
Exploring architectural knowledge in issue

tracking systems

Bachelor’s Project Thesis

Twan Hoven, s3747298
Supervisor: Dr. M.A.M. Soliman

Abstract: Every software project, even on a small scale, has a
software architecture. Some architectures may be well developed
and carefully designed while others are created on the fly as
seemed fit. We propose to explore existing software systems
to capture architectural knowledge based on quantitative text-
analysis of issues found in issue tracking systems. The goal is to
be able to capture architectural knowledge that would have been
unavailable otherwise.

1

1 Acknowledgments

Dr. M.A.M. Soliman was of great help during the study and I would
like to thank him for that. The weekly meetings and guidance during
the research contributed to the knowledge that has been captured within
this paper.

2

Contents

1 Acknowledgments 2

2 Introduction 4

3 Background information 5

4 Research Process 6

5 Results 9
5.1 Distribution . 9
5.2 Variants . 10

5.2.1 Architectural Component Behaviour and Structure 10
5.2.2 Architectural Design Configuration 11
5.2.3 Solution Benefits and Drawbacks 12
5.2.4 Existing System Architecture 12
5.2.5 Assumptions . 13

5.3 Co-occurrence . 13
5.4 Taxonomy . 14

6 Discussion 17
6.1 Research Question 1: . 17
6.2 Research Question 2: . 17
6.3 Research Question 3: . 17
6.4 Research Question 4: . 18
6.5 Research Question 5: . 18

7 Threats to validity 19

8 Conclusions & Future work 19

A Appendix 21
A.0.1 Taxonomy Architectural Design Configuration (l)

and taxonomy Solution Benefits and Drawbacks (r) 22
A.0.2 Taxonomy Architectural Component Behaviour (l)

and taxonomy Existing System Architecture De-
scription (r) . 23

A.0.3 Taxonomy Quality Attribute Requirements (l) and
taxonomy User Requirements (r) 24

3

2 Introduction

Software architecture consists of a series of design decisions that make
up the software structures [1]. The architecture determines how these
structures interact with each other and what their purpose is. Good
architectures can have a big positive impact on the life cycle of a system
in terms of modifiability, re-usability and overall quality [1]. This is
why software architecture is a very important subject within the field of
Computing Science and software engineering. It is difficult to learn, and
takes a lot of experience to get right. It has to be mentioned that a system
that adheres to architecture is only part of the equation. An architecture
that is not documented is only usable as long as the developer or team of
developers is still actively working on the project. As stated by Kruchten
the best architecture consists of design decisions that are explicit and
documented. An explicit decision is a decision that is made for a very
specific reason [2].

In the real world, however, these design decisions are often not well,
or not at all, documented. Part of the problem is that architectural
design decisions are difficult to take and document. As of today, there is
no consensus on how to define or formalize design decisions. One starts
with the decision itself but after that different approaches have been
proposed. As described by Jansen and Bosch, rules, constraints and
requirements are the main essential elements [3]. This does not mean
that the decisions have to be lost forever. Generally, the issues in issue
tracking systems contain a lot of information on what has changed in
the system over time. We propose to capture architectural knowledge by
looking at the commits, a set of changes to the source code, and the issues,
a textual description of the changes, that go with them. Exploring the
information that can be extracted from the code and the issues results in
a list of annotations that describe the high-level architectural knowledge
and the coding book that belongs to it. Because documentation is often
lacking, it is all the more important that this knowledge is recorded after
the fact.

Previous studies on the subject have tried to capture the design de-
cisions using various techniques. The ADDRA approach is one of the
current approaches to capture architectural knowledge. ADDRA tries to
recover architectural design decisions based on code from snapshots of a
particular system [3]. However, the research only looks at the code which
is only half of the relevant information. When exploring architectural
knowledge we propose to also include the issue tracking system that is
used during the development and maintenance to explore the knowledge
that is hidden in the issues.

An example of research that does look into issue tracking systems is
the research by Shahbazian et al [4]. It introduces architecture recovery
using RecovAr, where code changes and issues are combined to create a
decision graph [4]. Contrary to what we plan to do, their research did
not involve textual analysis of the issues. The reason we propose to per-
form the textual analysis is that the issues contain a lot of unstructured
information and knowledge that when annotated correctly can give an
insight into the design decisions behind the code changes.

