
University of Groningen

Bachelor Project

Corel: A DSL for Cooking Recipes

Authors:
Auke Roorda (s2973782)

Supervisors:
prof. dr. T. van der Storm

dr. V. Andrikopoulos

August 17, 2021

Abstract

A domain-specific language (DSL) provides an accesible way to write domain knowl-
edge and procedures. However, none exists that can accurately describe a cooking
recipes content. We aim to develop this DSL. We analysed the structure of cooking
recipes using the feature-oriented domain analysis (FODA) method. This yields a fea-
ture diagram, which is used in the language design process. The DSL, named Corel, is
implemented in Rascal. It enables understanding of and computation with ingredients,
and can construct a nutrition label for the recipe. We found that the DSL is able to
express each the features of a recipe we focussed on.

1

Contents
1 Introduction 3

1.1 Goals . 3
1.2 Methodology . 3

2 Domain Analysis 4
2.1 FODA Method . 4
2.2 Feature analysis . 5

3 Language Design 11
3.1 Writing a Corel recipe . 13
3.2 Interactivity and checking . 16
3.3 Compilation . 18

4 Implementation 21
4.1 Rascal . 21
4.2 Syntax to AST . 21
4.3 Frink binding . 22
4.4 Checker implementation . 23
4.5 IDE plugin . 26
4.6 Compilation to a webpage . 26
4.7 Rascal source size . 28

5 Results 30
5.1 Evaluating expressivity . 30

6 Conclusion 31
6.1 Evaluating expressivity . 31
6.2 Discussion . 31
6.3 Future work . 32

Glossary 34

Appendices 35

A Recipe Features 35

B Annotating recipes 37
B.1 General steps . 37
B.2 Encountered problems . 37

2

1 Introduction
Domain-specific languages (DSLs) are widely used across all programming domains, and
are studied in the area of Software Language Engineering. An example of a prevalent DSL
is HyperText Markup Language (HTML), which is used to describe the structure of web-
pages. Unlike a General-purpose Language (GPL), a DSL is aimed at a specific domain,
trading generality for expressiveness [14].

1.1 Goals

The aim of this project is to design a DSL for cooking recipes. This requires an analysis of
the features of cooking recipes, which answers the question What are the common aspects
of a recipe, and in which aspects do they vary?. With these features, a design will be
created and implemented in Rascal [9], resulting in an environment in which the cooking
recipe DSL can be written. Another goal is to analyse the well-formedness properties of
recipes, and explore which computations can be done with a Cooking Recipe DSL.

1.2 Methodology

First, the domain of cooking recipes is analysed using the feature-oriented domain analysis
(FODA) method, as described by Kyo C. Kang et al. in their paper Feature-Oriented Do-
main Analysis (FODA) Feasibility Study [12]. This method is applied on a sample of the
Food.com cooking recipe dataset [6]. From there, we continued by implementing the DSL
in the metaprogramming language Rascal. After this, a proof-of-concept compiler was con-
structed, to showcase the computations that can be done with the DSL. The expressiveness
of the DSL was evaluated by converting a control group of recipes.

3

2 Domain Analysis
To aid the design process, we analysed the domain of textual cooking recipes. A subset of
twenty recipes is sampled from a dataset of Food.com recipes [6]. They are then analysed
using the FODA method.

2.1 FODA Method

The FODA method is a framework for the identification of prominent and distinctive
features of software systems in a domain. It is evaluated by Kyo C. Kang et al. in their
paper Feature-Oriented Domain Analysis (FODA) Feasibility Study [12]. Features are the
attributes of a system that directly affect end-users, and can be used by end-users to choose
between different applications within a domain. Some features are more apparent, such as
the different capabilities of an application, and others less so, such as the under the hood
implementation techniques used by an application. These features can be organized in a
feature diagram, to illustrate how something is decomposed. An example from Kyo C.
Kang et al. can be seen in figure 1.

Car

Transmission
Manual

Automatic
Horsepower

Air condition

Figure 1: Feature diagram of a car, simplified example from Feature-Oriented Domain
Analysis (FODA) Feasibility Study [12]

Figure 1 legend: A gray dot indicates a mandatory feature, and a white dot indicates
an optional feature. A circular sector between edges mark the child nodes as disjunct.

In figure 1 we can see the features of a car: two of them are mandatory (the transmission
and horsepower), and one is optional (air condition). The transmission itself is either a
manual transmission, or an automatic transmission. When buying a car, this graph can
be used to see the features on which you can base your choice.

2.1.1 Applying FODA on recipes

Domain analysis is usually applied to analyze a set of related software systems, to investi-
gate in which way they vary, and which aspects they have in common. In this project it
is used to analyse textual recipes instead of software systems. The aim is to construct a

4

Food.com

feature diagram for the features of a textual recipe. With this different application, we ad-
justed the focus as well, to the expressive capabilities of recipes, e.g. the different semantic
elements that appear in a recipe, such as a phrase stating an action or a target state.

About the operating environment: with the FODA method, this is aimed at analysing
the different hardware and interfaces of each system on which the software is ran. Between
the recipes in the dataset, there is no difference in operating environment; they are all
displayed on an equal webpage, without any interactivity. We will however analyse the
interfacing capabilities of the DSL later.

An analysis of the application domain technology that occurs within cooking recipes
is skipped, and considered outside the scope of this project. It would provide insight
into different ways of executing the same instruction in a recipe. An instruction like
”Cook the rice” can be executed in different ways, yielding slightly different results, but
can also require different ingredients. Understanding this would allow for substituting
these methods in a recipe, and updating the required ingredients with it. These domain
technologies are usually not listed in recipes however, but can be found as separate guides.

2.2 Feature analysis

The FODA method uses different modelling primitives to capture the abstractions of func-
tionalities and architecture designs within a system. Aggregation (abstracting a collection
of units into a new unit) and generalization are used to capture the commonalities and
differences between instances of the domain applications [12]. In this project we analyse
these variations between the recipes in the dataset. As a starting point for this analysis,
we looked at the type of data that was provided in the dataset, using the descriptions of
the columns. These could be categorized in three groups:

1. Metadata, describing either Food.com metadata (RecipeId, AuthorId, etc.), or meta-
data about the recipe itself (Name, CookTime, Description, Yield, etc.).

2. Ingredients, describing the quantities, ingredient name and possible preparations.

3. Instructions, which state the actions for the recipe.

Problems with the dataset Note that during this analysis, it was discovered that the
dataset is broken, in multiple ways:

1. The dataset has the columns RecipeIngredientQuantities and RecipeIngredientParts
stored separately. These both contain an array of values, which are supposed to pair-
wise describe the quantity and ingredient name of each ingredient. However, there
are values missing in both lists. If an ingredient is listed without a quantity, such as
A pinch of salt, then from that point on, the lists do not align anymore.

5

Food.com

2. Quite a lot of the ingredient specification is missing in the RecipeIngredientParts
column. A recipe stating 1 1/2 cups thinly sliced leeks (about 2 medium leeks) is split
up incorrectly: the RecipeIngredientParts column just stores the value leeks,
missing the surrounding text.

