
EXPLORING ARCHITECTURAL
KNOWLEDGE ON MICROSERVICE

ARCHITECTURE

Siddharth Baskaran

University of Groningen

Exploring architectural knowledge on microservice architecture

Master’s Thesis

To fulfill the requirements for the degree of
Master of Science in Computing Science

at University of Groningen under the supervision of
Prof. dr. Mohamed Soliman

and
Prof. dr. Paris Avgeriou

and
Dr. Frank Blaauw

Siddharth Baskaran (S3922782)

August 23, 2021

CONTENTS 3

Contents
Page

List of Figures 5

Abbreviations 6

Acknowledgements 7

Abstract 8

1 Introduction 9

2 Background 11
2.1 Architecture Knowledge (AK) . 11
2.2 Monolith Architecture . 11
2.3 Microservice Architecture (MSA) . 12
2.4 Motivation . 12

3 Study Design 15
3.1 Study design of literature sources . 15

3.1.1 Stage 1: Sources search and selection . 17
3.1.2 Stage 2: Selection and filtering process . 19
3.1.3 Stage 3: Snowballing and validation process 20
3.1.4 Data extraction . 22
3.1.5 Data synthesis . 24

3.2 Study design of other sources . 24
3.2.1 Blogs . 24
3.2.2 Forums . 25

3.3 Data synthesis using Atlas.ti . 26

4 Results 27
4.1 Publication trends (RQ1) . 27
4.2 Primary focus of research in academia (RQ2) . 29

4.2.1 Scope of research . 29
4.2.2 Support for architecting . 31

4.3 Primary focus of research in industry (RQ 3) . 32
4.4 Architecture Knowledge identified (RQ4) . 33
4.5 Problems and solutions identified (RQ 5) . 35

4.5.1 Communication in MSA . 38
4.5.2 Handling data in MSA . 39
4.5.3 Availability in MSA . 40
4.5.4 MSA Performance . 40
4.5.5 Design strategies in MSA . 40
4.5.6 Fault tolerance in MSA . 40

4.6 Architecture patterns identified (RQ5.1) . 41
4.6.1 Circuit breaker pattern . 42

4 CONTENTS

4.6.2 API Gateway Pattern . 44
4.6.3 Service discovery pattern . 44

4.7 Commonly used technologies in MSA (RQ5.2) . 46

5 Discussion 49
5.1 Analysis of the results . 49

5.1.1 Publication trends . 49
5.1.2 Focus of research in academia . 49
5.1.3 Focus of research in industry . 51
5.1.4 Problems and solutions identified . 51
5.1.5 Architecture patterns identified . 52
5.1.6 Commonly used technologies in MSA . 52

6 Threats to Validity 53
6.1 Internal validation . 53
6.2 External validation . 53
6.3 Construct validation . 53
6.4 Conclusion validation . 54

7 Related Work 55

8 Future Work 56

9 Conclusion 57

Bibliography 58

Appendices 61
A Coding book for annotations . 61
B List of literature . 65
C List of blogs . 68
D List of forum articles . 70

LIST OF FIGURES 5

List of Figures
1 An overview of the study plan . 9
2 Monolith architecture . 11
3 Microservice architecture . 12
4 Initial search and stage 1 search process . 16
5 Stage 2: Selection process . 17
6 Stage 3: Snowballing and validation process . 17
7 Google search trends . 18
8 Snowballing process [1] . 21
9 Overview of selection and filtering of literature . 22
10 Keywording process . 24
11 Overview of selection and filtering of blogs . 25
12 Overview of selection and filtering of forums . 25
13 Publications per year . 27
14 Publication distribution over publications per year 28
15 Overview of publication type . 28
16 Publications over the years per database . 29
17 Total annotation per source . 34
18 Distribution of annotations . 34
19 An overview of the identified problems and solution in MSA 36
20 An overview of the identified problems and solution in MSA (contd.) 37
21 An overview of the identified problems and solution in MSA (contd.) 38
22 Circuit breaker pattern [2] . 43
23 API Gateway pattern [3] . 44
24 Client Service Discovery pattern [4] . 45
25 Client Service Discovery pattern [4] . 46
26 Various tools and technologies used in MSA . 48

6

Abbreviations
AK - Architecture Knowledge
MSA - Microservices Architecture
SMS - Systematic Mapping Study
SOA - Service Oriented Architecture

7

Acknowledgments
The completion of this thesis would not have been without the support of my supervisors, Prof. dr.
Mohamed Soliman, Prof. dr. Paris Avgeriou and Dr. Frank Blaauw for their incredible support during
my master thesis.

I wish to acknowledge the support of my family and friends. They kept me going on, and this work
would not have been possible without their input.

8

Abstract
Software architects utilise a wide variety of resources to design systems. These resources are an
ever-growing collection of software architecture designs based on design patterns, implementation
strategies and organisation techniques. Selecting an appropriate solution from this pool of resources
is a difficult task for any engineer. One approach to relieving the burden of engineers is to have
up-to-date architectural knowledge, which helps engineers make informed decisions.

One of the rising architecture trends in recent times is microservice architecture (MSA). Microservice
architecture comprises several small services running their process and communicating with other
services to form a more extensive and complex system. This architecture has already been adopted a
lot by practitioners. Although there has been an increase in MSA research in recent years, there are
still many unexplored aspects of this topic, and there is no comprehensive review on this topic.

This study aims to systematically identify, analyse, and classify various sources for MSA knowledge,
such as literature, blogs, and forums. We systematically apply a well-defined classification framework
for categorising the multiple sources and use it to all the collected sources, including 35 literature
studies, 22 blog articles and 25 forum articles. To analyse the collected data further, we annotate the
data to obtain annotations and extract key information such as the common problems and solutions
in MSA, common architecture design patterns in MSA, and various tools used in MSA. The results
obtained can help researchers and practitioners conduct further research on the lesser analysed MSA
topics, bridge the gap between research and implementation, and aid the engineers implementing
MSA.

Chapter 1 INTRODUCTION 9

1 Introduction
Microservice architecture (MSA) has become the latest trend in software development. It advocates
the development of software using small and autonomous services that work together. All commu-
nications between these services are through network calls, which enforces the services to be inde-
pendent and avoids tight coupling issues [5]. Many advantages have been justified for MSA in both
academia and the industry; for example, they are resilient, can scale well, and are easy to deploy. A
large number of world-leading technology companies have been using microservices to implement
complex functionalities in their products, such as Amazon, Netflix, Facebook, etc [6].

MSA as a concept arises from a broader area of Service-Oriented-Architecture (SOA). There are,
however, many differences between SOA and MSA. One of the philosophies in MSA is to develop
services driven by a share-nothing philosophy that supports the agile methodology, promoting quick
delivery of features and maintaining isolation and autonomy. SOA supports a more share-as-much-
as-you can philosophy to promote a high degree of reuse [7].

Even though there has been a significant increase in the adoption of MSA in practice, and research has
identified design principles and architecture patterns for MSA, many aspects of MSA are still unclear
or are unexplored. These unclear and unexplored areas of MSA make it difficult for both researchers
and practitioners to clearly understand MSA implementation and reduce their potential for broader
adoption. One of the important goals of this thesis is to characterize the current state of research in
MSA, identify the research gaps, analyze the current industry standards, and identify the gap between
research and industry. The overall process for this study is shown in Figure 1. Another important goal
is to identify the key concepts being discussed by creating a coding book using annotations.

Figure 1: An overview of the study plan

To understand how MSA is being researched upon in academia, we conducted a Systematic Mapping
Study (SMS) through a collection of primary studies on MSA. Our study identified, classified, and
evaluated the current state of the art on architecting microservices from different perspectives. We
identified 35 preliminary studies; then defined a classification framework for identifying and catego-
rizing the research results. Apart from collecting research studies, we also collected studies from the
industry in the form of blogs and forums and categorized the studies.

To further analyse the data, we created a coding book as listed in appendix A and annotated all the
studies using Atlas ti. Using these annotations, we were able to: (i) Analyse a classification of the
problems that practitioners may face when developing systems using MSA and the solutions to solve

10 Chapter 1 INTRODUCTION

these problems, (ii) a list of the most common MSA patterns, (iii) classification of the tools that are
commonly used to build systems with MSA.

The rest of the thesis is organized as follows: Section 2 briefly introduces the concepts and the moti-
vation for this study. Section 3 discusses the research method used in this study. Section 4 describes
the results obtained. Section 5 discusses the results obtained. Section 6 describes the threats to valid-
ity. Section 7 discusses the related work. Section 8 discusses the future work. Section 9 concludes
the study.

Chapter 2 BACKGROUND 11

2 Background
In this section, we provide an brief overview of architecture knowledge, comparison between mono-
lith architecture and MSA, and the research questions.

2.1 Architecture Knowledge (AK)
As mentioned by Paris et al. in [8] “Architectural Knowledge (AK) is defined as the integrated
representation of the software architecture of a software-intensive system or family of systems along
with architectural decisions and their rationale external influence and the development environment.”

2.2 Monolith Architecture
A monolith architecture is one where an application is developed and deployed as a single application
which contains all the necessary parts. A typical monolith systems consists of a UI, business logic
and a data-access layer which communicates with a database as shown in Figure 2.

Figure 2: Monolith architecture

A monolith system is a good starting point, but as the codebase grows, the problems of a monolith
system increase. Implementing new or existing features becomes difficult as the developer needs to
work with a large codebase that is tightly coupled, and making changes could lead to issues in other
parts of the system. It also takes a long time for new developers to get accustomed to the codebase as
it’s vast and often confusing. Monolith codebases are also difficult to refactor as modifying a small
piece would require testing the entire system and could add to a significant amount of time, which
leads to situations where refactoring is ignored. The codebase is big, and there is a higher possibility

12 Chapter 2 BACKGROUND

of code duplication as developers could be unaware of similar functionality, making updates difficult
as multiple parts of the code need to be changed [9].

In general, a system should be developed using monolith architecture if the application’s codebase is
small and remains that way in the long term if there is an abundance of developers. It is possible to
develop a monolith system that has clean code and modularity; it takes a lot of effort and usually a lot
of developers to maintain the codebase.

2.3 Microservice Architecture (MSA)
Microservices have been referred to as the solution to overcome the shortcomings of monolith ar-
chitecture. MSA is an approach to developing a single application using a suite of small services,
each running its own process and having its own resources. Microservices are developed based on
business requirements, due to which they are often independently deployable. Because of their size,
they are easier to maintain and scale vertically. They are also more fault-tolerant as the failure of one
service will not cause the entire application to be unavailable. Therefore, MSA allows developers to
develop systems that are modular, fault-tolerant, and easy to scale. Figure 3 shows the structure of a
microservice architecture.

Figure 3: Microservice architecture

2.4 Motivation
Due to the fast adoption of MSA, there has been an increasing amount of studies, blogs, and forums
published in the past few years. Currently, many of the aspects of MSA are unclear and information
scattered across various platforms. Analyzing the existing data will make it easier for practitioners to
adopt MSA quickly and help researchers identify further research opportunities. Table 1 details the
research questions and the rationale behind selecting these questions.

Chapter 2 BACKGROUND 13

Category 1: Classification and mapping of research materials

ID # Research question Rationale

RQ 1 What are the publication trends of
research studies about MSA?

This RQ is formulated to collect data on the
types of research avenues, publication trends on
MSA. The answer to this RQ will provide in-
formation on the trends in MSA in research and
prominent venues and help characterize the in-
tensity of scientific interest in MSA.

RQ 2 What are the primary areas of focus
of research on MSA in academia?

The answer to this RQ will help establish the
baseline for the systematic analysis of MSA in
academia. By answering this RQ, we can set
a solid foundation for classifying various MSA
concepts from the obtained research articles and
analyze the research gaps in MSA in academia.

RQ 3 What are the primary areas of focus
of research on MSA in industry?

The answer to this RQ is similar to RQ 2. This
RQ helps set a foundation for classifying the
various MSA concepts in the industry; we can
also analyze the gaps and differences between
the industry and academia from the classifica-
tion.

Category 2: Architecture Knowledge identified

ID # Research question Rationale

RQ 4 What are the common MSA AK
identified in each of the sources?

As we have analyzed different sources to iden-
tify MSA AK, by answering this question, we
can understand more clearly how each source
contributed towards the various categories of
classifications.

RQ 5 What are the common problems and
its solution reported in implement-
ing MSA?

Implementing MSA comes with its own set of
problems. The answer to this RQ will help us
classify the most common problems one faces
when using MSA and the solutions one could
use to solve said problems. A solution to the
problems identified could be a design solution,
a pattern, or a tool.

RQ 5.1 What are the common MSA design
patterns used?

Several design patterns exist when trying to im-
plement an MSA. The answer to this RQ will
help in identifying the most common architec-
ture pattern one uses for MSA.

14 Chapter 2 BACKGROUND

RQ 5.2 What are the commonly used tech-
nologies when using MSA?

Implementing MSA requires various tools to
be used together. The answer to this RQ will
help identify the most common technologies
one could use while implementing a system us-
ing MSA.