In a study by Shanin et al [5] AK concepts were captured using a
conceptual model. This model is relatively simple compared to mod-
els used in similar research and focuses more on capturing higher level
specifics in software documentation. The model tries to capture differ-

4

ences between requirements, concerns, alternatives or decisions and the
relations between those concepts [5]. Although Shanin concluded that
the AK conceptual model was able to help junior architects to recover
architectural knowledge [5], the knowledge that is captured does not
describe AK in much detail. This paper aims to capture AK in more
detail by including new AK concepts described by Soliman et al [6].

The downside of the aforementioned approaches is that they are limited in
terms of describing the design decisions. This study proposes to explore
and analyze large existing open-source software systems using reverse
engineering and textual analysis of issues found in issue tracking systems
used during the development of such projects. The main goal of this
study is to capture the present knowledge about the architecture, hidden
in the issues. The knowledge captured would contribute to a better
recognition of the available knowledge that up til now could not been
captured.

3 Background information

Issue tracking systems
An Issue Tracking System, or ITS, to keep track of the state of a system.
Issue tracking systems include way more information regarding the state
of the project at hand than the name suggests. These systems are ac-
tively used within organizations that have in-house development teams,
regardless of the size of these teams.

The core of this research involves looking at the issues that are maintained
within these issue tracking systems. Each issue has a description that
states the purpose and has a comment section in which developers can
discuss the proposed idea and contribute to it. The purpose of the issue
can range from bugs that need to be addressed to entirely new features
because of changing client requirements. The issues discussed in this
paper are mainly focused on adding new functionality as both of the
projects at hand are already several.

Another benefit of an issue tracking system is that it is tightly cou-
pled to the source code. Whenever someone works on an issue and
updates code or data related to that issue this will be coupled. For this
research, however, we will not consider the code changes that belong to
every issue.

Architectural knowledge
Architectural knowledge and the design decisions that are part of this can
be quite difficult to document. According to a study by Jansen Bosch in
2008 the decisions should at least contain the most essential parts such as
rules, constraints and requirements [3]. However, according to Kruchten,
relationships are also an important element such that all decisions can be
structured [2]. The aforementioned elements are all based on qualitative
rationale. This requires skill from the architect who needs to be able
to communicate why a decision is made to, for example, stakeholders
[1]. As proposed by Tang and van Vliet there can also be quantitative
elements such as cost or risk assessments[7]. In order to gain an insight
in such a complex system of knowledge a coding book is used as a means
to classify or label decisions and knowledge. As part of a similar study
by Soliman et al. [6] a coding book was created for the same purpose.

The coding book describes all the AK concepts that will be consid-
ered in detail. Architectural Design Configuration (CONF) describes the

5

relationships between components of the proposed solution.

The Architectural Component Behaviour And Structure (CB) describes
the behaviour and structure of singular components as well as the techni-
cal details or input and output data.

Solution Benefits and Drawbacks (BD) indicate the reasons why a certain
solution might or might not be usable. The Existing System Architecture
Description (EX) is a similar concept to the CONF and CB except that
they apply to the already existing system instead of to the newly proposed
solution.

Next to the previously mentioned concepts the following concepts will
be considered; Motivation of Design Issue (MOT), User Requirements
(UREQ), Quality Attribute Requirements (REQ), Technical Debt (TD),
Run-time Quality Issues (EXQ), Contextual Constraints (CC), Other
System Architectural Solutions (OSAS), Architectural Tactics (AT), As-
sumptions (AS), Trade-offs (TO) and Risks (R).

4 Research Process

In order to explore what architectural knowledge is present in issue track-
ing systems, we first need to know what types of architectural knowledge
concepts are present. This leads to the following research question:

Research Question 1: “What kind of architectural knowledge is present
in issue tracking systems?”

As an extension of this, we look at the location of where the differ-
ent concepts are discussed as there may be a difference between the
introduction, summary and comment sections of an issue. This results in
the research question:

Research Question 2: “In which issue sections are AK concepts for
existence ADDs being discussed?”

After establishing a broader overview of the concepts within the issues
we will take a closer look at individual sets of knowledge. During the
feasibility study it became clear that within the comments of an issue,
multiple different concepts could be found. In order to get an insight in
what different types of concepts co-occur we will answer the following
question:

Research Question 3: “How do AK concepts co-occur with each other
to make ADDs in issue tracking systems?”

