
Exploring the effectiveness of search engines for finding
architectural knowledge in open source repositories

Author: Tom den Boon (s3176096)

Supervisor: dr. M.A.M. Soliman

Abstract

Software engineers need architectural knowledge to make suitable design
decisions. Finding this knowledge can be quite hard. Researchers are trying to

improve the search for architectural knowledge, and so will this paper. We
have created a handy search tool for the pursuit in finding architectural

knowledge. With this tool, we will perform an empirical study on apache Jira
and Mailing lists. In which we perform queries to find sources with

architectural knowledge in them. We will then perform a qualitative analysis
on how well the search engine performed. And what kind of architectural

design decisions were found in the repositories.

August 20, 2021

1

Contents

1 Introduction 3
1.1 Software Architecture . 3
1.2 Problem with Architectural Knowledge 3
1.3 Proposed Solution . 4
1.4 Research Questions . 5

2 Related Work 5

3 Archedetector 6
3.1 Tool Explanation . 6
3.2 Using Lucene . 7
3.3 Architecture of the searching system 7

4 Methodology 10
4.1 Selecting Sources For The Experiment 10
4.2 Constructing Search Queries . 11
4.3 Tags of architectural design decisions 11
4.4 Research Process . 12
4.5 Measurements of effectiveness . 12

5 Results 14
5.1 RQ1: Effectivity of the search engine 14
5.2 RQ2: Which ADDs are discussed 19

6 Discussion 22
6.1 RQ1: How effective is searching with the search engine 22
6.2 RQ2: Which ADDs are discussed 22

7 Threats To Validity 23

8 Conclusion 23

9 Future Work 24

10 References 25

11 Appendix 33
11.1 User Guide . 33
11.2 Technical Guide . 47

2

1 Introduction

1.1 Software Architecture

Nowadays, society is built on complex software and technologies. An impor-
tant part in maintaining and evolving this software is the requirement of a well
built architectural foundation. Constructing architecture for software is not an
easy task. Software architects have a lot of choices they can take to build the
architecture. These choices are fluctuating and depend on the system they are
designing and what requirements they need to satisfy. This is a very complicated
and important process. If done incorrectly the system can become unmanage-
able, too slow, or any other unwelcome property. Especially the starting stages
of developing the architecture are critical. This will be the foundation on which
the rest of the architecture depends. Creating mistakes in these early stages is
even more essential to prevent. Software architecture is said to help developers
with these problems [11]. But this would require extensive knowledge from the
developer about software architecture. That is why researchers have been trying
to create a set of rules for architectural decisions to help architects create the
best possible software.

1.2 Problem with Architectural Knowledge

Architectural knowledge should be of importance to any developer out there.
Developers rely for the most part on their experience to design software archi-
tecture. With architectural knowledge, we can give developers extra support to
make the correct decisions. Architectural knowledge is defined as documenta-
tion of the design decisions, rationale, assumptions, context, and other factors
that together determine architecture solutions during the architecture design
stage.

Scientists have tried to categorize this knowledge and make it available for ar-
chitects to use. Furthermore they have tried to make architectural knowledge
documentation that architects could use when building up their project to aid
in constructing a solid architecture [10]. There have been multiple papers that
have created tools for system developers to document their architectural design
decision [3] [9] [6]. There also has been a qualitative study written by Paris et
al [16] that shows how the tools differ from each other. The conclusion was that
we should move towards a more universal knowledge repository.

For this repository to be complete we need to know about the undocumented lost
design decisions from all the sources. It would take a big amount of resources
to document and order the huge amount of architectural knowledge that is out
on the web. That is why researchers have tried to make automatic systems that
help with problems related to architectural knowledge [7]. It would be of great
help if we could use disordered and undocumented knowledge already existing
out there in the world. Ideally, we want the ability to find architecture in any

3

sort of system. But it is incredibly time-intensive to manually search a system
for all its architectural knowledge. That is why we will need tools or automated
machine learning to help us with this process. If we can gather the knowledge
of these systems it could be of great help for future research.

1.3 Proposed Solution

In this study, we will explore the idea of finding architectural knowledge in
open source systems with a search engine. There have been multiple studies
that have shown how well search engines perform on finding desired informa-
tion. In the study of Jaime Teevan et al [17] they compared the performance
of using a search engine and social media. Concluding that the search engine
was the superior choice for finding information. In the article of Mohammed
Al-Ubaydli, they found that using web search engines was of help in finding
medical information [19].

We will study apache mailing lists and Jira issues. These systems were se-
lected because previous studies have shown that these are rich in architectural
knowledge [20]. For the mailing lists, we only select the lists in which primarily
the developers communicate. The reasoning is that we want to find architectural
knowledge documented by the architects. The developers working on a software
project are most of the time also the system’s architects. The remaining mailing
lists of a project are not of interest to us. Because these lists will have less inter
developer communication and thus contain less architectural knowledge. Jira
was selected because it is a tool that supports developers in implementing new
features and tracking issues. The developers working on Jira put a lot of their
thoughts into the issues, making it filled with architectural knowledge.

Normally to manually search these open-source systems for architectural knowl-
edge would require a lot of labor. In this paper, our goal is to speed up this
process. A logical tool to do this with is a search engine. With them, you
can quickly find resources with the desired topics. When using a search engine
there will be trade-offs in the resulting precision and the recall based on the
search query and the inner workings of the search engine. That is why the
query you construct has to be detailed to get the results you want. There is also
a balance in how detailed you make your query. If you overdo it you will end
up with almost no results. Make it too broad and you will have a lot of false
positives. That is why it is important for us to test multiple queries and to see
which direction of query type is most suited for finding architectural knowledge.