Table 1: Research questions and Rationale

Chapter 3 STUDY DESIGN 15

3 Study Design
Our study follows a two-phase design. In the first phase, we focused on scientific literature, and in
the second phase, we focused on other sources such as blogs and forums. Due to the different nature
of the two phases, the study design varied significantly for both phases. Hence, this section has been
divided to represent the study design for each of the different sources.

3.1 Study design of literature sources
Our literature study set out to identify various trends, problems, patterns, and methods in the context
of MSA. The best technique to achieve this was to perform a Systematic Mapping Study (SMS).
SMS are designed to analyze a broad research area and to determine if research evidence exists on
a topic and provide an indication of the quantity of the evidence [10]. Moreover, SMS offers a
decisive method to perform a systematic and objective method to identify and classify what evidence
is available in a specific research area [11]. Using SMS makes it possible to perform an extensive
literature review and frame the crucial research questions.

Figures 4- 6 give an overview of the search and selection process which are described in more detail
below.

16 Chapter 3 STUDY DESIGN

Figure 4: Initial search and stage 1 search process

Chapter 3 STUDY DESIGN 17

Figure 5: Stage 2: Selection process
Figure 6: Stage 3: Snowballing and val-
idation process

3.1.1 Stage 1: Sources search and selection

B. Kitchenham et al. [12] proposed the concept of PICO (Population, Intervention, Comparison and
Outcomes) as a method to identify and formulate research strings for an SMS based study. PICO is
defined as:

• Population: Population in Software Engineering is defined as the specific software engineer-
ing role, category of software engineer, an application area or an industry group [12]. In this
particular study, population is micro-service architecture studies.

• Intervention: Intervention in Software Engineering is defined as the software methodology,
tool, technology, or procedure [12]. In this study, as we concentrate on architecture knowledge
on a broad scale, we do not have any intervention.

• Comparison: What is the main alternative to compare the obtained results? Comparison is not
part of this study as we are not focusing on comparative studies but on architecture knowledge
which can contain a wide variety of knowledge.

• Outcome: What is the quantitative outcome from this study?. In this particular study, we create
a categorization framework and classify studies depending on the category.

Based on the discussion in [12] and [13], the following databases were used to find relevant literature:
IEEE Xplore 1, ACM Digital Library 2, Springer 3, and ScienceDirect 4.

The reason why these specific databases were selected are (i) They are recognized as reputable sources
for performing SMS on Software Engineering topics as discussed in [12] and [13], (ii) Easy access
and a wide selection of literature, and (iii) Easy to export and use the data for analysis.

1https://ieeexplore.ieee.org/Xplore/home.jsp
2https://dl.acm.org/
3https://www.springer.com/gp
4https://www.sciencedirect.com/

https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://www.springer.com/gp
https://www.sciencedirect.com/

18 Chapter 3 STUDY DESIGN

One of the key factors that we considered for selection was to collect literature between 2016 and
2021, and the rationale behind this was twofold:

(i) As shown in Figure 7, we can observe that there has been a significant increase in the search
for the keyword microservices from 2016, and hence this was selected as the lower boundary.

(ii) The upper boundary was set to 2021 to get up to date information.

Figure 7: Google search trends

To start with the data collection, as suggested in [12], an automatic search was performed on the
selected databases using the following search string:

Original string: ((architect* OR design* OR system OR knowledge) AND
(microservices"))

The search string was applied only to the title, abstract, and list of keywords to maintain consistency
and make it easy to filter the results. Table 2shows the search string used on each Database and
indicates the search string’s area.

While performing a test with the original test string, we observed that some well-known studies were
not retrieved. We realised that some of the studies used a different format to identify microservices
such as microservice or micro-services; hence the search string was modified to the one represented
as the final string.

The following factors were eventually considered when formulating the final search string:

• The research objectives and RQs.

Chapter 3 STUDY DESIGN 19

• Different ways to write the terms. (e.g. microservice, micro-service).

• Different combinations of terms. (e.g. architect design, architect system, architect knowledge).

• The limitations of the search engine in the databases.

Final string: ((architect* OR design* OR system OR knowledge) AND (microservi*
OR micro-servi*))

Strings

String: ((architect* OR design* OR system OR knowledge) AND (microservi* OR micro-servi*”))

Databases

Database Link Targeted search area

IEEE Xplore https://ieeexplore.ieee.org/Xplore/home.jsp Title, Abstract and Keywords
ACM Digital Library https://dl.acm.org/ Title, Abstract and Keywords
Springer https://www.springer.com/gp Title, Abstract and Keywords
ScienceDirect https://www.sciencedirect.com/ Title, Abstract and Keywords

Table 2: Search strings and databases used in this systematic mapping study

3.1.2 Stage 2: Selection and filtering process

Once the initial set of papers were collected, an impurity removal was required to remove all data that
was not literature, such as posters, short-text, opinions pieces. These were filtered out in the search
stage to avoid unnecessary data.

Once the impurities were removed, the next step was to merge and remove duplicates. It was necessary
to remove duplicates and merge papers present in multiple databases to clean the dataset further.

Once all the necessary literature was collected using the aforementioned techniques, it was necessary
to filter out a lot of the literature collected using very well-defined selection criteria. This filtering
was required as we only required relevant literature and since the main idea was to build architecture
knowledge on microservices. These criteria were chosen based on [10].

Table 3 represents the list of inclusion criterion’s. These inclusion criteria helped narrow down the
original data collected and only look for relevant literature that consists of topics relevant to MSA.

Criteria

IC-1 Studies involving architecture solution, methods, or implementation strategies specifically for
microservices, case studies and interviews

IC-2 Studies were published between 2016 and 2021
IC-3 Studies are in English

Table 3: Inclusion criteria

https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://www.springer.com/gp
https://www.sciencedirect.com/

20 Chapter 3 STUDY DESIGN

Table 4 represents the list of exclusion criteria. These exclusion criteria were designed to limit the
scope of the research and to disregard studies that do not relate to microservices. All criteria were
added to narrow down the search to specific topics that involve topics necessary for MSA.

Criteria

EC-1 Studies involving microservices but ones that concentrated on specific applications, mainte-
nance, brief conceptual ideas and tools used in MSA

EC-2 Studies involving abstracts, posters, short-papers, technical writings
EC-3 Studies that were duplicates of other studies
EC-4 Studies that involved books or grey literature
EC-5 Studies where full-text was not available

Table 4: Exclusion criteria

3.1.3 Stage 3: Snowballing and validation process

To support the manual search, we then performed an automated search based on citation analysis; this
technique is known as snowballing.
The search process has various steps that help gather and filter out the literature required for the study.
Once the original data set was obtained, the next step was to perform forward/backward snowballing;
this was done to enlarge the final dataset with relevant data.

Backward snowballing means using the reference list to identify new papers to include [1]. The
following papers were considered for Backward snowballing.

1. P. D. Francesco, I. Malavolta and P. Lago, ”Research on Architecting Microservices: Trends,
Focus, and Potential for Industrial Adoption [7].

2. Paolo Di Francesco, Patricia Lago, Ivano Malavolta, Architecting with microservices: A sys-
tematic mapping study [14].

3. Schröer, Christoph and Kruse, Felix and Marx Gómez, Jorge, ”A Qualitative Literature Review
on Microservices Identification Approaches” [15].

We also performed forward snowballing (i.e., collecting those studies citing the selected studies [1],
which was performed using Google Scholar 5) on the same set of papers.

Figure 8 represents the process of snowballing and the various steps involved in both forward and
backwards snowballing.

5https://scholar.google.com/

https://scholar.google.com/

Chapter 3 STUDY DESIGN 21

Figure 8: Snowballing process [1]

Figure 9 shows an accurate representation of the number of papers included and excluded in each
stage.

While doing the full-text reading of the initially selected 89 documents, it became apparent that some
more articles need to be removed as they were not in the scope based on the inclusion and exclusion
criteria. The selected 24 articles were used to conduct forward snowballing, and three articles were
selected to perform backward snowballing, which led to another ten studies being added.

A couple of papers were marked as borderline papers deemed relevant during the inclusion and exclu-
sion based on title and abstract and were excluded later in the process. On re-reviewing those papers
at the end of the process, one study matched the criteria and was added to the included list bringing
the total number of studies selected to 35.

22 Chapter 3 STUDY DESIGN

Figure 9: Overview of selection and filtering of literature

3.1.4 Data extraction

For answering the research questions, we defined a set of data items. In this activity, we (i) cre-
ate a classification framework and (ii) collect data for each primary study. In order to answer the
research questions and to develop a strong data extraction process, and easily classify the data, we
systematically designed a structured classification framework based on [7].

Publication trends (RQ1) - We considered the parameters to collect data about publication trends:
publication year, publication venue (e.g., conference, journal, and workshops), and publication database.
Table 5 represents the data items that are extracted from the studies. Data items (D1–D4) are used
to extract the general information of the selected studies, and the rest data items (D4–D) are used to
answer the RQs as discussed in 2.4. The relationship between the data items and RQs is also described
in Table 5. All the studies were collated and stored in Google Sheets to be further synthesized.

Chapter 3 STUDY DESIGN 23

Code Data Item Description Relevant RQ

D1 Study ID The ID of the study (P-Papers, B-Blogs, F-Forums) N/A
D2 Study Title The title of the study N/A
D3 Author(s) List The authors of the particular study N/A
D4 Publication Venue The name of the publishing venue N/A
D5 Year The year in which the study was published RQ 1
D6 Publication Type Journal, conference or workshop RQ 1
D7 Database The database which the study is from RQ 1
D8 Research strategy The strategy identified in the study (Literature only) RQ 2
D9 Research contribution The main research contribution of the study (Literature only) RQ 2
D10 Research focus The main research focus of the study RQ 2 & RQ 3
D11 Software lifecycle scope The phase of software lifecycle in the study (Literature only) RQ 2
D12 Architecting activities The main architecting activity of the study (Literature only) RQ 2
D13 Quality attributes The main quality attribute of the study (Literature only) RQ 2

Table 5: Data items extracted

Focus of research in academia (RQ2) - To answer this specific question, we performed a systematic
process known as keywording, as discussed in [7]. Keywording is a technique that is used to develop
a classification scheme quickly. The process involves studying the abstracts to highlight the essential
keywords of the study, which are required to gain insight into the study. Keywording requires having
a clear understanding of the end goal and extensive knowledge of the topic. Using this process, a
list of keywords were generated related to MSA and were collated to provide info on the various
contributions from each study. However, in some cases, to ensure reliability, some keywords were
also generated by examining the studies’ introduction and conclusion. Once this list was generated, it
was used to ascertain the categories used for the map of the study [11]. Figure 10 represents the steps
involved in the keywording process.

The following were the steps involved in the keywording process:

1. Identify keywords - The keywords were collected by reading the full text of each study. Once all
the keywords were identified, only keywords that identified the emerging context, nature, and
research contribution on microservices architecture were retained.

2. Cluster keywords and form categories - The collected keywords were clustered according to
emerging categories as mentioned in [7]. The output of this stage is the initial version of the
classification framework.

3. Extract data from study and refinement - Once the initial keywords had been identified, each
primary study is analysed to (i) classified into a category identified by the keywording technique
and (ii) collect any additional information, and if the identified keyword is relevant, then the
classification framework is updated.

24 Chapter 3 STUDY DESIGN

Figure 10: Keywording process

3.1.5 Data synthesis

This particular step involves collating and summarising the data that is extracted in the Data Extraction
step 3.1.4, where the primary goal is understanding, analysing, and classifying the studies on MSA.

To further explore the data and perform extensive data analysis, Atlas.ti was used. The use of
Atlas.ti for coding was to perform a cyclic and iterative data analysis which would have been difficult
to perform using a spreadsheet, word processing application, or a note-taking tool [16]. The entire
process of performing Data synthesis using Atlas.ti has been described in Section 3.3.

3.2 Study design of other sources
This subsection describes the study design for the other sources such as blogs and forums.

3.2.1 Blogs

To collect blogs for the study, we used the study performed by Mohamed Soliman et al. [17] as the
source. The study collected AK using a traditional search engine, Google. Fifty-three developers
were tasked to collect data and classify the results depending on the relevance, with 5 having a high
relevance where the result discusses a similar problem to the topic and contains useful information
and 1 having a low relevance, where the result contains information that is only remotely relevant to
the goal.

Based on the search methodology described, we decided to look for studies that contained the keyword
microservice in the URL or the title. We restricted the search to a relevance score of 3 to prevent
collecting data relevant to the study.

Once the studies were filtered, we removed every link that was not a blog article, performed a short
reading of the results and accepted blogs relevant to our research, and discarded the irrelevant blogs.
Overall we found 21 blogs that matched our requirements.

Figure 11 shows the overview of the selection and filtering process of the blog articles.

Chapter 3 STUDY DESIGN 25

Figure 11: Overview of selection and filtering of blogs

3.2.2 Forums

We decided to look into StackOverflow (SO) 6 for collecting data from forums as it is one of the largest
forums to discuss software-related topics in a question-answer format. It also supports features as
tagging questions based on topics; it also supports users to add details to the questions; the quality of
the questions and answers are also ensured by allowing users to vote on the platform. Moreover, as SO
is the most used forum for software engineering, it is constantly updated with the latest information
from its users. All these features make it an excellent source for collecting AK.