3. Only the ingredient names for which Food.com has a webpage are stored in the
RecipeIngredientParts column. This caused the ingredient description cups reduced-
sodium fat-free chicken broth to not appear in the dataset at all, but its quantity 4 was
still stored in the quantities column, again causing a mis-alignment of the data. This
also goes wrong when an ingredient states an alternative, as in 1 cup uncooked arborio
rice or 1 cup other medium grain rice. There are pages for both arborio rice and
medium grain rice, causing both rices to be stored in the RecipeIngredientParts
column, again causing a mis-alignment.

To solve this issue, we repaired each of the sampled recipes, by using the recipes text as
found on Food.com, and continued our analysis with the repaired dataset.

2.2.1 Analysing the Metadata

The metadata provides extra data about the recipe, that is not required when following
the recipe. These are the key units we found in the dataset:

1. Name: Each recipe has a name, usually describing the outcome of the recipe, such as
Ham Ristotto With Sugar Snap Peas. A name is used as an identifier for a recipe,
and is mandatory for each one.

2. Servings and Yield: stating what you will have when completing the recipe. Servings
is followed by a number or range, indicating how many people can eat from this recipe,
and Yield is accompanied by its own unit of measure, as in Yield: 6 sandwiches.
These values are not always present, and even though they can be very informative
when choosing a recipe, they are optional, and are not required when executing a
recipe.

3. Desciption: Contains varied prose: suggestions for other recipes that go along well,
a personal anecdote or just a placeholder text from Food.com.

4. Cooking time, Preparation time and Total time: Optional indications of how
much time (the parts of) the cooking process takes.

5. Nutrients: This is the nutritional information about the recipe (calories, protein,
etc.).

The decomposition of a recipes description is not part of this project; sometimes it contains
alternatives for ingredients or notes for the instructions, but these should not appear in
the description.

6

Food.com
Food.com
Food.com

2.2.2 Analysing the Ingredients

Each recipe contains a list of ingredient specifications. Comparing the ingredients allowed
us to distill the commonalities and differences between them. Here are some samples from
the dataset and how they are decomposed:

1. ”1 lime, zest of, finely grated”: This contains a value 1 without unit of measure (a
count), an ingredient name lime, zest of, and a preparation finely grated.

2. ”2 lbs Polish sausage or 2 lbs smoked sausage”: Here we see a value 2, followed by
a unit of measure lbs. Then an ingredient name Polish Sausage. New here is the
indication of an alternative ingredient or 2 lbs smoked sausage.

3. ”black pepper (to taste)”: Here we see just an ingredient name black pepper and a
note (to taste).

By combining related units, such as Unit of measure and Value into a generalized new
concept Quantity, a hierarchy of consists-of relationships is created. These are considered
the features of which an ingredient specification consists. Both their presence and content
can be important for following the recipe to the end-user.

2.2.3 Analysing the Instructions

A similar approach is taken for analysing the instructions of the recipe. Let us have a look
at some examples from the dataset:

1. ”Bring broth to a simmer in a medium saucepan (do not boil). Keep warm.” This
instruction is disected as follows:

(a) This states an action: bring to a simmer
(b) for an ingredient: broth, referring to the ingredient reduced-sodium fat-free

chicken broth
(c) and specifies an appliance: in a medium saucepan
(d) and a note: (do not boil)
(e) Finally, the second sentence states another action: Keep warm. It is implied

that this is meant for the most recently referred to object, the broth of the
previous sentence.

2. ”Cook peas in boiling water 2 minutes or until crisp-tender. Drain and rinse with
cold water; drain”

(a) Again, an action is specified Cook in boiling water

7

(b) and an ingredient is referred to peas, using the identifying part of the ingredients
name, without any of the adjectives from the specification sugar snap peas.

(c) For this action, a target state until crisp-tender and a guideline 2 minutes are
specified.

(d) Then again, actions are specified with an implied object: Drain and rinse with
cold water; drain

By decomposing the instructions into conceptual units (action, ingredient reference, target
state) a framework for the contents of cooking recipes is created.

2.2.4 Constructing the Feature Diagram

A feature diagram contains the standard features of a system within the domain [12]. The
relationship between nodes is a consists-of relationship, e.g. a recipe consists-of metadata,
ingredients and instructions. The feature diagram in figure 2 is derived from analyzing
twenty sampled recipes from the dataset.

8

Recipe

Metadata

Name

Yield

Servings

Description

Preparation time

Cooking time

Nutrients

Ingredients

Quantity

Value
Range

Exact value

Unit of measureName

Preparation

Alternatives

Note

Instructions
Action

Conditional

Objects

Ingredient

Appliance

Utensil
Target state

Guideline

Note

Figure 2: Feature diagram of cooking recipes

Legend for figure 2: A gray dot indicates a mandatory feature, and a white dot
indicates an optional feature. A circular sector between edges mark the child nodes as

disjunct. Nodes in orange are features which are not implemented in the DSL (see
section 3.1.2).

In figure 2 we see the structure of features in a recipe. In the metadata of a recipe we find
a lot of optional elements, but a name is always required. There is also quite some variation
in the way each ingredient is specified. Some ingredients have extensive names, such as
reduced-sodium fat-free chicken broth, and are accompanied by a quantity, preparation and

9

even alternatives, where others require very little information, such as salt. For each of the
leaf nodes, and example is given in appendix A. The non-leaf nodes each consists of all of
their mandatory children, and possibly their non-mandatory children. Note that to refer
to nodes in text, we use a descendant notation, much like the breadcrumbs design pattern
that denotes the hierarchy of directories. The notation A > B means that unit A consists
of unit B, and that B can be found as a child of A in the feature diagram in figure 2. Note
that we leave out the root element Recipe in most cases.

10

3 Language Design
Corel is the name of the DSL we developed during this project, and stands for COoking
REcipe Language. The main purpose Corel is to allow effective expressions for the features
of recipes. It aims to keep the prose of recipes intact, and, in a similar vein as Markdown [2],
to keep the source readable as-is. It is implemented in the metaprogramming language
Rascal, with Java bindings for two small libraries. We start this section with an example
of a recipe written in Corel, which can be see in listing 1, in which the structure and
syntax can be seen. We continue with more in-depth information about the language
design. Finally, we will have a look at the webpage that can be compiled from a Corel
recipe.

11

Listing 1: A Corel recipe
1 Recipe:
2 Pasta Bolognese
3
4 Yield: 2 plates
5
6 Ingredients:
7 - 8 [ounces] white fresh {pasta}
8 - 1 [floz] olive {oil}
9 - 1/4 [ounce] {garlic}; minced

10 - 4 [ounces] {onions}; chopped
11 - 4 [ounces] shallow fried {beef}; minced
12 - 1 - 1 1/2 [ounce] lean prepared {bacon}
13 - 1/3 [cup] red {wine}
14 - 150 [gram] raw {carrots}; thinly sliced
15 - 2/3 [ounce] concentrated {tomato puree}
16 - 4 [ounces] red {sweet pepper}; cut julienne
17 - 1 [ounce] {parmesan} cheese
18
19 Instructions:
20 Add the @oil@ to a large saucepan, heat to <300 F>,

and saute the @onions@. After |2 minutes|, add
the @garlic@. Keep on medium to high heat, and
don't stir. After |2 minutes| more, add the
@beef@.