Not only the co-occurrence of different concepts can be interesting but
also the textual analysis and wording used within these comments on the
AK, leading to the following questions:

Research Question 4: “What textual variants are used when describing
AK concepts in issue tracking systems?”

and:

Research Question 5: “What does the taxonomy of AK concepts look
like in issue tracking systems?”

6

Answering these research questions should give insight in the architectural
knowledge concepts that are relevant and showcase their specifics and
relations that help identify them. To answer our research question, we
will follow three steps which form the research process.

1. Select Issues
The most important step is to select the projects that serve as a
starting point. Based on earlier research done by Soliman et al
[6] three projects were selected that could provide enough issues
with the necessary amount of content needed. For this research the
Hadoop project [8] was selected as no research was done on that
project thus far.

As Hadoop is the overarching project this would be considered
too large and too complex to serve as a base for this research. How-
ever, as Hadoop is build up using multiple smaller projects, these
smaller projects are considered to be less complex and more useful in
terms of data gathering. The selected projects are Hadoop-Common
(Hadoop) and the Hadoop Distributed File System (HDFS). A to-
tal of 121 issues were selected following the process described by
Soliman et al [6].

2. Annotating the selected issues
During the annotation process every issue is then annotated using
the concepts described in the coding book [6] while also maintaining
a separation between the different subsections in each issue such as
the description or comment section in order to be able to analyze
these different sections later on.

As described by Soliman et al. a set of decision factors exists
to annotate the selected issues. One of the decision factors could be
Architectural component behavior which describe the behaviour or
technicalities of components, regardless of whether they are small
or large, within the architecture at hand [6]. These decisions factors
are used to all sentences such that these annotations can be used
for further quantitative analysis.

Issue Example
HDFS-2802 ”Low resource overhead at the NN to maintain

snapshots”
HADOOP-3750 ”Actually, the dependency should just be: hdfs

depends on core, mapred depends on core”

The sentence above gives a clear indication of the decision factor
involved. The first sentence would be labeled as a Quality At-
tribute Requirement and the second sentence would be labeled as
the Architectural Design Configuration concept.

Issue Example
HDFS-3750 ”I think this patch can go in and doesn’t need

to wait for HADOOP-4631. Checking this in
early would restrict users to introduce any cyclic
dependency in code.”

Not every comment or sentence provided useful information. As
shown in the examples above, some sentences are too technical or
have nothing to do with the decision factors described in the coding
book by Soliman et al.

7

3. Quantitative Analysis of the annotations
After the annotation process qualitative analysis is performed to
answer our research questions. Research Question 1 and 2 will
be answered by annotating all issues as described above and filter
out any issues that do not contain valuable content. Issues are con-
sidered to not be useful when they contain either no long discussions
or contain discussions on a technical level that is too low to be of
interest. An example of this would be extensive lists of test coverage
or results.

Research Question 3 is answered by analysing the number of
times a certain concept is used in combination with another concept.
The significance of the co-occurrence is calculated using χ̃2.

Research Question 4 will be answered by revisiting all anno-
tations and determining the form for the accompanying AK-concept
for every single one of the annotations in the set. These forms are
found in the coding book and are used to determine the distribution
of variance. The last research question, Research Question 5 is
answered following the next steps:

(a) Selected the most common AK-concepts based on set of concepts
found while answering step 1.

(b) In order to determine the taxonomy or most frequently used
words for each concept there are a few important concepts to
consider. The first step is to remove English stop words as these
should not count towards the total. Using the NLTK library
for Python this can be achieved without any issue [9]. NLTK
is widely known as a tool that is useful when working with
language data. It provides multiple functionalities which can
be used to process text to be used for further analysis. One of
the features of NLTK that is important to be considered during
the study is Lemmatization. Lemmatization is the process
of converting every word into the unique form of the word.
For example, the words am, are or is all converge into the
verb be. When determining the taxonomy of a piece of text,
Lemmatization should be used such that all text is properly
classified.

8

5 Results

5.1 Distribution

During the annotation process over 100 issues and attachments were
analyzed, resulting in over 3500 annotations which serve as the data set
for this research. All annotations are categorized according to whether
they belong to the description of the issue, the comment section or are
found within an attachment.

Figure 5.1: Distribution of different concepts in the issue descrip-
tion.

