
Bachelor Project Mathematics:
A Hidden Symmetry of Kontsevich’s

Tetrahedral Flow on the Space of Rescaled 3D
and 4D-Determinant Nambu-Poisson Brackets

D. Lipper

Supervised by A.V. Kiselev
In Collaboration with R. Buring

Second Assessment by N. Martynchuk

University of Groningen

July 2021

Abstract
We study symmetries of the space of Poisson brackets. Kontsevich’s
tetrahedral flow is known to preserve the class of 3d and 4d-determinant
Nambu-Poisson brackets. This gives rise to dynamical systems contain-
ing differential polynomials in the right hand side. These expressions
are highly symmetric, and we want to unravel their structure. To solve
the problem we design an algorithm and implement it in Maple. We
confirm the triple total skew-symmetry of that flow and we discover
in which sense the structure of that flow is minimal. Our approach
naturally generalizes to higher dimensions and other Kontsevich flows,
yet it is unknown whether the minimal structure persists or not.

Contents

1 Introduction 2

2 Problem Statement 3
2.1 Context and Motivation . 3
2.2 Skew-Symmetry . 5
2.3 Marker-Monomials . 6
2.4 Research Question . 8

3 Looking for an Approach 9
3.1 Zero and Nonzero Markers . 9
3.2 The Structure of Monomials 11
3.3 A Brute Force Algorithm . 13

4 Implementation in Maple for 3D 15
4.1 Splitting Polynomials by Structure 15
4.2 Skewing and Totally Skewing 18
4.3 Working with Markers . 20
4.4 The Algorithm . 25
4.5 Verifying Uniqueness . 28

5 Implementation in Maple for 4D 34
5.1 Splitting Polynomials by Structure 34
5.2 Skewing and Totally Skewing 36
5.3 Working with Markers . 38
5.4 The Algorithm . 42

6 Analyzing the Results 44
6.1 The Structures in ȧ and ρ̇ . 44
6.2 Solutions to the Problem . 45
6.3 The Tetrahedral Flow in 4D 47

7 Conclusion 51

8 Discussion 52

References 53

Appendices 54

A Polynomials ȧ and ρ̇ 54

B Unskewed Polynomials ȧ′ and ρ̇′ 62

1

1 Introduction

Kontsevich’s tetrahedral flow can be used to deform Poisson structures, such
as 3d-determinant Nambu-Poisson brackets. These brackets are determined
by the parameters a and ρ. The tetrahedral flow preserves the class of 3d-
determinant Nambu-Poisson brackets, which gives rise to the evolution of
the parameters a and ρ. The evolution equations for ȧ and ρ̇ were previously
found to be skew-symmetric and totally skew-symmetric.

The differential geometry of these equations guarantees that we can can find
marker-polynomials whose total skew-symmetrizations are equal to ȧ and ρ̇,
and it is known that ȧ can be represented by the total skew-symmetrization
of three markers. We don’t know how many markers we need for ρ̇. We
succeed in finding marker-polynomials that produce ȧ and ρ̇ by total skew-
symmetrization, and all our finding match the theoretical predictions. On
top of that we discover an extra kind of hyper-symmetry in these equations:
for each structure type in ȧ or ρ̇, a suitable multiple of any nonzero marker of
that structure can be used to construct ȧ or ρ̇ by total skew-symmetrization.
This result was obtained by designing an algorithm and implementing it in
Maple.

Furthermore, we study some evolution equations obtained by deforming 4d-
determinant Nambu-Poisson brackets using Kontsevich’s tetrahedral flow.
To do this we modify our algorithm in Maple to also work in 4 dimensions.
We hypothesize that the hyper-symmetry found in the 3-dimensional case
persists in 4 dimensions.

This text is structured in the following way. Chapter 2 contains the relevant
context and motivation for the problem, the necessary definitions and the
research question. In chapter 3 some theorems are presented, which are
used to suggest an algorithmic approach for solving the problem. Chapter
4 contains the implementation of this algorithmic approach in Maple for 3
dimensions. Chapter 5 contains the same algorithm, but implemented for use
in 4 dimensions. In chapter 6 the results of this algorithm are presented and
discussed. Finally, the conclusion and discussion can be found in chapters 7
and 8.

2

2 Problem Statement

This chapter is dedicated to formulating the research question. Section 2.1
provides some context and background information to the problem. Sections
2.2 and 2.3 contain the necessary definitions needed to formulate the research
question, which can be found in section 2.4.

2.1 Context and Motivation

We study deformations of Poisson structures. Poisson structures arise in
physics and can be described in many ways. One way to explain Poisson
structures is using Hamiltonian mechanics. An example of this approach can
be found in [1]. Alternatively, we could describe Poisson structures in the
following way, although this approach makes the physical interpretation less
immediately clear. A Poisson structure on Rn is an n×n matrix of R-valued
functions on Rn with entries P ij, where 1 ≤ i, j ≤ n. This matrix defines a
bracket on smooth functions on Rn by

{f, g} =

i,j=n∑
i,j=1

P ij ∂

∂xi
(f)

∂

∂xj
(g) (1)

This bracket should satisfy the following three identities:

• Skew-symmetricity: {f, g} = −{g, f}, so P ij = {xi, xj} = −{xj, xi} =
P ji

• Bi-linearity: {f, gh} = {f, g}h+ {f, h}g

• Jacobi identity: {{f, g}h}+ {{f, h}g}}+ {{g, h}f} = 0

When these three identities are satisfied the bracket {f, g} is called a Poisson
bracket and the matrix P ij is called a Poisson matrix.

On R3 with coordinates (x, y, z) we are interested in the family of Poisson
structures P [a, ρ] given by {x, y} = ρ·∂a/∂z and the three cyclic permutations
of {x, y, z} of this identity, which also include {y, z} = ρ ·∂a/∂x and {z, x} =
ρ · ∂a/∂y. The general formula for these brackets is given by

{f, g} = ρ ·
∣∣∣∣∂(a, f, g)

∂(x, y, z)

∣∣∣∣ = ρ · det

∥∥∥∥ ax fx gx
ay fy gy
az fz gz

∥∥∥∥ (2)

When ρ is equal to 1 these are called the 3D-determinant Nambu-Poisson
brackets [2]. We are interested in the more general rescaled brackets where

3

ρ is an arbitrary function. On R3, multiplying a Nambu-Poisson bracket by
an arbitrary function gives another Nambu-Poisson bracket [3]. If we denote
(x1, x2, x3) by (x, y, z) we have the Poisson matrix with entries P [a, ρ]ij =
{xi, xj} = εijkρ∂k(a), where ε is the Levi-Civita symbol: it is equal to 1 if
(i, j, k) is a cyclic permutation of (1, 2, 3), equal to -1 if (i, j, k) is any other
permutation of (1, 2, 3) and equal to 0 if (i, j, k) is not a permutation of
(1, 2, 3).

We would like to deform the Poisson structures. Given a Poisson matrix
P we would like to find a family Pt of Poisson matrices such that P0 = P .
In order to be called a deformation the family Pt should depend on t in
a real-analytic way around 0. Then there exists a power series expansion
Pt = P + tQ + ..., where the t coefficient of the Jacobi identity for Pt is
[[P,Q]] = 1

2
[[Pt, Pt]] = 0. Here the double brackets denote a differential on

multi-vector fields, also called Schouten brackets, and Q is called a cocycle
in the Poisson cohomology of P. That means that we can split the problem
of finding a deformation in two: first find a Q such that [[P,Q]] = 0, and
then find out if P + tQ can be extended to a deformation. We will focus
exclusively on this first step.

We can deform Poisson matrices using Kontsevich’s tetrahedral flow [4],
which preserves the set of Poisson brackets. Specifically, the tetrahedral
flow preserves the class of 3D-determinant Nambu-Poisson brackets. Then
there exist formulas for particular Q, depending on P , satisfying [[P,Q]] = 0.
The explicit corrected formulas for this Q(P) were found by Bouisaghouane,
Buring and Kiselev [5]. Applying this to our case we might suspect that
this Q(P [a, ρ]) is the result of deforming the ’ingredients’ (a, ρ). Namely,
deforming (a, ρ) simultaneously would mean having two families (at, ρt) with
(a0, ρ0) = (a, ρ). Assuming again that the families are real-analytic near 0 we
get the power series at = a+tȧ+... and ρt = ρ+tρ̇+.... This yields the family
of Poisson structures Pt = P [at, ρt] = P [a, ρ] + t(P [a, ˙rho] + P [ȧ, ρ]) + ...,
because P is linear in both arguments. Hence, taking the first-order term,
we get the following matrix equation

Q(P [a, ρ]) = P [a, ρ̇] + P [ȧ, ρ] (3)

We want to solve this equation for (ȧ, ρ̇) in terms of (a, ρ) and their derivatives.
The solutions to this equation were found by Buring and Kiselev in 2019 [6],
and are the object of study of this paper. The solutions for ȧ and ρ̇, which can
be found in appendix A, contain respectively 228 and 426 monomials. Note
that if we set ρ equal to 1 both ȧ and ρ̇ are equal to zero. The expressions
for ȧ and ρ̇ are differential polynomials which contain three independent

4

variables, {x, y, z}, and two dependent variables, {a, ρ}. Each monomial
in these equations contains exactly nine derivatives: three derivatives of x,
three derivatives of y and three derivatives of z. The expressions for ȧ and ρ̇
depend on the following jet variables:

ȧ = ȧ(ρ, ax, ay, az, axx, axxx, ayy, ayyy, azz, azzz, axy, axyy, axz, axzz, axxy, axxz, ayz,

ayzz, ayyz, axyz, ρx, ρy, ρz)

ρ̇ = ρ̇(ρ, ax, ay, az, axx, ayy, azz, axy, axz, ayz, ρx, ρy, ρz, ρxx, ρxxx, ρyy, ρyyy, ρzz, ρzzz,

ρxy, ρxyy, ρxz, ρxzz, ρxxy, ρxxz, ρyz, ρyzz, ρyyz, ρxyz)

2.2 Skew-Symmetry

It was discovered by Buring and Kiselev that both ȧ and ρ̇ are skew-symmetric
under permutations of {x, y, z} [7]. This is also verified in section 4.2.1 of
this paper.

Def 1. A skew-symmetric polynomial is a polynomial that satisfies

f(x1, ..., xn) = (−1)π · f(π(x1), ..., π(xn))

for all π ∈ Sn.

In our case this means that the polynomials ȧ and ρ̇ satisfy

ȧ(..., ax, ..., ρxy, ...) = (−1)π · ȧ(..., aπ(x), ..., ρπ(x)π(y), ...)

ρ̇(..., ax, ..., ρxy, ...) = (−1)π · ρ̇(..., aπ(x), ..., ρπ(x)π(y), ...)
(4)

for all π ∈ S3, since in our case we have three variables: {x, y, z}. From now
on we will denote the operation of permuting the variables {x, y, z} in ȧ and
ρ̇ simply by π(ȧ) and π(ρ̇).

Buring and Kiselev also discovered another kind of symmetry in the polynomials
ȧ and ρ̇: the polynomials ȧ and ρ̇ are totally skew-symmetric.

Def 2. The total skew-symmetrization of a polynomial f of n variables is the
sum of the polynomial skewed by all possible permutations of its n variables.
It is denoted by πSn.

πSn(f(x1, ...xn)) =
∑
π∈Sn

(
(−1)πf(π(x1), ..., π(xn))

)

5

Buring and Kiselev found two new polynomials, called ȧ′ and ρ̇′, which
can produce ȧ and ρ̇ respectively by total skew-symmetrization [7]. The
polynomials ȧ′ and ρ̇′ consist of 38 and 71 terms respectively, and can be
found in appendix B. These polynomials thus satisfy

ȧ = πS3(ȧ
′)

ρ̇ = πS3(ρ̇
′)

(5)

This is also verified in section 4.2.2 of this paper.

2.3 Marker-Monomials

In this section we introduce marker-monomials to further study the symmetry
of the polynomials ȧ and ρ̇.

Def 3. A marker-monomial (or marker) is a monomial where the independent
variables are partitioned into three triples.

The nine derivatives {x, x, x, y, y, y, z, z, z} in each monomial in ȧ and ρ̇ can
be partitioned into three triples of {x, y, z} by replacing the three x variables
by {u1, u2, u3}, the three y variables by {v1, v2, v3} and the three z variables
by {w1, w2, w3}. After these substitutions the variables are partitioned into
three triples {un, vn, wn}, for n ∈ {1, 2, 3}. This can be done in at most
63 = 216 different ways: there are 6 ways to replace {x, x, x} by {u1, u2, u3},
6 ways to replace {y, y, y} by {v1, v2, v3} and 6 ways to replace {z, z, z} by
{w1, w2, w3}. However, in practice there are often less possibilities.

Ex 1. Let’s take the first term in the polynomial ȧ

ȧ1 = −12ρ2axρyaxyazzaxyz (6)

We can transform this monomial into a marker-monomial by replacing the
nine independent variables with three triples. If we look at monomial (6),
we see that it contains azz. This ’double’ z limits the number of ways to
partition {z, z, z} to 3 possibilities, because aw1w2 = aw2w1, since the order of
derivatives does not matter. That means we can create at most 6 ·6 ·3 = 108
different markers from monomial (6).

Let’s look at one of the 108 possible markers we can construct from monomial
(6): we will partition the variables in monomial (6) by simply replacing them
in order of occurrence: the first occurrence of x by u1, the second occurrence
of x by u2, the first occurrence of y by v1, etc. This results in the marker

−12ρ2au1ρv1au2v2aw1w2au3v3w3 (7)

6

Now the marker (7) contains three triples {un, vn, wn}, for n ∈ {1, 2, 3}, and
we can permute each triple individually. For example, we could permute the
triple {u2, v2, w2} by (13). Then monomial (7) would become

12ρ2au1ρv1av2w2au2w1au3v3w3 (8)

If we then place back the original variables {x, y, z} in monomial (8) we end
up with

12ρ2axρyayzaxzaxyz (9)

The example above shows how constructing markers and permuting their
variables works in practice. 4

In general, the number of markers that can be constructed from a monomial
can be computed as follows: we start by only looking at the x variable. If the
monomial contains a3x, axxx, ρ

3
x or ρxxx, then there is only one way to replace

{x, x, x} by {u1, u2, u3}. If the monomial contains a2x, ρ
2
x, ρxxn or axxn, where

n ∈ {y, z}, then there are three ways to replace {x, x, x} by {u1, u2, u3}. If
the monomial contains none of these combinations then there are six ways
to replace {x, x, x} by {u1, u2, u3}. We then do the same for the variables
y and z. Finally, we multiply the number of combinations for each of the
variables, which gives us the number of distinct markers we can construct
from the monomial, as seen in example 1.

