N×N×D, where N is the side length to the image
and D the number of channels. We therefore need
convolutional layers that use two-dimensional fil-
ter matrices. This filter scans across the image on
its different channels, performing the convolution
by calculating the dot product between the input
image and the filter. As this filter moves in strides
across the whole input image, it can determine how
the pixel values in different sections of the image
differ from one another. Simple features, such as
contrast between an edge and the background, can
be recognized by the initial layers yet later layers
can recognise more complex features. This produces
a feature or activation map with the results of the
dot product with the filter and spatial positions of
the input image.
The dimensions of the output of a CNN are gov-
erned by the input dimensions, stride lengths and
the amount of filters. The latter directly determines
the depth of the output image, so convoluting a
N ×N ×D image with F filters would result in an

N ×N ×F matrix. Higher amounts of strides gen-
erally mean smaller feature maps with the first two
output dimensions being inversely proportional to
the stride lengths applied to them.

3.1.2 Pooling Layer

The pooling layer effectively downscales an input.
It takes a pool of adjacent entries and extracts
a single value from this group of entries, most
commonly the maximum (max pooling) or the
mean (average pooling) value. It will then move
over to the next pool and repeat the previous
process. In the output, the dimensions are reduced.
Each pooling layer requires certain characteristics,
the pool size and the stride. The pool size is the
“dimensions” in each pool, whereas the strides
indicate the distance between the different pools.
Pooling can take place over multiple dimensions
as well, e.g. in an image or a 3-dimensional array.
In this project, only 2-dimensional max pooling
layers are used, with a pool size of 2 × 2 and
non-overlapping strides of 2.

3.1.3 Fully Connected Layer (Dense Layer)

A fully connected layer is a layer within a neural
network that has all nodes of the former layer con-
nected to all the nodes of the layer. It is rather
expensive computationally because of its high con-
nectivity, namely M × N connections where M is
the amount of outputs in the previous layer and N
the number of units in the fully connected layer.
The activation function in a fully connected layer
then needs to incorporate all activations of the pre-
vious layer for each of its units, resulting in a high
amount of computations.
Nevertheless, it is useful in the final layers of a CNN
for tackling a problem as described in this paper.
The convolutional layers are tasked with extracting
the features of the provided information within spe-
cific sub-regions of the image. The fully connected
layers combine the found features, to allow the net-
work to output a ‘conclusion’ from the whole input
image.

3.2 Activation Functions

An activation function takes one or more inputs
to a neuron and calculates a value for the output
of that neuron, thereby determining the range of
possible output values. During back-propagation
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their derivative (i.e. function slope) is used to ad-
just the biases of a network-layer and the weights
between layers in order to minimize the loss (see
Section 3.3) calculated for a particular layer. For
our research two different activation functions are
used, the Rectified Linear Unit (ReLU) and the
Sigmoid function.

3.2.1 ReLU

ReLU is the most commonly used activation
function in deep learning, and is mathematically
described in Equation 3.2. It will output the passed
variable x if and only if x ≥ 0, else it will output
zero. The advantages of the ReLU activation func-
tion mainly consist of its computational efficiency,
allowing the network to be trained more quickly
and with fewer activated nodes Ramachandran,
Zoph, and Le (2017).

f(x) = max(0, x) (3.2)

whereby f(x) represents the output of the function
and x the input of the function.

3.2.2 Sigmoid

The Sigmoid function is used in many other fields
too, and its mathematical description can be found
in Equation 3.3. The Sigmoid has an S-shape and
is used to dampen large inputs, as well as having
a smoothened ‘threshold’ for the neuron to become
active.

f(x) =
1

1 + e−x
(3.3)

here f(x) is the output of the sigmoid activation
function while x is the input.

3.3 Loss Functions

3.3.1 Mean Squared Error

The Mean Squared Error (MSE), as the name sug-
gests, is concerned with the average of the squares
of the errors for each output category. The MSE
loss function is defined mathematically as:

MSE =
1

n

n∑
i=1

(yi − ỹi)2 (3.4)

where yi is the labelled output for the training data,
ỹi is the given output by the neural network, i is a
specifier of an output and n the size of the output
vector.