Based on the features offered by SO, we deiced to look at questions tagged ‘microservices‘ and to
filter the results by restricting it to display only questions with more than 35 votes. Once the data was
collected, we read all the results and picked only the relevant results, resulting in 25 studies being
collected. Figure 12 shows the overview of the selection and filtering process of the forum articles.

Figure 12: Overview of selection and filtering of forums

6 https://stackoverflow.com/

https://stackoverflow.com/

26 Chapter 3 STUDY DESIGN

3.3 Data synthesis using Atlas.ti
To further synthesise the data, Atlas.ti7 was used, which is a tool that helps researchers systematically
analyse complex data. The tool allows users to create a coding book and annotate data using this
coding book. For this particular analysis, an inductive approach was used.

Before we could annotate the data, a coding book had to be created. To create this coding book,
a technique known as noticing and collecting was used [18]. Using this technique, we were able
to develop the codes inductively. Atlas.ti provides a feature, ‘apply codes’, which lets you select
data and apply one of the codes created. We identified 14 different codes through this method and
defined these codes to annotate the studies using this as our base. The coding book can be found
in Appendix A. Once the coding book was defined, all 81 studies were analysed and we found 872
annotations overall.

7https://atlasti.com/

https://atlasti.com/

Chapter 4 RESULTS 27

4 Results
This section reports the results of the study after analysing and extracting information from the studies.
We report the publication distribution in Section 4.1. We discuss the various themes and categoriza-
tion of literature studies in Section 4.2. Section 4.3 discusses the themes identified in the industry.
In Section 4.4 we discuss the various Architecture Knowledge identified. The problems and solu-
tions identified are reported in Section 4.5. We report the various patterns identified in Section 4.6.
Section 4.7 discusses the various tools and technologies associated with MSA.

4.1 Publication trends (RQ1)
The distribution of publications per year is an integral part of this study as it provides information
regarding published studies for each year on MSA. The data obtained through this analysis provides
a general overview of the research in MSA.

Figure 13 shows the number of mapping studies identified within the years 2016 and 2021. The
interest in MSA has been approximately the same across the period and shows a slight dip in 2020
could be due to the lesser number of conferences taking place in 2020 due to the COVID-19 global
pandemic.

P
ub
lic
at
io
ns

0

2

4

6

8

10

2016 2017 2018 2019 2020 2021

Figure 13: Publications per year

Figure 14 shows the number of publications per year. Each year is represented using three coloured
bars, and each coloured bar represents the study type published from 2016 to 2021. As shown in
Figure 13, 8 studies were published in 2016, 6 were published in 2017, 8 were published in 2018, 9
were published in 2019, 3 were published in 2020, and finally 1 was published in 2021.

28 Chapter 4 RESULTS

0

2

4

6

8

2016 2017 2018 2019 2020 2021

Conference Papers Journals Workshop Papers

Figure 14: Publication distribution over publications per year

Workshop Papers
2.9%
Journals
14.3%

Conference Papers
82.9%

Figure 15: Overview of publication type

Chapter 4 RESULTS 29

0

2

4

6

8

2016 2017 2018 2019 2020 2021

IEEE ACM ScienceDirect Springer Others

Figure 16: Publications over the years per database

Figures 14, 15 and 16 show the distribution over publications and per database.

4.2 Primary focus of research in academia (RQ2)
After collecting all relevant literature, we created two categories to analyse further the focus of re-
search, namely (i) scope of research and (ii) support for architecting based on [7].

4.2.1 Scope of research

Research strategies - The categories for the research strategies have been obtained from the list
provided by Wieringa et al. [19]. The categories in this list is widely used and is also used as the base
in various mapping studies [7].

Table 6 represents all the research strategies identified from all the collected literature. From the table
it is evident that evaluation research is the most common category (17/35). Evaluation research is
mainly referred to the investigation of problems in software engineering or an implementation strat-
egy. The knowledge provided in the evaluation research papers primarily evaluate using some form
of evaluation strategy; casual properties could be studied empirically using case studies, experiments,
etc., and logical properties by mathematics [19]. Solution proposal and opinion studies are the sec-
ond most common category (7/35). Solution proposals are those in which the paper proposes a new
solution and argues for its relevance. A proof of concept is generally an excellent companion to back
a solution proposal [19]. These solutions are usually new strategies researchers propose in tackling
MSA, as MSA is a fairly new concept. There are always new ways to solve problems, which gives
researchers opportunities to propose new solutions.Opinion papers are generally based on the opinion
of the author(s) on how to propose a solution, the merits and demerits of a system, and it usually
provokes a discussion [19].

30 Chapter 4 RESULTS

Research Strategy No. of studies Studies

Evaluation research 17 P5, P6, P11, P16, P17, P18,
P19, P22, P24, P25, P26, P27,
P28, P30, P32, P33, P35

Solution Proposal 7 P8, P9, P10, P14, P15, P29,
P34

Opinion Study 7 P1, P3, P4, P12, P13, P20, P21
Experience Paper 3 P2, P7, P23
Conceptual 1 P31

Table 6: Research strategies distribution

Research contribution - From Table 7 we can identify the main research contribution as Design
Patterns (22/35). The number of studies concentrating on applications and reference architecture are
low compared to design patterns.

Research
contribution

No. of studies Studies

Design Patterns 22 P1, P2, P3, P6, P7, P9, P10,
P11, P12, P13, P14, P16, P17
P20, P22, P24, P25, P26, P27,
P28, P30, P35

Application 7 P15, P18, P19, P31, P32, P33,
P34

Reference
Architecture

6 P4, P5, P8, P21, P23, P29

Table 7: Research contribution distribution

Research focus - Research focus represents the main focus area of the study. From table 8, we can
observe that the predominant focus is on cloud (9/35), development (9/35), and system quality (8/35).
Migration takes up only a tiny part of the research (5/35). It is surprising to note that there are also a
few studies where MSA is being considered for IoT related topics (4/35).

Chapter 4 RESULTS 31

Core research area No. of studies Studies

Cloud 9 P15, P22, P24, P30, P31, P32,
P33, P34, P35

Development 9 P1, P3, P4, P18, P19, P20,
P21, P23, P26

System quality 8 P5, P6, P9, P10, P12, P16,
P17, P27

Migration 5 P2, P7, P11, P13, P28
IoT 4 P8, P14, P25, P29

Table 8: Research focus distribution

Software lifecycle scope - From Table 9 the most predominant software lifecycle phase is software
design (23/35). Surprisingly there is a wide gap between software design and implementation phase
(12/35).

Software Lifecycle
Scope

No. of studies Studies

Software Design 23 P2, P3, P5, P6, P7, P10, P11,
P13, P15, P16, P17, P19, P20,
P21, P22, P23, P26, P27, P28,
P29, P30, P31, P35

Implementation 12 P1, P4, P8, P9, P12, P14, P18,
P24, P25, P32, P33, P34

Table 9: Software lifecycle scope distribution

4.2.2 Support for architecting

Architecting activities - The classifications have been based on the study done in [7]. As shown
in Table 10, the most common architecting activities are architectural analysis (11/35), architecture
evaluation (9/35), architecture understanding (9/35). This indicates that researchers mostly try to
analyse or understand existing MSA rather than implementing new architecture (5/35).

32 Chapter 4 RESULTS

Architecting
activities

No. of studies Studies

Architectural
Analysis

11 P2, P6, P7, P8, P9, P20, P22,
P30, P32, P34, P35

Architecture
Evaluation

9 P4, P5, P10, P11, P18, P19,
P26, P27, P28

Architecture
Understanding

9 P1, P3, P12, P13, P16, P21,
P23, P29, P31, P33

Architectural
Implementation

5 P14, P15, P17, P24, P25

Architectural
Description

1 P29

Table 10: Architecting activities distribution

Quality attributes - The study looked at various quality attributes and table 11 shows the distribution
of quality attributes. Performance is the most discussed quality attribute (14/35). Functional usability
and usability are almost similar with (9/35) and (8/35) respectively and this is primarily due to the
fact that MSA is really good with being used for specific use cases and it tends to help developers
build systems using different technologies.

Compatibility No. of studies Studies

Performance 14 P4, P5, P6, P9, P10, P11, P14,
P15, P22, P26, P27, P32, P34,
P35

Functional
suitability

9 P1, P17, P18, P19, P20, P23,
P25, P29, P33

Usability 8 P2, P7, P8, P12, P13, P16,
P28, P30

Reliability 3 P24, P29, P31
Maintainability 1 P3

Table 11: Quality attributes distribution

4.3 Primary focus of research in industry (RQ 3)
After collecting all the studies associated with the industry, such as blogs and forums, we wanted to
analyze the studies further; hence we created one category to identify the main focus of the studies.
Unlike the categorization of papers, which has multiple classifications, for studies based on the in-
dustry, we have one classification as studies from the industry only focus on one topic in their article.
We do not have multiple aspects as that of literature.

Table 12 shows the various focus of study of blogs and forums. The most common focus is on
patterns (18/45), followed by development (12/45) and system design (11/25). The least discussed

Chapter 4 RESULTS 33

topic is architecture solution (4/45). One crucial observation is that most of the patterns are from
blogs, and most of the development studies are forum articles.

Main focus of study No. of studies Studies

Patterns 18 B1, B2, B4, B5, B6, B7, B8,
B9, B14, B16, B17, B18, B20,
B27, B28, F48, F50, F54

Development 12 F21, F24, F30, F31, F38, F41,
F42, F44, F45, F46, F47, F53

Architecture
Solution

4 F22, F23, F25, F32

System Design 11 B3, B10, B11, B12, B13, F33,
F40, F43, F49, F50, F52

Table 12: Main focus of study

4.4 Architecture Knowledge identified (RQ4)
Based on the categories defined in Appendix A we annotated all the documents collected and found
872 annotations across all categories, which are represented in Figure 17. Figure 18 shows the occur-
rences of AK concepts present in each of the AK sources. Based on Figure 18, we can observe the
following:

• Architecture Impact is the most discussed AK in the literature, whereas it’s discussed a lot
lesser in blogs. That is primarily because most of the literature studies are based on comparing
various aspects of microservices; hence, they discuss the different impacts of different solutions
and systems. In blogs and forums, the discussion is primarily on the implementation of different
architectures, and hence there is less discussion of impact but more about how architecture is
implemented.

• Architecture Patterns are heavily discussed in blogs, whereas in literature and forums, it is sig-
nificantly lower as blogs, in general, contain discussions on various implementation techniques.
These tend to be more or less based on different patterns available to implement certain features
in MSA. When dealing with direct implementation strategies, blogs tend to discuss patterns and
how to use them, which is usually not the case in literature, where it is more about discussing
using an existing architecture or the impact of certain patterns and alternatives available.

• Architecture Design Rules are discussed a lot in both literature and forums, which is primarily
because, in forums, most of the questions regarding MSA are on how to implement certain
aspects of the architecture or questions about development using an MSA and the answers to
those are more or less in terms of design suggestions or specific strategies in using certain
design patterns. Similarly, in literature, when comparison studies are done or when a case study
is explored, the results derived are based on different designs to achieve different results.

• Use cases are found almost equally across all 3 sources as studies discuss a concept and an
example, making it easier to understand.

34 Chapter 4 RESULTS

• Technology-based solutions are more discussed in literature than blogs and forums, primarily
due to the presence of case studies in literature. A lot of literature contains case studies, and
these generally contain information on various technologies used to implement MSA in various
systems.

0

100

200

300

400

Papers Blogs Forums

Figure 17: Total annotation per source

0

50

100

150

200

250

Architecture
Impact

Architecture
Patterns

Architecture
Design

Rule

Use Cases Technology
Solution

Tradeoffs Others

Forums Blogs Papers

Figure 18: Distribution of annotations

Chapter 4 RESULTS 35

4.5 Problems and solutions identified (RQ 5)
This section presents the problems and solutions identified in the selected studies related to MSA.
We decided to analyse the annotations tagged Architecture Impact further as it is the most annotated
category as discussed in subsection 4.4. To analyse the annotations, we applied thematic analysis [20]
on the annotated data and identified six categories to classify the problems and solutions. The six
classified themes are (i) Communication in MSA, (ii) Handling data in MSA, (iii) Availability in
MSA, (iv) MSA Performance, (v) Design strategies in MSA and (vi) Fault tolerance in MSA.

36 Chapter 4 RESULTS

Figure 19: An overview of the identified problems and solution in MSA

Chapter 4 RESULTS 37

Figure 20: An overview of the identified problems and solution in MSA (contd.)

38 Chapter 4 RESULTS

Figure 21: An overview of the identified problems and solution in MSA (contd.)

We were able to identify 13 problems overall and 36 solutions. Figures 19- 21 shows the mapping
between the issues identified and their corresponding solutions. The classification indicates that the
majority of the problems are in 2 categories, communication in MSA and handling data in MSA. We
briefly discuss these problems and solutions below.