21 Fry the @bacon@ in a separate pan, on high heat.
Remove liquified fat when done.

22 Boil @pasta@ in a medium pan, until al dente (~|8
minutes|). Drain when done.

23 Once the @beef@ is done, add the @carrots@, @sweet
pepper@ and @tomato puree@. Slowly add the
@wine@ as well, to not lower the temperature.
Let it simmer (but not boil) for |5-10 minutes|.

24 Add the @bacon@ to the large saucepan.
25 Serve with grated @parmesan@ cheese.

Indicates the start
of a recipe, and
is followed by the
name.

Each ingredient
starts with a dash.
An identifier is spec-
ified in curly braces.

A preparation can
be specified after a
semicolon.

Units are enclosed
by brackets.

Temperatures be-
tween angled brack-
ets.

Refer to an ingredi-
ent using at-signs.

Times are annotated
with vertical pipes.

12

3.1 Writing a Corel recipe

A Corel recipe is written in the Eclipse editor, using a plugin created for Corel. This
provides syntax highlighting in the editor, as well as warnings and errors for semantic
inconsistencies within the recipe. Some elements are annotated with docs, to provide
information about density used when converting from volume to mass.

3.1.1 Structure

A Corel recipe always contains the three segments that you would expect in any recipe:

1. Recipe, followed by the name of the recipe and possibly other metadata, such as the
yield of the recipe.

2. Ingredients, with a list of ingredients.

3. Instructions, after which a list of instructions follow.

These segments are indicated by their equivalent keywords. The syntax of this language is
trying to leave as much room for prose as possible. The grammar allows different syntactic
elements to occur in the different segments, to match the required expressivity of each
segment.

13

3.1.2 Syntax

A character set disjoint from those appearing in the dataset is computed, to prevent con-
flicts between the prose of the recipe and punctuation marks used for annotations. Table 1
shows the annotations and elements are used in Corel.

element description

Recipe:
Ingredients:
Instructions:

Keywords to indicate a section

Yield:
Servings:

Keywords indicating metadata values

- A dash at line-start in the ingredients section marks the start
of an ingredient

3 A natural number can be specified at certain places, without
markup.

1/2 Fractions can be written with a forward slash /
4 - 6 Range values are separated with a dash -

[ounce]
[cup]

A unit of measure is annotated with brackets [].

{milk}
{olive oil}

Ingredient definitions are wrapped between curly braces {}

@milk@
@olive oil@

Ingredient references are surrounded with at-signs @

; minced A semicolon ; delimits the start of an ingredients preparation
text. This matches the rest of the line.

<350 °F>
<180 C>

Angled brackets <> define a temperature

|8 minutes|
|1 hour|

Vertical bars | are used to annotate time

Table 1: Syntax in Corel

3.1.3 Grammar

The grammar of Corel, with starting symbol 〈recipe〉:

14

〈recipe〉 ::= 〈declaration〉 〈yield〉 〈servings〉 〈ingredients〉 〈instructions〉

〈declaration〉 ::= recipe : 〈recipe_name〉

〈yield〉 ::= yield : 〈number_or_range〉 〈unit_of_measure〉
| 〈empty〉

〈servings〉 ::= servings : 〈number_or_range〉
| 〈empty〉

〈ingredients〉 ::= ingredients : 〈ingredient_list〉
| ingredients : 〈empty〉

〈ingredient_list〉 ::= 〈ingredient〉 〈ingredient_list〉
| 〈ingredient〉

〈ingredient〉 ::= - 〈quantity〉 〈description〉 〈preparation〉

〈quantity〉 ::= 〈number_or_range〉 〈unit〉
| 〈number_or_range〉
| 〈empty〉

〈description〉 ::= 〈text〉 〈ingredient_definition〉 〈text〉

〈preparation〉 ::= ; 〈prep_word_list〉
| 〈empty〉

〈instructions〉 ::= instructions : 〈instruction_list〉
| instructions : 〈empty〉

〈instruction_list〉 ::= 〈instruction〉 〈instruction_list〉
| 〈instruction〉

〈instruction〉 ::= 〈word_list〉 .

The elements 〈prep_word_list〉 and 〈word_list〉 can be populated with prose, a temper-
ature and time. A 〈world_list〉 can also be contain an ingredient_ref and ingredient_def.
The grammar matches the structure of recipes found earlier, and leaves space for proze in
an ingredients preparation, and in the instructions of a recipe.

15

3.1.4 Limitations

Not all of the features of a recipe can be annotated, and thus understood by Corel.

1. Under Metadata: There is no syntax for a Description, Preparation time or Cook-
ing time element. These features are not of interest for the computations that we
implemented.

2. Metadata > Nutrients: There is no section to list the nutritional values of the recipe.

3. Under Ingredients: Alternatives and Note cannot be declared.

4. Under Instructions: There is no syntax to specify a Note

5. Under Instructions > Action: There is only syntax to annotate Ingredient references.

This can also be seen in the feature diagram in the section 2, showing an overview of the
recipe features that are implemented in Corel. Another limitation is that decimal numbers
are not allowed, and they should be replaced by mixed numbers or sole fractions.

3.2 Interactivity and checking

The editor can assist in writing a recipe, by providing feedback. Currently, the following
is checked:

Listing 2: Corel usedef checks
7 Ingredients:
8 - 1/3 [cup] {sugar}
9 - 2/3 [cup] brown {sugar}

10 - 1 1/2 [tablespoons] {flour}
11 - 3 [cups] fresh {mushrooms};

sliced
12 - 3 [tablespoons] green

{onions}; sliced
13
14
15 Instructions:
16 Slice the @mango@ in small

pieces.
17

Duplicate definition: ”sugar”

Unused ingredient: ”onions”

Undefined ingredient: ”mango”

An error is generated when defining
two ingredients using the same iden-
tifier. This prevents ambiguous in-
gredient referencing later. When an
ingredient is declared, but not used,
a warning is given. Referencing an
undeclared ingredient raises an er-
ror.

Using a database of units from Frink [4], feedback about the specified units is given as
well.

16

Listing 3: Corel unit validation
4 Ingredients:
5 - 2 [cups] {milk}
6 - 1 [cap] {flour}
7 - 4 {eggs}
8
9 Instructions:

10 Preheat the oven to <400
vahrenheit>

11

Unkown unit: ”cap”

Unknown temperature: ”vahrenheit”

If the unit of an ingredient is not
known, a warning is given. The
same is true for temperatures: when
the unit of measure of a temperature
is not found, a warning is given.

There are also informative messages, in the form of docs, that display computed infor-
mation, and which source data is used for the computation:

17

Listing 4: Corel feedback
7 Ingredients:
8 - 8 [ounces] white fresh {pasta}
9 - 1 [floz] olive {oil}

10 - 1/4 [ounce] {garlic}; minced
11 - 4 [ounces] {onions}; chopped
12 - 2/3 [ounce] concentrated

{tomato puree}
13 - 150 [gram] raw {carrots};

thinly sliced
14 - 4 [ounces] shallow fried

{beef}; minced
15 - 1 - 1 1/2 [ounce] lean

prepared {bacon}
16 - 1/3 [cup] red {wine}
17
18
19 Instructions:
20 Add the @oil@ to a large

saucepan, heat to <300 F>,
and saute the @onions@.
After |2 minutes|, add the
@garlic@. Keep on medium to
high heat, and don't stir.
After |2 minutes| more, add
the @beef@.