3.3.2 Binary Cross-Entropy

In general, cross-entropy functions take two prob-
ability distributions as input which allows for the
difference between the two to be quantified. Typi-
cally, they are applied as loss functions for classifi-
cation problems.
Binary cross-entropy is a loss function for binary
classification, where there is a single neuron in the
output layer. The prediction is a value between 0
and 1, such as “does this image contain a cat?”,
hence the probability distribution is [P, 1− P ]. To
evaluate the loss the Equation 3.5 is used.

Loss = − 1

N

N∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)]

(3.5)
where yi is the labelled output for the training data,
ŷi is the given output by the neural network, i is a
specifier of an output and N the size of the output
vector.

3.3.3 Categorical Cross-Entropy

Categorical cross-entropy loss, or softmax loss, is
used when multiple classes exist and the output
layer has n neurons for the number of classes, hence
for the probability distribution all of these n out-
puts sum to 1. The categorical cross-entropy loss
function is defined mathematically in Equation 3.6.

Loss = −
N∑
i=1

(yi · log(P (ŷ) · wi) (3.6)

where yi is the labelled output for the training data,
ŷi is the given output by the neural network, i is a
specifier of an output while N the size of the output
vector and wi is the weighting of the given output
class.

3.4 Different Architectures

The representation of the CNN output is of high im-
portance to the success of an architecture because
it influences how the loss must be minimized and
ultimately the difficulty of the stochastic function-
approximation the CNN has to perform. We opted
for waypoint representations relative to the agents
because early experiments with waypoints with re-
spect to the whole environment resulted in inaccu-
rate predictions. In the following sections four dif-
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ferent variants are introduced, whose performances
will later be compared.

3.4.1 XY-Variant

The first variant’s output is of the form
[∆x,∆y, drive/dig]. The first two elements
encode the position of the waypoint relative to the
current agent and are in the range [−1, 1]. After the
CNN’s prediction these values are post-processed
such that the following holds true:

|∆x|+ |∆y| = timesteps between assignments.

A digging agent can travel one cell per time step.
Thus, the next waypoint is set to be as many
steps away from the current position as there
are time steps in between waypoint assignments,
given by the hyperparameter timeframe. In our
datasets the agents always moved their maximum
distance between waypoint assignments, but in
case agents should wait somewhere or only move
parts of the maximum distance this scaling may
pose problems.
The third element of the output tensor deter-
mines whether the agent is going to drive or
dig, depending on a digging-threshold. In case
the agent is supposed to drive, ∆x and ∆y are
simply multiplied by 2. This is not problematic
because in the training data the ∆x and ∆y of
driving-waypoints are also normalized such that
the dig/drive element of the output tensors implies
this scaling.

layer outputs kernel stride
Input 7 - -
Conv2D+ReLU 16 2 1
Conv2D+ReLU 16 2 2
MaxPooling2D 16 2 2
Conv2D+ReLU 32 2 2
Conv2D+ReLU 32 2 2
MaxPooling2D 32 2 2
Flatten 2048 - -
Dense+Sigmoid 48 - -
Dense+Sigmoid 32 - -
Dense+Linear 3 - -

Table 3.1: Hyperparameters of the XY-network.
Kernel and stride scalars are interpreted as tu-
ples with both elements having the same value.

Table 3.1 shows the configuration of this
architecture-variant. It is important to notice that
the final fully connected layer has a linear, or pass-
through activation function, enabling the network
to output negative numbers as required for ∆x and
∆y. During training and validation (Section 3.6)
the MSE was applied to quantify the difference be-
tween desired and predicted output.

3.4.2 Angle Variant

The second variant’s output is of the form
[cos(θ), sin(θ), r, drive/dig], where θ and r are de-
rived from ∆x and ∆y as in the first architecture,
using Equations 3.7 and 3.8:

θ =
∆y

∆x
, (3.7)

r =
√

∆x2 + ∆y2. (3.8)

layer outputs kernel stride
Input 7 - -
Conv2D+ReLU 16 2 1
Conv2D+ReLU 16 2 1
MaxPooling2D 16 2 2
Conv2D+ReLU 32 2 2
Conv2D+ReLU 64 3 2
MaxPooling2D 64 2 2
Flatten 16384 - -
Dense+ReLU 48 - -
Dense+ReLU 32 - -
Dense+Linear 4 - -

Table 3.2: Hyperparameters of the angle-
network. Kernel and stride scalars are inter-
preted as tuples with both elements having the
same value.