Ex 2. The polynomials ȧ and ρ̇ contain some monomials that can only
produce one single distinct marker, for instance the following monomial.

a3xρ
3
yaxxx (10)

As there is only one possible way to partition the independent variables into
three triples, the only marker that can be created from this monomial is

au1au2au3ρv1ρv2ρv3aw1w2w3 (11)

4

A property to note is that distinct monomials can never produce identical
markers. Since the x variables can only be replaced by {u1, u2, u3}, the y
variables can only be replaced by {v1, v2, v3} and the z variables can only
be replaced by {w1, w2, w3}, two different monomials will always produce
markers that differ in the same positions as the monomials themselves. Thus
different monomials give rise to different markers.

7

Def 4. The total skew-symmetrization of a marker m is the total skew-
symmetrization of m with respect to all three triples, denoted by πtS3

.

πtS3
(m) =

∑
π1∈S3

∑
π2∈S3

∑
π3∈S3

(−1)ππn(m)(x, y, z)

where πn denotes permuting with respect to triple n.

There are 6 possible ways of skewing the first triple, one for each permutation
in S3. Similarly, there are 6 ways of skewing the second triple and 6 ways
of skewing the third triple. Together, this gives us 63 = 216 possible skew
combinations. Adding all 216 terms gives us the total skew-symmetrization.

Note that the total skew-symmetrization does not consist of markers, but of
monomials of {x, y, z}. After all skews are completed we replace the triple
variables in the resulting 216 terms by {x, y, z}. This can only be done in
one way, contrary to the construction of markers, for which there are many
possibilities.

The skew-symmetry and total skew-symmetry of ȧ and ρ̇, as seen in section
2.2, thus hold under simultaneous permutation of three triples {x, y, z} in
each monomial. That is to say, these symmetries hold when we permute each
triple, {u1, v1, w1}, {u2, v2, w2} and {u3, v3, w3} simultaneously. However, it
is not immediately clear which variable should go into which triple. As noted
before, there are (at most) 216 different ways of sorting the 9 derivatives in
every monomial in ȧ and ρ̇ into three triples.

2.4 Research Question

Our problem consists in finding a collection of markers whose total skew-
symmetrization produces ȧ and ρ̇. That is to say, we are looking for new
polynomials ȧ′′ and ρ̇′′ consisting entirely of markers, such that the total skew-
symmetrizations of ȧ′′ and ρ̇′′ are equal to ȧ and ρ̇ respectively. Symbolically
this can be written as

ȧ = πtS3
(ȧ′′)(x, y, z)

ρ̇ = πtS3
(ρ̇′′)(x, y, z)

(12)

The existence of markers-polynomials with this property is guaranteed by
the differential geometry of the problem. It is also known from Buring and
Kiselev that there exists a solution for ȧ′′ consisting of three markers. We
would like to confirm this and find a solution for ρ̇′′. Moreover, we would like
to know whether these solutions are unique.

8

3 Looking for an Approach

In this chapter we study some properties of marker-monomials that allow us
to better understand the problem stated in section 2.4. Using these insights
we suggest a brute force algorithmic approach to solve the problem.

3.1 Zero and Nonzero Markers

Our first object of study are so-called zero markers.

Def 5. A zero marker is a marker whose total skew-symmetrization is zero.

Zero markers are of particular interest to us, because, since their total skew-
symmetrizations are zero, they cannot be used to represent anything. This
means that we could add any number of zero markers to a possible solution
and end up with another solution. However, this does not lead to very
interesting solutions. Therefore we would like to find solutions that do not
contain any zero markers. To achieve this we would like to find out why some
markers are zero markers, and how to easily recognise these.

Th 1. If a marker is invariant under any transposition in S3 with respect to
any of its triples it is a zero marker.

Proof. There are two types of markers whose total skew-symmetrization is
zero:

Type 1: The first type is a marker that is invariant under the permutation
(123) or (132) with respect to one of the three triples. In fact, if the marker
is invariant under one of the permutations of order 3 in S3, it is necessarily
invariant under all permutations in S3 with respect to this triple. Since there
are three odd and three even permutations in S3, three terms get a minus
coefficient when skewed an three terms do not. That means when we totally
skew this marker with respect to the triple where the invariances occur, the
6 terms will cancel out, since they are all equal except for the three minus
signs.

Type 2: The second type of marker whose total skew-symmetrization is zero
is a marker that is invariant under just one of the three transpositions in S3

with respect to one of the three triples. Suppose, without loss of generality,
that the marker is invariant under the permutation (23) with respect to one of
the three triples. So permuting this triple by (23) is the same as permuting it
by (1). It follows that permuting this triple by (13) is the same as permuting
by (123) and permuting by (12) is the same as permuting by (132). So when

9

totally skewing the marker with respect to this triple we will get three pairs
of equal expressions, except for the minus signs that appear when skewing
by a transposition. Since each pair contains exactly one transposition each
pair will cancel out and we will be left with zero.

It is not hard to see that there can be no other types of zero markers. There
are three odd and three even permutations in S3. In a zero marker the
odd and even permutations cancel each other out. That leaves us with only
two possibilities: either the marker is invariant under all permutations with
respect to some triple (type 1), or the permuted expressions with respect to
some triple cancel each other in pairs (type 2).

In both cases, the fact that totally skewing a marker with respect to just
one of the three triples results in zero is enough for the entire total skew-
symmetrization to become zero. Totally skewing a marker essentially means
totally skewing it with respect to the first triple, then skewing the resulting 6
monomials with respect to the second triple and finally skewing the resulting
36 monomials with respect to the first triple, resulting in 216 monomials.
If one of these three total skews results in zero, the result will obviously be
zero.

We distinguished two types of markers whose total skew-symmetrization is
zero. The first type is invariant under all permutations in S3 for some triple,
while the second type is invariant under just one transposition in S3 for some
triple. Thus if a marker is invariant under just one transposition in S3, for
any of the three triples, the marker must be of one of these types, and thus
a zero marker.

Ex 3. Let’s look at an example of a zero marker:

6av1v2w1ρv3ρw2ρw3au1au2au3 (13)

This marker is invariant under the transposition (23) with respect to the first
triple. Applying the permutation (23) to the first triple means exchanging the
variables v1 and w1, but since these variables are part of the same subscript,
exchanging them does not change the marker-monomial. This means that
when we totally skew this marker with respect to the first triple, the resulting
monomials will cancel out and we will get zero. Consequently, this marker is
a zero marker. 4

Ex 4. Another slightly different example of a zero marker is given by:

12ρau1au2v1au3w1ρv2ρv3ρw2w3 (14)

10

This marker is again invariant under the transposition (23) with respect to
the first triple, but in this case the invariance only becomes apparent once
we place back the original independent variables. To see this, note that both
au2v1au3w1 and au2w1au3v1 will become axyaxz when we place back the original
variables, as the order of multiplication doesn’t matter. 4

Def 6. A nonzero marker is a marker whose total skew-symmetrization is
not equal to zero.

Most monomials in ȧ and ρ̇ can produce multiple different nonzero markers.
That means that the (at most) 216 possible different markers we can construct
from any monomial in ȧ or ρ̇ usually include multiple different nonzero
markers. Theoretically, there could be monomials that cannot produce a
nonzero marker by any transformation. Take for instance the monomial

−2a3xa
3
yρzzaz (15)

No matter which way we partition the variables into three triples, the resulting
marker will always be invariant under the permutation (12) with respect to
any of the three triples.

Remark. The polynomials ȧ and ρ̇ do not contain any monomials that
cannot produce a nonzero marker. This can easily be shown using the
procedure ConstructNonzeroMarker (see section 4.3).

3.2 The Structure of Monomials

In order to study the properties of the different monomials contained in ȧ
and ρ̇ we introduce a new concept called the structure of a monomial.

Def 7. The structure of a (marker-)monomial is determined by the number
of derivatives of a and ρ that occur in the monomial, and the way they are
grouped. The structure is denoted by a[r1...rn]ρ[s1...sm], where r, s, n,m ∈
N>0 with 0 < r1 ≤ ... ≤ rn and 0 < s1 ≤ ... ≤ sm. Here r and s
denote the number of derivatives of a and ρ respectively. This means the
monomial has

∑
rn derivatives of a and

∑
sm derivatives of ρ. Moreover,

these derivatives occur in ”blocks”, as follows: the monomial contains the
dependent variable a n-times, once with r1 number of derivatives, once with
r2 number of derivatives, etc. Similarly for ρ and s.

Ex 5. Let’s have a look at some monomials and determine their structure:

11

− 12ρ2axρyaxyazzaxyz

− 6ρρ2ya
2
zaxzρxxy

(16)

The first monomial contains a four times and ρ one time. Note that we ignore
the ρ2 coefficient. It not important for the structure of the monomial since
it does not contain any derivative. The first a has one derivative, the second
and third a have two derivatives and the last a has three derivatives. The
only ρ that has a derivative has one derivative. Consequently the structure
of the first monomial is a[1223]ρ[1].

Similarly, the structure of the second monomial is a[112]ρ[113]. Note that we
again ignore the ρ coefficient without any derivatives. Also note that a2z =
az · az, which results in the number 1 appearing twice in the structure. 4

Note that our expressions ȧ and ρ̇ exclusively contain terms with exactly nine
derivatives, as mentioned in chapter 2. This means that the numbers in the
structure of these monomials will always add up to nine.

Ex 6. The structure of a marker can be determined in exactly the same way
as the structure of the monomials in the previous example. Take for instance
the marker

6av1v2w1ρv2ρv3ρw3au1au2au3 (17)

Its structure is given by a[1113]ρ[111]. 4

Remark. There can be at most 1860 different monomials of any given
structure containing three triples of derivatives. This result can be computed
using combinatorics. The first variable appears three times in nine positions;
this can happen in 9!/3!6! = 84 ways. The second variable appears three
times in six positions; this can happen in 6!/3!3! = 20 ways. For the last
variable there is only one option left. The maximum number of possible
combinations is thus 84 · 20 = 1860. This is not a sharp estimate, as it does
not take the differential order constraints into account. However, this will be
useful for computing all possible monomials of a given structure in section
4.5.

Note that the total skew-symmetrization of a marker only contains monomials
of the same structure as the structure of the marker itself, since permuting the
variables in a marker does not change the number of derivatives in the marker
or the way these derivatives are grouped. Consequently any monomial in ȧ
or ρ̇ can only be represented by a marker of its own structure. At the very

12

least this tells us that if we want to represent ȧ or ρ̇ by a sum of total skew-
symmetrizations, we need at least as many markers as there are different
structures in ȧ or ρ̇ to achieve this.

Another consequence is that the problem of finding ȧ′′ and ρ̇′′, as stated in
section 2.4, can be split into a number of sub-problems in the following way:
we can divide all monomials in ȧ and ρ̇ into a number of new polynomials,
each containing only monomials of equal structure. This way, we can look at
each of these new polynomials separately, and try to find a way to represent
them as the sum of some total skew-symmetrizations.

3.3 A Brute Force Algorithm

Using the insights gained in this chapter we can suggest an approach to solve
the problem stated in section 2.4. First of all, as suggested in section 3.2, we
would like to divide all monomials in ȧ and ρ̇ into new polynomials consisting
only of monomials of equal structure. For each of these new polynomials, we
could try a brute force algorithm to look for suitable markers whose sum of
total skew-symmetrizations are equal to these polynomials. The box below
outlines a naive and greedy algorithm that could solve this problem.

1. Take a monomial from the (remainder of the) given polynomial

2. Construct a nonzero marker from this monomial

3. Totally skew the marker and place the original variables back

4. Find the monomial from step 1 in the total skew-symmetrization and
compare their coefficients

5. Subtract a suitable multiple of the total skew-symmetrization from the
original polynomial to make it smaller

6. If we find a combination of markers whose total skew-symmetrization
produces the original polynomial we are done. Else, repeat steps 1-5

In step 4 we compare the coefficient of the monomial from step 1 with the
coefficient of the same monomial in the total skew-symmetrization. It could
happen, by cancellation of terms, that the original monomial is not part of
the total skew-symmetrization. In that case we simply skip this marker by
going back to step 2 and taking a different nonzero marker. If all nonzero

13

markers that can be created from the monomial in step 2 are exhausted we
go back to step 1 and take another monomial.

In step 5 we subtract a suitable multiple of the total skew-symmetrization
from the polynomial, such that the original monomial cancels out. We are
then left with a remainder of the polynomial we started with. When we go
back to step 1 we pick our new monomial from this remainder, not from the
original polynomial.

Finally, note that this algorithm is not a true algorithm, as it does not have
any stopping criteria. After step 5, when we subtract a suitable multiple of
our total skew-symmetrization from the (remainder of the) polynomial, there
is no guarantee that our polynomial indeed becomes smaller. It could happen
that by subtracting this total skew-symmetrization we are adding more new
terms than we are cancelling out. This way our algorithm could easily end
up in a loop. However, it turns out that this algorithm is capable of entirely
solving the problem of finding ȧ′′ and ρ̇′′. It remains to be seen why this is
the case.

14

4 Implementation in Maple for 3D

In this chapter we implement the approach suggested in chapter 3 in Maple
[8]. We provide a procedure for splitting a polynomial into polynomials
containing only monomials of equal structure, as discussed in section 3.2.
Next, we implement the algorithm from section 3.3. To do this we need
a number of auxiliary procedures. Finally, we provide some procedures
for determining the uniqueness of solutions. For the applications of these
procedures see chapter 6.

4.1 Splitting Polynomials by Structure

4.1.1 MonomialStructure

We would like a procedure that splits polynomials into polynomials containing
only monomials of equal structure. The first step is to have a simple procedure
that determines the structure of a single monomial. The following procedure,
MonomialStructure, does exactly that. It works by counting the number of
appearances of x, y and z in the monomial, and noting to which dependent
variable they are attached.

1 MonomialStructure := proc(mon)
2 #determines the structure of a monomial
3

4 # loads the Algebraic and StringTools packages
5 with(Algebraic):
6 with(StringTools):
7

8 # defines all used variables
9 local derivativesA, derivativesRho, VarsList, i, Var, Power,

j, derivatives, structure;
10

11 # initializes the vectors
12 derivativesA := "":
13 derivativesRho := "":
14

15 # makes a list of all the variables and its powers
16 VarsList := Squarefree(mon):
17

18 # makes two lists of the number of derivatives with respect
to a and rho

19 for i from 1 to numelems(VarsList[2]) do
20 Var := convert(VarsList[2,i,1],string):
21 Power := VarsList[2,i,2]:
22

15

23 for j from 1 to Power do
24 if Has(Var,"a") then
25 derivatives := CountCharacterOccurrences(Var, "x

") + CountCharacterOccurrences(Var, "y") +
CountCharacterOccurrences(Var, "z"):

26 derivativesA := cat(derivativesA, derivatives):
27 else
28 derivatives := CountCharacterOccurrences(Var, "x

") + CountCharacterOccurrences(Var, "y") +
CountCharacterOccurrences(Var, "z"):

29 derivativesRho := cat(derivativesRho,
derivatives):

30 end if:
31 od:
32 od:
33

34 # sorts the derivatives in ascending order and removes
zeroes

35 derivativesA := Sort(derivativesA):
36 derivativesRho := Sort(derivativesRho):
37 derivativesRho := Subs("0" = "", derivativesRho):
38

39 # combines the lists into one string
40 structure := cat("a[", derivativesA, "]rho[", derivativesRho

, "]"):
41

42 end proc:

For example, we could try to compute the structure of a monomial in the
following way:

MonomialStructure(a xˆ3*rho yˆ3*a zzz)
a[1113]rho[111]

4.1.2 SplitStructures

The procedure SplitStructures splits a given polynomial into a number of
vectors, where each vector contains only monomials of equal structure. It
works by computing the structure of each monomial using MonomialStructure,
and then sorting the monomials into the appropriate vectors.