4.5.1 Communication in MSA

This category reports the problems and solutions related to communication in MSA. As MSA com-
prises multiple services, efficient communication is key to have a functioning system. The most
common solution from studies (B13, F38, F30) is to implement a sound communication system ef-
fectively is to design the system to use asynchronous communication where systems can communicate
with multiple services together when compared to synchronous where the calls to each service can add
up in terms of latency and slow down the system. Asynchronous protocols such as MQTT, STOMP
and AMQP are also suggested in study (B16), and RPI protocol is suggested in study (B2). Study
(P23) suggests using a message broker such as Apache Kafka or ActiveMQ to control the flow of

Chapter 4 RESULTS 39

requests; similarly, one could use GraphQL to make requests to control the requests being made as
study (F21) suggests.

Another challenge with communication in MSA is how clients will interact with the system as there
are multiple services, and a client cannot connect with each of them separately. Studies (B1 and P30)
suggest implementing an API gateway pattern that provides a single point of entry to all clients to
communicate. Study (B1) also suggests using the Backends For Frontends pattern where each client
application has its server-side component. Studies (B1 and P30) also suggest using the Self-contained
systems (SCS) pattern, which is alternate to microservices where each service is autonomous.

Another challenge one faces with communication is that, as there are multiple services and a lot of
communication happens between them, how does one secure these services? One can solve this by
adding an identify service such as JSON web tokens (JWTs) and add it to every request header and
perform an authorization based on that as mentioned in study (F45).

4.5.2 Handling data in MSA

This category reports the problems and solutions related to data handling in MSA. Similarly, how
communication is a challenge in MSA, handle data faces a similar problem as there are multiple ser-
vices and data needs to be shared across multiple services. The biggest challenge is how to handle the
consistency of data and share the data across services. One of the solutions is to implement a database
per service pattern where each service has its own database and provides an API for access, as men-
tioned in studies (P25, P20). Another solution to solve consistency is to use the publish/subscribe
pattern as suggested in studies (F50, P25) which makes the communication async where applications
publish data to an intermediary broker rather than communicating directly with databases. Study
(F52) suggests using queues to push data to multiple databases to achieve consistency; if you are
using Java, then EJBs have been suggested as a solution (F24) which makes the system loosely cou-
pled where one can use SOA than POJOs. Study (F30) suggests using event-driven data management
where each service publishes an event whenever it updates its data. Other services subscribe to events.
When an event is received, a service updates its data.

A second challenge with data management is how one knows where to break down a database when
designing a system. One solution is to use a CQRS pattern where the application is split into two
parts, the command side, and the query side. It is used instead of CRUD in cases where there are high
reads and writes, and by splitting the application, each can be scaled independently as per study (B9).
Another solution is to design the system loosely so that each component can be developed, scaled,
and deployed independently. Handling data becomes easier when each component can be maintained
loosely as per study (P25). Finally, study (F41) suggests developing multiple reads models to prevent
the use of joins as joins between multiple tables are cumbersome and use many resources; creating
separate models can reduce the system load.

A third challenge is if one application has multiple databases, how does one collaborate the results
returned by each service. The solution for this has been proposed in study (B6), which suggests you
use the aggregator pattern, which aggregates all the data from different services and then sends the
final response to the consumer.

40 Chapter 4 RESULTS

4.5.3 Availability in MSA

This category reports the problems and solutions related to availability in MSA. As multiple services
are involved in MSA, it is important to keep services available to prevent downtimes. One of the
common ways suggested in studies (P25, P10) is to have a log aggregation service like ELK, or
Grafana, to keep track of all the logs in a central place and send out alerts when something is wrong
so that it can be fixed immediately. Another study (P4) suggests using automatic tests for software
development and deployment pipelines to catch faults early and prevent them before deployments.
Study (P25) suggests using a health check API, which can be used to detect services that are not
running, and the API should be able to return information about the state of the service, which can be
shown on a dashboard for ease of use. Study (B6) suggests using a Blue-green deployment strategy
where you have two systems, namely blue and green, and when a new service is to be deployed, the
deployment is first done. Then the system is switched from blue to green to ensure that we do not
have a downtime of the system.

4.5.4 MSA Performance

This category reports the problems and solutions related to performance in MSA. Since MSA is con-
sidered scalable, one needs to design the system keeping in mind the system’s performance. As
suggested in study (P23), one way to improve MSA’s performance is to implement distributed cache
databases that experience low load and can be scaled horizontally easily. As communication between
services is one of the most resource-intensive tasks, using a cache database would increase the perfor-
mance. Another technique suggested in the study (P2) is to have a good automatic testing coverage
which helps to catch errors, and run regular tests to stress test the system to improve performance.

4.5.5 Design strategies in MSA

This category reports the problems and solutions involved in designing an MSA. One of the ways to
design an effective MSA, according to study (B7), is to define an architecture that an application is
loosely coupled, the benefits of such a system have been discussed earlier, and to have a system that
collaborates so that have small services and a great communication.

Another challenge is how to decompose an application into services effectively. Study (B4) suggests
that as a rule of thumb, a service should be decomposed so that most new and changed requirements
only affect a single service, which can be achieved by following the decompose by business capacity
pattern. One should also develop a service in such a way that only one team can handle the function-
ality.

4.5.6 Fault tolerance in MSA

This category reports the problems and solutions involved in developing a fault-tolerant system using
MSA. One of the common reasons why MSA could fail is a failure in communication between ser-
vices in a distributed setting, leading to system downtime. To prevent such a failure, multiple studies
(B5, B6, P2, B8, B9, B11, B15, F30, B20, P16, P33, B20) suggest the use of circuit breaker pattern,
which helps the system identify services that are not functioning and return errors instead of wasting
resources and waiting for the calls to timeout hence leading to high system load. Another popular
solution, as suggested by multiple studies (B6, B9, B11, B15), is to use the bulk-head pattern when
designing MSA. When designing a system, one should split the application into multiple components,

Chapter 4 RESULTS 41

and resources should be isolated so that the failure of one component does not affect the other. Using
the bulk-head pattern, one can allocate specific resources for certain components so that we do not
consume all the application resources unnecessarily, hence improving the system’s fault tolerance.

4.6 Architecture patterns identified (RQ5.1)
This section presents the architecture patterns identified in the selected studies related to MSA. We
decided to analyse the annotations tagged architecture patterns further as it is the second most anno-
tated category as discussed in subsection 4.4. Similar to analysing architecture impact, we applied
thematic analysis [20] on the annotated data and identified seven categories to classify the architecture
patterns. The 7 classified themes are: (i) Communication, (ii) Fault-tolerant, (iii) Data Management,
(iv) System Design, (v) Deployment, (vi) Migration and (vii) State management.

Category Identified Patterns Study ID

Circuit Breaker Pattern B5, B6, P2, B8, B9, B11,
B15, F30, B20, P16, P33,
B20

API Gateway Pattern B5, P25, B8, B9, F23, B20,
P17, P20, P6, P33, B20

Service Discovery Pattern B5, B6, P25, B9, F54, B20,
P17, P20, P33, B20

Saga Pattern B5, B6, P25, B9, B16, P10,
F48, B28

Rest HTTP Pattern P3, P9, B7, B17, F53, B20
Asynchronous Messaging
Design Pattern

B8, B17, B18, P6, B20

Distributed Tracing B5, P25, B20, B28
Chained Microservice Pattern B6, B8, B9, P6
Aggregrator Pattern B5, B6, B9
Branch Pattern B6, B8, B9
Client-Side UI Composition
Pattern

B6, P25, B9

Message Broker Pattern P23, B17, B20
Synchronous Messaging De-
sign Pattern

B11, B16, B18

Proxy Pattern B9, F23
Gateway Routing Pattern B6, B9
Publisher-subscription Pat-
tern

P25, P34

Service Mesh Pattern P20, B20, B28
Request/Response Pattern P34, B28

Communication

Domain Events Pattern F23

42 Chapter 4 RESULTS

Adapter Microservice Pattern P17
Event Notification Pattern P17
Backend for Frontend Pattern P17
Service Registry Pattern P20
Event Driven Pattern B20
Single Receiver B27

Bulk Head Pattern B6, B9, B11, B15
Observability Pattern B6, P25, B9
Load Balancing Pattern P17, P33
Log Aggregation Pattern B5

Fault Tolerant

Timeout Pattern B11

CQRS B5, B6, B7, B8, F41, B28
Database Per Service B5, B6, B9, P20
Transactional Outbox Pattern B16, F32, B28

Data Management

2-Phase Commit F48, F30, B28

Decomposition Pattern B6, B8
Modularity Pattern P14
Sidecar Pattern B6

System Design

Externalized Configuration
Pattern

P17

Deployment Blue-Green Deployment Pat-
tern

B5, B6, B9

Migration Strangler Pattern B5, B6, B9

State Manage-
ment

Event Sourcing Pattern B6, B9, B16, B20, B28

Table 13: Architecture Patterns identified from selected studies

We were able to identify 41 architecture patterns. Table 13 shows the list of all the patterns, and
it’s corresponding categories. From the table, we can observe that most of the patterns are based
on communication, similar to what we observed in problems and solutions where the most common
problem was communication. Fault tolerance, system design, and data management also contribute
to the list. We will briefly discuss some of the important patterns in detail below.

4.6.1 Circuit breaker pattern

The circuit breaker pattern is the most mentioned pattern across all studies with 12 occurrences. When
using MSA, services tend to communicate with one another to share data. At times when one service

Chapter 4 RESULTS 43

synchronously invokes another service, there is always a chance that one of the services is unavailable,
or it could be taking a long time to respond to requests making it highly unusable [21].

The circuit breaker pattern is designed in such a way that you wrap a protected function call in a
circuit breaker object, which monitors failure and when the failure reaches a certain threshold, the
circuit trips hence causing all further calls to the circuit breaker to return an error without the internal
call being made. In most cases, one should set up a monitor alert if the circuit breaker trips. There is
a timeout that is usually set before the request can be retried once again; if the request post timeout is
successful, the circuit breaker will resume operations once again [2].

Figure 22 shows the three states of the circuit breaker pattern, which are: (i) closed state, (ii) open
state, and (iii) half-open state. The circuit breaker does not allow requests to pass through, counts
the number of requests received, and checks for the threshold value in the open state. The circuit
breaker allows requests to pass through in the closed state and checks for any requests that fail. In the
half-open state, the circuit breaker only allows a few requests to pass through. If these requests are
successful, the circuit breaker will go back to the “Closed” state. However, if any request fails again,
it goes back to the “Open” state.

This pattern is used to prevent services from accessing remote services or a shared resource if the
operation is highly likely to fail. Circuit breakers should be an integral part of systems for monitoring.
Any change in breaker state should be logged, and further investigation should be performed as it
often depicts a good source of warnings about deeper troubles in the environment. The circuit breaker
pattern can be implemented with Netflix Hystrix.

Figure 22: Circuit breaker pattern [2]

44 Chapter 4 RESULTS

4.6.2 API Gateway Pattern

The API Gateway pattern is the second most mentioned pattern with 11 occurrences. As microservices
are made up of multiple services, it is key to have one service that clients can use to communicate.
Since different clients require different data and clients cannot access each service, an API Gateway
handles requests in one of two following ways: simply sending the request to the appropriate service
or routing to more services [22].

API Gateways can be used for other purposes as well: [23].

• Authentication and Security - API gateways allow developers to encapsulate inner functions
and prevent unauthorized access.

• API Monitoring and insights - APIs can be monitored to measure how long API takes to re-
spond, and they can be used to generate reports and identify the behaviour of the system.

• Rate limiting - APIs can be regulated to prevent services from being overwhelmed.

• Load Balancer - API gateway can be used as used a load balancer to provide scalability.

Figure 23: API Gateway pattern [3]

4.6.3 Service discovery pattern

The Service discovery pattern is the third most mentioned pattern with ten occurrences and related to
communication. In monolith applications, services communicate with one another through language-
level methods. In traditional systems, many services run on fixed ports and communicate with REST
calls. However, such an implementation is not possible in microservices-based systems as services
and ports change constantly depending on the scaling, which can be solved using the service discovery
pattern in microservices, which can be used in conjecture with the API gateway pattern. Service
discovery help instances of various services to adapt and distribute the load the microservices [24].

Service discovery can be used as a client-side pattern where the client is responsible for determining
the network locations of available service instances. The client queries a service registry to find an

Chapter 4 RESULTS 45

available service. Netflix OSS is an example of client-side discovery pattern [4]. Figure 24 shows the
client-side service discovery pattern.

Figure 24: Client Service Discovery pattern [4]

Server-side service discovery happens through the load balancer. The load balancer queries the service
registry and routes each request to an available instance. AWS Elastic Load Balancer (ELB) is an
example of a server-side discovery router. Figure 25 shows the server-side service discovery pattern.

46 Chapter 4 RESULTS

Figure 25: Client Service Discovery pattern [4]

4.7 Commonly used technologies in MSA (RQ5.2)
To identify the most commonly used tools in MSA, we first identified all the tools and then classified
them into six categories as shown in Figure 26.

We identified a total of 34 tools and found that the tools under development accounted for the majority
(11/34). The category with the least number of tools is testing (2/35). The six categories are explained
below:

• Communication - As MSA is primarily composed of multiple services, robust communication
between the services is key to extracting the best performance from the system. We identified 9
studies that mention communication tools. Kafka, a messaging system developed by Apache8,
is the most common tool identified for communication. The primary role of a messaging system
is to transfer data from one service to another effectively so that the application can concentrate
on the process of the data instead of worrying about how to share the data. As per study (P23),
Kafka is a preferred tool for communication even though it is not a traditional messaging queue
and is a distributed streaming platform [25]. It scales well as it is a distributed system and
can be scaled easily without any downtime. Three studies also reported using ActiveMQ, a
traditional message broker that supports various protocols [25].