The configurations of this architecture are shown
in Table 3.2. Compared to the XY-variant, it is
inherently less computationally efficient, due to the
smaller strides in the second and the increased filter
size of the final convolutional layer. For the initial
fully connected layers theReLU activation function
was used, as the usage of the sigmoid activation
function caused a trained network to ouput equal
values consistently, regardless of input.
For this architecture, MSE was applied as the loss
function for training and validation (Section 3.6)
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3.4.3 Box Variant

The box variation is so called since an agent has a
limited range of positions that it can reach from
the initial position within a certain timeframe,
this subsection of the environment can contain
many different positions and if highlighted on the
gui would appear as a diamond-like box with the
agent at its centre. Since the agent can only move
in the 4 cardinal directions, its total displacement
between waypoint generation is a combined change
in x and y coordinates of 20 positions as shown in
Equation 3.4.1, which translates into 841 different
positions in the environment that the agent can
reach. We scale each of these positions down
to an array of length 61, as if the agent could
only move 5 times between waypoint generation.
Each one of these positions represents roughly 14
positions in the simulation environment. Since not
every value in the positional array occurs equally
in the training data, we take the inverse of the
frequency of an output position and use this as the
weighting for the loss function as in Equation 3.3.3.

The CNN outputs a prediction of an agent’s
waypoint position in the condensed version of the
positional array by using categorical cross-entropy
loss as described in Subsection 3.3.3. This array
position is then scaled back to one within the
larger environment by reversing the previous
operation. In addition the architecture makes a
separate prediction for whether the agent should
dig or drive to the waypoint location using binary
cross-entropy in Subsection 3.3.2.

Table 3.3 shows the layers of the CNN architec-
ture, here the split output tensors for digging move-
ment and the position can be seen. The network
includes a small chance of neuron dropout to re-
duce the risk of overfitting. While the digging out-
put uses two fully connected layers with sigmoidal
activation from Equation 3.3 since it predicts a
value between 0 and 1. The positional output uses
a ReLU as previous layers but in the output layer
there is softmax since we use categorical cross en-
tropy and select a single value from the position
array.

layer outputs kernel stride
Input 7 - -
Conv2D+ReLU 16 2 1
Conv2D+ReLU 16 2 1
MaxPooling2D 16 2 2
Conv2D+ReLU 32 2 2
Conv2D+ReLU 32 2 2
MaxPooling2D 32 2 2
Flatten 8192 - -
Dropout 0.1 - -
Digging Output

Dense+Sigmoid 16 - -
Dense+Sigmoid 1 - -

Position Output
Dense+ReLu 64 - -
Dropout 0.1 - -
Dense+Softmax 61 - -

Table 3.3: Hyperparameters of the Box-network.
Kernel and stride scalars are interpreted as tu-
ples with both elements having the same value.
The branching of the network into output pre-
dictions for digging or driving and position are
indicated by indented lines of the table.

3.4.4 Segments Variant

This last variant was a late addition to the other
three architectures and implements another idea
on how to represent desired positions relative to
the agents. It discretises the direction in which the
agent needs to move and a binary value to indi-
cate the digging or driving movement. The angle in
which the agent can move is equally divided into
16 segments of 22.5◦ each. Each segment is given
an entry in an output vector of 16 and assigned a
value of 1.0 in the training data while non-desirable
directions are simply set to 0.0. As for the XY-
variant, the agents will always move as far as the
time frame between assignments allows. The mod-
els are trained using the categorical cross-entropy
loss function (3.3.3 for the general direction, and
binary cross-entropy (3.3.2) as a loss function for
the digging or driving indication.