21

1 floz is equal to 29.6 ml or 27.1 gr (us-
ing density of Oil, olive (at 15.6C), 0.915
g/ml)

Best matches for ”shallow fried beef”:
- Minced beef shallow fried,
- Minced beef lean shallow fried,
- Minced beef/pork shallow fried

300 F is equal to 148.9 Celsius

When hovering the unit of a quan-
tity as in 1 [floz], the docs for this
node are displayed. These contain
conversion information: for mass the
equivalent in grams, for volume the
equivalent in milliliters. If a quan-
tity is specified in volume, Corel
will try to find the best ingredient
match in a density database, and use
the density to convert the volume
to mass. The found match and its
density are displayed as well. The
ingredient description is annotated
with it the best matches found in
the nutrient database; sometimes it
is best to slightly tweak the name
of the ingredient, to ensure the cor-
rect match in the nutrient database.
These are used later for computing
the nutritional values of the recipe.
Each temperature is annotated with
the equivalent degrees Celsius. This
means that you can hover the source
text <300 °F> and read out that this
is equal to 148.9 degrees Celsius.

3.3 Compilation

A Corel recipe can be compiled to a webpage. On the next page we showcase the page that
is compiled from the source in listing 1. The webpage can also be seen at the web archive [1].
This page contains all of the docs that are available in the editor, except the list of best
matches. During compilation, a table with nutritional information is computed. This
is done using a database of density values, to convert volume to mass, and a database of
nutritional values from [7]. This table with nutritional information is added to the webpage,
with information listed per ingredient. The webpage also contains interactive elements,
such as highlighting the matching ingredient definitions and references, and timers for each

18

https://web.archive.org/web/20210721122556/https://roorda.dev/recipes/0

specified time, which can be controlled individually, and run in parallel. There is also the
possibility to compile a scaled version of the recipe, in which the quantity of each ingredient
is adjusted, as well as the recipes servings and yield values.

19

Two way links be-
tween ingredient
definition and refer-
ence.

Quantity conver-
sions, including used
density, displayed on
focus.

Temperatures are
shown in degrees
Celsius when fo-
cused.

Times are converted
to timers. Click
to play or pause.
They will ring when
reaching zero.

Nutritional values
are displayed in a
table.

4 Implementation

4.1 Rascal

Rascal is a language and environment for metaprogramming, which has evolved significantly
since the informal presentation of the first version in 2009 [13]. Rascal joined the small set
of technologies that incorporates both Source Code Analysis and Manipulation (SCAM)
elements, and since has been called a ”one-stop shop for meta programming” [13]. In this
project Rascal is used as a language prototyping tool. Everything that defines the language
is written in Rascal, from the syntax definition and algebraic datatypes, the checker and
transformations, to the compiler.

4.2 Syntax to AST

The syntax and grammar, as seen in Chapter 3.1, are implemented in Rascal. These are
the first building blocks of the programming language. Writing the syntax specification in
Rascal is much like writing a context-free grammar. There are production rules which can
be defined in terms of other non-terminals.

Listing 5: Syntax for numeric values in Rascal
53 syntax NumberOrRange
54 = @category="Constant" number: ExactValue val
55 | @category="Constant" range: ExactValue lower

"-" ExactValue upper
56 ;
57
58 syntax ExactValue
59 = sole_integral: NaturalNumber nat
60 | mixed: NaturalNumber nat Fraction frac
61 | sole_fraction: Fraction frac
62 ;
63
64 lexical Fraction
65 = NaturalNumber num "/" NaturalNumber den;
66
67 lexical NaturalNumber
68 = [0-9] !<< ([1-9][0-9]*) val !>> [0-9];

Syntax highlighting
category is specified.

Assigned field
names.
Alternatives are la-
beled to aid implod-
ing.

A terminal that
matches natural
numbers; a build-
ing block for other
symbols.

Listing 5 shows how the syntax for numeric values in Corel is constructed. The natural
number is the most elementary building block, on which a fraction and exact values are

21

build. These exact values are then used in the definition of a range. The syntax definition
is used by Rascal to construct a scannerless parser. Having a concrete syntax tree (CST),
the next step is converting it to an abstract syntax tree (AST). Rascal provides an implode
function to help with this. It traverses an algebraic data type (ADT) together with the
CST, constructing an AST in the process [10].

4.2.1 Benefits of using an AST

The AST is the main representation of the source we use, upon which we apply transfor-
mations and check certain properties, and eventually compile. The benefit compared to a
CST is that the whitespace, comments or structure defining elements are removed, making
the tree smalller, and making it easier to do pattern matching.Rascal offers different types
of pattern matching, making it easy to modify and analyze the nodes accross the tree.

4.3 Frink binding

Frink is a calculating tool and programming language, designed for physical calculations [4].
These are some example inputs for Frink and the output:

1. 38 feet -> meters results in 11.5824

2. cup conforms volume results in true

3. 1.5 cups -> ml results in 354.88235475

In this project, Frink is used to validate units (i.e. ensure a unit of measure is a volume,
or a mass), and for unit conversion, as in the last example, where the unit cup is converted
to ml.

Frink is available as a jar file, which allows programs to bind to it. Bringing the
functionality of Frink into Rascal is done in two parts. First we declare a Rascal module,
and declare a java function and the class it belongs to, as seen in listing 6.

Listing 6: Frink binding
243 module Frink
244
245 import IO;
246 import String;
247
248 @javaClass{rascalJava.FrinkBinding}
249 public java str frink_parse(str s);

Next is actual Java code, a bit more complex, as it has to convert Java types to Rascal
types. Also, in case Frink throws an exception, this exception has to be converted. This
can be seen in listing 7.

22

Listing 7: Binding Frink
38 public IString frink_parse(IString text, IEvaluatorContext

ctx)
39 {
40 String unsafe_user_input = text.getValue();
41 String result = "";
42
43 try
44 {
45 result = interp.parseString(unsafe_user_input);
46 }
47 catch (FrinkEvaluationException e)
48 {
49 // Rethrow as Rascal exception
50 throw RuntimeExceptionFactory.illegalArgument(text,

"Input cannot be converted by Frink");
51 }
52
53 return vf.string(result);
54 }

The type conversion is done using ValLang, a collection of datatypes for the Java Virtual
Machine [11]. With this in place, any of Frink’s functionality can be used in the Rascal
project.

4.4 Checker implementation

A checker is used to provide diagnostics about the recipe. In Corel it ensures no references
to undefined ingredients are made, and that the unit of measure of each ingredient is valid.

4.4.1 Definitions and uses

First, the relation between the ingredient definitions and references is constructed from the
source file. This is then used to validate that each ingredient definition is unique, and that
each ingredient reference refers to a declared ingredient. These checks are implemented
with relative ease in Rascal, as can be seen in listing 8.

Listing 8: Usedef validation
74 // IngredientRefs referring to non-existing ingredients
75 for (/AIngredientRef ref := r)
76 {
77 if (!(ref.src in usedef<0>))

23

78 {
79 msgdocs.messages += {error("Reference to undeclared

ingredient: <ref.name>", ref.src)};
80 }
81 }

4.4.2 Unit validation

Unit validation is done using a list of units from the Frink programming language/tool.
Frink contains a file units.txt, in which it lists all the units it understands. The first
check we do for each ingredient with a unit of measure specified, is validating this unit.