• Data - As MSA primarily comprises multiple services that all need to share data, having a
scalable and distributed data store is key. We identified 5 different tools that can be used to
store and distribute data between various services. Study (P23) suggests using Debezium9, a
tool that can be used to monitor databases continuously and let any service stream the row-
level data in the order it was stored. Another study (F41) suggests using Redis10an in-memory
data structure tool that can be used as a database, cache, or message broker. It is built for

8https://kafka.apache.org/
9https://debezium.io/

10https://redis.io/

https://kafka.apache.org/
https://debezium.io/
https://redis.io/

Chapter 4 RESULTS 47

performance as it is in-memory. A couple of other tools mentioned in the study (F47) are
Snowflake11, a cloud-based data warehouse solution, which helps services run in the cloud to
store and analyse large amounts of data. Teradata12 is a solution similar to snowflake. It offers
a similar service and Memcached13, which is a distributed memory object caching system. It
is an in-memory key-value store, which promotes quick deployment, ease of development, and
solves many problems facing large data caches.

• Development - As each service in microservices can be developed using different technologies,
choosing the right language and development-related tool is key. Hence, it builds a system that
scales and performs well. The most common language and frameworks are Java and Spring.
Study (P22) suggests one of the reasons for the use of Spring, which has large community
support available, the various integration tools available, and its compatibility with various
other microservice tools. Spring also provides various in-built tools such as Spring Cloud,
which provides tools for developers to build some of the common patterns in distributed systems
quickly and has a plethora of integrations available with popular cloud providers such as AWS,
Azure and Google Cloud and Spring Eureka, which is a service discovery service provided by
Spring. Other tools used for frontend development are Angular (P3) and React (P3), which
develop single-page applications.

• Testing - Testing is the category with the least number of tools. Even though it is an integral part
of developing MSA-based systems, there is not enough research on w.r.t testing, and the only
tools mentioned are from study (P6), which are JMeter and JUnit, which are both Java-based
testing tools.

• Cloud infra/monitoring - Most microservice-based systems are hosted on the cloud, and given
the highly dynamic nature of MSA, they must be constantly monitored to prevent downtimes.
We identified 6 tools that are used for cloud infrastructure and monitoring. ELK, which is men-
tioned in studies (P1, B15), is a great monitoring tool that aggregates logs, metrics, and other
information from many sources in one place [26]. Cloud Monkey (P6) and AWS (B20) are used
for hosting services, and they both provide a wide variety of tools for the same. Github (P31)
is a tool used to host the codebase and provides a wide variety of tools for CI/CD integration.

• CI/CD Tools - As microservices are made up of small services, these systems need to be fre-
quently integrated into a shared repository. Under this category, we identified 5 tools, with
Docker being the most common tool mentioned in 6 studies. Docker is a tool that allows you
to containerize each service and provides individual microservices with their isolated workload
environments making them easy to be deployed on their own and scalable. Kubernetes, which
is mentioned in studies (P6, P33, B28), is also used for improving scalability and performance
by increasing infrastructure utilization through the efficient sharing of computing resources
across multiple processes. Jenkins (P1, P33, P16) is an open-source automation service that
can manage builds, deployments, and testing.

11https://www.snowflake.com/
12https://www.teradata.co.uk/
13https://memcached.org/

https://www.snowflake.com/
https://www.teradata.co.uk/
https://memcached.org/

48 Chapter 4 RESULTS

Figure 26: Various tools and technologies used in MSA

Chapter 5 DISCUSSION 49

5 Discussion
In this section, we analyse and discuss the key findings from the study and discuss their implication
for research and practice.

5.1 Analysis of the results
We further analyse and understand the results of the RQs related to analysing the studies, the AK
identified, problems and solutions identified, architecture patterns identified and tools that support
MSA.

5.1.1 Publication trends

The steady trend in the studies published through the years indicates that MSA as a research topic
is considered to be a relevant topic by the software engineering research community. Our findings
show that 29 studies (83%) of the studies were published as conference papers. One of the potential
reasons for this is that MSA is a quickly evolving area. The work submitted to conferences can be
reviewed promptly and published relatively quickly compared to other venues. We further analyse
and understand the results of the RQs related to analysing the studies, the AK identified, problems
and solutions identified, architecture patterns identified and tools that support MSA.

5.1.2 Focus of research in academia

Research strategies - The data collected contains a lot of evaluation research because MSA is already
quite popular. In the past few years, most of the research has been to compare different implementa-
tions and provide a suitable solution based on the results. Researchers have been evaluating monolith
systems and MSA. Studies (P5, P7, P11, P18, P28) discuss the main difference between the two
systems. Studies P2 and P11 discuss the challenges in moving from a monolith to a microservice
and claim that refactoring the code and breaking down the system poses a significant challenge as
the services are too dependent on each other. Study P5 claims that it is recommended to implement
a monolith for a small scale application as there is no significant gain in performance between a
monolith and an MSA for small scale applications.

A few of the studies also focus on the performance aspect of MSA. Studies (P6, P16, P17) primarily
focus on the design principles one should follow to develop an MSA application better than its mono-
lith alternative. To achieve this, the system needs to be broken down to keep services independent,
avoid tight coupling, keep in mind not to have big teams working on one service, and keep databases
connected to only one service.

Since MSA is a new concept, many new solutions are yet to be identified; hence, researchers have
identified new techniques to implement MSA. Studies P8 and P14 discuss new solutions with the help
of an application and propose using new technologies such as Spring Boot to implement MSA. MSA
should also be used with various DevOps strategies to improve the overall usability of the application.
In this case, opinions are provided on areas of design where there isn’t much information available
and opinions are formed by conducting interviews or by performing other studies on MSA.

The low number of experience papers (3/28) and conceptual papers (1/35) indicate that researchers
are not interested in publishing papers that do not have hard evidence to back up their concepts, this

50 Chapter 5 DISCUSSION

could in a way hinder the research of MSA as researchers should publish more papers based on their
experience of implementing MSA or based on a new concept without actually verifying, this way
other researchers could use these new concepts and solve problems differently.

Research contribution - The high number of studies contributing to design patterns indicates that
researchers are more focused on identifying new patterns for implementing different aspects of MSA.
As there are multiple parts to MSA, each having its own set of implementation strategies, it is vital to
use the correct pattern; hence identifying and proposing new design patterns helps practitioners make
informed decisions when designing systems. The most common patterns being discussed are commu-
nication, and data handling, as those two categories are the most important factors when developing
an application based on MSA.

The number of studies contributing to new applications is much lower because MSA is a reasonably
new concept, and using MSA in different applications and proposing new architecture solutions is not
easy due to the lack of research. One intersecting fact to note is that most of the studies contributing
to applications are from before 2018, which is a bit surprising as research on MSA has constantly
been growing, and one would expect new applications to be developed more recently.

Research focus - The focus on cloud confirms the close relationship that MSA has with DevOps and
the cloud-based nature of applications. It also confirms that MSA is well suited for containerization
and virtualization, making sure applications scale easily. Studies (P31, P33) discuss the use of Docker
and Kubernetes with MSA and discuss the key benefits of containerization and suggest ways to design
services that are independent and can be run as a standalone service.

The focus on development means that researchers are looking to develop applications using various
tools and techniques. Studies (P1, P3, P23) discuss multiple tools that can be used to implement ser-
vices to communicate effectively between multiple services. Kafka has been suggested in numerous
studies as a tool that can be well integrated into MSA based systems.

The focus on system quality implies that quality attributes such as scalability, performance and se-
curity are essential with the system design of MSA, and researchers are investigating the different
solutions to make informed design choices. Studies (P5, P6) suggest using microservices only for
large systems as the benefits of implementing an MSA for small scale systems do not have significant
performance improvement; instead, it increases the time required to develop the system.

Software lifecycle scope - The large gap between software design and implementation confirms that
there is still a wide array of challenges and complexities involved in implementing MSA. Researchers
are more interested in proposing better design solutions than implementing new systems.

Architecting activities - The trend continues here and further confirms that more research is being
conducted to understand MSA, and less importance is being given to new implementation, which
could lead to a knowledge gap and slow growth for better MSA adoption.

Quality Attributes (QA) - MSA based systems have a direct impact on quality attributes. One of
the key factors that make MSA so enticing to practitioners is that it can be designed to suit ones
need. A significant amount of research is being done on the performance of MSA, which indicates
that researchers are concerned about the impact of MSA systems on performance. To further analyse
these factors, we looked deeper to identify whether the QAs were positively or negatively impacted.
In most cases, they were being impacted positively, and in cases where there were negative impacts,

Chapter 5 DISCUSSION 51

there were alternate solutions proposed. Multiple studies linked MSA with improvement in scalability
and maintainability, which bodes well for the adoption of MSA in practice.

5.1.3 Focus of research in industry

As discussed in 4.3, the sources for patterns are primarily blogs, whereas, for development, it is
forums. The fact that the majority of the blogs talk about patterns and not about development is a cause
for concern. Blogs are a great source of information as it is usually written by developers who have
developed a system. The fact that none of the blogs talks about development means the developers
who have implemented MSA have not shared their decision decisions or experience with MSA, which
could be a great source of information as it will represent a hands-on experience. Developers need to
be incentivised to write more tech blogs about their experience of implementing MSA in practice.

Another important observation is that the major difference between the development topics in forums
and the literature is that the solutions proposed are very specific and helps the developer understand
a particular problem. In contrast, in literature, the development solutions are often generic, cover a
wide range of problems, and are not specific to solving a particular problem.

One significant difference between the patterns discussed in blogs versus the ones discussed in liter-
ature is that in the blogs, the patterns are discussed more in details, often with an example and use
cases whereas in the literature, it is often mentioned as a solution to an issue identified or just as an
alternative approach to solve a problem.

5.1.4 Problems and solutions identified

Communication in MSA - The proposed solutions for the communication problems are patterns or
architecture design solutions. For example, the circuit-breaker pattern, bulkhead pattern are offered as
solutions to solve communication failure. API Gateway pattern, Frontends pattern are suggested for
patterns to facilitate easy client access. Some of the design solutions suggested are (i) designing the
system asynchronously, (ii) avoiding DNS/URL routing and favouring service discovery registries,
(iii) using message broker services to communicate efficiently. None of the solutions offered are
technology-based, and that is quite surprising as implementing the suggested solutions could be chal-
lenging without understanding what tools to use. One other interesting fact to note is that there are
many solutions than problems. This is one of the reasons to use MSA as there are multiple ways
to solve issues and offers a variety of designs and strategies to develop a system that matches the
requirements well. Another interesting fact we observed was the difference in the solutions offered
by literature and other sources. Forums contributed to most of the solutions, which is not surprising
as forums are where developers post questions; the difference was that in the forums, the solutions
proposed were direct and offered to solve the problem directly, and in literature, multiple solutions
were proposed to solve the same problem.

Handling data in MSA - Similar to communication problems, the solutions proposed for han-
dling data were design suggestions and design patterns. For example, publish-subscribe pattern and
database per service pattern were suggested to solve data consistency issues. Some of the design
solutions offered were (i) Designing loosely coupled systems, (ii) implementing event-driven man-
agement design. When there are multiple tools available in the market for MSA for data handling, it
is surprising that none of the solutions offered were technology-based.

52 Chapter 5 DISCUSSION

5.1.5 Architecture patterns identified

As mentioned in Section 4.4, architecture patterns are identified more in blogs compared to litera-
ture and forum articles, indicating that practitioners are discussing more various patterns available
to implement MSA. Most of the patterns discuss communication similar to the questions and solu-
tions identified, which indicates that practitioners are concerned about the implementation of various
communication protocols and are looking for ways to implement various strategies to have effective
communicative systems.

Another key observation is that the patterns discussed in blogs are more detailed and usually discuss
the use cases and the impact of using the pattern in practice. For example in studies (P2, P16) that
mention the circuit-breaker pattern only contain information about what a circuit-breaker pattern is
and does not provide any information on its architecture impact, which is an important detail that
is required to make an informed decision whether to implement the circuit breaker pattern or not.
Studies (B5, B6) discuss the circuit breaker pattern w.r.t its use cases and provide a clear explanation
of when to use it. This trend is also observed in the API-Gateway pattern where studies (P6, P25,
P33) discuss the API gateway pattern as a communication pattern but give no further details about its
use cases and the various impact it can have on the system, nor does it provide crucial information on
the problem it tries to solve. Whereas in studies (B5, B8), the study discusses the pattern in detail,
the benefits and drawbacks, and provides information about another alternative one could consider
solving a similar problem.

One other observation is that there are not enough patterns discussing important categories such as
deployment and migration. The lack of research in these categories is concerning as MSA is very
cloud-dependent, and having a robust deployment strategy could significantly impact the availability
of the system. Despite some literature exploring migration strategies (P2, P7, P11, P13, P28), none of
these studies have proposed any migration patterns. These patterns need to be explored more as these
provide an effective solution to help practitioners move from a monolithic architecture to MSA.