3.5 (Adam) Optimizer

A neural network improves by adjusting the weights
between nodes to reduce the empirical loss and
an optimizer aims to find a set of weights that
reduces this loss. In this particular project, the
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layer outputs kernel stride
Input 7 - -
Conv2D+ReLU 16 2 1
Conv2D+ReLU 16 2 2
MaxPooling2D 16 2 2
Conv2D+ReLU 32 2 2
Conv2D+ReLU 32 2 2
Flatten 8192 - -
Dropout 8192 - -
Dense 64 - -
Direction Output

Dense+ReLU 32 - -
Dropout 32 - -
Dense+Softmax 16 - -

Digging Output
Dense+ReLU 16 - -
Dense+Sigmoid 1 - -

Table 3.4: Hyperparameters of the Segment-
network. Kernel and stride scalars are inter-
preted as tuples with both elements having the
same value. The dropout rate across Dropout
layers is 0.2. The branching of the network into
output predictions for digging or driving and
position are indicated by indented lines of the
table.

Adam, Kingma and Ba (2014) optimizer is used,
as it is one of the leading adaptive learning rate
algorithms and has been empirically demonstrated
to perform comparatively or even better than sim-
ilar algorithms for CNNs Berrah and Laboissière
(1999). The Adam optimizer is a variation of the
class of stochastic gradient descent algorithms. It
combines aspects of RMSProp, Hinton, Srivastava,
and Swersky (2012) and AdaGrad, Duchi, Hazan,
and Singer (2011) with a term for momentum. For
each parameter Adam has an adaptive learning
rate, calculated with both the exponentially decay-
ing mean of previous gradients mt the first mo-
ment (mean) to represent momentum. As well as
the exponentially decaying average of the gradients
squared vt which applies the second moment (vari-
ance). The first and second moment are calculated
using Equations 3.9 and 3.10 respectively.

mt = β1 ·mt−1 + (1− β1) · gt (3.9)

vt = β2 · vt−1 + (1− β2) · g2t (3.10)

where β1 is the hyperparameter for the first mo-
ment decay rate, β2 the hyperparameter for the sec-
ond moment decay rate and gt is the loss function
gradient.

The initialisation of the first and second moment
results in an early bias since mt and vt will be a
vector of zero values. To correct the bias in the first
moment Equation 3.11 is used and for the second
moment Equation 3.12.

m̂t =
mt

1− βt
1

(3.11)

v̂t =
mt

1− βt
2

(3.12)

where m̂t is the corrected first moment, v̂t is the
corrected second moment and t is the epoch num-
ber.

Using the previous values the return value of the
Adam weight update function can be computed,
the weights are updated using Equation 3.13.

wt = wt−1 − α ·
m̂√
v̂ + ε

(3.13)

where wt is the weights vector at time t, α is the
learning rate hyperparameter and ε a constant.

The aforementioned hyperparameter ε is required
to prevent divisions by zero, and is therefore kept
extremely small. The exact values for each hyper-
parameter can be seen in Table 4.2.

3.6 Validation

Separating random samples from the training set
to use for validation is a major tool for avoiding
overfitting. We used 20% of our data to get an in-
dication of how well our models might perform on
unseen data. Early stopping was used with a pa-
tience of 10. This means that if the model does
not improve on the validation set for 10 consecu-
tive epochs, training stops and the model with the
lowest validation loss is saved for testing.
We also created randomised test sets of 100 input-
output pairs and checked for the mean and the dis-
tribution of the prediction error when tuning the
networks. This would give hints about how far off
the predictions would be in terms of cells, as the
raw losses of the different architectures do not al-
low for such intuitions.
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4 Experimental Setup

Four different environment configurations were cho-
sen in order to test the three architecture variants
against each other. For each of these 12 experi-
ments, 30 CNN models were trained and tested
when integrated in the simulation.

4.1 Levels of Difficulty

The first and simplest environment configuration,
denoted as Baseline, is characterized by the agents
being placed in a star-like formation around the
centre. Their initial position uncertainty is set to
10, meaning that their positions are slightly ran-
domly initialized in the 256 by 256 environment.
There is no wind and the fire expands in a circle
from the centre with a speed of around 1/10th that
of the digging agents. The strategy with which the
fire is contained in the training data has a very
strong influence on the behaviour and success of
the trained models. To keep it simple, in this first
experiment the agents only dig firebreaks around
the slowly expanding fire in a clock-wise circular
fashion.
The second environment adds Wind from different
directions and at different speeds. The overall wind
speed was set a bit higher, resulting in fire prop-
agation speeds of 0.15-0.3 times slower than the
agent digging speed, depending on the wind speed
level. The strategy was to drive to the centre and
encircling the fire closer to its origin. For faster fire
speeds care is taken to make sure the agents do not
move too close to the fire in the direction of the
wind.
The third experiment does not involve wind, but
instead increases the uncertainty in the agent ini-
tialisation positions to 30. This requires the human
operator to mix digging and driving to mitigate the
randomisation.
The last experiment was dubbed Uncertain+Wind
and simply combines the complexity of the previous
two environments together. The containment strat-
egy is similar to the previous one, trying to even out
gaps with driving at twice the digging speed. The
firebreaks are dug a lot closer to the fire in order to
minimise the amount of burnt forest. Next to the
parameters of the environment this also contributes
to a harder problem for the algorithms.
Table 4.1 shows how much training data was pro-
vided for each experiment. The third column gives