In this study, a total of 6 queries will be constructed. five of them will be
constructed based on the keywords from the book of Len Bass [4], and 1 group
will be based on a previous study from Soliman et al. [12] that found signif-
icant architectural knowledge trigger words in stack overflow posts. These 6
queries will be executed on both mailing lists and Jira issues. The top 100

4

results for each query will be manually searched for architectural knowledge
and tagged. This will enable us to answer this paper’s research questions. To
speed up this process we created a tool that can extract data from mailing lists
and Jira issues into your database. The tool creates indexes with Lucene on
all these resources. Allowing users to search and tag them accordingly. With
the use of the constructed tool, we will be able to answer our research questions.

1.4 Research Questions

To quantify how successful our tool can extract architectural knowledge from
the resources we will pose two research questions. Answering these questions
also helps in deciding what to do for future research.

Research Question 1: How effective is searching using keywords from litera-
ture to find architectural knowledge issues and mailings? This question will be
answered by the precision and the nDCG of the top-k results returned by the
search engine. In other words what percentage of the search engine results are
about architectural knowledge. This will require manual labor to decide which
result contain architectural knowledge.

Research Question 2: Which types of architectural design decisions are dis-
cussed in architectural issues and mailing lists, which are retrieved using key-
word searching? These types of ADDs will be based on the defined decisions
from the paper written by A. Jansen et al [10]. After we have manually tagged
all the queries. We will be able to analyze the resulting types discovered by the
search engine.

2 Related Work

This paper builds on top of the already known main concepts of architectural
knowledge. These concepts have been previously explored by researchers in the
field of architectural knowledge. The main concepts are design decisions [8],
their types [10], rationale of decisions [15]. These studies established the funda-
mental architectural knowledge concepts, which we consequently will base our
queries on. However, they do not propose approaches for capturing or finding
architectural knowledge.

There have been no papers yet on building a search engine on top of archi-
tectural resources. Thus there are no exact related works. But there has been
a study that searches for architectural knowledge with a web search engine.
In the research of Mohamed Soliman et al, they performed an empirical study
with 53 software engineers, who used Google to make design decisions using the
Attribute-Driven-Design method [13]. It concluded that using the web search
engine is effective in finding architectural knowledge. This paper also proposed

5

specialized web searching approaches to enhance the effectiveness of searching
for architectural knowledge. This compared to our paper is quite similar. In-
stead, our approach will be exploring the effectiveness of a self build search
engine on the resources and not a web-based one.

There have been other papers that have tried to do this with various other
methods. For example, Gorton et al. [7] proposed an approach to identify ar-
chitectural knowledge in technology documentation, and specially identify doc-
uments with certain architectural tactics (as one architectural solution). Then
Bhat et al. [5] captured architectural knowledge from issue tracking systems.
They especially captured and classified the different types of design decisions
(as one architectural knowledge concept) in issue tracking systems. They used
machine learning to achieve their goals. In our paper, we will also expand this
research and try to find architectural knowledge in these systems. But instead,
we will be using a search engine.

Another paper by Soliman et al. [14] improved the effectiveness of searching for
architectural knowledge in Stack Overflow. This source would also be a good
option to find general architectural knowledge. Another study similar to ours is
one by Zhuang Xiong et al. [20]. This was an exploratory study into assump-
tions in the hibernate developer mailing list. Out of 9006 analyzed posts they
found that 832 had assumptions within them. Over half of these assumptions
were assumptions about the design. Further motivating us to use mailing lists
in our study as well.

The paper of Babar et al. [2]. Had claimed to automate finding architec-
tural knowledge in the mail. But they did not share any metrics to determine
why their tool would solve that problem. And the example they gave for found
architectural knowledge was quite trivial. Other than these studies we did not
manage to find any study trying to extract architectural knowledge in already
existing systems. So the results of our study will be quite interesting.

3 Archedetector

3.1 Tool Explanation

The tool is build in java with the following frameworks:

• Frontend: Vue.js

• Backend: Spring, Lucene

These frameworks were primarily chosen for their huge communities. Allowing
our developers to easily solve most problems they have whilst coding. Of course,
there are not significant drawbacks giving us reasons to not choose these well-
supported frameworks.

6

The tool we have constructed will give researchers the ability to perform com-
pletely customizable queries on open source repositories. For now, the only
repositories that can be searched are Apache mailing lists and Jira issues. In
our paper, we are searching these repositories for architectural knowledge. How-
ever, you could choose to search for any information in these repositories. All
the user has to do is specify which resources they want to search. Then they
have to construct a suitable query tailored for which information they want
to retrieve. Our tool also gives the user the ability to create custom tags to
manually categorize the resources you encounter. Which will be very useful if
you want to use this data in later research. You can also choose to export your
search queries as a JSON file. Allowing you to analyze your search results.

3.2 Using Lucene

Apache Lucene is an open-source Java-based search library that provides Ap-
plication Programming Interfaces for performing common search and search-
related tasks like indexing, querying, highlighting, language analysis, and many
others. Lucene is written and maintained by a group of contributors and com-
mitters of the Apache Software Foundation (ASF) [18]

The paper of Yang et al. [21] enabled the use of information retrieval by build-
ing a toolkit on top of Lucene. Their message to the information retrieval
community was that Lucene is efficient and scalable without compromising ef-
fectiveness. Lucene also has the benefit of having a big community supporting
it. Making it easy to start using Lucene. We also had the option of creating a
self-made search engine. But not only would it require an immense amount of
time and knowledge about these kinds of systems. Lucene already completely
satisfies what we want our search engine to achieve. That is quick keyword
searching with the ability to customize your queries and weights.

Lucene is an inverted full-text index (tf-idf). This means that it takes all the
documents, splits them into words, and then builds an index for each word.
Since the index is an exact string-match, unordered, it can be extremely fast.

3.3 Architecture of the searching system

The first difficult task of the tool was to extract the Jira and mailing list infor-
mation into our database. To achieve this we first had to create the entities and
the database model. As you can see in the relational diagram in figure 1 is how
we decided to model the database. This way the database is quite scalable and
satisfies all the functions we desire. We also decided to use a Postgres database
since it is fast. We needed a fast database because we are performing a lot of
operations on the database when adding a new project.