With the Frink binding shown earlier, we can check whether a unit has a specific base
unit, i.e. check whether ounce is a unit of mass (see listing 9).

Listing 9: Unit validation
28 bool unit_conforms(str unit, str base_unit)
29 {
30 str result = "";
31
32 try
33 result = frink_parse("<unit> conforms <base_unit>");
34 catch _:
35 println("Caught an exception from unit_conforms");
36
37 return result == "true";
38 }
39
40 bool unit_is_mass(str unit)
41 {
42 return unit_conforms(unit, "mass");
43 }

Note that there is something peculiar about the plural units of measure in Frink. Frink’s
units.txt contains definitions for irregular plurals, but not for regular ones. We assume
Frink checks whether the final character is an ”s”, and in case it is, it compares the unit
without the ”s” suffix as well with the units.txt. An example: Frink’s specification contains
both ”century” and the irregular plural ”centuries”: century and centuries. Now if we let
Frink parse the ”double plural” of century, ”centuriess”, Frink parses this without problems:
frink_parse("1 centuriess -> year") returns str: "99.999999999999999999". We
mimic this behaviour when validating units.

24

4.4.3 Converting units with Frink

For further calculations, it is convenient to have each unit of measure in a standard format.
We chose the units millilitres and grams, as they are used in the databases we use as well.
First the input for Frink is constructed in a string. There are helper functions, which
accept an ADT, and format them for Frink, to match the required notation for fractions,
intervals, etc. This is then evaluated by Frink. The conversion process can be seen in 10.

Listing 10: Unit standardisation
214 tuple[real quantity , str unit] convert_to_si(AQuantity q)
215 {
216 str conversion_target_unit =

get_conversion_base_unit(q.unit.name);
217 str frink_conversion_input = "<frink_print(q.val)>

<q.unit.name>";
218
219 str quantity_conversion_result =

frink_parse("round[<frink_conversion_input>, 0.1
<conversion_target_unit>] -\> <conversion_target_unit>");

220
221 real quantity;
222
223 if (q.val is range)
224 {
225 // Take the center of the range as quantity value
226 str stripped =

replaceAll(replaceAll(quantity_conversion_result ,
"[", ""), "]", "");

227 list[str] values = split(", ", stripped);
228 quantity = (toReal(values[0]) + toReal(values[1]))/2;
229 }
230 else
231 {
232 quantity = toReal(quantity_conversion_result);
233 }
234 return <quantity, conversion_target_unit>;
235 }

4.4.4 Converting volume to mass

Some ingredient quantities are specified by volume. However, weight specifications are
more exact than those in volume, as the density of powder-like substances can vary quite

25

a bit, depending on the grain size. Therefore we decided to converted all volumes to
masses, using a density table from FAO INFOODS [3]. To find the best match for each
ingredient, we take the ingredient description, including the ingredient definition. From the
ingredient description - 4 [ounces] shallow fried {beef}; minced, the text shallow
fried beef is distilled and used when finding the best match. Since the volumes are
already converted to milliliters, and the densities are stored in g/ml, the conversion
becomes a simple multiplication.

4.5 IDE plugin

Messages generated during the checking phase (warnings, errors, docs) are available in the
Corel editor. This is done by registering the language and providing certain contributions.
One of those contributions is a context menu, from which two functions are available (com-
piling the recipe at a scale, and without scaling). Rascal has easy to use implementations
for this, as can be seen in listing 11.

Listing 11: Context menu in the IDE
62 popup(
63 menu("Recipe",[
64 action("Compile", compile_unscaled),
65 action("Compile scaled", compile_scaled)
66])
67)

4.6 Compilation to a webpage

Compiling the AST to a webpage takes multiple steps. In short, they are:

1. Optionally scaling the recipe

2. Collecting the docs that are computed during checking

3. Computing nutrient data for the recipe

4. Construction an HTML page from the AST.

This HTML page is then padded with some CSS for styling, and JavaScript to enable
interactive elements. It takes less than a second to compile the webpage.

4.6.1 Scaling a recipe

Scaling a recipe means to scale the ingredient quantities, the recipes servings and the recipes
yield. This is done by first converting the mixed numbers and sole fractions to their real

26

equivalent. This is then scaled, and converted back to a fraction, a natural number or a
mixed number, whichever fits best. The scaled value replaces the old value in the AST,
and is used for subsequent computations (such as the nutritional values).

4.6.2 Computing nutritinal values

This computation is based on the listed ingredients in the recipe and their quantities. If an
ingredient is specified without a unit of measure, it is not included in this calculation. For
each ingredient we find the best match in the RIVM NEVO Nutrient Database [7]. This
database contains data for over one hundred nutrients for two thousand foods. This row
is then scaled to match the mass of the ingredient in the recipe, scaling all the nutrient
quantities with it. These rows are summed together to compute a row to represent the
total nutrient values of the recipe.

4.6.3 Ingredient name matching

To find matches for each ingredient in the density database and the nutrient database,
we use a Java binding of the FuzzyWuzzy Python algorithm, as found on [5]. This does
not always yield the correct results, and thus we added feedback to the editor, stating the
current best match. This allows users to update their ingredient specification to get their
intended match.

4.6.4 Constructing HTML in Rascal

Rascal has an AST model for HTML5, including a pretty printer [8]. This is used to
construct the HTML of the recipe page as well. The main idea is to add nodes within
nodes to define the structure (see listing 12).

Listing 12: Constructing HTML
177 body(
178 header("..."),

...
184 h2("Ingredients"),
185 ol(
186 ([] | it + li(ast2html(ing, msgdocs)) | ing <-

r.ingredients)
187),
188 h2("Instructions"),
189 ol(
190 ([] | it + li(ast2html(ins, msgdocs)) | ins <-

r.instructions)
191)

27

192)

This is accompanied by a set of functions that convert an ADT to an HTML node for the
more complex elements. An example of a timer being constructed from a ATime node is
shown in listing 13.

Listing 13: Converting to HTML
547 HTML5Node time2html(ATime t)
548 {
549 int seconds = convert_to_seconds(t);
550 str original_time_text = numberorrange2str(t.val);
551
552 return span(
553 span(original_time_text ,
554 class("time_value"),
555 html5attr("data-original -text",

original_time_text)),
556 " <t.unit>",
557 class("timer"),
558 html5attr("tabindex", 0),
559 html5attr("data-original-time", seconds),
560 html5attr("data-current-time", seconds)
561);
562 }

4.6.5 Interactivity on the webpage with JavaScript

Two-way highlighting between ingredients is implemented using JavaScript and HTML5
data-attributes. This allows people to click on an ingredient in the ingredient list, and see
the ingredient highlighted in each instruction it is used it. A simple timer is constructed
for each element with the required data-original-time attribute, using setInterval and
adding click event listeners. A beeping sound is made using the AudioContext web API,
to prevent having to supply a separate audio file.

4.7 Rascal source size

To give an indication of the size of the project, and each of the individual modules, we
computed the linecount. Lines of code are counted using cloc --force-lang="Java"
*.rsc --by-file. Rascal source files use a similar style for comments as Java. The
counts can be seen in table 2.