5.1.6 Commonly used technologies in MSA

The most common categories are development and common which one again establishes a similar
trend as observerd in earlier discussions on problems and solutions and architectural patterns. Ma-
jority of the tools mentioned indicate that MSA are developed using a cloud first solution, Docker
and Kubernetes suggest the design of containerized solutions that can easily scale. One of the tools
not explored much is testing, and given the fact that MSA systems rely heavily on multiple services,
having a good testing framework is key in developing robust systems that are fault-tolerant. Studies
(P1, P3, P11) do talk about testing MSA to keep systems available but do not offer any technology
solution to solve the same.

Chapter 6 THREATS TO VALIDITY 53

6 Threats to Validity
Several threats can impact the quality of the results obtained. To mitigate these threats, we followed
the guidelines set by Kitchenham and Charters [10]. In this section we discuss the various threats
associated with this study.

6.1 Internal validation
Internal validation refers to the factors that could impact the analysis of the data collected. The threats
could occur during the following stages of the study:

Study search - Identifying the suitable studies to analyse is critical, and there is a possibility to ignore
studies that could be relevant. To mitigate this issue, apart from collecting studies from popular
databases, we performed forward and backward snowballing (Section 3.1.3) and added 10 additional
studies. Additionally, we initially ran the search string on a small set as an experiment to get the
maximum primary studies, and we realised that we were missing some studies due to the variations
in the way microservices was being spelt, which led to us improving the search string to include
variations of the term microservices and arrive at the final string as mentioned in Section 3.1.1.

Study selection - We defined explicit inclusion and exclusion criteria as described in Section 3.1.2
to select relevant studies and not to exclude critical studies. In most SMS studies, two researchers
collect and validate the studies; in this case, one researcher did it, which could have led to some
studies being excluded. To prevent that, we defined a strong inclusion and exclusion criteria that help
identify whether a study is to be included or discarded.

Data Extraction - Researchers can be biased when it comes to extracting data, which could lead to
poor extraction quality. We mitigated this issue by creating a well-defined data extraction form, as
mentioned in Table 5. The data was initially extracted by the primary researcher and was verified by
the secondary researcher. To prevent bias when performing keywording, we followed the guidelines
of thematic analysis set by Braun and Clarke [20]. The coding book defined in Appendix A made it
possible to annotate the studies clearly and concisely.

Data Synthesis - We applied both quantitative and qualitative methods to analyse the extracted data
from the studies. The bias in synthesis could have an impact on the final results. To mitigate this,
we synthesised the data using a well-defined thematic analysis and followed strategies set by Paolo et
al. [7].

6.2 External validation
The threats on external validation refer to the impact with which the results of this study can be
generalized. The primary outcome of this study provides an overview of the state of research and
the adoption of MSA by researchers and practitioners. Hence, the results obtained are only valid for
the study topic. To achieve external validation, we only collected studies from 4 of the most popular
databases and collected data from the industry from an already verified source.

6.3 Construct validation
We avoided the bias in selecting studies by performing an automatic search on the databases and used
already verified sources to collect studies. We also ran a sample test with the test string to identify

54 Chapter 6 THREATS TO VALIDITY

studies and eventually tweaked the string to include all the studies relevant to the study. We collected
data from the best 4 databases to potentially avoid questionable studies.

6.4 Conclusion validation
We tried to mitigate this issue by constantly updating the classification framework and adapting the
coding book to reduce potential bias when analysing the studies. In doing so, we are confident that
the data extraction process aligned with our research questions. In addition, to avoid potential bias,
we conducted multiple meetings with all the researchers to discuss the interpretation of the results
and conclusion.

Chapter 7 RELATED WORK 55

7 Related Work
We identified three secondary studies by Paod Di Francesco et al. [7], Muhammad Waseem et al.[27]
and Alshuqayran et al. [28] that report various aspects of MSA.

A systematic mapping study on MSA was done by Paolo Di Francesco et al. [7] on a primary set of
91 studies between the period of 2012 and 2016. Their study focuses on (i) designing a classification
framework and evaluating the studies based on that, (ii) evaluating the results obtained for industrial
adoption, (iii) an SMS for the current research, and identify themes for future research topics.

Muhammad Waseem et al. [27] conducted an SMS on MSA in DevOps. They explore the studies
between 2009 and 2018. This SMS aims to identify, classify and analyse the use of DevOps in MSA.
The results of this study are (i) analyse the publication trends and research themes, (ii) What are
the problems and solutions reported with using DevOps techniques in MSA, (iii) Challenges faced
when implementing MSA in the cloud, (iv) Various methods, design patterns, the impact of quality
attributes and tools used in implementing DevOps strategies in MSA.

Alshuqayran et al. [28] conducted an SMS on MSA based on 33 primary studies published between
2014 and 2016. The major reported findings are (i) MSA challenges, (ii) QAs associated with MSA,
(iii) MSA views. Their study also explores existing architectural support for MSA and characterizes
a framework for MSA.

56 Chapter 8 FUTURE WORK

8 Future Work
The present study is based on only three sources: literature, blogs, and forums. To get more in-
sights into the adoption of MSA and understand the latest MSA techniques, this study can further be
extended to include more data sources such as books, technical whitepapers, source code documenta-
tion, and user documentation.

Furthermore, the inclusion and exclusion criteria can be relaxed to include more topics such as MSA-
based applications and tools to analyse more categories and get a clearer idea of the various applica-
tions developed using MSA.

The current study also relies on manually identifying documents and searching for a particular result;
this can be expanded by using a Semantic wiki tool such as WikiBase14. A semantic Wiki is simply a
Wiki that takes advantage of semantics rather than syntax. With the help of this tool, one can develop
their own microservice system to automatically export new annotated documents from Atlast.ti to
cloud storage such as Amazon S3. From here, we can have an application that is connected to the S3
bucket to observe changes. When a new file is uploaded, it can process the file, create semantic tags,
and push it onto the Wikibase database, which can then be accessed through the Wikibase interface.
One can also create various semantic queries, which can help extract the necessary information from
Wikibase and help researchers find solutions to problems a lot easily.

14https://wikiba.se/

https://wikiba.se/

Chapter 9 CONCLUSION 57

9 Conclusion
The purpose of this study is to provide an understanding of the various trends in MSA in both research
and the industry. We performed a systematic mapping study on 35 literature studies. We annotated all
81 studies collected from various sources and used the extracted data to perform a systematic analysis
to identify the publication trends, the various themes of research, identify the common problems and
solutions, the common architecture patterns found, and also the most common tools used to implement
or support MSA.

The key findings can be summarized as follows:

• The steady research trends in publication over the years indicate good interest in MSA research.

• The main research strategies being explored in research are w.r.t evaluation research, which
indicates that researchers are concentrating more on analysing MSA topics and not proposing
many new solutions.

• There is a clear indication that MSA and DevOps go hand-in-hand, and multiple studies explore
the cloud-based aspect of designing MSA-based systems.

• Researchers are also exploring existing MSA patterns and proposing many new patterns, but
they are not implementing a lot of new systems to explore these patterns in practice.

• QAs are given a lot of importance, with performance being the most important factor, and a lot
of research has been to improve the various communication gaps between services.

• Migration from monolith to MSA is not being explored much in detail, which could hinder the
fast adoption of MSA in practice.

• Industry experts are not publishing a lot of content related to implementation strategies and
design decisions. They focus more on design patterns, which could make it difficult for practi-
tioners to adopt MSA as there is a lack of technology-based solutions.

• We identified 13 questions and 36 solutions overall. The majority of the questions and solutions
discussed target communication and data handling issues. There have been very few to no
questions on other important topics such as migration, security, and various tools available.
The solutions proposed also are primarily focused on design strategies or architecture patterns.
There is a clear lack of solutions w.r.t technological solutions.

• We identified 41 different architectural patterns. The most common patterns are based on com-
munication, and the circuit breaker pattern is the most common with 12 occurrences.

The findings of this study will benefit researchers and practitioners interested in identifying the current
state of research in MSA. The findings of the study also help researchers to identify the areas that are
being researched less. It will help practitioners identify the various problems, solutions, patterns, and
tools available at their disposal to adopt MSA.

58 BIBLIOGRAPHY

Bibliography
[1] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in soft-

ware engineering,” in Proceedings of the 18th International Conference on Evaluation and As-
sessment in Software Engineering, EASE ’14, (New York, NY, USA), Association for Comput-
ing Machinery, 2014.

[2] M. Fowler, “Bliki: Circuitbreaker,” Mar 2014.

[3] Nishanil, “The api gateway pattern versus the direct client-to-microservice communication.”

[4] C. R. o. Eventuate, “Service discovery in a microservices architecture,” Jul 2019.

[5] S. Newman, Building Microservices: Designing Fine-Grained Systems. O’Reilly Media, 1st ed.,
February 2015.

[6] H. Zhang, S. Li, Z. Jia, C. Zhong, and C. Zhang, “Microservice architecture in reality: An
industrial inquiry,” in 2019 IEEE International Conference on Software Architecture (ICSA),
pp. 51–60, 2019.

[7] P. D. Francesco, I. Malavolta, and P. Lago, “Research on architecting microservices: Trends,
focus, and potential for industrial adoption,” in 2017 IEEE International Conference on Software
Architecture (ICSA), pp. 21–30, 2017.

[8] P. Avgeriou, P. Kruchten, P. Lago, P. Grisham, and D. Perry, “Architectural knowledge and
rationale: Issues, trends, challenges,” SIGSOFT Softw. Eng. Notes, vol. 32, p. 41–46, July 2007.

[9] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges when moving from monolith to mi-
croservice architecture,” in Current Trends in Web Engineering (I. Garrigós and M. Wimmer,
eds.), (Cham), pp. 32–47, Springer International Publishing, 2018.

[10] B. A. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in
software engineering,” Tech. Rep. EBSE 2007-001, Keele University and Durham University
Joint Report, 07 2007.

[11] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping studies in software
engineering,” in 12th International Conference on Evaluation and Assessment in Software En-
gineering (EASE) 12, pp. 1–10, 2008.

[12] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic mapping
studies in software engineering: An update,” Information and Software Technology, vol. 64,
pp. 1–18, 2015.

[13] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in software engineering,” In-
formation and Software Technology, vol. 53, no. 6, pp. 625–637, 2011. Special Section: Best
papers from the APSEC.

[14] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with microservices: A systematic
mapping study,” Journal of Systems and Software, vol. 150, pp. 77–97, 2019.

BIBLIOGRAPHY 59

[15] C. Schröer, F. Kruse, and J. Marx Gómez, “A qualitative literature review on microservices
identification approaches,” in Service-Oriented Computing (S. Dustdar, ed.), (Cham), pp. 151–
168, Springer International Publishing, 2020.

[16] J. Lewis, “Using atlas.ti to facilitate data analysis for a systematic review of leadership compe-
tencies in the completion of a doctoral dissertation,” SSRN Electronic Journal, 01 2016.

[17] M. Soliman, M. Wiese, Y. Li, M. Riebisch, and P. Avgeriou, “Exploring web search engines to
find architectural knowledge,” in 2021 IEEE 18th International Conference on Software Archi-
tecture (ICSA), pp. 162–172, 2021.

[18] M. Miles, Qualitative data analysis : a methods sourcebook. Los Angeles: SAGE, 2019.

[19] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements engineering paper classifi-
cation and evaluation criteria: A proposal and a discussion,” Requir. Eng., vol. 11, pp. 102–107,
03 2006.

[20] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qualitative Research in Psy-
chology, vol. 3, no. 2, pp. 77–101, 2006.

[21] C. Chris Richardson, “Microservices pattern: Circuit breaker.”

[22] A. Messina, R. Rizzo, P. Storniolo, M. Tripiciano, and A. Urso, “The database-is-the-service
pattern for microservice architectures,” vol. 9832, pp. 223–233, 09 2016.

[23] Systango, “What is api gateway & why i should use it?,” Aug 2019.

[24] “Microservices pattern: Server-side service discovery pattern.”

[25] C. Lam, “What is the difference between apache kafka vs activemq,” Aug 2017.

[26] “Harnessing the power of microservices with the elk stack,” Apr 2021.

[27] M. Waseem, P. Liang, and M. Shahin, “A systematic mapping study on microservices architec-
ture in devops,” Journal of Systems and Software, vol. 170, p. 110798, 2020.

[28] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in microservice architec-
ture,” pp. 44–51, 11 2016.

[29] N. Medvidovic and R. Taylor, “A classification and comparison framework for software ar-
chitecture description languages,” IEEE Transactions on Software Engineering, vol. 26, no. 1,
pp. 70–93, 2000.

[30] C. Y. C. Y. Baldwin, Design rules. Cambridge, Ma.: MIT Press, 2000.

[31] P. Stoll, A. Wall, and C. Norstrom, “Guiding architectural decisions with the influencing factors
method,” in Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA 2008),
pp. 179–188, 2008.

[32] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Software Architecture, Volume
5: On Patterns and Pattern Languages. Chichester, UK: Wiley, 2007.