The back-end that was built on top of the database is called Spring. With
spring we created controllers to provide access to our API and to interact with

7

the entities within the table. We used the service pattern to do almost all
the business logic. However We had some functions that could be used more
generally in a utils package. Then we used JPA repositories to do our SQL
transaction. To save time and immediately have all the CRUD operations avail-
able within the back-end. Integrating Lucene within this backend was quite
easy. We had to write indexers for every entity we wanted to search and also
write a searcher that can access those indices and perform a search query. We
created and deleted the indices at the same time they were added or removed
from the database. We also created a search controller which then allowed users
to search the created entities with Lucene queries.

8

Figure 1: ERD of the database

9

4 Methodology

4.1 Selecting Sources For The Experiment

The tool allows importing of data from both Jira and Mailing lists. Jira is a tool
used for project management and issues/bug tracking. It simplifies the commu-
nication process among developers making it a perfect candidate to search for
architectural knowledge. Same with the developer mailing lists. Which also
is a well-known communication option used by developers. Those are the rea-
sons these repositories were chosen. Now that we know what repositories are
being used, we have to select the software projects from which we want to ex-
tract the information. The projects used should also be rich in communication
between the developers. This way we can have more success in extracting valu-
able information. For example, Hadoop Common is an essential part/module
of the Apache Hadoop Framework. It is also a long-lasting project with a ton
of recorded communication within the Jira and mail. This is a good candidate
to pick as a project. A bonus is that previous research had been done about
architectural knowledge in Jira issues. The paper was able to roughly identify
all the issues which contained architectural knowledge. This combined with all
the results from this paper could allow us to calculate other metrics, like recall
of the search engine. Recall would be a very interesting metric to include. The
projects used in the research are from the apache software foundation. This is
because they are the biggest open-source software foundation with freely avail-
able information to crawl through [1].

When picking which mailing lists to choose within the project, we decided on
the developer lists. Since architectural design decisions are made by the devel-
opers. Other lists contain way less developer communication. For example in
the user mailing list there are way more questions about the code and how to
set up the environment. Thus these are the mailing lists we picked:

• Cassandra-dev

• Tajo-dev

• pdfbox-dev

• tika-dev

• hive-dev

• Hadoop-dev

• Hadoop-common-dev

Within Jira, we decided on these projects.

• Cassandra

• Tajo

10

• Hadoop Common

• Hadoop Mapreduce

• Hadoop HDFS

• Hadoop YARN

4.2 Constructing Search Queries

Since this is an exploratory study we decided on keeping the search queries
pretty broad. Architectural knowledge uses keywords from its parent category
Software Architecture. Logically this paper will construct query groups with
keywords from the book of Len Bass [4]. Taking the main concepts in software
architecture we are left with 5 groups called decision factors (table 1), component
structure (table 2), tactics (table 3), pattern (table 4) and rationale (table 5).
We then looked through the book’s table of contents and references in the back
of the book. Each word that had an architectural meaning we grouped to one
of the groups listed above. For our last query, we decided on constructing it
based on a previous paper from Soliman et al. [12]. The keywords were based
on their significant keyword triggers for architectural knowledge with Stack
Overflow posts. This group is called significant (table 6). These queries are
all expected to perform reasonably well. One of the concerns is that they are
still too general and will return a lot of non-relevant documents. In each query
group, every keyword has the same weight.

4.3 Tags of architectural design decisions

We decided on a total of 8 tags. The first and most general tag is called ”Ar-
chitectural Knowledge”. This tag would be placed anytime a resource had any
type of architectural knowledge within it. The remaining 7 tags are all types of
architectural design decisions taken straight from Kruchten et al. [10]. Called
Structural, behavioral, property, ban, technology, tool, and process. We tag a
resource with these tags if one or more of these decision types were identified
within it. Below are the basic definitions for each ADD. Each time we classified
an email or post we returned to these definitions:

• Architectural Knowledge: If one of the definitions below is found we use
this tag to signify that it has AK.

• Structural: lead to the creation of subsystems, layers, partitions, compo-
nents in some view of the architecture.

• Behavioral: are more related to how the elements interact together to pro-
vide functionality or to satisfy some non-functional requirement (quality
attribute), or connectors.

11

• Property: states an enduring, overarching trait or quality of the system.
Property decisions can be design rules or guidelines (when expressed pos-
itively) or design constraints (when expressed negatively)

• Ban: stating that some elements will not appear in the design or imple-
mentation.

• Technology: When deciding on which technologies you will use for the
software. For example Java, C, Postgres, SQL, or any other

• Tool: If there is a mention about what tool the developers are required
to use. A few examples are Github, Jira, IntelliJ, or any other tool a
developer might use.

• Process: A process decision is about the overarching process the developers
have to follow when programming for the software.

4.4 Research Process

The research process is very simple and straight forward. There are only a few
steps the participant had to do. First step is to execute the search query in one
of the repositories. Next step is to browse every source one by one and check
whether it contained architectural knowledge within it. One way participants
could recognise architectural knowledge is with help of the ADD definitions. The
final step is to tag the resource with one or multiple ADD tags. The further
they got into their tagging process the more examples the participant had. This
helped participants in making improved tagging decisions when they check the
search results for the second time. These steps are repeated until all 6 queries
have been executed and the top 100 results have been tagged for both the Jira
and the Mailing list projects. This will yield us a total of 600 mail and 600 issues
to perform analysis on. Analysis was done with the help of a python script.

4.5 Measurements of effectiveness

To answer research question 1 we will need to use multiple metrics. These met-
rics allow for better insight into the effectiveness of our search engine. The first
metric we decided on is called precision. Precision is called according to the
following formula:

precision =
|{relevant documents} ∩ {retrieved documents}|

retrieved documents

Precision is calculating what percentage of your retrieved documents are rel-
evant. This is a good metric to measure if our search engine is returning enough
relevant documents. If not then you should tweak your query. If that still does
not work it might be that your dataset is not filled with relevant documents.