28

Table 2: Lines of Code in Corel
LOC File Description

197 ./CST2AST.rsc Converting parse tree to AST
107 ./AST.rsc ADT definitions
40 ./DensityDb.rsc Interfacing density database
18 ./Resolve.rsc Linking definitions and uses
69 ./IDE.rsc Corel IDE plugin functions

547 ./NutrientDb.rsc Interfacing nutrient database
87 ./Frink.rsc Bindings for Frink language
7 ./FuzzyWuzzy.rsc Bindings for FuzzyWuzzy

82 ./Syntax.rsc Corel concrete syntax definition
264 ./Check.rsc Recipe content validation
502 ./Compile.rsc Compilation to webpage
129 ./Transform.rsc Scaling a recipe

2049 total

Notes Note that the high linecount in NutrientDb, the module to interface with the
RIVM NEVO database, is due to some functions working on the 100+ column-wide dataset.
The compilation code has become quite large as well, due to inlining of the CSS styles and
javascript.

Two small Java bindings were created, to convert between Java and Rascal types. Their
sizes are show in table 3

Table 3: Java binding sizes
LOC File Description

29 ./FuzzyWuzzyBinding.java String distances
36 ./FrinkBinding.java Unit conversions

65 total

These are both quite small, as their main task is to forward strings to their respective
libraries.

29

5 Results

5.1 Evaluating expressivity

To measure the expressivity of Corel, we converted a control group of twenty recipes from
plaintext to Corel. Here, we annotated each of the features that is implemented in Corel,
and highlighted those that we could not annotate correctly, as seen in listing 14.

Listing 14: Annotating the control group
15 - 1 1/2 [cups] {tomatoes}; peeled chopped or 1 1/2 cups canned

tomatoes
16 - 1/2 [cup] white {wine}
17 - 1/2 [cup] {feta cheese}; crumbled
18
19 Instructions:
20 In a pot of boiling water, add @shrimp@ and cook for |1 minute|.

Drain well. Place @shrimp@ on bottom of greased baking dish
in single layer. Set aside.

The features that are implemented can all be annotated without problems: the units [
cups], the ingredient definition { tomatoes }, etc.. The process of annotating the

control group recipes is described in appendix B. To give an insight in the frequency of
each of the un-implemented features, we constructed table 4, containing the total amount
of occurences of each un-implemented feature in the control group. As earlier, the notation
A > B means that unit A consists of unit B, and that B can be found as a child of A in
the feature diagram in figure 2. Note that we leave out the root element Recipe here as
well.

Unimplemented feature Count

Ingredients > Alternatives 7
Ingredients > Note 20
Instructions > Note 17
Instructions > Action > Condition 2
Instructions > Action > Objects > Appliance 48
Instructions > Action > Objects > Utensils 7
Instructions > Action > Target state 32
Instructions > Action > Guideline 15

Table 4: Un-implemented feature count over 20 recipes

Note that these elements still can occur in a Corel source text, but they will not be
recognized as the feature their text represents.

30

6 Conclusion
We learned that there is a lot of structure in recipes that are written in natural language.
We found mandatory elements, such as the presence of actions and objects in instructions,
and constructed a feature diagram from this. We were able to decompose every recipe from
the control group into these features, and describe almost all of these features in a Corel
recipe. We experienced that it is straightforward to do computations with recipes in this
structure, and that this can yield informative results.

Interactivity Syntax highlighting communicates how elements are interpreted by Corel.
We use multiple methods (warnings, annotated docs) to communicate the results of the
checker to the user in the editor. These provide insight in the current understanding by
Corel of the recipe, and display which database matches are used for volume-to-mass con-
version and computing the nutritional values. We did not study how the editor interactivity
is experienced by users.

Compiled webpage Compiling a Corel recipe to a webpage allowed us to showcase the
computations that can be done with a recipe: the added nutritional information, the unit
conversions and creating interactive timers, as seen in section 3.3.

6.1 Evaluating expressivity

In the process of annotating the conrol group, we experienced the following:

1. Annotating the sections of a recipe takes little effort, and never fails. Note that we
do not have room for prose inbetween the segments, and thus we did not convert the
metadata features that are not implemented in Corel.

2. Adding the right markup to each of the ingredients raised some issues. Ocassionally
an alternative for an ingredient was specified, or a note regarding the ingredient.
These could not be annotated, and as a result they were categorized as part of the
ingredients preparation. However, each of the features that are implemented in Corel
could be annotated without problems.

3. The instructions are less structured than the ingredient specification, and since fewer
of these features are defined in Corel for the instructions, we came accross more
elements that we could not annotate.

6.2 Discussion

The FODA method is designed to evaluate families of software systems. We applied it on a
different domain, and with a different intention. Certain elements that are analysed in the

31

method are not present in recipes, and thus we had to adapt the analysis. We focused on
the different elements a textual recipe can express. Whether this analysis holds its ground
when used on this different domain is unexplored, and no evaluation of this is done either.

A second difficult part is distilling the right features from the phrases in recipes. Eval-
uating whether a feature affects an end-user is dependend on the context in which the
language is used. A textual recipe is now always read by a human, and the instructions
are followed to produce a dish. With a DSL, the end-user is not as clearly defined, and it
can be argued that the compiler for this DSL is one too.

The dataset that is used for the domain analysis possibly brings biases with it:
1. The form in which recipes can be input could enforce a certain style. Unfortunately

we cannot access this ourselves, as the submission page is not available in our country
(the Netherlands). This would cause recipes in the dataset to follow these require-
ments, and possibly skew the results of our domain analysis.

2. There can be a bias originating in the userbase of Food.com. A mostly north-european
user base could write mostly north-european recipes, which causes the domain anal-
ysis to be one of mostly north-european recipes.

6.3 Future work

6.3.1 Analysis of application domain technology

Analysing the domain technologies in cooking recipes would allow a better understanding
of some of the methods described in recipes. These could then be linked up to explanatory
material, or substituted for different methods, depending on the end-user’s wishes. See
also the paragraph on application domain technology 2.1.1.

6.3.2 Implementing remaining features

There are quite some features in recipes that cannot be expressed in Corel yet. For these
features, new annotation syntax has to be designed. This would enable the DSL to better
understand the phrases that occur in the instructions, or recognize an alternative ingredi-
ent.

6.3.3 Improving ingredient matching

Text-based ingredient matching is difficult, and our method does not always yield the
correct match. Our approach uses no understanding of the meaning of words; only string
based distances are used to find the best match. This is very error-prone in situations
where an ingredient is described with few characters, such as oil. Even more so, since the
databases we use have over-specific descriptions for some ingredients. An example of this
problem was when a match for ham was looked for, and the found match was jam, instead
of ham schoulder medium fat boiled.

32

6.3.4 Disjunct specification for density and nutrient match

Right now, the same part of the ingredient specification is used for finding matches in
both the density database and the nutrient database. This makes it difficult, or sometimes
impossible, to write the specification in such a way that the correct match is found in both
databases. Possibly a new annotation has to be designed, to separate the textual ingredient
description from those that are used to search the databases.

6.3.5 Expanding the horizon

In this project a compilation to a simple recipe webpage is implemented. Integration into
different areas could still be explored, such as generating a visual animation of the recipe,
making it accessible for people with a lower reading comprehension, or using the DSL
in automated kitchens. Scoping this domain would provide insight into the development
direction Corel could take.