1 SplitStructures := proc(poly)
2 # splits a given polynomial poly into monomials of equal

structure
3

4 # loads the ArrayTools, ListTools and LinearAlgebra packages

16

5 with(ArrayTools):
6 with(ListTools):
7 with(LinearAlgebra):
8

9 # defines all used variables
10 local polyVector, Split, structureTypes, i, structure,

column, SplitAdd, j;
11

12 # converts the polynomial to a vector
13 polyVector := convert(poly, list):
14

15 # defines the outputs
16 Split := Matrix(numelems(polyVector)):
17 structureTypes := Vector([]):
18

19 # computes the structure of each polynomial term and sorts
it into the correct column of Split

20 for i from 1 to numelems(polyVector) do
21 structure := MonomialStructure(polyVector[i]):
22

23 if has(structureTypes, structure) = false then
24 structureTypes := Concatenate(1, structureTypes,

structure):
25 structureTypes := Vector([structureTypes]):
26 end if:
27

28 column := ListTools[Search](structure, structureTypes):
29 Split[i,column] := polyVector[i]:
30 od:
31

32 # deletes all zero columns from Split
33 Split := DeleteColumn(Split, numelems(structureTypes)+1

..numelems(polyVector)):
34

35 # sums all monomials of the same structure
36 SplitAdd := Vector(numelems(structureTypes)):
37 for j from 1 to numelems(structureTypes) do
38 SplitAdd[j] := add(Column(Split,j)):
39 od:
40

41 # outputs a vector containing monomials of equal structure
in the same element

42 return SplitAdd;
43

44 end proc:

17

4.2 Skewing and Totally Skewing

4.2.1 Skew

The procedure Skew is a simple procedure that skews a polynomial. This
procedure takes as input a polynomial, a permutation in S3 and a vector
containing the three variables that need to be skewed, and outputs the
skewed polynomial. It first converts the polynomial expression and given
variables to strings and then replaces the given variables by their permuted
variant. Finally, the procedure reorders the variables so that they are again
in alphabetical order, as skewing can change the order of the variables, and
converts the polynomial back to an expression.

1 Skew := proc(x, perm, vars)

2 # skew-symmetrizes the variables in the vector vars in a
polynomial x by permutation perm

3

4 # loads the GroupTheory and StringTools packages
5 with(GroupTheory):
6 with(StringTools):
7

8 # defines all used variables
9 local permSign, permInverse, xString, varString, j, i, xExpr

;
10

11 # computes the sign and inverse of the permutation
12 permSign := PermParity(perm):
13 permInverse := PermInverse(perm):
14

15 # converts the polynomial and variables to strings
16 xString := convert(x, string):
17 varString := Vector(3):
18 for j from 1 to 3 do
19 varString[j] := convert(vars[j],string):
20 od:
21

22 # substitutes the variables by the permuted variables
23 xString := Subs({varString[1]=varString[permInverse[1]],

varString[2]=varString[permInverse[2]],varString[3]=
varString[permInverse[3]]}, xString):

24

25 # reorders the variables in the permuted polynomial to their
original order

26 for i from 1 to 2 do
27 xString := RegSubs(cat(varString[2],varString[1]) = cat(

varString[1],varString[2]), xString):

18

28 xString := RegSubs(cat(varString[3],varString[1]) = cat(
varString[1],varString[3]), xString):

29 xString := RegSubs(cat(varString[3],varString[2]) = cat(
varString[2],varString[3]), xString):

30 od:
31

32 # applies the permutation sign to the expression
33 xExpr := parse(xString):
34 xExpr := permSign * xExpr;

35 end proc:

We can test the Skew procedure by skewing the polynomials ȧ and ρ̇. The
result should satisfy the equations (4). For example, we can try permuting
{x, y, z} in ȧ by permutation (12) and then subtracting ȧ.

Skew(adot, Perm([[1, 2]]), [x,y,z]) - adot
0

We confirm the result is zero, as previously discovered by Buring and Kiselev
[6]. This holds for both ȧ and ρ̇, and for all permutations in S3.

4.2.2 SkewTotal

The next procedure, SkewTotal, is a procedure that computes the total skew-
symmetrization of a polynomial. This procedure takes as input a polynomial
and a vector containing the three variables that need to be skewed, and
outputs the totally skew-symmetrization of the given polynomial with respect
to the given variables. It uses our previous procedure, Skew, to skew the
polynomial by each permutation in S3.

1 SkewTotal := proc(poly, vars)
2 # skews a polynomial totally in S3 with respect to the variables

in vars
3

4 # loads the GroupTheory package
5 with(GroupTheory):
6

7 # defines all used variables
8 local S3, xSkewTotal, i;
9 xSkewTotal := poly:

10

11 # defines the nontrivial permutations in the symmetric group
S3

19

12 S3 := Vector([Perm([[1, 2]]), Perm([[1, 3]]), Perm([[2, 3]])
, Perm([[1, 2, 3]]), Perm([[1, 3, 2]])]):

13

14 # permutes the polynomial by permutation i and adds result
to xSkewTotal

15 for i from 1 to 5 do
16 xSkewTotal := xSkewTotal + Skew(poly,S3[i],vars):
17 od:
18

19 end proc:

We can test the SkewTotal procedure by totally skewing the polynomials ȧ′

and ρ̇′. The result should satisfy equations (5). For example, we can compute
the total skew-symmetrization of ȧ′ with respect to the variables {x, y, z} and
then subtract ȧ.

SkewTotal(adotUnskew, [x,y,z]) - adot
0

We again confirm the result is zero, as previously discovered by Buring and
Kiselev [7]. This also holds for ρ̇′ and ρ̇.

4.3 Working with Markers

4.3.1 ExpandPowers

The following procedure, ExpandPowers, takes as input a monomial and
outputs a string containing the same monomial, but with all powers written
as simple multiplications. We need this procedure in order to construct
marker-monomials.

1 ExpandPowers := proc(mon)
2 # given a monomial outputs a string with all powers written as

multiplications
3

4 # load the Algebraic package
5 with(Algebraic):
6

7 # defines all used variables
8 local Expanded, Coeff, VarsList, NumVars, monString, i,

VarString, Power, j;
9

10 # expands the monomial, returning all coefficients,
variables and powers

11 Expanded := Squarefree(mon):

20

12 Coeff := convert(Expanded[1],string):
13 VarsList := Expanded[2]:
14 NumVars := numelems(VarsList):
15 monString := "":
16

17 # writes the monomial as a string with powers written as
multiplications

18 for i from 1 to NumVars do
19 VarString := convert(VarsList[i,1],string):
20 Power := VarsList[i,2]:
21 for j from 1 to Power do
22 monString := cat(monString,"*",VarString):
23 od:
24 od:
25 monString := cat(Coeff,monString);
26

27 end proc:

For instance, let’s take a simple monomial containing some powers and write
it as a string using only multiplications.

ExpandPowers(a x*a yˆ2*rho zˆ3)
"a x*a y*a y*rho z*rho z*rho z"

4.3.2 Triples2Variables

The procedure Triples2Variables converts markers back to monomials of
{x, y, z} by replacing {un} by x, {vn} by y and {wn} by z. After replacing the
variables, it also reorders {x, y, z} alphabetically. This is necessary because
skewing markers can change the variable ordering.

1 Triples2Variables := proc(poly)
2 # replaces the triple variables in a polynomial poly by the

original variables
3

4 # loads the StringTools package
5 with(StringTools):
6

7 # defines all used variables
8 local vars, triples, xString, i, j, k, xExpr;
9

10 # defines the variables and new triple names
11 vars := [x,y,z]:
12 triples := Matrix([[u1,v1,w1],[u2,v2,w2],[u3,v3,w3]]):
13

14 # replaces the triple variables by the original variables

21

15 xString := convert(poly,string):
16 for i from 1 to 3 do
17 for j from 1 to 3 do
18 xString := RegSubs(convert(triples[i,j],string) =

convert(vars[j],string), xString):
19 od:
20 od:
21

22 # reorders the variables in the permuted polynomial to their
original order

23 for i from 1 to 2 do

24 xString := RegSubs(convert(cat(vars[2],vars[1]),string)
= convert(cat(vars[1],vars[2]),string), xString):

25 xString := RegSubs(convert(cat(vars[3],vars[1]),string)
= convert(cat(vars[1],vars[3]),string), xString):

26 xString := RegSubs(convert(cat(vars[3],vars[2]),string)
= convert(cat(vars[2],vars[3]),string), xString):

27 od:
28 xExpr := parse(xString);
29

30 end proc:

For example, let’s try to replace the triple variables in a marker by the original
variables:

Triples2Variables(-12*rhoˆ2*a u1*rho v1*a v2w2*a u2w1*a u3v3w3)
-12*rhoˆ2*a x*rho y*a yz*a xz*a xyz

4.3.3 VerifyMarker

For the construction of nonzero markers we would like to be able to check
efficiently whether a marker is a nonzero marker. The procedure VerifyMarker
uses Theorem 1 to check if a given marker contains an invariance. It skews
the marker by all transpositions in S3 with respect to all three triples, and
then subtracts the original marker to see if there is an invariance. If the
marker contains an invariance it returns 0. Else, it returns 1.

1 VerifyMarker := proc(marker)
2 # checks a marker for invariances
3

4 # defines all used variables
5 local triples, Mon, i;
6

7 # defines the triples

22

8 triples := Matrix([[u1,v1,w1],[u2,v2,w2],[u3,v3,w3]]):
9

10 # converts the marker to a monomial
11 Mon := Triples2Variables(marker):
12

13 # checks invaraince for all transpisitions in all triples
14 for i from 1 to 3 do
15 if Mon + Triples2Variables(Skew(marker, Perm([[1, 2]]),

triples[i])) = 0 then
16 return 0;
17 elif Mon + Triples2Variables(Skew(marker, Perm([[1, 3]])

, triples[i])) = 0 then
18 return 0;
19 elif Mon + Triples2Variables(Skew(marker, Perm([[2, 3]])

, triples[i])) = 0 then
20 return 0;
21 end if:
22 od:
23

24 # outputs 0 if the marker has an invariance, or else 1
25 return 1;
26

27 end proc:

4.3.4 SkewTotalMarker

The procedure SkewTotalMarker computes the total skew-symmetrization
of a given marker, with the original variables {x, y, z} placed back. It
uses SkewTotal three times, once for each triple, to produce all 216 skew
combinations (see chapter 2.3). Then it uses Triples2Variables to replace
the triple variables by the original variables.

1 SkewTotalMarker := proc(marker)
2 # skews markers totally with respect to all three triples
3

4 # defines all used variables
5 local triples, skew1, skew2, skew3;
6

7 # defines the triple variables
8 triples := Matrix([[u1,v1,w1],[u2,v2,w2],[u3,v3,w3]]):
9

10 # totally skews the markers with respect to the first triple
11 skew1 := SkewTotal(marker,triples[1]):
12

13 # totally skews the markers with respect to the second
triple

23

14 skew2 := SkewTotal(skew1,triples[2]):
15

16 # totally skews the markers with respect to the third triple
17 skew3 := SkewTotal(skew2,triples[3]):
18

19 # replaces the triple variables by the original variables
20 skew3 := Triples2Variables(skew3):
21

22 end proc:

4.3.5 ConstructNonzeroMarker

Finally, we have a procedure that constructs a nonzero marker from a given
monomial. ConstructNonzeroMarker partitions the nine subscripts in a given
monomial into three triples, in all 216 possible ways. To ensure that every
variable will be replaced, it uses the ExpandPowers procedure before replacing
the variables. After each marker construction it uses VerifyMarker to check
whether we found a nonzero marker. The first encountered nonzero marker
is given as output.

1 ConstructNonzeroMarker := proc(mon)
2 # given a monomial mon constructs a nonzero marker
3

4 # loads the StringTools and combinat package
5 with(StringTools):
6 with(combinat):
7

8 # defines all used variables
9 local xTriples, yTriples, zTriples, monExpanded, marker, i,

j, k, markerExpr, skewedMarker, skewed;
10

11 # defines the triples and all their possible permutations
12 xTriples := permute([u1,u2,u3]):
13 yTriples := permute([v1,v2,v3]):
14 zTriples := permute([w1,w2,w3]):
15

16 # converts the monomial to a string with the powers written
as multiplications

17 monExpanded := ExpandPowers(mon):
18

19 # goes through all 216 possible markers
20 for i from 1 to 6 do
21 for j from 1 to 6 do
22 for k from 1 to 6 do
23 marker := monExpanded:

24

24 marker := Substitute(marker,"x",convert(xTriples[i,1],
string)):

25 marker := Substitute(marker,"x",convert(xTriples[i,2],
string)):

26 marker := Substitute(marker,"x",convert(xTriples[i,3],
string)):

27 marker := Substitute(marker,"y",convert(yTriples[j,1],
string)):

28 marker := Substitute(marker,"y",convert(yTriples[j,2],
string)):

29 marker := Substitute(marker,"y",convert(yTriples[j,3],
string)):

30 marker := Substitute(marker,"z",convert(zTriples[k,1],
string)):

31 marker := Substitute(marker,"z",convert(zTriples[k,2],
string)):

32 marker := Substitute(marker,"z",convert(zTriples[k,3],
string)):

33

34 # checks whether we found a nonzero marker
35 if VerifyMarker(marker) = 1 then
36 markerExpr := parse(marker):
37 return markerExpr;
38 end if:
39 od:
40 od:
41 od:
42 return 0;
43

44 end proc:

4.4 The Algorithm

Using the procedures from section 4.2 and 4.3 we can construct the algorithm
suggested in section 3.3. This algorithm is implemented in the procedure
ConstructSolution. It takes a polynomial as input and tries to compute a
marker-polynomial whose total skew-symmetrization is equal to the given
polynomial.

It takes the first monomial of the given polynomial and constructs a nonzero
marker from this monomial using ConstructNonzeroMarker, as well as its
total skew-symmetrization using SkewTotalMarker. Next it makes a version
of the monomial and the total skew-symmetrization without coefficients, to
find out if and where the monomial appears in its total skew-symmetrization.
If the monomial doesn’t appear in the total skew-symmetrization, it is skipped

25

and the algorithm moves on to the next monomial. If it does appear in the
total skew-symmetrization, it computes the factor between their coefficients.