60 BIBLIOGRAPHY

[33] P. Avgeriou and U. Zdun, Architectural Patterns Revisited - A Pattern, pp. 1–39. 10th Euro-
pean Conference on Pattern Languages of Programs (EuroPlop 2005), Irsee, UVK Verlagsge-
sellschaft, 2005. 10th European Conference on Pattern Languages of Programs : EuroPLoP’
2005 ; Conference date: 06-07-2005 Through 10-07-2005.

[34] “Software architecture - examples, tools, & design. definition & more: Cast.”

[35] A. Jansen and J. Bosch, “Software architecture as a set of architectural design decisions,” in 5th
Working IEEE/IFIP Conference on Software Architecture (WICSA’05), pp. 109–120, 2005.

[36] ISO/IEC, “Systems and software engineering – Systems and software quality requirements and
evaluation (SQuaRE) – Data quality model,” ISO/IEC 25012, International Organization for
Standardization, Geneva, Switzerland, 2008.

[37] “What is systems design? definition of systems design, systems design meaning.”

[38] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. SEI series in software
engineering, Addison-Wesley, 2003.

[39] “What is software implementation in business?,” Aug 2021.

APPENDICES 61

Appendices

A Coding book for annotations
1. Architecture Configuration (ACF) - Architecture configuration can be defined as a particular

way in which a system’s components or services and their connectors or bindings are composed
using very specific settings that results in the final system design [29].

Example: Study (F54)

“Let’s consider the scenario when a service wants to communicate with other
service let’s say Service-A needs to communicate with Service-B. The Service-
A needs to know the IP address and Port number of the Service-B. The easiest
solution to the problem is by maintaining a configuration file that holds the IP
address and port to Service-B at Service-A.”

2. Architecture Design Rule (ADR) - Baldwin and Clark [30] proposed that a software design
should adhere to a modular structure framed by design rules. Architectural decisions decouple
the rest of the system into modules to evolve independently from each other.

Example: Study (P25)

“The application should also be decomposed in such a manner that most new and
changed requirements only affect a single service. This is because changes that
affect multiple services require coordination across multiple teams, which slows
down development.”

3. Architecture Impact (AIM) - Architecture impact can be classified as positive and negative
impact. A positive impact means that the decision factor contributes to achieving the goal or
the implementation of a software quality attribute. A decision that influences a negative factor
implies that the influencing factor inhibits the business goal accomplishment or the software
quality attribute implementation [31].

Example: Study (P17)

“The above perks aren’t for free, of course. The setup is quite complex, since we
need to store the messages in the database of the sending and reveiving services.
Also, we need to implement jobs on both sides that poll the database, looking
for unprocessed messages and then process them by sending them to the mes-
sage broker (on the sending side) or calling the business logic that processes the
message (on the receiving side).”

4. Architecture Patterns (ATP) - Architectural patterns are defined as universal and reusable so-
lutions to commonly occurring problems in software architecture [32]. Architectural patterns
usually describe high-level designs and behaviours of software’s and solve a particular type of
recurring problem when designing software architecture. They are used to satisfy functional and
quality attribute requirements usually satisfy functional and quality attribute requirements [33].

Example: Study (P17)

62 APPENDICES

“The API Gateway Design Pattern - This pattern consists of a gateway through
which a number of different subservices are accessible. An API gateway acts as a
single entry point for requests and based on the nature of a request, it invokes an
appropriate subservice. In addition to routing and aggregation, an API gateway
performs two important tasks, namely, gateway offloading and circuit breaking.”

5. Architecture Planning (ATP) - Architecture planning helps you identify milestones and provide
everyone with exact directions to keep the project on track.

Example: Study (P2)

“When splitting up the services, attention should be paid to the fact that the ser-
vices do not become too fine grained. Microservices can introduce a performance
overhead especially if the communication is done over network .”

6. Architectural Solution (ASL) - Architectural Solution is described as a design plan that will
describe a system and how different system components come together, how they work together,
and whether they meet the system’s requirements. This plan acts as a blueprint only during the
development phase, which helps during the system’s coding, integration, and testing phase. It
also helps to establish system requirements [34].

Example: Study (P27)

“Centralize the source code and documentation for all services in a common man-
agement system: The solution for this problem goes through keeping a central-
ized management system whereby all the hisitoric data can be accessed, including
documentation, knowledge reports and source code. A change of policy must be
in place in the company to ensure the teams will put data in this place. After that,
no additional cost should be required, once the teams will only change the place
where they will deposit the information.”

7. Design Decision (DDC) - As described by Anton [35], software architecture is designed based
on various requirements. Requirements define how the particular system should function,
whereas software architecture defines how this is achieved. The primary input for software
architecture is the requirements document itself. Several tactics are applied to achieve this par-
ticular architecture, and the tactics used are generally the decisions one needs to take to develop
the architecture.

Example: Study (P2)

“ The first thing to do is to define the microservices and their responsibility areas.
It is important that the decomposition of services is correct. This is important,
because it is expensive to make a lot of changes across the services. Instead it
is easy to change functionality inside one service, but when the changes affect
multiple services and their interfaces, then the task becomes harder and more
time consuming.”

8. Quality Attributes (QAT) - The ISO 25012 official spec document defines Quality Attributes
as “The Data Quality model represents the grounds where the system for assessing the quality
of data products is built on. In a Data Quality model, the main Data Quality characteristics
that must be taken into account when assessing the properties of the intended data product are
established” [36].

Example: Study (F33)

APPENDICES 63

“The whole point of microservices is to update or deploy one service while keep-
ing other services intact. In a loosely coupled system, one service knows little
about others. Sot this makes the key idea possible. High cohesion means related
logic is kept in one service. Otherwise, different services need to be chatty to
each other across service boundary. This will hurt the overall performance.”

9. System Design Process (SDP) - The System Design Process defines elements of a system, such
as architecture, overall design strategy, components and interfaces based on the requirements.
It’s also the process of developing and designing a system to meet business requirements [37].

Example: Study (P31)

“The system was setup up so that everytime a developer pushes a set of commits
to a shared source code repository which is dedicated to a particular service, noti-
fications will be sent to group of people who are major stakeholders of the system
including system owner, other developers, testers, etc and whoever subscribed to
the group. This visualization helps to promote the engagement, collaboration be-
tween different stakeholders and maximize personal responsibility awareness of
the developer in every line of code and somewhat isolate potential bugs.”

10. Technical Constraints (TCC) - Technical constraints are fixed technical design decisions that
absolutely cannot be changed. Most often, these result from the requirements and constraints
provided by the stakeholders or a specific tool. It could be of the form using a particular
programming language, operating system or certain libraries of frameworks [38].

Example: Study (P22)

“For example, our results show that Moleculer can achieve a good end-to-end
latency performance, but when deploying using Docker, Go Micro can produce
much smaller images, which could be beneficial on limited resources.”

11. Technical Implementation (TIP) - Technical implementation refers to the process of adopting
and integrating a software application into a business workflow using technological tools and
solutions [39].

Example: Study (P22)

“In your example, Delivery service can duplicate delivery locations and product
information. Product service manage the products and locations. Then the re-
quired data is copied to Delivery service’s database with async messages (for ex-
ample you can use rabbit mq or apache kafka). Delivery service does not change
the product and location data but it uses the data when it is doing its job. If
the part of the product data which is used by Delivery service is changing of-
ten, data duplication with async messaging will be very costly. In this case you
should make api calls between Product and Delivery service. Delivery service
asks Product service to check whether a product is deliverable to a specific loca-
tion or not. Delivery service asks Products service with an identifier (name, id
etc.) of a product and location. These identifiers can be taken from end user or
it is shared between microservices. Because the databases of microservices are
different here, we cannot define foreign keys between the data of these microser-
vices.”

64 APPENDICES

12. Technology Solution (TES) - Technology solution refers to designs that indicate a particular
type of technology that can be used to implement a particular system from an architecture.

Example: Study (P31)

“The solution being discussed in the case study is not only leveraging Docker
technology, but also strictly following agile methodology in software develop-
ment and enjoying surrounding tools’ benefits like Waffle, Github, Slack and so
on.”

13. Use case (UCS) - A use case can be described as a way in which users will use the proposed
system. It outlines how the system design can be used in a specific scenario running through all
the steps.

Example: Study (P31)

“As an example use case, our team had been using the traditional monolithic
model for building applications for a long time. We understand the incremental
effort we have to spend in development, deployment as well as the overhead in
each release of the app where a lot of meetings and coordination were required
between dev and ops teams.”

14. Tradeoffs (TOF) - Software designing and technologies are solutions to solve specific problems,
and their benefits or flaws are never absolute, but always bound to the context, hence a tradeoff
is quite common in software engineering.

Example: Study (P31)

“ With microservices, each service has its own database and models, which may
evolve independently of external services. Decentralized data management and
the possibility to use different technologies that best ft each context are relevant
advantages. On the other hand, increased operational complexity is the main
drawback.”

A
PPE

N
D

IC
E

S
65

B List of literature
Table 14 shows all the papers selected for the study along with the study ID, the title, the database, type and year published.

Study ID Paper Name Database Type Year

P1 Microservice Architecture in Reality: An In-
dustrial Inquiry

IEEE Conference Paper 2019

P2 Challenges When Moving from Monolith to
Microservice Architecture

Springer Conference Paper 2018

P3 Microservices in Industry: Insights into Tech-
nologies, Characteristics, and Software Quality

IEEE Conference Paper 2019

P4 Microservice Architectures for Scalability,
Agility and Reliability in E-Commerce

IEEE Conference Paper 2017

P5 A Comparative Review of Microservices and
Monolithic Architectures

IEEE Conference Paper 2018

P6 Performance Analysis of Microservice Design
Patterns

IEEE Journal 2019

P7 An Experience Report from the Migration
of Legacy Software Systems to Microservice
Based Architecture

Springer Conference Paper 2019

P8 Implementation of the Internet of Things Appli-
cation Based on Spring Boot Microservices and
REST Architecture

Springer Conference Paper 2020

P9 The pains and gains of microservices: A Sys-
tematic grey literature review

ScienceDirect Journal 2018

P10 Microservices Architecture: Challenges and
Proposed Conceptual Design

IEEE Conference Paper 2019

P11 Migrating from monolithic architecture to mi-
croservices: A Rapid Review

IEEE Conference Paper 2019

P12 An Expert Interview Study on Areas of Mi-
croservice Design

IEEE Conference Paper 2018

66
A

PPE
N

D
IC

E
S

Table 14 continued from previous page
P13 Migrating Towards Microservice Architectures:

An Industrial Survey
IEEE Conference Paper 2018

P14 InterSCity: A Scalable Microservice-based
Open Source Platform for Smart Cities

ACM Conference Paper 2017

P15 A dynamic deployment method of micro ser-
vice oriented to SLA

Others Journal 2016

P16 Understanding and addressing quality attributes
of microservices architecture: A Systematic lit-
erature review

ScienceDirect Journal 2021

P17 Quality attributes in patterns related to mi-
croservice architecture: a Systematic Literature
Review

IEEE Conference Paper 2019

P18 Migrating Monolithic Mobile Application to
Microservice Architecture: An Experiment Re-
port

IEEE Conference Paper 2017

P19 Microservices: architecture, container, and
challenges

IEEE Conference Paper 2020

P20 The Database-is-the-Service Pattern for Mi-
croservice Architectures

Others Conference Paper 2016

P21 Exploring the Impact of Situational Context —
A Case Study of a Software Development Pro-
cess for a Microservices Architecture

IEEE Conference Paper 2016

P22 Development Frameworks for Microservice-
based Applications: Evaluation and Compari-
son

ACM Conference Paper 2020

P23 Case study on data communication in microser-
vice architecture

ACM Conference Paper 2019

P24 Microservice architecture in industrial software
delivery on edge devices

ACM Conference Paper 2018

A
PPE

N
D

IC
E

S
67

Table 14 continued from previous page
P25 A Microservice Architecture for the Industrial

Internet-Of-Things
ACM Workshop Paper 2018

P26 Towards an Understanding of Microservices IEEE Conference Paper 2017
P27 Architectural Technical Debt in Microservices IEEE Conference Paper 2019
P28 Migrating Web Applications from Monolithic

Structure to Microservices Architecture
ACM Conference Paper 2018

P29 Increasing the Dependability of IoT Middle-
ware with Cloud Computing and Microservices

ACM Conference Paper 2017

P30 Guidelines for adopting frontend architectures
and patterns in microservices-based systems

ACM Conference Paper 2017

P31 Leveraging microservices architecture by using
Docker technology

IEEE Conference Paper 2016

P32 Native Cloud Applications: Why Virtual Ma-
chines, Images and Containers Miss the Point!

Others Conference Paper 2016

P33 Migrating to Cloud-Native Architectures Using
Microservices: An Experience Report

Springer Conference Paper 2016

P34 Design and implementation of a decentralized
message bus for microservices

IEEE Conference Paper 2016

P35 Challenges in Delivering Software in the Cloud
as Microservices

IEEE Journal 2016

Table 14: List of selected papers

68
A

PPE
N

D
IC

E
S

C List of blogs
Table 15 shows all the blog articles selected for the study along with the study ID, title, and URL.