33

Glossary
ADT Algebraic Data Type. 22, 25, 28, 29

aggregation Abstracting a collection of units into a new unit, e.g. school is an aggregation
of students, teachers, etc. [12].. 5

AST tree representation of abstract structure of source code. 22, 26, 27

Corel Name of the COoking REcipe Language. 11–14, 16–18, 21, 23, 26, 29–33, 37

CST tree representation of syntactic structure of source code. 22

DSL Domain-specific Language. 3, 5, 9, 11, 32, 33

Feature Diagram displays the standard features of a family of systems in the domain [12].
16

FODA Feature-oriented Domain Analysis. 3–5, 31

Frink A tool and programming language for physical calculations. Used in this project
for unit conversions.. 16, 22–25

generalization Abstracting the commonalities among a collection of units into a new con-
ceptual unit, suppressing detailed differences. An example is generalizing secretaries,
managers and technical staff into the conceptual entity employee [12].. 5

GPL General-purpose Language. 3

HTML HyperText Markup Language. 3, 26

Rascal A metaprogramming language. 3, 11, 21–23, 26–29

SCAM Source Code Analysis and Manipulation. 21

34

Appendices
A Recipe Features
These are examples that display each of the features found in the feature diagram. Note
that these are values from the dataset, and that some features are displayed with additional
markup or surrounding text, such as being prefixed with ”Servings:” or occur in the middle
of an ingredient description or in a table. An indication of what this context could look
like is added in italics. Note that A > B means that unit A consists of unit B, and that
B can be found as a child of A in the feature diagram in figure 2.

Recipe > Metadata > Name
Recipe: Shrimp Stuffed Twice-Baked Potato

Recipe > Metadata > Yield
Yield: 15-17 pancakes

Recipe > Metadata > Servings
Servings: 4

Recipe > Metadata > Description
About this recipe: This is delicious so creamy and tender. The sauce is really tasty. It

takes a little time but that’s all simmering time. Serve with potato. You’ll enjoy it I’m
sure.

Recipe > Metadata > Preparation time
Preparation time: 10 minutes

Recipe > Metadata > Cooking time
Cooking time: 25 minutes

Recipe > Metadata > Nutrition
Nutrient Quantity

Fats 10.1 gr
Sodium 213 mg
Protein 15.5 gr

Recipe > Ingredients > Quantity > Value > Range
12 - 16 white corn tortillas

35

Recipe > Ingredients > Quantity > Value > Exact value
2 garlic cloves, crushed

Recipe > Ingredients > Quantity > Unit of measure
2 tablespoons soy sauce

Recipe > Ingredients > Name
3⁄4 cup plain soy yogurt

Recipe > Ingredients > Preparation
1 carrot, finely shredded

Recipe > Ingredients > Alternatives
3 tablespoons butter (or margarine)

Recipe > Ingredients > Note
1 pound sandwich buns, (about 4 large sandwich buns, halved (we use sourdough)

Recipe > Instructions > Action > Conditional
If the mixture is too thick, add milk, a little at a time, until pancake batter consistency.

Recipe > Instructions > Action > Objects > Ingredient
Whisk in flour

Recipe > Instructions > Action > Objects > Appliance
Melt butter in small saucepan

Recipe > Instructions > Action > Objects > Utensil
Prick pie shell with fork

Recipe > Instructions > Action > Target state
Saute mushrooms and onions until tender and mushroom liquid has evaporated

Recipe > Instruction > Action > Guideline
Bake until filling is puffed, about 11⁄3 hour

Recipe > Instruction > Note
This is good after being frozen, but loses some crunch.

36

B Annotating recipes
These are the general changes we made to each plaintext recipe, such that they would
adhere to the syntax of Corel.

B.1 General steps

For each recipe, the process looks as follows (starting from a plaintext recipe that matches
the segments as in 3.1.1):

1. Add brackets [] around the unit of measure of an ingredient, if it is present

2. Add curly braces { } around the defining ingredient name

3. Separate description from preparation with a semicolon ;

4. Add at-symbols @ @ to ingredient references in the instructions

5. Wrap temperatures in angled brackets < >

6. Wrap time in vertical bars | |.

B.2 Encountered problems

While converting the recipes from the control group to Corel, we encountered certain diffi-
culties; elements that were expressed in natural language, that we are unable to annotate
correctly with the Corel syntax. In listing 15 is a recipe from the control group, in which
we highlighted the elements that we could not annotate.

Listing 15: Control group recipe 1
1 Recipe:
2 Greek Tomato, Shrimp and Feta
3
4 Servings: 4
5
6 Ingredients:
7 - 1 1/2 [lbs] {shrimp}; peeled and deveined
8 - 1/4 [cup] olive {oil}
9 - 2 {garlic} cloves; minced

10 - 3/4 [cup] {onion}; chopped
11 - 1/4 [teaspoon] red {pepper flakes}
12 - 1 [teaspoon] {oregano}
13 - 1/2 [teaspoon] {basil}
14 - 1 [tablespoon] {parsley}

37

15 - 1 1/2 [cups] {tomatoes}; peeled chopped or 1 1/2 cups canned
tomatoes

16 - 1/2 [cup] white {wine}
17 - 1/2 [cup] {feta cheese}; crumbled
18
19 Instructions:
20 In a pot of boiling water, add @shrimp@ and cook for |1 minute|.

Drain well. Place @shrimp@ on bottom of greased baking dish
in single layer. Set aside.

21 In a skillet heat @oil@. Add @garlic@, @onion@ and red @pepper
flakes@. Cook until veggies are soft.

22 Add @oregano@, @basil@, @salt@ and @pepper@. Stir and cook |1
minute|.

23 Add @wine@ and bring to boil. Cook for |2 minutes|.
24 Add @tomatoes@ and stir well. Reduce heat to low and simmer |8

minutes|. Most of liquid should evaporate.
25 Pour mixture over @shrimp@ in baking dish. Top with @feta

cheese@.
26 Bake, uncovered , at <325 degrees F> for |15 minutes|.
27 Serve.

Obserive in listing 15 that there is an alternative ingredient specified: or 1 1/2 cups
canned tomatoes. This is something we cannot annotate yet. In the instructions we see
multiple appliances being referred to. These are left as prose, and not annotated either.
For this recipe, we thus count 1 occurence of the un-implemented feature Ingredients >
Alternatives, and 4 occurences of Instruction > Action > Objects > Appliance. A
target state until veggies are soft and a note Most of the liquid should evaporate
are also highlighted and counted. This process is done for each of the recipes in the control
group. Here we have listed each of the features we could not annotate per recipe, followed
by the amount of times they occured in a recipe:

Gf Easy Delicious Chili
Unimplemented feature Count

Ingredients > Alternatives 1
Ingredients > Note 2
Instructions > Action > Condition 1
Instructions > Action > Objects > Appliance 1
Instructions > Action > Guideline 2

Chile Relish

38

Unimplemented feature Count

Instructions > Note 1
Instructions > Action > Objects > Appliance 2
Instructions > Action > Target state 1

Greek Tomato, Shrimp and Feta
Unimplemented feature Count

Ingredients > Alternatives 1
Instructions > Note 1
Instructions > Action > Objects > Appliance 4
Instructions > Action > Target state 1

Best Soy Stuffed Bell Peppers
Unimplemented feature Count

Ingredients > Note 3
Instructions > Note 1
Instructions > Action > Objects > Appliance 1
Instructions > Action > Guideline 1