12

Ideally, we would have also wanted to calculate the recall of a query. The recall
is defined by the following formula:

recall =
|{relevant documents} ∩ {retrieved documents}|

relevant documents

the recall is the fraction of the relevant documents that are successfully re-
trieved. In a good search query, you would want this as high as possible without
losing too much precision. The problem with calculating recall is that you are
required to know all the relevant documents in your data set. Our data set for
the mailing lists alone contained over 70.000 emails. Considering it took 2-3
hours on average to tag 100 resources. This would take around 1400+ hours
to complete. Thus we do not know all the relevant documents in the data set
and are not able to calculate the recall for the queries. Instead, we decided to
go with another metric to see how well the search engine can rank the returned
documents. This metric is called the Discounted Cumulative Gain:

DCG =

p∑
i=1

reli
log2(i + 1)

The premise of DCG is that highly relevant documents appearing lower in a
search result list should be penalized. Thus the graded relevance value is re-
duced logarithmically proportional to the position of the result. Which we can
argue is the functionality we desire from our search engine. Optimally our search
engine ranks highly relevant documents higher.

Search result lists vary in length depending on the query. Comparing a search
engine’s performance from one query to the next cannot be done by using DCG
alone. DCG can not tell us how well it ranked the results based on the query’s
maximum potential. This is because DCG does not take into account what the
ideal ranking possibility of a query is. Instead this can be achieved by sorting
all documents in the result list by their relative weight and then calculating the
IDCG:

IDCG =

|RELp|∑
i=1

reli
log2(i + 1)

With this metric we can then compute the nDCG to see how well our query
ranked the documents:

13

nDCG =
DCG

IDCG

If nDCG=1 the ranking of our search is theoretically perfect. So preferably
we want this metric to perform well on the search engine.

5 Results

We have to be careful when concluding our results. Ideally, we would have tested
the top 100 results for each project. But this would have been way too time
intensive. Thus for lower k values, we have to take this into account. Higher
k values will be more accurate due to the higher sample size. That is why we
value the graphs higher k more than the lower k values. However, this does
not mean we discredit the lower k values. They are still relevant. This is also
why the graphs are not incredibly smooth. Instead, an algorithm is used to
smoothen the graphs. This is done to increase the readability of the figures,
without losing any important information.

5.1 RQ1: Effectivity of the search engine

Figure 2 shows the precision of the queries run over the mailing list resources.
As we can see all 6 queries show their relative precision over k resources. We can
see that some queries are performing way better than others in finding architec-
tural knowledge. This is very much to be expected since good queries are of big
importance in finding what you desire. A drastic and easy example is to imagine
if the query used is about fruits. We will not find any architectural knowledge.
In general the precision in the mailing list is decent. This is especially the case
for the better performing queries.

It is immediate to see that the pattern query (Table 4) and tactic query (Ta-
ble 3) are performing poorly over all the k values. Especially tactic is not well
suited to find architectural knowledge in the mail. The returned resources for
the tactic query were mostly code question’s, bugs, or other random mail be-
tween the developers. The same thing counts for the pattern query. It is still
good to see that even though they did perform pretty poorly compared to the
rest of the queries. They still find more architectural knowledge in the lower k
range. Meaning that the query used is not a random unsuitable query. It does
find architectural knowledge, but way less impressive than the other queries.

The other 4 queries are more closely matched in precision. We are able to
see that Rationale (Table 5) is performing quite well. Especially on k < 10 but
on k > 50 it stays behind. The significant (Table 6), decision Factor (Table 1)
and component query (Table 2). They all seem to have p > 0.8 for k < 10 and

14

p ≈ 0.45 for k = 100. This is indicating that they are all really good queries for
finding architectural knowledge.

Figure 2: Precision of the queries in the Mailing Lists

What we can see here in Figure 3 is the NDCG over k for mailing lists. We
observe that the value quickly does not change that much for k > 20. That is
because this function is logarithmic. Valuing the earlier hits way more than the
latter. It does not tell us too much more than what Figure 2 already told us. It
does help us distinguish between the close top 4. And pick the decision factor
query as having better effectiveness than the other. Tactic and pattern remain
just as lackluster in this department. This of course due to lower precision in
general of these queries. Compared to the other queries these 2 seem to not be
as suitable for finding architectural knowledge.

15

Figure 3: nDCG of the queries in the Mailing Lists

Figure 4 shows the Precision of the queries over k in Jira projects. Decision
factor and component query are performing exceptionally well. This could be
due to Jira being rich in those kinds decisions. Surprisingly though most of
them contained architectural knowledge. Tactic query has some really terrible
precision over 0 < k <= 100. This again shows that the tactic query is not very
suitable for finding architectural knowledge compared to the rest of the queries.
The pattern is also not doing well. But at least is performing a little bit better
than a tactic. One positive of the tactic query is that it found resources that were
not found by all the other queries. This is because of the unique keywords used
in the tactic query. The significant query starts strong but surprisingly falls off
quite a bit in the latter part. Rationale performs quite good over 0 < k <= 100.
All the queries are performing roughly the same as in Figure 2. This re-ensures
that the queries carry over into different types of resources. And should be
expected to perform roughly the same.

16

Figure 4: Precision of the queries in the Jira Projects

Figure 5 contains the NDCG over k for each query in the Jira projects.
Also, we can see that the tactic query missed k = 1. Resulting in it drastically
underperforming. But even if it did hit the first resource it still would have
been bad. The pattern also belongs to the worse queries based on the NDCG
value. Then the rationale and significant queries both have good NDCG values.
But the decision factor and component query blow the other queries out of the
water. This is due to the incredibly high precision in the k < 20 for both these
queries.