As shown in Figure 5.1 the greater part of the description contains
(> 85%) either Architectural Component Behaviour and Structure, Ar-
chitectural Design Configuration or Architectural Solutions benefits and
drawbacks. A reason for this could be that the description of an issue
is often used to propose a solution for a certain problem or requested
feature. This suggestion is supported by the fact that Run-time Quality
Issues (≈ 3%) and the Existing System Architecture Description (≈ 6%)
are also present relatively often.

When comparing the distribution of the comment section to the
description there are no significant changes noticeable other than that
the concepts Run-time Quality Issues and Existing System Architecture
Description occur less frequently.

Figure 5.2: Distribution of different concepts in the attachments.

Although there are no major differences between the issue description
and the comment section of the issues there is a noticeable difference
present when looking at the attachments. Where the Architectural

9

Design Configuration made up less than half of the annotations (≈ 40%)
in the description and comments, almost 60% of the annotations within
the attachments focuses on the design configuration. Together with
Architectural Component Behaviour (12.5%) and solution benefits and
drawbacks (17.5%) there are three concepts that make up most of the
concepts that are discussed. This suggests that the attachments are
mostly used to substantiate the design decisions that are discussed in the
comment section.

Figure 5.3: Distribution of the lengths per annotation-size for the
most common AK concepts.

Looking at the annotation size in Figure 5.3 it becomes clear that
the issues that are the most common concept among the annotations are
also written about in a longer form. This shows that discussions about
the architecture, the concepts behind it and it’s benefits and drawbacks
are of greater importance then other AK concepts.

5.2 Variants

Each AK Concept can be described in different forms. These various forms
make it easier to recognize a certain concept. For the four most common
AK concepts (>90%) the textual variants are reviewed in greater detail.
In the results below the description, comment section and attachments
are grouped before calculating the variance of a certain concept. There is
only a small percentage difference (< 5%) on each variant when looking
at the different sections which is therefore not of interest.

5.2.1 Architectural Component Behaviour and Structure

Figure 5.4: Textual variants of the Architectural component be-
haviour and structure concept.

10

Figure 5.3 shows the distribution of the various forms the CB has been
identified as. The concept appears to be most often described by describ-
ing the high-level concept (≈ 55%) behind the proposed solution such as
the behaviour or approach to solve a problem [6].

5.2.2 Architectural Design Configuration

Figure 5.5: Textual variants of the Architectural Design Configu-
ration concept.

Figure 5.4 shows the distribution of the various forms the CONF concept
concept has been identified as. The concept appears to be most often
described by describing static dependencies, or, in other words, what
components are involved in creating the proposed solution [6]. Dynamic
dependencies are described less often indicating that the exact order in
which components interact are not that important when discussing the
initial solution.

Issue Example
Hadoop-2184 ”Is it possible to have a situation that a RPC

socket is shared by two identities?”

Hadoop-2184 ”Maybe we should just add a Ticket field to
Invocation. Then the Client can pass the proxy’s
ticket with the call, as an invisible parameter. ”

The Design configuration describes either static or dynamic dependencies.
However, it also happens that questions are asked regarding the design
configuration or that suggestions are being made as can be seen in the
table above. Questions or suggestions do not naturally fit in the category
of static or dynamic dependencies as the intention behind it is quite
different since they contain an uncertainty.

11

5.2.3 Solution Benefits and Drawbacks

Figure 5.6: Textual variants of the Architectural Solution Benefits
and Drawbacks concept.

Figure 5.5 shows the distribution of the various forms the Architectural
Solution Benefits and Drawbacks concept has been identified as. Benefits
and drawbacks are in most cases (≈70%) described using adjectives
such as ”good” or ”bad” [6]. Problems or issues are also (≈ 20%) used
regularly to describe why a proposed solution is not optimal or can be
improved.

5.2.4 Existing System Architecture

Figure 5.7: Textual variants of the Existing System Architecture
concept.

Figure 5.6 shows the distribution of the various forms the Existing Sys-
tem Architecture concept has been identified as. In a large part of the
annotations (≈ 60%) we found that when the existing architecture was
discussed, the behaviour of the system was more important than the
actual implementation on a lower level. A reason for this could be that
the current behaviour often needs to be improved or build upon in which
case the behaviour receives the most attention.

A differentiation can be made between describing the existing archi-
tecture and components but also the benefits and drawbacks of the
current implementation. Benefits and drawbacks of the current system

12

are often an important factor when making decisions regarding new
changes or features and it can be argued that this should be another
textual variance of the existing system architecture.