an indication about how many complete fire con-
tainment runs the number of samples correspond
to. We arrive at this approximation by dividing by
five agents and then again by about eight waypoint
assignments per run.

Environment variant samples est. runs
Baseline 1435 36
Wind 4355 110
Uncertain 4265 105
Uncertain+Wind 5200 130

Table 4.1: Amounts of training data (input-
output pairs) per environment and a corre-
sponding estimate of runs recorded during LfD.

4.2 Hyperparameters

The first six entries in Table 4.2 represent the
hyperparameters governing the characteristics of
the environment. They decide how fast the fire
spreads and how long an individual cell remains
burning. While their absolute values are of lesser
importance, their ratios were adapted to create
the fire propagation behaviour. We tried to make
the resulting containment problems easily solvable
by a human, yet non-trivial for simple algorithms.
The hyperparameters for the Adam Optimizer
were kept at default. We experimented with higher
learning rates leading to fewer training epochs, but
also made training more unstable which resulted
in static output for all input images.
For CNN training the batch size was set to 64
which gives a time advantage over using smaller
batch sizes. Larger batch sizes, up to the con-
straints of the hardware, also have the effect that
gradients become more stable because they are
averaged over a larger subset of the training data.
We made use of early stopping where after 10
epochs of failing to improve on the validation loss,
the weights of the model with the best performance
on the validation set were restored and saved for
testing. Said validation set contained 20% of the
total amount of randomly shuffled training data
such that it represented the whole data set well,
decreasing the chance for overfitting.
Another hyperparameter is the digging-threshold,
determining how the CNN output for digging or
driving would be interpreted. As not all archi-
tectures output binary values for this decision,
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the threshold was set to 0.5 for all architectures
and experiments, leading to a digging agent if the
model’s output exceeds that value. The distances
to the new waypoints scale linearly with the time
frame between waypoint assignments. In order to
avoid inaccuracies in the CNN outputs greatly
affecting the agent’s behaviour, this value is set to
20 for generating training data and all experiments.

index parameter value
1 fire speed factor (no wind) 0.3
2 fire speed factor (wind) 0.5
3 heat spread factor 0.5-1.5
4 ignition threshold 3
5 fuel consumption 3

per time step
6 cell fuel 20
7 ε 1e-7
8 β1 0.9
9 β2 0.999
10 α 0.001
11 batch size 64
12 patience (early stopping) 10
13 validation split 0.2
14 digging threshold 0.5
15 time frame 20

Table 4.2: Hyperparameters of the environment
(rows 1-6), Adam Optimizer (rows 7-10), CNN
training (rows 11-13) and during test runs (rows
14-15).

4.3 Performance Measure

The performance of our algorithms is measured by
counting the successful fire containments out of all
attempts. Per experiment, 100 tests are run to cap-
ture the average amount of containments, together
with the standard deviation σ and standard error
(SE). For the successful runs, when the fire is en-
tirely surrounded by firebreaks, the amount of po-
tentially burnt cells is measured as well. This is
done using a breadth-first-search algorithm that
starts in the middle cell like the fire and searches for
non-firebreak cells until it has reached the bounds
of the contained area. It includes a heuristic that
regularly checks newly explored cells for an unob-
structed path to the boundaries of the environment.
If no firebreak cells are in the way it means that the

fire is not yet contained and the algorithm can be
interrupted, greatly improving the speed of the au-
tomatic testing.