17

Figure 5: nDCG of the queries in the Jira Projects

Figure 6 shows the average precision for both the Jira and mail so we can
easily compare the two. We can see that for k < 5 the mail has a better precision
than Jira. This is a result of Jira missing a few hits in the earlier stages. This
does not tell the entire story since only 6 queries have been tested. Which is too
low of an amount to see how well the resource performed in the earlier stages.
We can quickly see that Jira starts to take over for k > 5. We do observe that
the precisions are starting to merge. This can mean that both resources start
having the same k value for k > 100.

But since we are talking about a search engine we preferably want the search
engine to perform well on the first pages. That is where we look at the average
NDCG value in figure 7. But as stated before the NDCG uses binary values
for our experiment. This is very sub-optimal not telling the whole story. Each
identified architectural knowledge resource can greatly vary in how much rele-
vance they have in that subject. For example for some resources, we only find
1-2 sentences. Whilst for others we find pages of architectural knowledge. But
it is still relatively useful to assure that the search engine hits more resources
at k < 20 after this the NDCG barely changes value. Due to one of the queries
of Jira missing the first hit. The Jira average NDCG suffers a great hit in the
lower k range. And so the mail has a superior NDCG for k < 17. But at k > 18

18

Jira manages to outperform the mailing list on ndcg.

What we can also observe is that the precision is directly related to the NDCG.
This is even more so because we are using a binary NDCG. High precision in
k < 10 automatically results in a good NDCG. Which is not entirely correct.
The other reason the NDCG is quite high is because of the IDCG. For this,
we sorted all relative resources per k giving us the IDCG per k. Quick visual
example is for k = 5 the returned search is {0, 0, 1, 0, 1}. For the IDCG this set
would be sorted and look like this {1, 1, 0, 0, 0}. Whilst you could argue that
it should always hit a true positive all of the time. That way the set would
look like {1, 1, 1, 1, 1}. This however is unrealistic, instead, you want to have
tagged the entire project. That way you can derive the IDCG from that data.
But for now, sorting it seemed to be the most viable way to calculate the NDCG.

In general for both Jira and Mailing lists are able to have about p > 0.6 for
k < 10. Even for k = 100 the p ≈ 0.35. This is a very good sign considering the
queries are far from optimized. Making more specific queries and pruning bad
queries can greatly increase the precision of the engine.

Figure 6: Average precision over k Figure 7: Average query nDCG

5.2 RQ2: Which ADDs are discussed

Observed in Figure 8 is a distribution of architectural design decisions per query.
We can see that all the types of ADD were discussed except for the bans. Bans
are not found at all in the 300 mail reviewed. This is most likely since these
decisions are rarely documented.

Tool and Property decisions were also barely found. Tool decisions are of course
scarce. Due to not often changing your editor or tools used like GitHub. But
we still found them in the mail which is quite interesting to see. Also notable
is that the significant query found the most tool decisions. A property decision
states an enduring, overarching trait or quality for the system. Not too often
do the developers discuss the property decisions. But you should still be able

19

to find them which is what was barely able to achieve.

Technology decisions were found better than expected in the mail. And es-
pecially process decisions we did not expect this many off. But since it is a
developer mailing list, it will be discussing the processes developers working on
the project have to adhere to. For both technology and process decisions the
top query for the mailing list was the significant query. Since this query was
based on significant trigger words for architectural knowledge. It is good to see
that it performs so well in the macro department (technology, process, tool) of
architectural knowledge.

As for structural and behavioral decisions, they should occur the most often
in an architectural system. Since these decisions are taken the most frequently.
Thus we should see this happening in our results. It is pretty surprising that
relatively the same amount of decisions were found for structural, technology,
and process. All queries performed relatively well in this department. This
could mean is that mailing lists are a suitable candidate for finding the macro
decisions (technology, process, tool). It could also mean the mailing list contains
a bad amount of structural and behavioral decisions. Or of course, a combina-
tion of the two is also possible. The component query did perform the best
for finding both structural and behavioral decisions. We also found that the
most occurring decision is the behavioral decision. This is what we expected
to see. Because behavioral decisions are more related to how elements interact
together. And there are a lot of elements in a software architecture system.
Naturally, these decisions will also be made much more.

Figure 8: Distribution of ADD per Query in Mailing Lists

20

We can see how the Jira ADDs are distributed in Figure 9. Immediately ob-
vious is that it performs very well at finding structural and behavioral decisions.
But is extremely awful at finding all the other decisions. Zero process and tool
decisions were found. Jira Issues are more about the features, bugs, and other
coding-related issues. This explains why there is such an incredible amount of
structural and behavioral decisions. This can also explain why the technology
process and tool decisions were not present. Process and tool decisions could be
made outside of the Jira issues. Whilst technology decisions should be present
but are rare. Which is what the graph reflects. As for the ban and property
decision, we discussed in Figure 8 it is in general harder to find these. Although
more ban decisions were predicted.

The Component query excelled at finding structural decisions within the Jira
issues. It still performed well at finding behavioral. And was one of the only
queries that found technology decisions. Again the tactic and pattern query were
not finding too many decisions. Only a few behavioral and minimal structural
decisions. The decision factor query found a significant amount of behavioral
decisions. The rationale query again performed well. But was still outdone by
the component and decision factor queries.

Figure 9: Distribution of ADD per Query in Jira Projects

There were quite a few interesting differences between Jira and the Mailing
List. Jira found 2 times the amount of structural and behavioral decisions. In-
stead finding almost none of the other decisions. Also interesting to see is that
when a query performed well in finding a certain decision. It also found other
decisions more easily. Whilst if a query found fewer decisions it would find fewer
decisions in all of the decision types. This could tell us that the queries we used
are too broad to find a specific decision and we would need to tailor the query

21

more towards a certain decision type.