Issue Example
Hadoop-4952 ”Today a site.xml is derived from a single

Hadoop cluster. This does not make sense for
multiple Hadoop clusters which may have differ-
ent defaults.”

Hadoop-7240 At-
tachment

”HDFS does the following very well: Scaling
(storage, IO, clients Horizontal scaling – IO
+ PBs), Fast IO – scans and writes,Number of
concurrent clients 60K to 100K++ ...”

5.2.5 Assumptions

Often times within a discussion the preference for a certain solution is
expressed. However, these preferences are expressed without any support-
ive arguments meaning that it is simply a form of personal preference.
The preference would fit in the ”Assumptions” concept but is not de-
scribed explicitly nor using uncertainty-related terms. A new textual
variance to be added to Assumption could be called ’Implicit’ or ’Based
on preference’.

Issue Example
Hadoop-19285 ”My preference is this feature, like all scan fea-

tures, should be outside the NN.”

5.3 Co-occurrence

Figures 5.8 and 5.9 show the co-occurrence between different AK concepts
indicating the relation between the concepts. The thickness of the lines
connecting the different concepts shows how often the different concepts
are present together within the specified parts of the issues. This size
of each of the nodes indicates how often the same concept is present
multiple times next to each other.

13

Figure 5.8: Co-occurrence between concepts in the description and
comments.

The description shows a clear presence of relations between ABD,
CONF and CB. The design configuration also co-occurs with a lot of
other concepts.

Figure 5.9: Co-occurrence between concepts in the attachments.

Comparing the co-occurrence within the description and comment
section to that of the attachments there are similarities as well as dif-
ferences. The biggest similarity is the strong presence of co-occurrence
between the concepts BD, CONF and CB, meaning these concepts are
key factors regardless of their position. The biggest difference is the
lack of co-occurrence between concepts in the description and comments
sections where they are present in the attachments.

5.4 Taxonomy

Based on the most commonly used AK concepts found in section 5.1 we
will take a closer look at the taxonomy of the ten most common words
used in the issues for each separate concept.

14

Rank Word Occ.
1 file 94
2 block 62
3 data 61
4 need 61
5 use 60
6 key 58
7 one 55
8 node 54
9 method 54
10 also 53

Rank Word Occ.
1 block 79
2 container 52
3 namenode 50
4 directory 49
5 state 47
6 storage 46
7 token 46
8 data 37
9 file 34
10 current 32

Figure 5.10: Taxonomy of the Architectural Component Behaviour
and Structure concept in the description and comments (l) and the
attachments (r).

When looking at the most common words for the Component Be-
haviour concept it is interesting to see the difference between the descrip-
tion and the attachments. Were the most common words in the comment
section are not very specific a distinction can be made when looking at
the words from attachments. Words such as block, directory or container
indicate the architectural components which are involved in the issues
and are used rather often.

Rank Word Occ.
1 block 312
2 file 231
3 would 219
4 client 214
5 user 205
6 data 199
7 need 194
8 use 159
9 nn 156
10 also 148

Rank Word Occ.
1 data 328
2 block 324
3 storage 216
4 hdfs 212
5 file 207
6 client 198
7 namenode 183
8 user 173
9 key 160
10 node 160

Figure 5.11: Taxonomy of the Architectural Design Configuration
concept in the description and comments (l) and the attachments (r).

When comparing the taxonomy of issues for CONF and CB there
are not a lot of differences between the most common words in the
description and comments, nor in the attachments. This makes sense
considering both concepts are related to describing the proposed solution
to architectural changes.

15

Rank Word Occ.
1 would 150
2 block 115
3 also 111
4 data 109
5 file 107
6 client 94
7 hdfs 94
8 like 93
9 since 93
10 could 90

Rank Word Occ.
1 hdfs 38
2 need 34
3 block 33
4 client 32
5 data 28
6 file 28
7 storage 28
8 token 26
9 the 26
10 namenode 24

Figure 5.12: Taxonomy of the Architectural Solution Benefits and
Drawbacks concept in the description and comments (l) and the
attachments (r).

The Solution Benefits and drawbacks do show a difference however,
when being compared to the taxonomy of either the CONF or CB concept.
The description and comments contain words such as would, also, since
or could which are commonly used to describe benefits or drawbacks.
The attachments show no major differences compared to the other AK
concepts, probably because they are often used to help as a supportive
piece for the rest of the discussion on the issue itself.