Then, the algorithm subtracts a multiple of the total skew-symmetrization
from the polynomial, using the coefficient factor it just computed. The
loop is repeated, using a monomial from the remaining polynomial, until
the polynomial becomes zero. The output is a sum of all the used markers.
The sum of their total skew-symmetrizations will be equal to the polynomial
the algorithm started with. Again, note that this algorithm has no stopping
criteria. It simply tries a number of markers naively, until it (hopefully) finds
a collection of markers that solves the problem.

1 ConstructSolution := proc(poly)
2 # given a polynomial poly looks for a representation of the

polynomial by the total skew-symmetrization of markers
3

4 # defines all used variables
5 local polySum, usedMarkers, mon, MarkAndSkew, monCoeff,

monNoCoeff, marker, skewed, skewedVector, skewedCoeffs,
skewedNoCoeffs, coeffsFactor, i;

6

7 # copies the polynomial and defines the output
8 polySum := poly:
9 usedMarkers := 0:

10

11 # initializes the counter
12 i:=1:
13

14 # loops until we find a representation for the polynomial
15 while polySum <> 0 do
16

17 # takes the first monomial from the polynomial
18 mon := convert(polySum, list)[i]:
19

20 # constructs a nonzero marker and its total skew-
symmetrization

21 marker := ConstructNonzeroMarker(mon):
22 if marker = 0 then
23 i:=i+1:
24 next
25 end if:
26 skewed := SkewTotalMarker(marker):
27

28 # makes a version of the monomial without the
coefficient

29 monCoeff := coeffs(mon):

26

30 monNoCoeff := mon *~ monCoeffˆ~(-1):
31

32 # makes a vector of the skewed expression without
coefficients

33 skewedVector := Vector([convert(skewed, list)]):
34 skewedCoeffs := Vector([coeffs(skewed)]):
35 skewedNoCoeffs := skewedVector *~ skewedCoeffsˆ~(-1):
36

37 # compares the coefficients between the equal monomials
38 if member(monNoCoeff, skewedNoCoeffs, 'position') =

false then
39 i:=i+1:
40 next
41 end if:
42 coeffsFactor := monCoeff / skewedCoeffs[position]:
43

44 # subtracts a multilple of the skewed expression from
the polynomial

45 polySum := polySum - coeffsFactor * skewed:
46 usedMarkers := usedMarkers + coeffsFactor * marker:
47

48 # resets the counter
49 i:=1:
50 od:
51

52 return usedMarkers;
53

54 end proc:

The following diagram illustrates the way in which all auxiliary procedures
used in the algorithm are connected.

ConstructSolution

ConstructNonzeroMarker SkewTotalMarker

VerifyMarkerExpandPowers SkewTotal

SkewTriples2Variables

27

4.5 Verifying Uniqueness

Now that we have all the needed procedures to implement the approach
outlined in chapter 3, we provide some procedures that can be used to
determine the uniqueness of solutions found by ConstructSolution.

4.5.1 ConstructAllMonOfStruc

The procedure ConstructAllMonOfStruc constructs a vector containing all
possible monomials of the same structure as the given monomial. As noted
in section 3.2, there can be at most 1860 different markers of any given
structure. This procedure runs over all 1860 possibilities. For each possible
monomial, it checks whether this monomial was already found at an earlier
iteration. If not, it is added to the output.

1 ConstructAllMonOfStruc := proc(mon)
2 # Constructs a vector containing all monomials of the same

structure as the given monomial
3

4 # loads the StringTools, ArrayTools and combinat packages
5 with(StringTools):
6 with(ArrayTools):
7 with(combinat):
8

9 # defines all used variables
10 local structuresList, monExpanded, monEmpty, varPermutations

, i, j, k, monTest, monExpr;
11

12 # defines the output vector
13 structuresList := Vector([]):
14

15 # changes all independent vars in the given monomial to "c"
16 monExpanded := ExpandPowers(mon):
17 monEmpty := Subs({"x"="c","y"="c","z"="c"}, monExpanded):
18

19 # lists all possible permutations of "xxxyyyzzz"
20 varPermutations := permute([x,x,x,y,y,y,z,z,z]):
21

22 # constructs a monomial for each variable permutation
23 for i from 1 to 1680 do
24 monTest := monEmpty:
25 for j from 1 to 9 do
26 monTest := Substitute(monTest, "c", convert(

varPermutations[i,j],string)):
27 od:
28

28

29 # reorders the variables in the permuted polynomial to
their original order

30 for k from 1 to 2 do
31 monTest := RegSubs("yx" = "xy", monTest):
32 monTest := RegSubs("zx" = "xz", monTest):
33 monTest := RegSubs("zy" = "yz", monTest):
34 od:
35 monExpr := parse(monTest):
36

37 # checks if this structure is already in the list, if
not is is added

38 if has(structuresList,monExpr) = false then
39 structuresList := Concatenate(1,structuresList,

monExpr):
40 structuresList := Vector([structuresList]):
41 end if:
42 od:
43

44 return structuresList;
45

46 end proc:

4.5.2 SortMarkerVariables

The procedure SortMarkerVariables sorts the triple variables in a given
marker alphabetically. We will need this in order to compare whether two
markers are equal. After all, the order of differentiation doesn’t matter. This
procedure works by simply replacing all incorrect orderings by their correct
variant.

1 SortMarkerVariables := proc(marker)
2 # sorts the indepdent variables in a marker alphabetically
3

4 # loads the StringTools package
5 with(StringTools):
6

7 # defines all used variables
8 local xString, i, markerExpr;
9

10 # converts the marker to a string
11 xString := convert(marker,string):
12

13 # reorders the variables pairwise
14 for i from 1 to 2 do
15 xString := RegSubs("s2s1" = "s1s2", xString):
16 xString := RegSubs("s3s1" = "s1s3", xString):

29

17 xString := RegSubs("s3s2" = "s2s3", xString):
18 xString := RegSubs("t2t1" = "t1t2", xString):
19 xString := RegSubs("t3t1" = "t1t3", xString):
20 xString := RegSubs("t3t2" = "t2t3", xString):
21 xString := RegSubs("u2u1" = "u1u2", xString):
22 xString := RegSubs("u3u1" = "u1u3", xString):
23 xString := RegSubs("u3u2" = "u2u3", xString):
24

25 xString := RegSubs("t1s1" = "s1t1", xString):
26 xString := RegSubs("t2s1" = "s1t2", xString):
27 xString := RegSubs("t3s1" = "s1t3", xString):
28 xString := RegSubs("t1s2" = "s2t1", xString):
29 xString := RegSubs("t2s2" = "s2t2", xString):
30 xString := RegSubs("t3s2" = "s2t3", xString):
31 xString := RegSubs("t1s3" = "s3t1", xString):
32 xString := RegSubs("t2s3" = "s3t2", xString):
33 xString := RegSubs("t3s3" = "s3t3", xString):
34

35 xString := RegSubs("u1s1" = "s1u1", xString):
36 xString := RegSubs("u2s1" = "s1u2", xString):
37 xString := RegSubs("u3s1" = "s1u3", xString):
38 xString := RegSubs("u1s2" = "s2u1", xString):
39 xString := RegSubs("u2s2" = "s2u2", xString):
40 xString := RegSubs("u3s2" = "s2u3", xString):
41 xString := RegSubs("u1s3" = "s3u1", xString):
42 xString := RegSubs("u2s3" = "s3u2", xString):
43 xString := RegSubs("u3s3" = "s3u3", xString):
44

45 xString := RegSubs("u1t1" = "t1u1", xString):
46 xString := RegSubs("u2t1" = "t1u2", xString):
47 xString := RegSubs("u3t1" = "t1u3", xString):
48 xString := RegSubs("u1t2" = "t2u1", xString):
49 xString := RegSubs("u2t2" = "t2u2", xString):
50 xString := RegSubs("u3t2" = "t2u3", xString):
51 xString := RegSubs("u1t3" = "t3u1", xString):
52 xString := RegSubs("u2t3" = "t3u2", xString):
53 xString := RegSubs("u3t3" = "t3u3", xString):
54 od:
55

56 # outputs the sorted marker
57 markerExpr := parse(xString):
58 return markerExpr;
59

60 end proc:

30

4.5.3 ConstructAllNonzeroMarkers

This procedure is very similar to the procedure ConstructNonzeroMarker
from section 4.3.5, and works in much the same way. However, it takes
as input a list of monomials instead of just one monomial, and instead of
stopping at the first nonzero marker it finds it constructs a vector containing
all nonzero markers that can be constructed from the monomials in the given
list. It uses the procedure SortMarkerVariables to determine whether two
markers are equal.

1 ConstructAllNonzeroMarkers := proc(monList)
2 # given a list of monomials monList constructs all nonzero

markers from these monomials
3

4 # loads the StringTools, combinat and ArrayTools packages
5 with(StringTools):
6 with(combinat):
7 with(ArrayTools):
8

9 # defines all used variables
10 local xTriples, yTriples, zTriples, nonzeroMarkers,

monExpanded, marker, n, i, j, k, markerExpr;
11

12 # defines the triples and all their possible permutations,
and the output vector

13 xTriples := permute([s1,s2,s3]):
14 yTriples := permute([t1,t2,t3]):
15 zTriples := permute([u1,u2,u3]):
16 nonzeroMarkers := Vector([]):
17

18 # goes through all given monomials
19 for n from 1 to numelems(monList) do
20 monExpanded := ExpandPowers(monList[n]):
21 print(n);
22

23 # goes through all 216 possible markers
24 for i from 1 to 6 do
25 for j from 1 to 6 do
26 for k from 1 to 6 do
27 marker := monExpanded:
28 marker := Substitute(marker, "x", convert(xTriples[i,1],

string)):
29 marker := Substitute(marker, "x", convert(xTriples[i,2],

string)):
30 marker := Substitute(marker, "x", convert(xTriples[i,3],

string)):
31 marker := Substitute(marker, "y", convert(yTriples[j,1],

31

string)):
32 marker := Substitute(marker, "y", convert(yTriples[j,2],

string)):
33 marker := Substitute(marker, "y", convert(yTriples[j,3],

string)):
34 marker := Substitute(marker, "z", convert(zTriples[k,1],

string)):
35 marker := Substitute(marker, "z", convert(zTriples[k,2],

string)):
36 marker := Substitute(marker, "z", convert(zTriples[k,3],

string)):
37

38 # checks whether we found a nonzero marker; if so it is
added to the output

39 if VerifyMarker(marker) = 1 then
40 markerExpr := SortMarkerVariables(marker):
41 if member(markerExpr,nonzeroMarkers) = false then
42 nonzeroMarkers := Concatenate(1,nonzeroMarkers,

markerExpr):
43 nonzeroMarkers := Vector([nonzeroMarkers]):
44 end if:
45 end if:
46 od:
47 od:
48 od:
49 od:
50

51 return nonzeroMarkers;
52

53 end proc:

4.5.4 SkewTotalAndCompare

Finally, we have the procedure SkewTotalAndCompare. This procedure takes
as input a list of markers and a polynomial. For each marker on the list,
it checks whether its total skew-symmetrization is a multiple of the given
polynomial. It uses the procedure SkewTotalMarker from section 4.3.4 to
compute the total skew-symmetrizations. This procedure is used in chapter
6 to verify the uniqueness of solutions.

1 SkewTotalAndCompare := proc(markerList,poly)
2 # given a list of markers and a polynomial checks whether the

total skew-symmetrization of every marker in the list is a
multiple of the given polynomial

3

4 # defines all used variables

32

5 local testMon, testMonCoeff,testMonNoCoeff, i, skewed,
skewedVector, skewedCoeffs, skewedNoCoeffs, coeffsFactor;

6

7 # takes a monomial from the polynomial as a test and
constructs a version without coefficient

8 testMon := convert(poly,list)[1]:
9 testMonCoeff := coeffs(testMon):

10 testMonNoCoeff := testMon * testMonCoeffˆ(-1):
11

12 # goes trough all markers in the list
13 for i from 1 to numelems(markerList) do
14

15 # computes the total skew-symmetrization of a marker and
makes a version without coefficients

16 skewed := SkewTotalMarker(markerList[i]):
17 skewedVector := convert(skewed,list):
18 skewedCoeffs := Vector([coeffs(skewed)]):
19 skewedNoCoeffs := skewedVector *~ skewedCoeffsˆ~(-1):
20

21 # checks if the test monomial is part of the total skew-
symmetrization

22 if member(testMonNoCoeff, skewedNoCoeffs, 'position') =
false then

23 printf("Total skew-symmetrization is not a multiple
for marker %a \n", markerList[i]);

24 next
25 end if:
26

27 # checks if the total skew-symmetrization is a multiple
of the given polynomial

28 coeffsFactor := testMonCoeff / skewedCoeffs[position]:
29 if poly - coeffsFactor * skewed <> 0 then
30 printf("Total skew-symmetrization is not a multiple

for marker %a \n", markerList[i]);
31 next
32 end if:
33 od:
34

35 end proc:

33

5 Implementation in Maple for 4D

This chapter contains the same procedures that can be found in chapter 4, but
modified to work in 4 dimensions instead of 3. However, the procedures for
verifying the uniqueness of solutions found in section 4.5 are not included for
the 4-dimensional case. For details about the workings of these procedures
and for some examples please refer to their 3-dimensional counterparts in
chapter 4. These procedures will be applied to some evolution equations
obtained by deforming 4d-determinant Nambu-Poisson brackets, to find out
whether the properties found in 3 dimensions generalize to 4 dimensions.