In both resources the tactic and pattern query underperformed. Finding way
fewer hits than the other 4 queries. One of the reasons this happened is because
in these queries there are a few keywords that hit a lot of false positives. One
example would be in the Jira resources the keyword ’ping’. This was used by
the developers to bump their issues. This way more developers would see this
issue in their timeline. In this research, we did not track which keywords were
hitting what kind of resources. So it is hard to speculate about this part of
the research. The Component and Decision Factor performed well over all the
decisions. But especially on behavioral and structural decisions. The rationale
query is overall performing quite well, but this query found mostly behavioral
decisions. Significant performed quite well in finding technology and tool deci-
sions in the mailing lists. But when it came to finding them in the Jira it did
not find them. This is probably because these decisions are not very prevalent
in Jira.

6 Discussion

6.1 RQ1: How effective is searching with the search en-
gine

1) implication for practitioners: In our study, it is shown yet again how useful
searching using engines are. Since the queries are constructed based on all the
keywords of a software architecture book. We doubt that real-world practition-
ers can extract any useful information with these broad queries. However, we
also show that some queries do perform significantly better at finding architec-
tural knowledge than other queries. What this could mean for practitioners is
that they could use the search engine for finding very specific resources within
the Jira and Mailing List. As long as they know almost exactly what they want
to find within them.
2) implication for researchers: Figures 4 & 2 show that search engines are quite
promising in finding architectural knowledge. That is why researchers could try
and further confirm that search engines can find an adequate amount of archi-
tectural knowledge. One way they could do this is to build a complex query with
machine learning and see just how high you could push the recall and precision
of the search engine.

6.2 RQ2: Which ADDs are discussed

1) implication for practitioners: We can recommend practitioners that are look-
ing for specific architectural design decisions within the developer systems. That
they should try to first find behavioral and structural decisions in Jira. Or if
instead, they are looking for technology and process decisions that they should

22

look in the mailing lists. Practitioners also have to be very mindful of the queries
they construct when using a search engine. Since our research shows that dif-
ferent queries can return different results. We caution practitioners again to be
specific in constructing their queries.
2) implication for researchers: Our experiment result Figures 8 & 9 show clear
distinctions between the types of ADDs in different systems. This could encour-
age researchers to extend their research on more systems. For example, if they
were to do architectural knowledge research with Jira. You might want to check
if other systems are also interesting to include in your research.

7 Threats To Validity

The experiment was performed by a single student with minimal experience
with architectural knowledge. Of course, he did train in being able to recognize
architectural design decisions. So the error’s made due to inexperience should
be minimal. The researcher also had access to good definitions which helped
further improve the accuracy. Some of the results were also approved by the
supervisor of the experiment. Which further reduces the fault rate. There could
also be human errors whilst tagging the resources. For example, forgetting to
save the tags. Or maybe even skipping over a resource. These errors were fur-
ther reduced by checking the queries at least 2 times. Also because the student
was alone he could have been biased towards different architectural design de-
cisions. Or when a source contained architectural knowledge or not.

The results are error-prone because we run every query only once per resource.
It would have been better if we had been able to search on 10 groups of projects
individually. This is to see the average performance of the query. This would
have made the results more robust. Now with the found results from the query,
it can be quite different if we had run the test on another group of projects.
We could have also found more project-specific results which would have been
interesting.

8 Conclusion

Our main goals in this paper were to determine whether a search engine is ef-
fective at finding architectural knowledge in open-source repositories, and what
kind of architectural design decisions were made. To achieve these goals we
performed an exploratory study. The results of this study are quite interesting.
The pattern and tactic query were deemed inefficient compared to the other
queries. But still not very terrible. The component and decision factor queries
performed extremely well as shown in the results. If you have limited resources
and can not just scour through all of the resources manually. A search engine
would be of great benefit to speed up finding relevant architectural knowledge
in both Jira and Mailing Lists. In our study, we did not find the efficiency to

23

drastically differ between the two.

As for the types of ADDs found in the resources. Jira is more suitable for
finding architectural and behavioral knowledge. Especially component, ratio-
nale, and decision factor are suitable queries to find architectural knowledge
within Jira. On the other hand mailing lists are more suitable for finding the
macro architectural design decisions. The Significant query performed well in
finding process and technology decisions in the mailing list. Component, ratio-
nale, and decision factor also performed well in general in the mailing lists.

You have to be very careful about what query you construct. The queries
were greatly increasing or decreasing the efficiency of the search engine. They
also found reasonably different ADD types so tailor your queries with this in
mind. The best queries we found for architectural knowledge were component,
rationale, and decision factor.

9 Future Work

To improve this research it also would have been interesting to include the doc-
uments attached to the emails and jiras. As of this moment, the tool does not
have any kind of implementation for this area yet. In quite a few Jira issue’s
that were about architectural knowledge, we observed that they also had a de-
sign document attached. It would be quite valuable if we were able to view this
and search this documen.

It would be very fascinating to see the recall of the search engine. That is
why we propose to do similar research on a completely tagged project. With
the recall and precision, we could determine the accuracy of the search engine.
Which is a really helpful metric for search engines. Furthermore after hav-
ing completed all the tagging in a project. You could continue to improve the
queries with some sort of supervised learning algorithm. Either that approach
or try to construct an improved query yourself by analyzing the results.

Since the tool helps researchers with finding relevant resources. It would also
be of interest to integrate more systems into the available resources. Right now
these are only Mailing lists and Jira. But we could also try to include Git or
Trello or any other kind of developer tool. To see which of them is the most
architectural rich. We also propose to instead of manually tagging the resources.
Use a supervised machine learning algorithm to learn from your previous tagged
projects and see how well they perform in classifying the resources.