16

6 Discussion

Multiple issues contained comment sections that focused on testing or
were simply too low-level. In multiple issues, the implementation details
of a certain method are discussed. Although these implementations are
supported by design decisions somewhere earlier in the development life
cycle, the actual implementation details are not as relevant for this study
as they do not provide insights in the architectural design decisions made.
Further research could be done in order to automatically rule out the
issues that do not contain relevant information.

6.1 Research Question 1:

Issues contain a lot of information on architectural design decisions made
during the development process. Although there are more than 10 differ-
ent AK concepts that can be distinguished when looking at the issues,
only a small subset of those is used regularly as can be seen while looking
at figure 5.1. CB, CONF and BD combined form over three quarters
of the annotations found. This indicates that the architectural design
and structure of the system and its components are oftentimes of greater
importance and that advantages and disadvantages are used to discuss
these architectural designs.

One of the risks in determining that the issues are following the above
mentioned approach by default is that only two different projects were
analyzed during this study. Although both projects were completely
separate part of the system, often times with different people working
on them, they still belonged to Apache Hadoop. This could mean that
when looking at completely different projects, the main focus throughout
the development process could be centered around other AK concepts.
Due to this uncertainty, further research could look into this in order to
get a better overall understanding of the distribution of AK concepts.

6.2 Research Question 2:

Looking at the results presented in section 5.1 it becomes clear that a
differentiation can be made between the issue itself, consisting of the
description and the comment section, and the attachments. The at-
tachments are more centered around the technicalities and structure of
the architecture rather than supporting the decisions that lead up to them.

The results show that the description and comment section contain
more information about the potential benefits and drawbacks than the
attachments. The attachments contain more information about the ar-
chitecture and components involved as well as statements regarding the
Quality Attributes. This knowledge can be used during further research
depending on the focus of the study. If recovery of the architecture is
more important than the reasoning behind it, the attachments might
provide better value.

6.3 Research Question 3:

The co-occurrence found during this research shows that there is a lot of
information that can be found within the issue. Concepts such as Archi-
tectural Design Configuration, Benefits and Drawbacks and Component
Behaviour often co-occur which can be useful when searching for AK in
new issues.

The attachments show a stronger co-occurrence between multiple different

17

AK concepts. However, since there were less attachments than comments
and descriptions and they were shorter in general as well, less annotations
could be made in the attachments. This could mean the occurrence is a
bit skewed.

Further research could focus solely on attachments in order to gain
more insights in the different AK concepts present and the relations
between them.

6.4 Research Question 4:

While analyzing the textual variants it became apparent that the dif-
ferent forms of the AK concepts were not always sufficient. During the
classification process multiple new forms arose which can be seen as an
extension of the existing coding book. The existing system architecture
concept currently does not describe a form to indicate the benefits and
drawbacks of the existing system are mentioned, this variant should be
added to the coding book.

6.5 Research Question 5:

The taxonomy found in the issues provides an insight in the words com-
monly found for each concept. The results show the attachments provide
less value when focusing on the taxonomy. In general, the attachments
play a more supportive role for the issue itself. This means the taxonomy
does not differ a lot when comparing different AK concepts. On the
other hand, the comment and description provide different taxonomies
depending on the AK concept.

To improve the usability of the taxonomy, one could utilize Machine
Learning algorithms to train models on recognizing the AK concept
based on the taxonomy of the sentences or issues. As an example, the
Solution Benefits and Drawbacks often use words as also or since that
are used to support a certain statement that explains the advantage or
disadvantage of a proposed solution. Knowing when these words are used
and how they relate to specific concepts could be determined by further
research.

18

7 Threats to validity

As only two different sub projects were used during this research study
the results might not represent all real world projects. Even within the
projects considered in this study there were differences in terms of writing
and communication style. In order to get a more representative view of
the presence of AK concepts within issue tracking systems the research
should be expanded to include projects of different development areas
and projects.

Similar research done on the same subject is still quite different from our
study. Other studies make use of different models, tools or AK concepts
and therefore our results are difficult to verify. In extension to this, since
the annotations were largely created by one person only the results could
be biased. This could be improved upon by having other researchers
validate the annotations.