Adobo De Chile
Unimplemented feature Count

Ingredients > Note 4
Instructions > Note 4
Instructions > Action > Condition 1
Instructions > Action > Objects > Appliance 6
Instructions > Action > Objects > Utensils 1
Instructions > Action > Target state 4

Peanut Butter Chocolate Pretzel Candy
Unimplemented feature Count

Instructions > Action > Objects > Appliance 4

Whole Wheat Chocolate Chip Banana Bread

39

Unimplemented feature Count

Ingredients > Alternatives 1
Instructions > Action > Objects > Appliance 6
Instructions > Action > Objects > Utensils 2
Instructions > Action > Target state 5
Instructions > Action > Guideline 1

Pan Roasted Chicken With Artichokes and Lemon
Unimplemented feature Count

Ingredients > Alternatives 1
Instructions > Action > Objects > Appliance 2
Instructions > Action > Target state 1
Instructions > Action > Guideline 1

Instant Triple Coffee Ice Cream
Unimplemented feature Count

Ingredients > Alternatives 1
Ingredients > Note 1
Instructions > Action > Objects > Appliance 3
Instructions > Action > Target state 2
Instructions > Action > Guideline 1

Chicken Breasts With Spicy Honey-Orange Glaze
Unimplemented feature Count

Ingredients > Note 1
Instructions > Action > Objects > Appliance 2
Instructions > Action > Target state 2

Spaghetti Alla Norma
Unimplemented feature Count

Instructions > Action > Objects > Appliance 1
Instructions > Action > Target state 3
Instructions > Action > Guideline 3

My Mum’s Christmas Cake

40

Unimplemented feature Count

Ingredients > Note 1
Instructions > Note 3
Instructions > Action > Objects > Appliance 1

Grilled Herb-Coated Chicken Breasts
Unimplemented feature Count

Instructions > Note 2
Instructions > Action > Objects > Appliance 3
Instructions > Action > Objects > Utensils 1
Instructions > Action > Target state 2
Instructions > Action > Guideline 1

Bacon Wrapped Shrimp
Unimplemented feature Count

Instructions > Action > Objects > Utensils 1
Instructions > Action > Target state 1
Instructions > Action > Guideline 1

California Burgers
Unimplemented feature Count

Instructions > Action > Objects > Appliance 1

Sloppy Joe Style Pizza Burger
Unimplemented feature Count

Grilled Pineapple With Key Lime and Agave Nectar
Unimplemented feature Count

Ingredients > Alternatives 1
Ingredients > Note 4
Instructions > Note 2
Instructions > Action > Objects > Appliance 3
Instructions > Action > Target state 1
Instructions > Action > Guideline 1

41

Black Bean Brownies
Unimplemented feature Count

Ingredients > Alternatives 1
Ingredients > Note 1
Instructions > Note 3
Instructions > Action > Objects > Appliance 6
Instructions > Action > Objects > Utensils 2
Instructions > Action > Target state 6
Instructions > Action > Guideline 2

White Bean and Roasted Eggplant Hummus (Baba Ghanoush)
Unimplemented feature Count

Ingredients > Note 3
Instructions > Action > Objects > Appliance 2
Instructions > Action > Target state 3
Instructions > Action > Guideline 1

42

References
[1] Corel recipe page website. https://web.archive.org/web/20210721122556/https:

//roorda.dev/recipes/0. Accessed: 2021-07-21.

[2] Daring Fireball: Markdown website. https://daringfireball.net/projects/
markdown/. Accessed: 2021-07-15.

[3] FAO INFOODS Density database v2 website. http://www.fao.org/infoods/
infoods/tables-and-databases/faoinfoods-databases/en/. Accessed: 2021-08-
04.

[4] Frink Language website. https://frinklang.org/. Accessed: 2021-07-19.

[5] FuzzyWuzzy Java binding on github. https://github.com/xdrop/fuzzywuzzy. Ac-
cessed: 2021-08-09.

[6] Kaggle Food.com recipe dataset. https://www.kaggle.com/irkaal/
foodcom-recipes-and-reviews. Accessed: 2021-03-26.

[7] NEVO-online versie 2019/6.0, RIVM, Bilthoven website. https:
//web.archive.org/web/20210305021057/https://www.rivm.nl/
nederlands-voedingsstoffenbestand/toegang-nevo-gegevens/nevo-online/
copyright-en-disclaimer. Accessed: 2021-07-21.

[8] Rascal html5 dom. https://github.com/usethesource/rascal/blob/master/src/
org/rascalmpl/library/lang/html5/DOM.rsc. Accessed: 2021-08-04.

[9] Rascal metaprogramming language. https://www.rascal-mpl.org/. Accessed:
2021-02-17.

[10] Rascal, ParseTree, Implode website. https://docs.rascal-mpl.org/unstable/
Libraries/#ParseTree-implode. Accessed: 2021-07-19.

[11] ValLang usethesource github page. https://github.com/usethesource/vallang.
Accessed: 2021-08-17.

[12] K. C. Kang, S. Cohen, J. A. Hess, William E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. 1990.

[13] Paul Klint, Tijs van der Storm, and Jurgen Vinju. Rascal, 10 years later. In 2019
19th International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 139–139, 2019.

[14] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316–344, 2005.

43

https://web.archive.org/web/20210721122556/https://roorda.dev/recipes/0
https://web.archive.org/web/20210721122556/https://roorda.dev/recipes/0
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
http://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/
http://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/
https://frinklang.org/
https://github.com/xdrop/fuzzywuzzy
https://www.kaggle.com/irkaal/foodcom-recipes-and-reviews
https://www.kaggle.com/irkaal/foodcom-recipes-and-reviews
https://web.archive.org/web/20210305021057/https://www.rivm.nl/nederlands-voedingsstoffenbestand/toegang-nevo-gegevens/nevo-online/copyright-en-disclaimer
https://web.archive.org/web/20210305021057/https://www.rivm.nl/nederlands-voedingsstoffenbestand/toegang-nevo-gegevens/nevo-online/copyright-en-disclaimer
https://web.archive.org/web/20210305021057/https://www.rivm.nl/nederlands-voedingsstoffenbestand/toegang-nevo-gegevens/nevo-online/copyright-en-disclaimer
https://web.archive.org/web/20210305021057/https://www.rivm.nl/nederlands-voedingsstoffenbestand/toegang-nevo-gegevens/nevo-online/copyright-en-disclaimer
https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/lang/html5/DOM.rsc
https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/lang/html5/DOM.rsc
https://www.rascal-mpl.org/
https://docs.rascal-mpl.org/unstable/Libraries/#ParseTree-implode
https://docs.rascal-mpl.org/unstable/Libraries/#ParseTree-implode
https://github.com/usethesource/vallang

	Introduction
	Goals
	Methodology

	Domain Analysis
	FODA Method
	Feature analysis

	Language Design
	Writing a Corel recipe
	Interactivity and checking
	Compilation

	Implementation
	Rascal
	Syntax to AST
	Frink binding
	Checker implementation
	IDE plugin
	Compilation to a webpage
	Rascal source size

	Results
	Evaluating expressivity

	Conclusion
	Evaluating expressivity
	Discussion
	Future work

	Glossary
	Appendices
	Recipe Features
	Annotating recipes
	General steps
	Encountered problems