5.1 Splitting Polynomials by Structure

1 MonomialStructure4D := proc(mon)
2 #determines the structure of a monomial
3

4 # loads the Algebraic and StringTools packages
5 with(Algebraic):
6 with(StringTools):
7

8 # defines all used variables
9 local derivativesA0, derivativesA1, derivativesRho, VarsList

, i, Var, Power, j, derivatives, structure;
10

11 # initializes the vectors
12 derivativesA0 := "":
13 derivativesA1 := "":
14 derivativesRho := "":
15

16 # makes a list of all the variables and its powers
17 VarsList := Squarefree(mon):
18

19 # makes two lists of the number of derivatives with respect
to a and rho

20 for i from 1 to numelems(VarsList[2]) do
21 Var := convert(VarsList[2,i,1],string):
22 Power := VarsList[2,i,2]:
23

24 for j from 1 to Power do
25 if Has(Var,"a0") then
26 derivatives := CountCharacterOccurrences(Var,"x

")+CountCharacterOccurrences(Var,"y")+
CountCharacterOccurrences(Var,"z")+
CountCharacterOccurrences(Var,"w"):

34

27 derivativesA0 := cat(derivativesA0, derivatives)
:

28 elif Has(Var,"a1") then
29 derivatives := CountCharacterOccurrences(Var,"x

")+CountCharacterOccurrences(Var,"y")+
CountCharacterOccurrences(Var,"z")+
CountCharacterOccurrences(Var,"w"):

30 derivativesA1 := cat(derivativesA1, derivatives)
:

31 else
32 derivatives := CountCharacterOccurrences(Var,"x

")+CountCharacterOccurrences(Var,"y")+
CountCharacterOccurrences(Var,"z")+
CountCharacterOccurrences(Var,"w"):

33 derivativesRho := cat(derivativesRho,
derivatives):

34 end if:
35 od:
36 od:
37

38 # sorts the derivatives in ascending order and removes
zeroes

39 derivativesA0 := Sort(derivativesA0):
40 derivativesA1 := Sort(derivativesG):
41 derivativesRho := Sort(derivativesH):
42 derivativesA0 := Subs("0" = "", derivativesA0):
43 derivativesA1 := Subs("0" = "", derivativesA1):
44 derivativesRho := Subs("0" = "", derivativesRho):
45

46 # combines the lists into one string
47 structure := cat("a0[", derivativesA0, "]a1[", derivativesA1

, "]rho[", derivativesRho, "]"):
48

49 end proc:

1 SplitStructures4D := proc(poly)
2 # splits a given polynomial poly into monomials of equal

structure
3

4 # loads the ArrayTools, ListTools and LinearAlgebra packages
5 with(ArrayTools):
6 with(ListTools):
7 with(LinearAlgebra):
8

9 # defines all used variables
10 local polyVector, Split, structureTypes, i, structure,

column, SplitAdd, j;

35

11

12 # converts the polynomial to a vector
13 polyVector := convert(poly, list):
14

15 # defines the outputs
16 Split := Matrix(numelems(polyVector)):
17 structureTypes := Vector([]):
18

19 # computes the structure of each polynomial term and sorts
it into the correct column of Split

20 for i from 1 to numelems(polyVector) do
21 structure := MonomialStructure4D(polyVector[i]):
22

23 if has(structureTypes, structure) = false then
24 structureTypes := Concatenate(1, structureTypes,

structure):
25 structureTypes := Vector([structureTypes]):
26 end if:
27

28 column := ListTools[Search](structure, structureTypes):
29 Split[i,column] := polyVector[i]:
30 od:
31

32 # deletes all zero columns from Split
33 Split := DeleteColumn(Split, numelems(structureTypes)+1

..numelems(polyVector)):
34

35 # sums all monomials of the same structure
36 SplitAdd := Vector(numelems(structureTypes)):
37 for j from 1 to numelems(structureTypes) do
38 SplitAdd[j] := add(Column(Split,j)):
39 od:
40

41 # outputs a vector containing monomials of equal structure
in the same element

42 return SplitAdd;
43

44 end proc:

5.2 Skewing and Totally Skewing

1 Skew4D := proc(x, perm, vars)

2 # skew-symmetrizes the variables in the vector vars in a
polynomial x by permutation perm

3

36

4 # loads the GroupTheory and StringTools packages
5 with(GroupTheory):
6 with(StringTools):
7

8 # defines all used variables
9 local permSign, permInverse, xString, varString, j, i, xExpr

;
10

11 # computes the sign and inverse of the permutation
12 permSign := PermParity(perm):
13 permInverse := PermInverse(perm):
14

15 # converts the polynomial and variables to strings
16 xString := convert(x, string):
17 varString := Vector(4):
18 for j from 1 to 4 do
19 varString[j] := convert(vars[j],string):
20 od:
21

22 # substitutes the variables by the permuted variables
23 xString := Subs({varString[1]=varString[permInverse[1]],

varString[2]=varString[permInverse[2]],varString[3]=
varString[permInverse[3]],varString[4]=varString[
permInverse[4]]}, xString):

24

25 # reorders the variables in the permuted polynomial to their
original order

26 for i from 1 to 2 do

27 xString := RegSubs(cat(varString[2],varString[1]) = cat(
varString[1],varString[2]), xString):

28 xString := RegSubs(cat(varString[3],varString[1]) = cat(
varString[1],varString[3]), xString):

29 xString := RegSubs(cat(varString[4],varString[1]) = cat(
varString[1],varString[4]), xString):

30 xString := RegSubs(cat(varString[3],varString[2]) = cat(
varString[2],varString[3]), xString):

31 xString := RegSubs(cat(varString[4],varString[2]) = cat(
varString[2],varString[4]), xString):

32 xString := RegSubs(cat(varString[4],varString[3]) = cat(
varString[3],varString[4]), xString):

33 od:
34

35 # applies the permutation sign to the expression
36 xExpr := parse(xString):
37 xExpr := permSign * xExpr;

38 end proc:

37

1 SkewTotal4D := proc(poly, vars)
2 # skews a polynomial totally in S4 with respect to the variables

in vars
3

4 # loads the GroupTheory package
5 with(GroupTheory):
6

7 # defines all used variables
8 local S4, xSkewTotal, i;
9 xSkewTotal := poly:

10

11 # defines the nontrivial permutations in the symmetric group
S4

12 S4 := Vector([Perm([[1, 2]]), Perm([[1, 3]]), Perm([[1, 4]])
, Perm([[2, 3]]), Perm([[2, 4]]), Perm([[3, 4]]), Perm
([[1, 2, 3]]), Perm([[1, 3, 2]]), Perm([[1, 3, 4]]), Perm
([[1, 4, 3]]), Perm([[1, 2, 4]]), Perm([[1, 4, 2]]), Perm
([[2, 3, 4]]), Perm([[2, 4, 3]]), Perm([[1, 2], [3, 4]]),
Perm([[1, 3], [2, 4]]), Perm([[1, 4], [2, 3]]), Perm

([[1, 2, 3, 4]]), Perm([[1, 2, 4, 3]]), Perm([[1, 3, 2,
4]]), Perm([[1, 3, 4, 2]]), Perm([[1, 4, 2, 3]]), Perm
([[1, 4, 3, 2]])]):

13

14 # permutes the polynomial by permutation i and adds result
to xTotalSkew

15 for i from 1 to 23 do
16 xSkewTotal := xSkewTotal + Skew4D(poly,S4[i],vars):
17 od:
18

19 end proc:

5.3 Working with Markers

1 Triples2Variables4D := proc(poly)
2 # replaces the triple variables in a polynomial poly by the

original variables
3

4 # loads the StringTools package
5 with(StringTools):
6

7 # defines all used variables
8 local vars, triples, xString, i, j, k, xExpr;
9

10 # defines the variables and new triple names
11 vars := [x,y,z,w]:

38

12 triples := Matrix([[s1,t1,u1,v1],[s2,t2,u2,v2],[s3,t3,u3,v3
]]):

13

14 # replaces the triple variables by the original variables
15 xString := convert(poly,string):
16 for i from 1 to 3 do
17 for j from 1 to 4 do
18 xString := RegSubs(convert(triples[i,j],string) =

convert(vars[j],string), xString):
19 od:
20 od:
21

22 # reorders the variables in the permuted polynomial to their
original order

23 for k from 1 to 2 do

24 xString := RegSubs(convert(cat(vars[2],vars[1]),string)
= convert(cat(vars[1],vars[2]),string), xString):

25 xString := RegSubs(convert(cat(vars[3],vars[1]),string)
= convert(cat(vars[1],vars[3]),string), xString):

26 xString := RegSubs(convert(cat(vars[4],vars[1]),string)
= convert(cat(vars[1],vars[4]),string), xString):

27 xString := RegSubs(convert(cat(vars[3],vars[2]),string)
= convert(cat(vars[2],vars[3]),string), xString):

28 xString := RegSubs(convert(cat(vars[4],vars[2]),string)
= convert(cat(vars[2],vars[4]),string), xString):

29 xString := RegSubs(convert(cat(vars[4],vars[3]),string)
= convert(cat(vars[3],vars[4]),string), xString):

30 od:
31 xExpr := parse(xString);
32

33 end proc:

1 VerifyMarker4D := proc(marker)
2 # checks a marker for invariances
3

4 # defines all used variables
5 local triples, Mon, i;
6

7 # defines the triples
8 triples := Matrix([[s1,t1,u1,v1],[s2,t2,u2,v2],[s3,t3,u3,v3

]]):
9

10 # converts the marker to a monomial
11 Mon := Triples2Variables4D(marker):
12

13 # checks invaraince for all transpisitions in all triples

39

14 for i from 1 to 3 do
15 if Mon + Triples2Variables4D(Skew4D(marker, Perm([[1,

2]]), triples[i])) = 0 then
16 return 0;
17 end if:
18 if Mon + Triples2Variables4D(Skew4D(marker, Perm([[1,

3]]), triples[i])) = 0 then
19 return 0;
20 end if:
21 if Mon + Triples2Variables4D(Skew4D(marker, Perm([[1,

4]]), triples[i])) = 0 then
22 return 0;
23 end if:
24 if Mon + Triples2Variables4D(Skew4D(marker, Perm([[2,

3]]), triples[i])) = 0 then
25 return 0;
26 end if:
27 if Mon + Triples2Variables4D(Skew4D(marker, Perm([[2,

4]]), triples[i])) = 0 then
28 return 0;
29 end if:
30 if Mon + Triples2Variables4D(Skew4D(marker, Perm([[3,

4]]), triples[i])) = 0 then
31 return 0;
32 end if:
33 od:
34

35 # outputs 0 if the marker has an invariance or 1 if it does
not

36 return 1;
37

38 end proc:

1 SkewTotalMarker4D := proc(marker)
2 # skews markers totally with respect to all three triples
3

4 # defines all used variables
5 local triples, skew1, skew2, skew3;
6

7 # defines the triple variables
8 triples := Matrix([[s1,t1,u1,v1],[s2,t2,u2,v2],[s3,t3,u3,v3

]]):
9

10 # totally skews the markers with respect to the first triple
11 skew1 := SkewTotal4D(marker,triples[1]):
12

13 # totally skews the markers with respect to the second

40

triple
14 skew2 := SkewTotal4D(skew1,triples[2]):
15

16 # totally skews the markers with respect to the third triple
17 skew3 := SkewTotal4D(skew2,triples[3]):
18

19 # replaces the triple variables by the original variables
20 skew3 := Triples2Variables4D(skew3):
21

22 end proc:

1 ConstructNonzeroMarker4D := proc(mon)
2 # given a monomial mon constructs a nonzero marker
3

4 # loads the StringTools and combinat package
5 with(StringTools):
6 with(combinat):
7

8 # defines all used variables
9 local xTriples, yTriples, zTriples, wTriples, monExpanded,

marker, i, j, k, l, markerExpr;
10

11 # defines the triples and all their possible permutations
12 xTriples := permute([s1,s2,s3]):
13 yTriples := permute([t1,t2,t3]):
14 zTriples := permute([u1,u2,u3]):
15 wTriples := permute([v1,v2,v3]):
16

17 # converts the monomial to a string with the powers written
as multiplications

18 monExpanded := ExpandPowers(mon):
19

20 # goes through all 216 possible markers
21 for i from 1 to 6 do
22 for j from 1 to 6 do
23 for k from 1 to 6 do
24 for l from 1 to 6 do
25 marker := monExpanded:
26 marker := Substitute(marker, "x", convert(xTriples[i,1],

string)):
27 marker := Substitute(marker, "x", convert(xTriples[i,2],

string)):
28 marker := Substitute(marker, "x", convert(xTriples[i,3],

string)):
29 marker := Substitute(marker, "y", convert(yTriples[j,1],

string)):
30 marker := Substitute(marker, "y", convert(yTriples[j,2],

41

string)):
31 marker := Substitute(marker, "y", convert(yTriples[j,3],

string)):
32 marker := Substitute(marker, "z", convert(zTriples[k,1],

string)):
33 marker := Substitute(marker, "z", convert(zTriples[k,2],

string)):
34 marker := Substitute(marker, "z", convert(zTriples[k,3],

string)):
35 marker := Substitute(marker, "w", convert(wTriples[l,1],

string)):
36 marker := Substitute(marker, "w", convert(wTriples[l,2],

string)):
37 marker := Substitute(marker, "w", convert(wTriples[l,3],

string)):
38

39 # checks whether we found a nonzero marker
40 if VerifyMarker4D(marker) = 1 then
41 markerExpr := parse(marker):
42 return markerExpr;
43 end if:
44 od:
45 od:
46 od:
47 od:
48 return 0;
49

50 end proc:

5.4 The Algorithm

1 ConstructSolution4D := proc(poly)
2 # given a polynomial poly looks for a representation of the

polynomial by the total skew-symmetrization of markers
3

4 # defines all used variables
5 local polySum, usedMarkers, mon, marker, skewed, monCoeff,

monNoCoeff, skewedVector, skewedCoeffs, skewedNoCoeffs,
coeffsFactor, i;

6

7 # copies the polynomial and defines the output
8 polySum := poly:
9 usedMarkers := 0:

10

11 # initializes the counter
12 i := 1:

42

13

14 # loops until we find a basis for the polynomial
15 while polySum <> 0 do
16

17 # takes the first monomial from the polynomial
18 mon := convert(polySum,list)[i]:
19

20 # constructs a nonzero marker and its total skew-
symmetrization

21 marker := ConstructNonzeroMarker4D(mon):
22 if marker = 0 then
23 i := i + 1:
24 next
25 end if:
26 skewed := SkewTotalMarker4D(marker):
27

28 # makes a version of the monomial without the
coefficient

29 monCoeff := coeffs(mon):
30 monNoCoeff := mon *~ monCoeffˆ~(-1):
31

32 # makes a vector of the skewed expression without
coefficients

33 skewedVector := Vector([convert(skewed,list)]):
34 skewedCoeffs := Vector([coeffs~(skewedVector)]):
35 skewedNoCoeffs := skewedVector *~ skewedCoeffsˆ~(-1):
36

37 # compares the coefficients between the equal monomials
38 if member(monNoCoeff, skewedNoCoeffs, 'position') =

false then
39 i := i + 1:
40 next
41 end if:
42 coeffsFactor := monCoeff / skewedCoeffs[position]:
43

44 # subtracts a multilple of the skewed expression from
the polynomial

45 polySum := polySum - coeffsFactor * skewed:
46 usedMarkers := usedMarkers + coeffsFactor * marker:
47

48 # resets the counter
49 i := 1:
50 od:
51

52 return usedMarkers;
53

54 end proc:

43

6 Analyzing the Results

In this chapter we apply the procedures provided in chapter 4 to the equations
ȧ and ρ̇, and we analyze and discuss the results we obtained from this. In
section 6.1 we analyze the different structures found in ȧ and ρ̇, and in
section 6.2 we look at the solutions for ȧ′′ and ρ̇′′ obtained by our algorithm.
In section 6.3 we apply the 4-dimensional procedures from chapter 5 to two
evolution equations obtained by deforming 4d-determinant Nambu-Poisson
brackets using Kontsevich’s tetrahedral flow to find out whether the results
obtained in 3 dimensions generalize to 4 dimensions.