8 Conclusions & Future work

The goal of this study is to capture present architectural knowledge
present in issue tracking systems. Within the set of issues we were able
to determine the distribution of the different AK concepts present. The
co-occurrence between AK concepts and the taxonomy of every concept,
gives an insight in how the sentences are related and to the AK concept
they belong to.

Using the knowledge that has been gathered, further research can be
done such that AK concepts can be identified and reused at a larger scale.
One of the areas that could be researched further is the field of taxonomy.
If more data is collected and a structure behind the sentences can be
derived based on the different AK concepts this could pave the way for
automatic capturing of these concepts.

As an extension of this study, further research could involve trying
to capture the concepts that support another concept, somewhat similar
to the co-occurrence but focusing on the explicit order of the concepts
used. For example, it could be the case that most architectural design
decisions are being decided upon after solutions and benefits are discussed.
This would involve statistical analysis as well as additional labeling done
by the researcher.

19

References

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice (SEI Series in Software Engineering). Addison-Wesley Pro-
fessional, 4 ed., 2021.

[2] P. Kruchten, P. Lago, and H. van Vliet, “Building Up and Reasoning
About Architectural Knowledge,” Quality of Software Architectures,
pp. 43–58, 2006.

[3] A. Jansen, J. Bosch, and P. Avgeriou, “Documenting after the fact:
Recovering architectural design decisions,” Journal of Systems and
Software, vol. 81, no. 4, pp. 536–557, 2008.

[4] A. Shahbazian, Y. Kyu Lee, D. Le, Y. Brun, and N. Medvidovic,
“Recovering Architectural Design Decisions,” 2018 IEEE International
Conference on Software Architecture (ICSA), 2018.

[5] M. Shahin, P. Liang, and Z. Li, “Recovering software architectural
knowledge from documentation using conceptual model,” Proceed-
ings of the International Conference on Software Engineering and
Knowledge Engineering, SEKE, vol. 2013, 06 2013.

[6] M. Soliman, M. Galster, and P. Avgeriou, “An exploratory study on
architectural knowledge in issue tracking systems,” 2021.

[7] A. Tang and H. van Vliet, “Software Architecture Design Reasoning,”
Software Architecture Knowledge Management, pp. 155–174, 2009.

[8] “Apache Hadoop.”

[9] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python. Culemborg, Netherlands: Van Duuren Media, 2009.

20

A Appendix

The following section contains an overview of the taxonomy for multiple
AK concepts discussed in this paper.

21

A.0.1 Taxonomy Architectural Design Configuration (l) and
taxonomy Solution Benefits and Drawbacks (r)

Rank Word Occurrences
1 block 312
2 file 231
3 would 219
4 client 214
5 user 205
6 data 199
7 need 194
8 use 159
9 nn 156
10 also 148
11 hdfs 143
12 storage 141
13 one 135
14 new 129
15 could 123
16 files 119
17 rpc 110
18 node 109
19 case 107
20 namenode 102
21 think 101
22 make 100
23 like 100
24 read 97
25 dn 90
26 datanode 89
27 directory 88
28 call 84
29 method 82
30 interface 82
31 implementation 82
32 may 82
33 want 82
34 snapshot 82
35 get 81
36 key 81
37 state 81
38 sps 81
39 since 80
40 task 79
41 using 79
42 class 79
43 cluster 79
44 job 78
45 change 77
46 system 77
47 support 76
48 code 74
49 way 74
50 operation 74

Rank Word Occurrences
1 would 150
2 block 115
3 also 111
4 data 109
5 file 107
6 client 94
7 hdfs 94
8 like 93
9 since 93
10 could 90
11 need 90
12 user 87
13 think 86
14 use 81
15 one 77
16 case 75
17 make 71
18 code 69
19 may 66
20 new 64
21 node 61
22 way 61
23 work 60
24 read 57
25 approach 56
26 get 54
27 snapshot 54
28 nn 54
29 change 53
30 disk 51
31 storage 51
32 hadoop 50
33 might 50
34 files 49
35 much 49
36 time 48
37 key 48
38 using 47
39 problem 46
40 number 45
41 cluster 44
42 system 44
43 want 43
44 support 43
45 1 42
46 namenode 42
47 class 42
48 issue 41
49 layer 41
50 add 41

22

A.0.2 Taxonomy Architectural Component Behaviour (l) and
taxonomy Existing System Architecture Description (r)