24

10 References

Table 1: Keywords for Decision Factors Group

Decision Factor
1 Goal
2 quality
3 scenario
4 requirement
5 issue
6 criteria
7 demand
8 performance
9 security
10 availability
11 modifiability
12 reusability
13 flexibility
14 reliability
15 usability
16 testability
17 safety
18 interoperability
19 variability
20 portability
21 scalability
22 Mobility
23 Safety
24 Conceptual
25 integrity
26 runtime
27 realtime
28 port
29 scale
30 constraint
31 context
32 limitation
33 cost
34 “time to market”
35 bottleneck
36 resources
37 attack
38 “down time”
39 “time to repair”

25

40 complexity
41 complex
42 effort
43 coupling
44 cohesion
45 latency
46 throughput
47 efficiency
48 confidentiality
49 integrity
50 authorization
51 authentication
52 satisfaction
53 confidence
54 “user needs”
55 bandwidth
56 network
57 rate
58 speed
59 cost

Table 2: Keywords for Component Structure Group

Component Structure
1 structure
2 module
3 component
4 connector
5 element
6 relation
7 architecture
8 design
9 decision
10 abstract
11 behavior
12 interaction
13 service
14 peer
15 client
16 server
17 process
18 “data store”
19 thread

26

20 directory
21 file
22 decomposition
23 submodule
24 interface
25 layer
26 class
27 system
28 model
29 view
30 database
31 storage
32 coordination
33 communication
34 “run in parallel”
35 parallelism
36 concurrency
37 dependencies
38 parallel
39 processor
40 memory
41 exchange
42 notify
43 notification
44 choose
45 distributed
46 backend
47 frontend
48 middleware
49 share
50 communicate
51 messaging
52 delivery
53 centralized
54 platform
55 publish
56 subscribe
57 producer
58 consumer
59 persistence
60 cluster
61 queue
62 message

27

Table 3: Keywords for Tactics Group

Tactic
1 tactic
2 ping
3 echo
4 monitor
5 heartbeat
6 redundancy
7 transaction
8 replication
9 spare
10 rollback
11 orchestrate
12 encapsulate
13 refactor
14 intermediary
15 concurrency
16 event
17 caching
18 “load balancer”
19 intrusion
20 encrypt
21 separate
22 revoke
23 lock

Table 4: Keywords for Pattern Group

Pattern
1 pattern
2 layers
3 tier
4 broker
5 MVC
6 “pipe and filter”
7 “peer to peer”
8 SOA
9 ESB
10 synchronous
11 asynchronous
12 publish
13 subscribe
14 shared data

28

15 adapter
16 composite
17 proxy
18 decorate
19 decorator
20 observer
21 factory
22 facade
23 strategy
24 visitor
25 alternative
26 versus
27 opinion
28 choice
29 choose
30 oriented

Table 5: Keywords for Rationale Group

Rationale
1 trade off
2 trade offs
3 risk
4 risks
5 assumption
6 assumptions
7 benefit
8 benefits
9 drawback
10 drawbacks
11 advantage
12 advantages
13 advantageous
14 disadvantage
15 disadvantages
16 disadvantageous
17 comparison
18 pros
19 cons
20 boost
21 fast
22 easier
23 easy

29

24 decide
25 quick
26 good
27 better
28 difference
29 difficult
30 select
31 slow
32 improve
33 improvement

Table 6: Keywords for Significant Group

Significant
1 lightweight
2 complex
3 overkill
4 recommend
5 suggest
6 propose
7 good
8 outperform
9 important
10 requirement
11 criteria
12 demand
13 depend
14 implement
15 “count on”
16 need
17 require
18 want
19 ask
20 offer
21 provide
22 supply
23 support
24 select
25 choose
26 use
27 prefer
28 “go with”
29 which

30

30 what
31 when
32 how
33 versus
34 vs
35 against
36 contrast
37 difference
38 distinction
39 fast
40 slow
41 heavy
42 quick

References

[1] Aleem Akhtar. Role of Apache Software Foundation in Big Data Projects.
May 2020.

[2] Aman-ul-haq and Muhammad Ali Babar. “Tool support for automating
architectural knowledge extraction”. In: Sharing and Reusing Architec-
tural Knowledge, ICSE Workshop on 0 (May 2009), pp. 49–56. doi: 10.
1109/SHARK.2009.5069115.

[3] Muhammad Ali Babar and Ian Gorton. “A Tool for Managing Software
Architecture Knowledge”. In: Second Workshop on Sharing and Reusing
Architectural Knowledge - Architecture, Rationale, and Design Intent (SHARK/ADI’07:
ICSE Workshops 2007). 2007, pp. 11–11. doi: 10.1109/SHARK-ADI.2007.
1.

[4] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. 3rd. Addison-Wesley Professional, 2012. isbn: 0321815734.

[5] Manoj Bhat et al. “Automatic Extraction of Design Decisions from Issue
Management Systems: A Machine Learning Based Approach”. In: Soft-
ware Architecture. Ed. by Antónia Lopes and Rogério de Lemos. Cham:
Springer International Publishing, 2017, pp. 138–154. isbn: 978-3-319-
65831-5.

[6] R. Capilla, F. Nava, and C. Carrillo. “Effort Estimation in Capturing
Architectural Knowledge”. In: Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering. ASE ’08.
USA: IEEE Computer Society, 2008, pp. 208–217. isbn: 9781424421879.
doi: 10.1109/ASE.2008.31. url: https://doi.org/10.1109/ASE.
2008.31.

31

[7] Ian Gorton et al. “Experiments in Curation: Towards Machine-Assisted
Construction of Software Architecture Knowledge Bases”. In: 2017 IEEE
International Conference on Software Architecture (ICSA). 2017, pp. 79–
88. doi: 10.1109/ICSA.2017.27.

[8] A. Jansen and J. Bosch. “Software Architecture as a Set of Architectural
Design Decisions”. In: 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA’05). 2005, pp. 109–120. doi: 10.1109/WICSA.2005.
61.

[9] Anton Jansen et al. “Tool Support for Architectural Decisions”. In: 2007
Working IEEE/IFIP Conference on Software Architecture (WICSA’07).
2007, pp. 4–4. doi: 10.1109/WICSA.2007.47.