5 Results
In this section we present the results of the exper-
iments with the four different architectures tested
on four environment configurations. The exact val-
ues for all means and standard deviations can be
found in Appendix C. Figure 5.1 shows the mean
number of successful fire containments out of 100
simulation runs averaged over the 30 models per
environment per architecture. One can see that the
XY and angle-architectures successfully contain the
fire most frequently. While all architectures per-
form best on the Baseline environment where the
angle-variant is capable of near guaranteed contain-
ment at a rate of 96.9/100 and a standard deviation
of 4.9. The box-variant has the worst containment
rate overall, even compared to the segments ap-
proach that is also based on binary classification.

Figure 5.1: Mean total successfully contained
fires out of 100 for 30 trained models per en-
vironment per architecture.

Figure 5.2 shows the mean number of burnt cells
in the environment after a successful containment.
To be clear, the rate at which the fire was con-
tained by an architecture does not influence these
values, only the area encircled by the agents for
successful runs. This metric could allow us to iden-
tify differences between the environment configu-
rations in terms of containment strategies used in
the LfD. Furthermore, we could find possible devi-
ations of certain model variants from the strategies
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which would express themselves in different values
within an environment configuration. The bar plot
shows that there are differences between the en-
vironment configurations with the Baseline envi-
ronment having the highest mean values ranging
between 5738 and 6480 burned cells out of about
65.000 (2562) cells in the environment. The differ-
ences between the model variants seem small and
the highly overlapping error bars indicate that we
will not be able to make claims of statistical signif-
icance about them.

Figure 5.2: Mean number of cells burnt in the
environment per architecture after successful
fire containment.

6 Conclusions

This research aimed at comparing CNN-
architectures with different output representations
prescribing waypoints relative to the agents’ cur-
rent positions. With the XY- and angle-variants
we had two approaches that operated in a con-
tinuous space around the agent. The box- and
segment-variants attempt to solve the problem
through categorical classification, leading to a
finite number of discrete possible positions relative
to the agent’s current position.
Figure 5.1 indicates that the former architectures
perform better in terms of rate of containment.
This is backed by the statistical tests shown in
appendix A where significant differences in means
were found for nearly all comparisons to the other
two variants. No such differences could be found
between XY and angle output representations
themselves.

While we can group the box and segments vari-
ants together, the performance of the former
is noticeably worse, especially in the last three
environments. One explanation may be that there
are 61 possible positions to choose from as opposed
to 16. While it has the added benefit of providing
us with information about the distance to the next
waypoint and not only the angle, in our training
and test data sets this feature was never used and
thus comes as a disadvantage. We theorise that the
greater number of dimensions in the output tensor
increases the difficulty of the classification problem
and therefore causes the box-variant to fall behind
the segments-approach when both receive the same
amount of training data. This could be solved by
dividing the space around the agent into fewer
possible waypoint-positions. However, it would
also result in less accurate control of the agent
because the boxes would incorporate even more
single cells in the environment.
For some architecture-environment combinations
the error bars and corresponding standard devia-
tions (see Appendix C) are unusually large. This
can be explained by the fact that some models
failed to recognize patterns in the input and thus
produced static, i.e. unchanging output. This is
especially the case for the XY-variant and may
hint towards a weakness in learning stability of
this particular architecture.
Concerning the amounts of burned cells displayed
in Figure 5.2, there appear to be no differences
between the network architectures when they
achieve successful runs. This was to be expected
since all algorithms learn from the same demon-
stration data. However, there were statistically
significant differences between the overall means of
burned cells of the four environments, regardless
of CNN architecture, as determined by one-way
ANOVA (F (3, 26884) = 4243, p < 0.01) (see
Appendix B). Tukey post-hoc tests revealed that
for all group comparisons the differences in means
were significant (p < 0.01). That does not come
as a surprise because the containment strategies
differ in how close to the fire the agents operate.
For example, due to the fact that the Baseline
environment was solved without letting the agents
drive towards the middle first, the area contained
by them was largest. Nevertheless, we need to be
cautious with declaring these results meaningful
because we have about 5000 to 9000 data points
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per group which amplifies statistical significance.
The means of these large groups lie not very far
apart and have relatively large standard deviations
(see Table C.3).
Returning to the research question “Can a
waypoint-generating convolutional neural network
coordinating a multi-agent system be effective at
containing wildfires in a simulated environment?”,
the results show that for the XY and angle variants
this is the case even for the most complex of envi-
ronments where a greater than 50% success rate
was achieved. The categorical classification meth-
ods, in particular the box-variant did not manage
to reliably contain the fires in environments with
increased complexity.