6.1 The Structures in ȧ and ρ̇

First of all, we use the procedure SplitStructures from section 4.1 to sort all
monomials in ȧ and ρ̇ into polynomials containing only monomials of equal
structure. This allows us to see exactly what structures are present in ȧ
and ρ̇, and how many monomials of each structure there are. Running the
procedure SplitStructures for ȧ and ρ̇ gives the following result:

ȧ contains ρ̇ contains
54: a[1113]ρ[111] 54: a[111]ρ[1113]

102: a[112]ρ[1112]
102: a[1123]ρ[11] 102: a[112]ρ[113]

96: a[122]ρ[112]
72: a[1223]ρ[1] 72: a[122]ρ[13]

Table 1: The structures in ȧ and ρ̇

As we can see there are eight different structures in ȧ and ρ̇, three of which in
ȧ and five of which in ρ̇. The problem stated in section 2.4 can thus be split
into eight parts: we are looking for a marker-polynomial to represent each of
these eight single-structure polynomials by total skew-symmetrization.

If we take a closer look at the number of monomials in each single-structure
polynomial, we notice that some polynomials contain an equal number of
monomials. In fact, these single-structure polynomials are related to each
other in the following ways:

The 54 monomials of structure a[1113]ρ[111] and a[111]ρ[1113] are exactly
the same except for two differences: for every monomial the triple derivative
of a in a[1113]ρ[111] becomes a triple derivative of ρ in a[111]ρ[1113], and the
monomials in a[111]ρ[1113] have coefficients that are twice the coefficients of
the monomials in a[1113]ρ[111].

44

The 72 monomials of structure a[1223]ρ[1] and a[122]ρ[13] are exactly the
same except for one difference: for every monomial the triple derivative of a
in a[1223]ρ[1] becomes a triple derivative of ρ in a[122]ρ[13]. Specifically, the
coefficients of the monomials in a[1223]ρ[1] and a[122]ρ[13] are the same.

The 102 monomials of structure a[1123]ρ[11] and a[112]ρ[113] are exactly
the same except for one difference: for every monomial the triple derivative
of a in a[1123]ρ[11] becomes a triple derivative of ρ in a[112]ρ[113]. The
102 monomials of structure a[112]ρ[1112] are related to the monomials in
a[112]ρ[113] in the following way: for every monomial the triple derivative
of ρ in a[112]ρ[113] is split into a double double and single derivative of ρ in
a[112]ρ[1112]. Also, the monomials in a[112]ρ[113] have coefficients that are
minus the coefficients of the monomials in a[112]ρ[1112].

6.2 Solutions to the Problem

We can attempt to run the procedure ConstructSolution from section 4.4 for
each of the eight single-structure polynomials in ȧ and ρ̇. Alternatively, we
could also try to run the procedure ConstructSolution for ȧ and ρ̇ directly.
As it turns out, both attempts give us the same solution:

ȧ′′ = 2au1au2au3ρw1ρw2ρw3av1v2v3 − 6ρau1v2au2au3ρw1ρw3av1v3w2

− 6ρ2au1au2u3av1v2ρw3av3w1w2
(18)

ρ̇′′ = −2au1au2au3ρv1ρv2ρv3ρw1w2w3 + 6au1v2au2au3ρv1ρv3ρw2ρw1w3

− 12ρau1au2u3av1v2ρv3ρw1ρw2w3 − 6ρau1v2au2au3ρv1ρv3ρw1w2w3

+ 6ρ2au1au2u3av1v2ρv3ρw1w2w3

(19)

We can easily check that these solutions are indeed correct by computing
their total skew-symmetrizations and subtracting ȧ or ρ̇ respectively. Note
that the structures of these eight markers correspond exactly to the eight
structures found in ȧ and ρ̇, as expected. We confirm the earlier discovery by
Buring and Kiselev that ȧ can be represented by three markers. Moreover,
we find that we can represent ρ̇ using five markers.

But what about the uniqueness of these solutions? For one, we can conclude
that this is the smallest possible solution. It consists of eight markers:
three markers for ȧ and five markers for ρ̇. This means that the total
skew-symmetrization of each of these markers is equal to all monomials of
that structure in ȧ or ρ̇. We managed to represent each single-structure
polynomial in ȧ and ρ̇ by a single marker. It is not possible to find a smaller

45

solution, since there are eight different structures in ȧ and ρ̇, and we need at
least one marker of each structure to completely represent ȧ and ρ̇.

While playing with the algorithm in Maple we notice something peculiar:
it seems that our naive algorithm always finds a solution, regardless of
which monomial we start with in the first step. Specifically, the total skew-
symmetrization of every nonzero marker the algorithm encounters is always
exactly a multiple of all monomials of that structure in ȧ or ρ̇. We hypothesize
that this is the case because for any of the eight structure types in ȧ and ρ̇
the total skew-symmetrization of every nonzero marker of these structures is
always exactly a multiple of all monomials of that structure in ȧ or ρ̇.

To verify this we use a brute force approach using the procedures from
section 4.5. First of all, the procedure ConstructAllMonOfStruc gives us
a list of all possible monomials of a given structure. For instance, we can
construct a list of all possible monomials of structure a[1113]ρ[111] (with
coefficient 1). Then, using this list of all monomials and the procedure
ConstructAllNonzeroMarkers, we can construct all possible nonzero markers
of structure a[1113]ρ[111]. Since we know that it is only possible to represent
monomials by markers of their own structure, this list of all possible nonzero
markers of structure a[1113]ρ[111] contains all markers that can possibly be
used to represent the monomials of structure a[1113]ρ[111] in ȧ. Finally,
using the procedure SkewTotalAndCompare we can compute the total skew-
symmetrization of every nonzero marker of structure a[1113]ρ[111] and check
if it is a multiple of all monomials of structure a[1113]ρ[111] in ȧ.

We can run these procedures for all eight structure types in ȧ and ρ̇. The
result is surprising, and our hypothesis is confirmed: it turns out that for
any of the eight structure types in ȧ or ρ̇, the total skew-symmetrization
of any nonzero marker of that structure is always a rational multiple of all
monomials of that structure in ȧ or ρ̇. The eight single-structure polynomials
in ȧ and ρ̇ thus each have a special kind of hyper-symmetry: they can be
exactly represented by some multiple of the total skew-symmetrization of any
nonzero marker of their own structure. In other words, for each of the eight
structure types in ȧ and ρ̇ the total skew-symmetrizations of any nonzero
markers of that structure are multiples of one another.

Ex 7. To illustrate that this hyper-symmetry is a special property of the
monomials in ȧ and ρ̇ and does not occur in most monomials of arbitrary
structure, consider the following example. Let’s take a monomial in two
dimensions containing six derivatives, three derivatives of x and three of y,
and of structure a[12]ρ[12]. An example of such a monomial is given by

46

axρxayyρxy (20)

Consider the following nonzero markers, constructed from this monomial:

as1ρs2at1t3ρs3t2

as1ρs2at2t3ρs3t1
(21)

The total skew-symmetrizations of these two markers are not multiples of
one another, even though they are of the same structure! This shows that
the hyper-symmetry in ȧ and ρ̇ is indeed a special property. 4

From the hyper-symmetry of ȧ and ρ̇ we can conclude that the solutions found
in equations (18) and (19) are not only minimal, but also maximal. That is
to say, we cannot find any solutions that do not consist of exactly three and
five markers respectively. Moreover, it is now clear that these solutions are
definitely not unique. There are in fact a great number of solutions. For each
structure in ȧ and ρ̇, any nonzero marker of that structure can be part of a
solution. For each single-structure polynomial from ȧ and ρ̇ there are thus
as many possible solutions as there are nonzero markers of that structure.
The total number of solutions can be found by multiplying the number of
distinct nonzero markers of each structure type in ȧ or ρ̇.

This hyper-symmetry explains why the algorithm from section 3.3 always
manages to find a solution to this problem, even though it is a naive algorithm
without any stopping criteria: it is impossible for the algorithm to encounter
a nonzero marker that cannot be part of a solution. Thus, it is simply
impossible for the algorithm to end up in a loop.

6.3 The Tetrahedral Flow in 4D

We would like to know whether this observed hyper-symmetry in 3 dimensions
generalizes to 4 dimensions. To this end we look at the dynamical system
obtained by deforming 4d-determinant Nambu-Poisson brackets, again using
Kontsevich’s tetrahedral flow. This system was found by Buring in 2021 [9]
and contains three differential equations, ȧ0, ȧ1 and ρ̇. The equations for ȧ0
and ȧ1 contain 33084 terms each, while the equation for ρ̇ contains 90024
terms.

The 4-dimensional case is quite a natural extension of the 3-dimensional case:
in the 4-dimensional case every monomial contains exactly twelve derivatives;
three of x, three of y, three of z and three of w. Constructing markers thus

47

works by partitioning the independent variables into three quadruples, which
we denote by {sn, tn, un, vn} for n ∈ {1, 2, 3}. The total skew-symmetrization
of such a marker in 4 dimensions is calculated with respect to S4, which
contains 24 permutations. The total skew-symmetrization of a marker in
4 dimensions thus consist of 243 = 13824 terms. As in the 3-dimensional
case, the existence of marker-polynomials whose total skew-symmetrizations
are equal to ȧ0, ȧ1 and ρ̇ is guaranteed by the differential geometry of these
equations.

We only analyze the equations for ȧ0 and ȧ1, leaving the analysis of the
much larger equation for ρ̇. This analysis proceeds in the same way as the
analysis of the 3-dimensional case. Using the procedure SplitStructures4D
from section 5.1 we can sort all the monomials in ȧ0 and ȧ1 into polynomials
containing only monomials of equal structure. Running this procedure for ȧ0
and ȧ1 gives us the following result:

ȧ0 contains ȧ1 contains
4512: a0[1123]a1[122] 4512: a0[122]a1[1123]
4512: a0[1223]a1[112] 4512: a0[112]a1[1223]
3168: a0[1113]a1[122]ρ[1] 3168: a0[122]a1[1113]ρ[1]
7872: a0[1123]a1[112]ρ[1] 7872: a0[112]a1[1123]ρ[1]
3168: a0[1223]a1[111]ρ[1] 3168: a0[111]a1[1223]ρ[1]
3984: a0[1113]a1[112]ρ[11] 3984: a0[112]a1[1113]ρ[11]
3984: a0[1123]a1[111]ρ[11] 3984: a0[111]a1[1123]ρ[11]
1848: a0[1113]a1[111]ρ[111] 1848: a0[111]a1[1113]ρ[111]

Table 2: The structures in ȧ0 and ȧ1

As we can see there are sixteen different structures in total, eight of which in
ȧ0 and eight of which in ȧ1. The problem of representing these polynomials
by the total skew-symmetrization of markers can thus be split into sixteen
parts.

If we take a closer look at the structures in ȧ0 and ȧ1 we might suspect that
the equations for ȧ0 and ȧ1 are somehow related. In fact, the polynomial
ȧ0 is minus the polynomial ȧ1, but with the dependent variables a0 and a1
interchanged. Note that if we plug in ρ = 1 we do not get ȧ0 = ȧ1 = 0, as
in the 3-dimensional case. Instead, the structures that have no ρ derivatives
remain, so 9024 monomials remain for ȧ0 and 9024 monomials remain for ȧ1.

48

Using the procedure ConstructSolution4D from section 5.4 for each of the
sixteen single-structure polynomials in ȧ0 and ȧ1 we find the following marker-
polynomials, denoted by ȧ0

′′ and ȧ1
′′, whose total skew-symmetrizations are

equal to ȧ0 and ȧ1 respectively:

ȧ0
′′ = + 3a0s1u2u3a0t1t2a1s2a1s3v1a1t3u1a0v2a0v3ρ

3

+ 6a0s1u2a0t1a0t2v3a0u3v1v2a1t3u1a1s2a1s3ρ
3

+ 3a0v2a0t1u2v3a1v1ρs1a0u1a0u3a1s2t3a1s3t2ρ
2

− 6a0s1v3a1s2t1ρv1a0s3u1v2a0u2a0u3a1t2a1t3ρ
2

− 6a0s1v2v3a0t1a0u2a0u3v1a1s2a1s3u1a1t3ρt2ρ
2

+ 6a0s1a0s2v3a0s3u1a0t1t2t3a1v1ρv2a1u2a1u3ρ
2

− 6a0s1a0t1u2u3a1u1v2a0t2a0t3a1s2a1s3ρv1ρv3ρ

+ 6a0v2a0s1a0s2s3t1a0t2t3ρv1ρv3a1u1a1u2a1u3ρ

− 2a0s1a0t2a0t3u1u2a0u3a1t1a1s2a1s3ρv1ρv2ρv3

(22)

ȧ1
′′ = + 3a0s1a1t1u2a1u1u3v2a0s2t3a0s3t2a1v1a1v3ρ

3

− 3a0s1t2a1u1a1u2u3v1a0t1a0t3a1s2v3a1s3v2ρ
3

− 6a0u1a1t1t2v3ρt3a0u2v1a0u3v2a1s1a1s2a1s3ρ
2

+ 6a0s1a0t1t3a0u2a1v2a1s2v1v3a1s3t2a1u1ρu3ρ
2

+ 6a0t1u2a1u1v2ρu3a1s1s2s3a0v1a0v3a1t2a1t3ρ
2

+ 3a1v1a1s1s2s3ρt1a1t2v3a1t3v2a0u1a0u2a0u3ρ
2

− 6a0t1u2a1u1u3v2a0v1a0v3ρt2ρt3a1s1a1s2a1s3ρ

− 6a1t1u2v3a1u1u3a1v1a1v2ρt2ρt3a0s1a0s2a0s3ρ

+ 2a1s1a1s2s3t1ρv1a1v2a1v3ρt2ρt3a0u1a0u2a0u3

(23)

We can easily check that these solutions are indeed correct by computing their
total skew-symmetrizations and subtracting ȧ0 or ȧ1 respectively. We confirm
that ȧ0 and ȧ1 can be exactly represented by the total skew-symmetrization
of markers. Note that the structures of these markers correspond exactly to
the structures found in ȧ0 and ȧ1, as expected.

However, note that in this case we represented ȧ0 and ȧ1 using nine markers
for each polynomial, one more than there are structure types in ȧ0 and ȧ1. If
we look at our obtained markers we see that the 7872 monomials of structure
a0[1123]a1[112]ρ[1] and the 7872 monomials of structure a0[112]a1[1123]ρ[1]
are represented by two markers. This is an important difference compared to
the 3-dimensional case, where all monomials of equal structure could always
be represented by a single marker.

49

In fact, when running the procedure ConstructSolution4D for all monomials
of structure a0[1123]a1[112]ρ[1] or a0[112]a1[1123]ρ[1] in ȧ0 and ȧ1 we find that
our algorithm, which worked perfectly for the 3-dimensional case, sometimes
does end up in a loop and fails to find a solution. This behaviour depends on
the starting monomial of the algorithm (which can be varied by changing the
value of the counter ’i’ in line 13 of ConstructSolution4D). We suspect that it
is still possible for every nonzero marker of one of these structures to be part
of a solution, but that the two markers needed to represent all monomials
of these structures in ȧ0 and ȧ1 should somehow complement each other. In
other words, while we suspect that every nonzero marker of these structures
can be part of a solution, not every combination of nonzero markers of these
structures works as a solution.