Study ID Title URL

B1 Pattern: API Gateway / Backends for Frontends https://microservices.io/patterns/apigateway.html
B2 Pattern: Remote Procedure Invocation (RPI) https://microservices.io/patterns/communication-style/rpi.html
B3 Functional decomposition for Microservices http://www.waynecliffordbarker.co.za/functional-

decomposition-for-microservices/
B4 Pattern Decompose by business capability https://microservices.io/patterns/decomposition/decompose-by-

business-capability.html
B5 Design Patterns for Microservices https://dzone.com/articles/design-patterns-for-microservices
B6 Design Patterns for Microservices https://dzone.com/articles/design-patterns-for-microservices-1
B7 Pattern: Microservice Architecture https://microservices.io/patterns/microservices.html
B8 Everything You Need To Know About Microservices

Design Patterns
https://www.edureka.co/blog/microservices-design-patterns

B9 Microservice Architecture and Design Patterns for
Microservices

https://dzone.com/articles/microservice-architecture-and-design-
patterns-for

B10 Microservices: Decomposing Applications for De-
ployability and Scalability

https://www.infoq.com/articles/microservices-intro/

B11 Microservices in Practice - Key Architectural Con-
cepts of an MSA

https://wso2.com/whitepapers/microservices-in-practice-key-
architectural-concepts-of-an-msa/

B12 Isolating your microservices through loose coupling https://medium.com/it-dead-inside/isolating-your-
microservices-through-loose-coupling-48b710e28de6

B13 The importance of loose coupling in microservice ar-
chitecture

https://info.nl/en/conversation/the-importance-of-loose-
coupling-in-microservice-architecture/

B14 Pattern: Decompose by business capability Context https://microservices.io/patterns/decomposition/decompose-by-
business-capability.html

B15 The What, Why, and How of a Microservices Archi-
tecture

https://medium.com/hashmapinc/the-what-why-and-how-of-a-
microservices-architecture-4179579423a9

https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/communication-style/rpi.html
http://www.waynecliffordbarker.co.za/functional-decomposition-for-microservices/
http://www.waynecliffordbarker.co.za/functional-decomposition-for-microservices/
https://microservices.io/patterns/decomposition/decompose-by-business-capability.html
https://microservices.io/patterns/decomposition/decompose-by-business-capability.html
https://dzone.com/articles/design-patterns-for-microservices
https://dzone.com/articles/design-patterns-for-microservices-1
https://microservices.io/patterns/microservices.html
https://www.edureka.co/blog/microservices-design-patterns
https://dzone.com/articles/microservice-architecture-and-design-patterns-for
https://dzone.com/articles/microservice-architecture-and-design-patterns-for
https://www.infoq.com/articles/microservices-intro/
https://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa/
https://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa/
https://medium.com/it-dead-inside/isolating-your-microservices-through-loose-coupling-48b710e28de6
https://medium.com/it-dead-inside/isolating-your-microservices-through-loose-coupling-48b710e28de6
https://info.nl/en/conversation/the-importance-of-loose-coupling-in-microservice-architecture/
https://info.nl/en/conversation/the-importance-of-loose-coupling-in-microservice-architecture/
https://microservices.io/patterns/decomposition/decompose-by-business-capability.html
https://microservices.io/patterns/decomposition/decompose-by-business-capability.html
https://medium.com/hashmapinc/the-what-why-and-how-of-a-microservices-architecture-4179579423a9
https://medium.com/hashmapinc/the-what-why-and-how-of-a-microservices-architecture-4179579423a9

A
PPE

N
D

IC
E

S
69

Table 15 continued from previous page
B16 Microservice Architecture — Communication & De-

sign Patterns
https://medium.com/dev-genius/microservice-architecture-
communication-design-patterns-70b37beec294

B17 Microservice Communication Patterns https://reflectoring.io/microservice-communication-patterns/
B18 Pattern: Messaging https://microservices.io/patterns/communication-style/

messaging.html
B20 Design Patterns for Microservice-To-Microservice

Communication
https://dzone.com/articles/design-patterns-for-microservice-
communication

B27 How are your microservices talking? https://aiven.io/blog/how-are-your-microservices-talking
B28 Microservice Architecture — Communication & De-

sign Patterns
https://medium.com/dev-genius/microservice-architecture-
communication-design-patterns-70b37beec294

Table 15: List of selected blogs

https://medium.com/dev-genius/microservice-architecture-communication-design-patterns-70b37beec294
https://medium.com/dev-genius/microservice-architecture-communication-design-patterns-70b37beec294
https://reflectoring.io/microservice-communication-patterns/
https://microservices.io/patterns/communication-style/messaging.html
https://microservices.io/patterns/communication-style/messaging.html
https://dzone.com/articles/design-patterns-for-microservice-communication
https://dzone.com/articles/design-patterns-for-microservice-communication
https://aiven.io/blog/how-are-your-microservices-talking
 https://medium.com/dev-genius/microservice-architecture-communication-design-patterns-70b37beec294
 https://medium.com/dev-genius/microservice-architecture-communication-design-patterns-70b37beec294

70
A

PPE
N

D
IC

E
S

D List of forum articles
Table 16 shows all the forum articles selected for the study along with the study ID, title, and URL.

Study ID Title URL

F21 When and How to use GraphQL with Microservice
Architecture

https://stackoverflow.com/questions/38071714/when-and-how-
to-use-graphql-with-microservice-architecture

F22 Microservice Authentication strategy https://stackoverflow.com/questions/29644916/microservice-
authentication-strategy

F23 orchestrating microservices https://stackoverflow.com/questions/29117570/orchestrating-
microservices

F24 Transactions across REST microservices? https://stackoverflow.com/questions/30213456/transactions-
across-rest-microservices

F25 Microservice Authentication strategy https://stackoverflow.com/questions/29644916/microservice-
authentication-strategy

F30 Microservices: Handling eventual consistency https://softwareengineering.stackexchange.com/questions/
354911/microservices-handling-eventual-consistency

F31 Microservice Decomposition and Inter-service com-
munication

https://softwareengineering.stackexchange.com/questions/
395448/microservice-decomposition-and-inter-service-
communication

F32 How to handle data inconsistency in microservice ar-
chitecture?

https://softwareengineering.stackexchange.com/questions/
416035/how-to-handle-data-inconsistency-in-microservice-
architecture

F33 What is the importance of cohesion and coupling in
microservices?

https://www.quora.com/What-is-the-importance-of-cohesion-
and-coupling-in-microservices

F38 Microservices Why Use RabbitMQ? https://stackoverflow.com/questions/45208766/microservices-
why-use-rabbitmq

F40 What are microservices and why should you care? https://inform.tmforum.org/features-and-analysis/2017/02/what-
are-microservices-and-why-should-you-care/

F41 Microservices and database joins https://stackoverflow.com/questions/29761872/microservices-
and-database-joins

https://stackoverflow.com/questions/38071714/when-and-how-to-use-graphql-with-microservice-architecture
https://stackoverflow.com/questions/38071714/when-and-how-to-use-graphql-with-microservice-architecture
https://stackoverflow.com/questions/29644916/microservice-authentication-strategy
https://stackoverflow.com/questions/29644916/microservice-authentication-strategy
https://stackoverflow.com/questions/29117570/orchestrating-microservices
https://stackoverflow.com/questions/29117570/orchestrating-microservices
https://stackoverflow.com/questions/30213456/transactions-across-rest-microservices
https://stackoverflow.com/questions/30213456/transactions-across-rest-microservices
https://stackoverflow.com/questions/29644916/microservice-authentication-strategy
https://stackoverflow.com/questions/29644916/microservice-authentication-strategy
https://softwareengineering.stackexchange.com/questions/354911/microservices-handling-eventual-consistency
https://softwareengineering.stackexchange.com/questions/354911/microservices-handling-eventual-consistency
https://softwareengineering.stackexchange.com/questions/395448/microservice-decomposition-and-inter-service-communication
https://softwareengineering.stackexchange.com/questions/395448/microservice-decomposition-and-inter-service-communication
https://softwareengineering.stackexchange.com/questions/395448/microservice-decomposition-and-inter-service-communication
https://softwareengineering.stackexchange.com/questions/416035/how-to-handle-data-inconsistency-in-microservice-architecture
https://softwareengineering.stackexchange.com/questions/416035/how-to-handle-data-inconsistency-in-microservice-architecture
https://softwareengineering.stackexchange.com/questions/416035/how-to-handle-data-inconsistency-in-microservice-architecture
https://www.quora.com/What-is-the-importance-of-cohesion-and-coupling-in-microservices
https://www.quora.com/What-is-the-importance-of-cohesion-and-coupling-in-microservices
https://stackoverflow.com/questions/45208766/microservices-why-use-rabbitmq
https://stackoverflow.com/questions/45208766/microservices-why-use-rabbitmq
https://inform.tmforum.org/features-and-analysis/2017/02/what-are-microservices-and-why-should-you-care/
https://inform.tmforum.org/features-and-analysis/2017/02/what-are-microservices-and-why-should-you-care/
https://stackoverflow.com/questions/29761872/microservices-and-database-joins
https://stackoverflow.com/questions/29761872/microservices-and-database-joins

A
PPE

N
D

IC
E

S
71

Table 16 continued from previous page
F42 Microservices: how to handle foreign key relation-

ships
https://stackoverflow.com/questions/44870461/microservices-
how-to-handle-foreign-key-relationships

F43 Microservices vs Monolithic Architecture [closed] https://stackoverflow.com/questions/33041733/microservices-vs-
monolithic-architecture

F44 How does data denormalization work with the Mi-
croservice Pattern?

https://stackoverflow.com/questions/27007353/how-does-data-
denormalization-work-with-the-microservice-pattern

F45 Single Sign-On in Microservice Architecture https://stackoverflow.com/questions/25595492/single-sign-on-
in-microservice-architecture

F46 Sharing code and schema between microservices https://stackoverflow.com/questions/25600580/sharing-code-
and-schema-between-microservices

F47 Microservices with shared database? using multiple
ORM’s? [closed]

https://stackoverflow.com/questions/43612866/microservices-
with-shared-database-using-multiple-orms

F48 2PC vs Sagas (distributed transactions) https://stackoverflow.com/questions/48906817/2pc-vs-sagas-
distributed-transactions

F49 What is a microservice? [closed] https://stackoverflow.com/questions/46575898/what-is-a-
microservice

F50 Data Sharing between micro services https://stackoverflow.com/questions/41640621/data-sharing-
between-micro-services

F51 Microservices: what are pros and cons? https://stackoverflow.com/questions/34903605/microservices-
what-are-pros-and-cons

F52 Data Consistency Across Microservices https://stackoverflow.com/questions/43950808/data-consistency-
across-microservices

F53 Kafka Msg VS REST Calls https://stackoverflow.com/questions/57852689/kafka-msg-vs-
rest-calls

F54 What is service discovery, and why do you need it? https://stackoverflow.com/questions/37148836/what-is-service-
discovery-and-why-do-you-need-it

Table 16: List of select forum studies

https://stackoverflow.com/questions/44870461/microservices-how-to-handle-foreign-key-relationships
https://stackoverflow.com/questions/44870461/microservices-how-to-handle-foreign-key-relationships
https://stackoverflow.com/questions/33041733/microservices-vs-monolithic-architecture
https://stackoverflow.com/questions/33041733/microservices-vs-monolithic-architecture
https://stackoverflow.com/questions/27007353/how-does-data-denormalization-work-with-the-microservice-pattern
https://stackoverflow.com/questions/27007353/how-does-data-denormalization-work-with-the-microservice-pattern
https://stackoverflow.com/questions/25595492/single-sign-on-in-microservice-architecture
https://stackoverflow.com/questions/25595492/single-sign-on-in-microservice-architecture
https://stackoverflow.com/questions/25600580/sharing-code-and-schema-between-microservices
https://stackoverflow.com/questions/25600580/sharing-code-and-schema-between-microservices
https://stackoverflow.com/questions/43612866/microservices-with-shared-database-using-multiple-orms
https://stackoverflow.com/questions/43612866/microservices-with-shared-database-using-multiple-orms
https://stackoverflow.com/questions/48906817/2pc-vs-sagas-distributed-transactions
https://stackoverflow.com/questions/48906817/2pc-vs-sagas-distributed-transactions
https://stackoverflow.com/questions/46575898/what-is-a-microservice
https://stackoverflow.com/questions/46575898/what-is-a-microservice
https://stackoverflow.com/questions/41640621/data-sharing-between-micro-services
https://stackoverflow.com/questions/41640621/data-sharing-between-micro-services
https://stackoverflow.com/questions/34903605/microservices-what-are-pros-and-cons
https://stackoverflow.com/questions/34903605/microservices-what-are-pros-and-cons
https://stackoverflow.com/questions/43950808/data-consistency-across-microservices
https://stackoverflow.com/questions/43950808/data-consistency-across-microservices
https://stackoverflow.com/questions/57852689/kafka-msg-vs-rest-calls
https://stackoverflow.com/questions/57852689/kafka-msg-vs-rest-calls
https://stackoverflow.com/questions/37148836/what-is-service-discovery-and-why-do-you-need-it
https://stackoverflow.com/questions/37148836/what-is-service-discovery-and-why-do-you-need-it