7 Discussion

The results of this project have shown that
convolutional neural nets are able to successfully
contain a forest fire in basic simulations. However,
the simulations as in this project are small-scale
and not reflective of real-world situations. Current
wildfires cover much more complex areas than
considered in this project and require hundreds, if
not thousands, of people to be contained. More-
over, the environment can be far more chaotic and
unpredictable with sparks from wildfires known to
travel in the wind and create new pockets of fire
up to 30 metres away. It would be interesting to
see future research considering more complex and
realistic environments. With different terrain types
or more realistic wind simulation, many other
directions are possible.
As the data provided when training the net-
works plays a large role in the performance of
the networks, it is important to understand the
consequences of different containment strategies
for the generation of the training data. In real-
world situations, encircling the fire by moving
clockwise will not always be the most optimal
strategy. It would be interesting to see if there are
architectures that can be taught to apply different
strategies and choose the correct one given more
complex situations. One could also investigate the
influence of specific containment strategies on our
architectures.
The amount of data itself is also highly influential.
Not enough data or a lower prevalence of specific
situations in the data can lead to inaccuracies by

the network. By augmenting the data or automa-
tising the data generation one could obtain more
significant results compared to those discussed in
this paper.
Another direction to explore is transfer learning.
One could train architectures on a basic form of
the problem and continue training afterwards on
more complex problems to see if this improves
performance or reduces the required amount
of training data. Successful results could have
implications for the handling of possible extensions
to the problem environment.
The initial goal of this research was to use an
auto-encoder architecture to classify individual
pixels in the environment as either waypoints or
non-waypoints. These waypoint locations would
have been fed to other algorithms to assign them
to the different agents, making the approach more
flexible by allowing for different amounts of agents.
After initial problems with generating a 256× 256
output, trying to simplify the classification prob-
lem by using 64 × 64 or even 16 × 16 outputs still
yielded poor results. While we switched to other
architecture variants due to time constraints, we
still believe it to be possible to achieve reasonable
results by further tweaking the architecture and
providing more demonstration data. Alternatively,
one could investigate the effectiveness of first
applying LfD with reinforcement learning tech-
niques and then improving the initial performance
with reinforcement learning alone to fine-tune the
behaviour.
The representation of the environment state as
the input for the neural networks could also be
reconsidered. One example we can provide is the
encoding of the wind direction. In this project,
an image channel with discrete uniform values
is provided as part of the input, categorising
the wind direction. This results in the network
having to learn that the wind going north or
north-east has closely related consequences for the
fire propagation. However, the same information
can be provided by using two scalar values, each
representing either the longitudinal or the lati-
tudinal direction. This way, the relation between
the north and northeast directions can be implied
beforehand.
This project has not focused on minimising the
total area burnt. One could attempt reinforcement
learning techniques to achieve less land loss,
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instead of focusing only on fire isolation, as this
would be an objective in real-world situations.
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A Appendix

Treatments pair Tukey HSD Q statistic Tukey HSD p-value Significant?
XY vs. Angle 3.32 0.0939 NO
XY vs. Box 11.85 0.0010 YES
XY vs. Segments 6.59 0.0010 YES
Angle vs. Box 15.17 0.0010 YES
Angle vs. Segments 9.90 0.0010 YES
Box vs. Segments 5.26 0.0017 YES

Table A.1: Baseline environment comparison between architecture variants. Significant differences
were found using a one-way ANOVA (F(3, 116) = 45.89, p = 1.1102e-16). The Tukey HSD post-hoc
test is used to determine significance between treatment pairs using a confidence level α = 0.01.