If this is indeed the case we can postulate that the hyper-symmetry discovered
in the 3-dimensional tetrahedral flow persists in some way in its 4-dimensional
counterpart. For fourteen of the sixteen structures in ȧ0 and ȧ1 we suspect
the same hyper-symmetry as in the 3-dimensional case: for each of these
structures a multiple of every nonzero marker is a solution and all nonzero
markers of equal structure are multiples of one another. For the structures
a0[1123]a1[112]ρ[1] and a0[112]a1[1123]ρ[1] we suspect that a multiple of every
nonzero marker can still be part of a solution, but all nonzero markers of equal
structure are no longer always multiples of one another. These hypotheses
still need to be verified, possibly using a similar approach to the one used
in section 6.2, by modifying the procedures from section 4.5 to work in 4
dimensions.

50

7 Conclusion

The deformation of 3d-determinant Nambu-Poisson brackets by Kontsevich’s
tetrahedral flow gives rise to the differential polynomial equations ȧ and
ρ̇, which were previously found to be skew-symmetric and totally skew-
symmetric. The existence of markers whose total skew-symmetrizations are
equal to ȧ and ρ̇ was guaranteed by the differential geometry of this problem,
and it was known that ȧ can be represented using three markers.

We confirmed that we can represent ȧ using three markers, and we found
that we can represent ρ̇ using five markers. We discovered that we cannot
represent ȧ or ρ̇ using anything other than three or five nonzero markers
respectively (ignoring zero markers). Moreover, we discovered that ȧ and ρ̇
are hyper-symmetric: the total skew-symmetrization of any nonzero marker
of the structures in ȧ and ρ̇ is always a multiple of all monomials of that
structure in ȧ and ρ̇.

The deformation of 4d-determinant Nambu-Poisson brackets by Kontsevich’s
tetrahedral flow gives rise to the differential polynomial equations ȧ0 and ȧ1.
The existence of markers whose total skew-symmetrizations are equal to ȧ0
and ȧ1 was guaranteed by the differential geometry of this problem. We
confirmed that we can represent ȧ0 and ȧ1 using total skew-symmetrizations
of markers, and discovered that for both ȧ0 and ȧ1 this can be done using
nine markers. We hypothesize that the hyper-symmetry discovered in the
3-dimensional case persists in the 4-dimensional case.

51

8 Discussion

To further analyze the symmetries that arise in the differential equations
obtained by deforming Nambu-Poisson brackets we suggest the following. We
strongly suspect that the hyper-symmetry discovered in the 3-dimensional
case persists in 4 dimensions. This should be verified, for instance by modifying
the procedures from section 4.5 to work in 4 dimensions and checking if
every nonzero marker of the structures in the 4-dimensional equations ȧ0
and ȧ1 can be part of a solution. Specifically, for the monomials of structure
a0[1123]a1[112]ρ[1] and a0[112]a1[1123]ρ[1] in ȧ0 and ȧ1 we would like to know
how the two nonzero markers needed to represent each of these structures
should complement each other. Moreover, the 4-dimensional equation for ρ̇
was not analyzed in this report and could be analyzed in the same way as
the equations for ȧ0 and ȧ1, using the procedures from chapter 5.

Finally, it would be interesting to know whether the hyper-symmetry not only
persists in 4 dimensions, but whether it persists in arbitrary dimensions. To
study this we could modify the procedures from chapter 4 to work in arbitrary
dimensions. We could also study the symmetry of differential equations
obtained by deforming Nambu-Poisson brackets using other Kontsevich flows,
for example the 5-wheel cocycle flow.

52

References

[1] L.D. Landau and E.M. Lifshitz. Mechanics, pages 131–138. Course of
Theoretical Physics. Butterworth-Heinemann, 3 edition, 1976.

[2] Y. Nambu. Generalized Hamiltonian Dynamics, pages 2405–2412.
Physical Review D, 7(8). 1973.

[3] C.L. Gengoux, A. Pichereau, and P. Vanhaecke. Poisson Structures, page
251. Springer-Verlag, Berlin, 2013.

[4] M. Kontsevich. Formality conjecture. Deformation theory and symplectic
geometry, pages 139–156. Kluwer Academic Publishers, Dordrecht, 1997.
(Ascona 1996, D. Sternheimer, J. Rawnsley, S. Gutt, eds).

[5] A. Bouisaghouane, R. Buring, and A. Kiselev. The Kontsevich
Tetrahedral Flow Revisited, page 7. 2017. arXiv:1608.01710v4 [math.QA].

[6] R. Buring and A. Kiselev. 2019.11.27. Sent as personal communication
from R. Buring to A. Kiselev.

[7] R. Buring and A. Kiselev. 2020.12.04. Sent as personal communication
from R. Buring to A. Kiselev.

[8] Maple 2020.2. Maplesoft; a division of Waterloo Maple Inc.

[9] R. Buring. 2021.06.13. Sent as personal communication from R. Buring
to A. Kiselev.

Acknowledgements

I would like to thank my supervisor, Arthemy Kiselev, for providing me
with this extremely interesting research topic, for his excellent and thought-
provoking feedback, and for inspiring me with his enthusiasm.

I would like to thank Ricardo Buring for suggesting an approach to solve the
problem, for always being available to answer my questions, for helping me
with the references, for helping we write the introduction and for checking
my results.

I would like to thank Nikolay Martynchuk for providing the second assessment
of this report.

I would like to thank Jasper Janssen for proofreading the final version of this
report.

53

Appendices

A Polynomials ȧ and ρ̇

1 adot := -12*rhoˆ2*a x*rho y*a xy*a zz*a xyz+12*rhoˆ2*a x*rho y*
a xy*a xz*a yzz+12*rhoˆ2*a x*rho y*a xy*a xzz*a yz-12*rhoˆ2*
a x*rho y*a xz*a yy*a xzz+12*rhoˆ2*a x*rho y*a xz*a yz*a xyz
-12*rhoˆ2*a x*rho y*a yzz*a yz*a xx+6*rhoˆ2*a x*rho y*a xx*
a zzz*a yy+6*rhoˆ2*a x*rho y*a xx*a zz*a yyz+6*rhoˆ2*a x*
rho y*a zz*a yy*a xxz-12*rhoˆ2*a x*rho z*a xy*a yz*a xyz-12*
rhoˆ2*a x*rho z*a xy*a xz*a yyz+12*rhoˆ2*a x*rho z*a xy*a zz*
a xyy-12*rhoˆ2*a x*rho z*a xz*a xyy*a yz+12*rhoˆ2*a x*rho z*
a xz*a yy*a xyz+12*rhoˆ2*a x*rho z*a yz*a xx*a yyz-6*rhoˆ2*
a x*rho z*a xx*a zz*a yyy-6*rhoˆ2*a x*rho z*a xx*a yzz*a yy
-6*rhoˆ2*a x*rho z*a zz*a yy*a xxy-12*rhoˆ2*a y*rho x*a xy*
a xz*a yzz-12*rhoˆ2*a y*rho x*a xy*a xzz*a yz+12*rhoˆ2*a y*
rho x*a xy*a zz*a xyz-12*rhoˆ2*a y*rho x*a xz*a yz*a xyz+12*
rhoˆ2*a y*rho x*a xz*a yy*a xzz+12*rhoˆ2*a y*rho x*a yzz*a yz

*a xx-6*rhoˆ2*a y*rho x*a xx*a zz*a yyz-6*rhoˆ2*a y*rho x*
a xx*a zzz*a yy-6*rhoˆ2*a y*rho x*a zz*a yy*a xxz+12*rhoˆ2*
a y*rho z*a xy*a xz*a xyz+12*rhoˆ2*a y*rho z*a xy*a yz*a xxz
-12*rhoˆ2*a y*rho z*a xy*a zz*a xxy+12*rho*a x*a y*rho z*
rho x*a yy*a xzz-24*rho*a x*a y*rho z*rho x*a yz*a xyz+12*rho

*a x*a y*rho z*rho x*a zz*a xyy+24*rho*a x*a y*rho z*rho y*
a xz*a xyz-12*rho*a x*a y*rho z*rho y*a xx*a yzz-12*rho*a x*
a y*rho z*rho y*a zz*a xxy+24*rho*a x*a z*rho y*rho x*a yz*
a xyz-12*rho*a x*a z*rho y*rho x*a zz*a xyy-12*rho*a x*a z*
rho y*rho x*a yy*a xzz-24*rho*a x*a z*rho z*rho y*a xyz*a xy
+12*rho*a x*a z*rho z*rho y*a xx*a yyz+12*rho*a x*a z*rho z*
rho y*a xxz*a yy+12*rho*a z*a y*rho x*rho y*a xx*a yzz-24*rho

*a z*a y*rho x*rho y*a xz*a xyz+12*rho*a z*a y*rho x*rho y*
a zz*a xxy+24*rho*a z*a y*rho x*rho z*a xyz*a xy-12*rho*a z*
a y*rho x*rho z*a xx*a yyz-12*rho*a z*a y*rho x*rho z*a xxz*
a yy-6*rhoˆ2*a x*rho y*a zzz*a xyˆ2-6*rhoˆ2*a x*rho y*a xzˆ2*
a yyz-6*rhoˆ2*a x*rho y*a yzˆ2*a xxz+6*rhoˆ2*a x*rho z*a yzz*
a xyˆ2+6*rhoˆ2*a x*rho z*a xzˆ2*a yyy+6*rhoˆ2*a x*rho z*a yz
ˆ2*a xxy+6*rhoˆ2*a y*rho x*a zzz*a xyˆ2+6*rhoˆ2*a y*rho x*
a xzˆ2*a yyz+6*rhoˆ2*a y*rho x*a yzˆ2*a xxz-6*rhoˆ2*a y*rho z

*a xzz*a xyˆ2-6*rhoˆ2*a y*rho z*a xzˆ2*a xyy-6*rhoˆ2*a y*
rho z*a yzˆ2*a xxx-6*rhoˆ2*a z*rho x*a yzz*a xyˆ2-6*rhoˆ2*a z

*rho x*a xzˆ2*a yyy-6*rhoˆ2*a z*rho x*a yzˆ2*a xxy+6*rhoˆ2*
a z*rho y*a xzz*a xyˆ2+6*rhoˆ2*a z*rho y*a xzˆ2*a xyy+6*rho
ˆ2*a z*rho y*a yzˆ2*a xxx-6*rho*a xˆ2*rho yˆ2*a zz*a xyz-6*
rho*a xˆ2*rho yˆ2*a xy*a zzz+6*rho*a xˆ2*rho yˆ2*a xz*a yzz
+6*rho*a xˆ2*rho yˆ2*a xzz*a yz-6*rho*a xˆ2*rho zˆ2*a xyy*

54

a yz-6*rho*a xˆ2*rho zˆ2*a xy*a yyz+6*rho*a xˆ2*rho zˆ2*a xz*
a yyy+6*rho*a xˆ2*rho zˆ2*a yy*a xyz-6*rho*a yˆ2*rho xˆ2*
a xzz*a yz+6*rho*a yˆ2*rho xˆ2*a zz*a xyz+6*rho*a yˆ2*rho x
ˆ2*a xy*a zzz-6*rho*a yˆ2*rho xˆ2*a xz*a yzz-6*rho*a yˆ2*
rho zˆ2*a xxx*a yz+6*rho*a yˆ2*rho zˆ2*a xxz*a xy-6*rho*a y
ˆ2*rho zˆ2*a xx*a xyz+6*rho*a yˆ2*rho zˆ2*a xxy*a xz+6*rho*
a zˆ2*rho xˆ2*a xy*a yyz-6*rho*a zˆ2*rho xˆ2*a xz*a yyy-6*rho

*a zˆ2*rho xˆ2*a yy*a xyz+6*rho*a zˆ2*rho xˆ2*a xyy*a yz+6*
rho*a zˆ2*rho yˆ2*a xxx*a yz+6*rho*a zˆ2*rho yˆ2*a xx*a xyz
-6*rho*a zˆ2*rho yˆ2*a xxy*a xz-6*rho*a zˆ2*rho yˆ2*a xxz*
a xy+6*a xˆ2*a y*rho x*a zzz*rho yˆ2+6*a xˆ2*a y*rho x*a yyz*
rho zˆ2+12*a xˆ2*a y*a xyz*rho y*rho zˆ2-6*a xˆ2*a y*a xzz*
rho z*rho yˆ2-6*a xˆ2*a z*rho x*rho yˆ2*a yzz-6*a xˆ2*a z*
rho x*rho zˆ2*a yyy+6*a xˆ2*a z*a xyy*rho zˆ2*rho y-12*a xˆ2*
a z*a xyz*rho z*rho yˆ2+6*a x*a yˆ2*rho xˆ2*rho z*a yzz-6*a x