Rank Word Occurrences
1 file 94
2 block 62
3 data 61
4 need 61
5 use 60
6 key 58
7 one 55
8 node 54
9 method 54
10 also 53
11 would 52
12 files 50
13 path 50
14 archive 49
15 rack 49
16 name 48
17 new 47
18 int 46
19 value 46
20 job 45
21 public 45
22 user 44
23 cache 43
24 directory 43
25 like 43
26 could 41
27 class 40
28 interface 35
29 hdfs 34
30 map 34
31 list 32
32 client 32
33 support 32
34 get 31
35 think 31
36 change 29
37 partition 29
38 storage 29
39 make 28
40 code 28
41 string 28
42 bufer 28
43 case 27
44 output 27
45 default 26
46 byte 26
47 using 25
48 spill 25
49 object 25
50 nn 25

Rank Word Occurrences
1 currently 25
2 hdfs 24
3 archive 20
4 data 19
5 dfs 17
6 block 17
7 file 16
8 job 15
9 current 15
10 hadoop 12
11 namenode 12
12 client 12
13 user 11
14 cache 11
15 access 10
16 task 9
17 code 9
18 use 9
19 read 9
20 layer 9
21 implementation 9
22 two 8
23 localized 8
24 path 8
25 get 8
26 also 8
27 run 8
28 already 8
29 rpc 8
30 method 8
31 storage 8
32 directory 7
33 mapred 7
34 would 7
35 running 7
36 using 7
37 local 7
38 support 7
39 node 7
40 interface 7
41 system 7
42 datanode 7
43 policy 7
44 mechanism 6
45 jar 6
46 cluster 6
47 set 6
48 list 6
49 name 6
50 information 6

23

A.0.3 Taxonomy Quality Attribute Requirements (l) and tax-
onomy User Requirements (r)

Rank Word Occurrences
1 performance 14
2 block 10
3 read 9
4 client 7
5 compatibility 7
6 storage 7
7 like 7
8 need 6
9 make 6
10 take 6
11 would 6
12 one 6
13 time 5
14 rpc 5
15 multiple 5
16 data 4
17 user 4
18 number 4
19 interface 4
20 server 4
21 jira 4
22 using 4
23 improvement 4
24 hdfs 4
25 design 4
26 snapshot 4
27 deployment 4
28 caching 4
29 let 3
30 cache 3
31 support 3
32 reduce 3
33 operation 3
34 purpose 3
35 replica 3
36 improve 3
37 availability 3
38 write 3
39 latency 3
40 2 3
41 backwards 3
42 serialization 3
43 files 3
44 must 3
45 consider 3
46 requirement 3
47 since 3
48 higher 3
49 throughput 3
50 layer 3

Rank Word Occurrences
1 user 10
2 files 7
3 fle 7
4 policy 7
5 use 6
6 storage 6
7 using 5
8 operation 5
9 one 5
10 admin 5
11 key 4
12 join 4
13 want 4
14 system 4
15 feature 4
16 requirement 4
17 directory 4
18 hdfs 4
19 job 3
20 code 3
21 record 3
22 i/o 3
23 application 3
24 like 3
25 important 3
26 mapping 3
27 hadoop 3
28 see 3
29 drive 3
30 node 3
31 archive 2
32 program 2
33 avoid 2
34 3 2
35 case 2
36 many 2
37 library 2
38 implement 2
39 people 2
40 support 2
41 ability 2
42 sort 2
43 thing 2
44 would 2
45 admins 2
46 – 2
47 may 2
48 comparator 2
49 class 2
50 property 2

24

	Acknowledgments
	Introduction
	Background information
	Research Process
	Results
	Distribution
	Variants
	Architectural Component Behaviour and Structure
	Architectural Design Configuration
	Solution Benefits and Drawbacks
	Existing System Architecture
	Assumptions

	Co-occurrence
	Taxonomy

	Discussion
	Research Question 1:
	Research Question 2:
	Research Question 3:
	Research Question 4:
	Research Question 5:

	Threats to validity
	Conclusions & Future work
	Appendix
	Taxonomy Architectural Design Configuration (l) and taxonomy Solution Benefits and Drawbacks (r)
	Taxonomy Architectural Component Behaviour (l) and taxonomy Existing System Architecture Description (r)
	Taxonomy Quality Attribute Requirements (l) and taxonomy User Requirements (r)