Treatments pair Tukey HSD Q statistic Tukey HSD p-value Significant?
XY vs. Angle 1.14 0.8336 NO
XY vs. Box 21.17 0.0010 YES
XY vs. Segments 3.26 0.1023 NO
Angle vs. Box 22.31 0.0010 YES
Angle vs. Segments 4.40 0.0124 YES
Box vs. Segments 17.91 0.0010 YES

Table A.2: Uncertain environment comparison between architecture variants. Significant differ-
ences were found using a one-way ANOVA (F(3, 116) = 108.18, p = 1.1102e-16). The Tukey HSD
post-hoc test is used to determine significance between treatment pairs using a confidence level
α = 0.01.

Treatments pair Tukey HSD Q statistic Tukey HSD p-value Significant?
XY vs. Angle 0.90 0.9000 NO
XY vs. Box 14.22 0.0010 YES
XY vs. Segments 3.05 0.1414 NO
Angle vs. Box 13.32 0.0010 YES
Angle vs. Segments 2.15 0.4292 NO
Box vs. Segments 11.17 0.0010 YES

Table A.3: Wind environment comparison between architecture variants. Significant differences
were found using a one-way ANOVA (F(3, 116) = 43.27, p = 1.1102e-16). The Tukey HSD post-hoc
test is used to determine significance between treatment pairs using a confidence level α = 0.01.
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Treatments pair Tukey HSD Q statistic Tukey HSD p-value Significant?
XY vs. Angle 0.39 0.9000 NO
XY vs. Box 34.47 0.0010 YES
XY vs. Segments 12.54 0.0010 YES
Angle vs. Box 34.86 0.0010 YES
Angle vs. Segments 12.93 0.0010 YES
Box vs. Segments 21.93 0.0010 YES

Table A.4: Uncertain+Wind environment comparison between architecture variants. Significant
differences were found using a one-way ANOVA (F(3, 116) = 267.40, p = 1.1102e-16). The Tukey
HSD post-hoc test is used to determine significance between treatment pairs using a confidence
level α = 0.01.

18



B Appendix

Treatments pair Tukey HSD Q statistic Tukey HSD p-value Significant?
Baseline vs. Uncertain 153.42 0.0010 YES
Baseline vs. Wind 65.64 0.0010 YES
Baseline vs. Uncertain+Wind 102.22 0.0010 YES
Uncertain vs. Wind 71.81 0.0010 YES
Uncertain vs. Uncertain+Wind 39.63 0.0010 YES
Wind vs. Uncertain+Wind 31.30 0.0010 YES

Table B.1: Comparison of amounts of burned cells per environment configuration across all archi-
tectures. Significant differences were found using a one-way ANOVA (F(3, 26884) = 4,243.71, p
= 1.1102e-16). The Tukey HSD post-hoc test is used to determine significance between treatment
pairs using a confidence level α = 0.01.
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C Appendix

Environment Architecture Mean contained fires out of 100 Standard deviation
Baseline XY 86.8 25.8

Angle 96.9 5.0
Box 50.7 12.0
Segments 66.8 15.5

Uncertain XY 69.3 13.5
Angle 71.6 10.4
Box 27.8 8.4
Segments 62.9 9.2

Wind XY 55.1 19.6
Angle 52.9 14.4
Box 20.3 6.3
Segments 47.7 8.1

Uncertain+Wind XY 67.8 7.0
Angle 68.5 14.9
Box 5.8 3.3
Segments 45.2 9.7

Table C.1: Mean amount of contained fires out of 100 per architecture per environment, averaged
over 30 models with standard deviation. The bar plot in figure 5.1 is based on these values.

Environment Architecture Mean amount of burned cells Standard deviation
Baseline XY 6480 865

Angle 6466 825
Box 5738 996
Segments 5873 916

Uncertain XY 4495 1047
Angle 4406 1014
Box 4301 1250
Segments 4401 1282

Wind XY 5513 919
Angle 5566 907
Box 4997 937
Segments 5187 888

Uncertain+Wind XY 5006 1131
Angle 4932 1080
Box 4611 1134
Segments 4899 1258

Table C.2: Mean amount of burned cells per architecture per environment, with standard devia-
tion. The bar plot in figure 5.2 is based on these values.
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Environment Mean amount of burned cells Standard deviation
Baseline 6216 944
Uncertain 4418 1133
Wind 5381 933
Uncertain+Wind 4941 1147

Table C.3: Mean and standard deviation of amounts of all burned cells per environment regardless
of architecture variant.
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