[10] Philippe Kruchten, Patricia Lago, and Hans Vliet. “Building Up and Rea-
soning About Architectural Knowledge”. In: vol. 4214. Dec. 2006, pp. 43–
58. isbn: 978-3-540-48819-4. doi: 10.1007/11921998_8.

[11] Dewayne E. Perry and Alexander L. Wolf. “Foundations for the Study
of Software Architecture”. In: SIGSOFT Softw. Eng. Notes 17.4 (Oct.
1992), pp. 40–52. issn: 0163-5948. doi: 10.1145/141874.141884. url:
https://doi.org/10.1145/141874.141884.

[12] Mohamed Soliman, Matthias Galster, and Matthias Riebisch. “Developing
an Ontology for Architecture Knowledge from Developer Communities”.
In: 2017 IEEE International Conference on Software Architecture (ICSA).
2017, pp. 89–92. doi: 10.1109/ICSA.2017.31.

[13] Mohamed Soliman et al. Exploring Web Search Engines to Find Architec-
tural Knowledge. Mar. 2021.

[14] Mohamed Soliman et al. “Improving the Search for Architecture Knowl-
edge in Online Developer Communities”. In: 2018 IEEE International
Conference on Software Architecture (ICSA). 2018, pp. 186–18609. doi:
10.1109/ICSA.2018.00028.

[15] Antony Tang, Yan Jin, and Jun Han. “A rationale-based architecture
model for design traceability and reasoning”. In: Journal of Systems and
Software 80.6 (2007), pp. 918–934. issn: 0164-1212. doi: https://doi.
org/10.1016/j.jss.2006.08.040. url: https://www.sciencedirect.
com/science/article/pii/S0164121206002287.

[16] Antony Tang et al. “A comparative study of architecture knowledge man-
agement tools”. In: Journal of Systems and Software 83.3 (2010), pp. 352–
370. issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2009.08.
032. url: https://www.sciencedirect.com/science/article/pii/
S0164121209002295.

[17] Jaime Teevan, Katrina Panovich, and Meredith Morris. A Comparison
of Information Seeking Using Search Engines and Social Networks. May
2010.

[18] The Apache Software Foundation. http://www.apache.org/. Accessed:
2021-07-20.

32

[19] Mohammad Al-Ubaydli. “Using Search Engines to Find Online Medical
Information”. In: PLOS Medicine 2.9 (Aug. 2005), null. doi: 10.1371/
journal.pmed.0020228. url: https://doi.org/10.1371/journal.
pmed.0020228.

[20] Zhuang Xiong et al. “Assumptions in OSS Development: An Exploratory
Study through the Hibernate Developer Mailing List”. In: Dec. 2018. doi:
10.1109/APSEC.2018.00060.

[21] Peilin Yang, Hui Fang, and Jimmy Lin. “Anserini: Enabling the Use of
Lucene for Information Retrieval Research”. In: Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’17. Shinjuku, Tokyo, Japan: Association for
Computing Machinery, 2017, pp. 1253–1256. isbn: 9781450350228. doi:
10.1145/3077136.3080721. url: https://doi.org/10.1145/3077136.
3080721.

11 Appendix

11.1 User Guide

33

To start browsing a collection we will first have to create one. For this we will need to first add
the project you want to browse to the database. At the moment we are only able to add from
apache jira and apache mailing archive. Navigate to manage page in the navigation bar.

Click Issue List in the sidebar and then the add issue list button

Search for the desired project you want to add at
https://issues.apache.org/jira/secure/BrowseProjects.jspa?selectedCategory=all&selectedProjec
tType=software. Then give the key to the jira project and name it as you want, probably the
same name as the jira project. Then click submit. Now this will add all the issues belonging to
the project key to the database. This might take a while depending on the project size.

Now we do the same for the mailing list. Click add mailing list.

Search for the desired mailing list you want to browse at
http://mail-archives.apache.org/mod_mbox/. Find the mailing list you want to add and set it as
url, the format should look like this: http://mail-archives.apache.org/mod_mbox/tika-dev/.
Then name it as you desire. Probably just the mailing list name as well. And select you want to
filter out the github and jira emails. Then press submit. This will add the mailing list to the
database. This might take a while depending on the project size.

You also have the possibility to add tags to the lists you want to browse. Go to the manage tag
page.

Add any tags that might be suitable for your use case. For me it would for example be
architecture.

Then finally navigate to the query collections tab and select the lists you want to browse and
name it. Press save and then you should be ready to browse the lists.

Navigate to home and select the collection you just created. In this case click on Tika Project
Browser to navigate to the browsing page.

Now you are ready to browse the lists! The arrows are to navigate the pages. The sidebar is to
select which list you want to browse.

You are able to search in the lists but only with the query parser syntax of lucene
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html.
You can also export your search results as a json file.

Finally you can tag the resources with the tags you created by clicking the tag icon when
browsing in a single result by clicking on in the list browser. Do click save or it will not be stored
in the database.

Example export with a tag.

Those are all the functionalities as of now. Good luck using the tool!

11.2 Technical Guide

47

Archedetector site:

Requirements:

● Node.js

Run npm install in the project directory to get all the dependencies.
Run npm run serve to host the site on your localhost

You are able to change api url If your api is at a different location than the one in the
env.development file in the project root.

Archedetector api:

Requirements:
● Postgres
● Maven
● Java 16.0.1

Then you need to create an empty database.
https://www.tutorialspoint.com/postgresql/postgresql_create_database.htm
Finally you will need to edit the datasource fields(url, username, password) corresponding to
your local properties.The application will create all the tables for you.
spring.jpa.hibernate.ddl-auto=create-drop, will drop and recreate the database on every time
you run the application. So change this to update if you do not want your database to be wiped.

Follow this stackoverflow to start up the application.
https://stackoverflow.com/questions/47835901/how-to-start-up-spring-boot-application-via-comm
and-line

Add maven to your path variables and navigate to the project root of the api. Then you should
be able to run the project with the command: mvn spring-boot:run