*a yˆ2*rho xˆ2*a zzz*rho y-12*a x*a yˆ2*rho x*a xyz*rho z
ˆ2-6*a x*a yˆ2*a xxz*rho zˆ2*rho y+6*a x*a zˆ2*rho xˆ2*rho z*
a yyy-6*a x*a zˆ2*rho xˆ2*a yyz*rho y+12*a x*a zˆ2*rho x*
a xyz*rho yˆ2+6*a x*a zˆ2*a xxy*rho z*rho yˆ2+12*a z*a yˆ2*
rho xˆ2*rho z*a xyz+6*a z*a yˆ2*rho xˆ2*rho y*a xzz-6*a z*a y
ˆ2*rho x*a xxy*rho zˆ2+6*a z*a yˆ2*a xxx*rho y*rho zˆ2-6*a z
ˆ2*a y*rho xˆ2*a xyy*rho z-12*a zˆ2*a y*rho xˆ2*a xyz*rho y
+6*a zˆ2*a y*rho x*rho yˆ2*a xxz-6*a zˆ2*a y*a xxx*rho z*
rho yˆ2+6*a xˆ3*a yzz*rho yˆ2*rho z-6*a xˆ3*a yyz*rho zˆ2*
rho y-6*a xˆ2*a y*a xyy*rho zˆ3+6*a xˆ2*a z*a xzz*rho yˆ3+6*
a x*a yˆ2*a xxy*rho zˆ3-6*a x*a zˆ2*a xxz*rho yˆ3+6*a yˆ3*
a xxz*rho x*rho zˆ2-6*a yˆ3*a xzz*rho xˆ2*rho z-6*a z*a yˆ2*
a yzz*rho xˆ3+6*a zˆ2*a y*a yyz*rho xˆ3+6*a zˆ3*a xyy*rho x
ˆ2*rho y-6*a zˆ3*a xxy*rho x*rho yˆ2-12*rhoˆ2*a y*rho z*a xz*
a xxz*a yy+12*rhoˆ2*a y*rho z*a xz*a yz*a xxy-12*rhoˆ2*a y*
rho z*a yz*a xx*a xyz+6*rhoˆ2*a y*rho z*a xx*a zz*a xyy+6*rho
ˆ2*a y*rho z*a xx*a yy*a xzz+6*rhoˆ2*a y*rho z*a zz*a yy*
a xxx+12*rhoˆ2*a z*rho x*a xy*a xz*a yyz+12*rhoˆ2*a z*rho x*
a xy*a yz*a xyz-12*rhoˆ2*a z*rho x*a xy*a zz*a xyy-12*rhoˆ2*
a z*rho x*a xz*a yy*a xyz+12*rhoˆ2*a z*rho x*a xz*a xyy*a yz
-12*rhoˆ2*a z*rho x*a yz*a xx*a yyz+6*rhoˆ2*a z*rho x*a xx*
a zz*a yyy+6*rhoˆ2*a z*rho x*a xx*a yzz*a yy+6*rhoˆ2*a z*
rho x*a zz*a yy*a xxy-12*rhoˆ2*a z*rho y*a xy*a yz*a xxz+12*
rhoˆ2*a z*rho y*a xy*a zz*a xxy-12*rhoˆ2*a z*rho y*a xy*a xz*
a xyz-12*rhoˆ2*a z*rho y*a xz*a yz*a xxy+12*rhoˆ2*a z*rho y*
a xz*a xxz*a yy+12*rhoˆ2*a z*rho y*a yz*a xx*a xyz-6*rhoˆ2*
a z*rho y*a xx*a zz*a xyy-6*rhoˆ2*a z*rho y*a xx*a yy*a xzz
-6*rhoˆ2*a z*rho y*a zz*a yy*a xxx+6*rho*a xˆ2*rho x*rho y*
a zz*a yyz+6*rho*a xˆ2*rho x*rho y*a zzz*a yy-12*rho*a xˆ2*
rho x*rho y*a yzz*a yz-6*rho*a xˆ2*rho x*rho z*a yzz*a yy-6*
rho*a xˆ2*rho x*rho z*a zz*a yyy+12*rho*a xˆ2*rho x*rho z*
a yyz*a yz+6*rho*a xˆ2*rho z*rho y*a zz*a xyy+12*rho*a xˆ2*
rho z*rho y*a yzz*a xy-6*rho*a xˆ2*rho z*rho y*a yy*a xzz-12*
rho*a xˆ2*rho z*rho y*a xz*a yyz-6*rho*a x*a y*rho xˆ2*a zz*

55

a yyz-6*rho*a x*a y*rho xˆ2*a zzz*a yy+12*rho*a x*a y*rho x
ˆ2*a yzz*a yz+6*rho*a x*a y*rho yˆ2*a zz*a xxz-12*rho*a x*a y

*rho yˆ2*a xzz*a xz+6*rho*a x*a y*rho yˆ2*a xx*a zzz-6*rho*
a x*a y*rho zˆ2*a xxz*a yy+6*rho*a x*a y*rho zˆ2*a xx*a yyz
+12*rho*a x*a y*rho zˆ2*a yz*a xxy-12*rho*a x*a y*rho zˆ2*
a xz*a xyy-12*rho*a x*a z*rho xˆ2*a yyz*a yz+6*rho*a x*a z*
rho xˆ2*a zz*a yyy+6*rho*a x*a z*rho xˆ2*a yzz*a yy-6*rho*a x

*a z*rho yˆ2*a xx*a yzz+6*rho*a x*a z*rho yˆ2*a zz*a xxy+12*
rho*a x*a z*rho yˆ2*a xzz*a xy-12*rho*a x*a z*rho yˆ2*a yz*
a xxz+12*rho*a x*a z*rho zˆ2*a xyy*a xy-6*rho*a x*a z*rho z
ˆ2*a xxy*a yy-6*rho*a x*a z*rho zˆ2*a xx*a yyy-6*rho*a yˆ2*
rho x*rho y*a zz*a xxz+12*rho*a yˆ2*rho x*rho y*a xzz*a xz-6*
rho*a yˆ2*rho x*rho y*a xx*a zzz+12*rho*a yˆ2*rho x*rho z*
a yz*a xxz+6*rho*a yˆ2*rho x*rho z*a xx*a yzz-6*rho*a yˆ2*
rho x*rho z*a zz*a xxy-12*rho*a yˆ2*rho x*rho z*a xzz*a xy
-12*rho*a yˆ2*rho z*rho y*a xz*a xxz+6*rho*a yˆ2*rho z*rho y*
a xxx*a zz+6*rho*a yˆ2*rho z*rho y*a xzz*a xx+12*rho*a z*a y*
rho xˆ2*a xz*a yyz-6*rho*a z*a y*rho xˆ2*a zz*a xyy-12*rho*
a z*a y*rho xˆ2*a yzz*a xy+6*rho*a z*a y*rho xˆ2*a yy*a xzz
+12*rho*a z*a y*rho yˆ2*a xz*a xxz-6*rho*a z*a y*rho yˆ2*
a xxx*a zz-6*rho*a z*a y*rho yˆ2*a xzz*a xx+6*rho*a z*a y*
rho zˆ2*a yy*a xxx+6*rho*a z*a y*rho zˆ2*a xyy*a xx-12*rho*
a z*a y*rho zˆ2*a xy*a xxy-12*rho*a zˆ2*rho x*rho y*a yz*
a xxy+6*rho*a zˆ2*rho x*rho y*a xxz*a yy-6*rho*a zˆ2*rho x*
rho y*a xx*a yyz+12*rho*a zˆ2*rho x*rho y*a xz*a xyy+6*rho*
a zˆ2*rho x*rho z*a xxy*a yy+6*rho*a zˆ2*rho x*rho z*a xx*
a yyy-12*rho*a zˆ2*rho x*rho z*a xyy*a xy+12*rho*a zˆ2*rho z*
rho y*a xy*a xxy-6*rho*a zˆ2*rho z*rho y*a xyy*a xx-6*rho*a z
ˆ2*rho z*rho y*a yy*a xxx-12*a xˆ2*a y*rho x*rho y*rho z*
a yzz+12*a xˆ2*a z*rho x*rho y*rho z*a yyz+12*a x*a yˆ2*rho x

*rho y*rho z*a xzz+12*a x*a z*a y*rho xˆ2*a yzz*rho y-12*a x*
a z*a y*rho xˆ2*rho z*a yyz-12*a x*a z*a y*rho x*rho yˆ2*
a xzz+12*a x*a z*a y*rho x*rho zˆ2*a xyy-12*a x*a z*a y*a xxy

*rho zˆ2*rho y+12*a x*a z*a y*a xxz*rho z*rho yˆ2-12*a x*a z
ˆ2*rho x*rho y*rho z*a xyy-12*a z*a yˆ2*rho x*rho y*rho z*
a xxz+12*a zˆ2*a y*rho x*rho y*rho z*a xxy-2*a xˆ3*a zzz*
rho yˆ3+2*a xˆ3*a yyy*rho zˆ3+2*a yˆ3*a zzz*rho xˆ3-2*a yˆ3*
a xxx*rho zˆ3+2*a zˆ3*a xxx*rho yˆ3-2*a zˆ3*a yyy*rho xˆ3:

2 rhodot := -12*rho*rho x*rho y*a x*a z*rho xyy*a zz-12*rho*rho x*
rho y*a x*a z*rho xzz*a yy+24*rho*rho x*rho y*a x*a z*rho xyz

*a yz+12*rho*rho x*rho y*a x*a xy*rho yz*a zz-12*rho*rho x*
rho y*a x*a xy*a yz*rho zz-12*rho*rho x*rho y*a x*a xz*a yz*
rho yz+6*rhoˆ2*rho x*a y*rho zzz*a xyˆ2+6*rhoˆ2*rho x*a y*
rho yyz*a xzˆ2+6*rhoˆ2*rho x*a y*rho xxz*a yzˆ2-6*rhoˆ2*rho x

*a z*rho yzz*a xyˆ2-6*rhoˆ2*rho x*a z*rho yyy*a xzˆ2-6*rhoˆ2*
rho x*a z*rho xxy*a yzˆ2-6*rhoˆ2*rho y*a x*rho zzz*a xyˆ2-6*
rhoˆ2*rho y*a x*rho yyz*a xzˆ2-6*rhoˆ2*rho y*a x*rho xxz*a yz
ˆ2+6*rhoˆ2*rho y*a z*rho xzz*a xyˆ2+6*rhoˆ2*rho y*a z*rho xyy

*a xzˆ2+6*rhoˆ2*rho y*a z*rho xxx*a yzˆ2+6*rhoˆ2*rho z*a x*

56

rho yzz*a xyˆ2+6*rhoˆ2*rho z*a x*rho yyy*a xzˆ2+6*rhoˆ2*rho z

*a x*rho xxy*a yzˆ2-6*rhoˆ2*rho z*a y*rho xzz*a xyˆ2-6*rhoˆ2*
rho z*a y*rho xyy*a xzˆ2-6*rhoˆ2*rho z*a y*rho xxx*a yzˆ2+6*
rho*rho xˆ2*a yˆ2*rho zzz*a xy-6*rho*rho xˆ2*a yˆ2*rho xzz*
a yz+6*rho*rho xˆ2*a yˆ2*rho xyz*a zz-6*rho*rho xˆ2*a yˆ2*
rho yzz*a xz-12*rho*rho xˆ2*a y*rho xz*a yzˆ2-6*rho*rho xˆ2*
a zˆ2*a xz*rho yyy-6*rho*rho xˆ2*a zˆ2*rho xyz*a yy+6*rho*
rho xˆ2*a zˆ2*rho xyy*a yz+6*rho*rho xˆ2*a zˆ2*a xy*rho yyz
+12*rho*rho xˆ2*a z*rho xy*a yzˆ2+6*rho*rho yˆ2*a xˆ2*rho xzz

*a yz+6*rho*rho yˆ2*a xˆ2*rho yzz*a xz-6*rho*rho yˆ2*a xˆ2*
rho zzz*a xy-6*rho*rho yˆ2*a xˆ2*rho xyz*a zz+12*rho*rho yˆ2*
a x*rho yz*a xzˆ2-6*rho*rho yˆ2*a zˆ2*rho xxy*a xz-6*rho*
rho yˆ2*a zˆ2*a xy*rho xxz+6*rho*rho yˆ2*a zˆ2*rho xyz*a xx
+6*rho*rho yˆ2*a zˆ2*a yz*rho xxx-12*rho*rho yˆ2*a z*rho xy*
a xzˆ2+6*rho*rho zˆ2*a xˆ2*a xz*rho yyy+6*rho*rho zˆ2*a xˆ2*
rho xyz*a yy-6*rho*rho zˆ2*a xˆ2*rho xyy*a yz-6*rho*rho zˆ2*
a xˆ2*a xy*rho yyz-12*rho*rho zˆ2*a x*a xyˆ2*rho yz-6*rho*
rho zˆ2*a yˆ2*a yz*rho xxx+6*rho*rho zˆ2*a yˆ2*a xy*rho xxz
-6*rho*rho zˆ2*a yˆ2*rho xyz*a xx+6*rho*rho zˆ2*a yˆ2*rho xxy

*a xz+12*rho*rho zˆ2*a y*rho xz*a xyˆ2-6*rho xˆ3*a z*a y*
rho zz*a yy+6*rho xˆ3*a z*a y*rho yy*a zz-6*rho xˆ2*rho y*a x

*rho zzz*a yˆ2-6*rho xˆ2*rho y*a x*rho yyz*a zˆ2-6*rho xˆ2*
rho y*a yˆ2*a xz*rho zz+6*rho xˆ2*rho y*a yˆ2*a z*rho xzz+6*
rho xˆ2*rho y*a yˆ2*rho xz*a zz-12*rho xˆ2*rho y*a zˆ2*a y*
rho xyz-12*rho xˆ2*rho y*a zˆ2*rho yz*a xy+12*rho xˆ2*rho y*
a zˆ2*a yz*rho xy-6*rho xˆ2*rho y*a zˆ2*rho xz*a yy+6*rho x
ˆ2*rho y*a zˆ2*a xz*rho yy+6*rho xˆ2*rho z*a x*rho yzz*a y
ˆ2+6*rho xˆ2*rho z*a x*a zˆ2*rho yyy+6*rho xˆ2*rho z*a yˆ2*
rho xy*a zz+12*rho xˆ2*rho z*a yˆ2*rho yz*a xz+12*rho xˆ2*
rho z*a yˆ2*a z*rho xyz-6*rho xˆ2*rho z*a yˆ2*a xy*rho zz-12*
rho xˆ2*rho z*a yˆ2*rho xz*a yz-6*rho xˆ2*rho z*a zˆ2*a y*
rho xyy-6*rho xˆ2*rho z*a zˆ2*rho xy*a yy+6*rho xˆ2*rho z*a z
ˆ2*rho yy*a xy-6*rho x*rho yˆ2*a xˆ2*rho yzz*a z+6*rho x*
rho yˆ2*a xˆ2*rho zzz*a y+6*rho x*rho yˆ2*a xˆ2*a yz*rho zz
-6*rho x*rho yˆ2*a xˆ2*rho yz*a zz+12*rho x*rho yˆ2*a x*a z
ˆ2*rho xyz+6*rho x*rho yˆ2*a y*a zˆ2*rho xxz-12*rho x*rho y
ˆ2*a zˆ2*rho xy*a xz+6*rho x*rho yˆ2*a zˆ2*rho yz*a xx-6*
rho x*rho yˆ2*a zˆ2*a yz*rho xx-6*rho xˆ3*a yˆ2*rho yz*a zz
-6*rho xˆ3*a yˆ2*rho yzz*a z+6*rho xˆ3*a yˆ2*a yz*rho zz+6*
rho xˆ3*a zˆ2*a y*rho yyz-6*rho xˆ3*a zˆ2*a yz*rho yy+6*rho x
ˆ3*a zˆ2*rho yz*a yy+6*rho xˆ2*rho y*a zˆ3*rho xyy-6*rho xˆ2*
rho z*rho xzz*a yˆ3-6*rho x*rho yˆ2*a zˆ3*rho xxy+6*rho x*
rho zˆ2*rho xxz*a yˆ3-6*rho yˆ3*a xˆ2*a xz*rho zz+6*rho yˆ3*
a xˆ2*a z*rho xzz+6*rho yˆ3*a xˆ2*rho xz*a zz-6*rho yˆ3*a z
ˆ2*a x*rho xxz-6*rho yˆ3*a zˆ2*a xx*rho xz+6*rho yˆ3*a zˆ2*
a xz*rho xx+6*rho z*rho yˆ2*rho yzz*a xˆ3-6*rho zˆ2*rho y*
rho yyz*a xˆ3+6*rho zˆ3*a xˆ2*rho yy*a xy-6*rho zˆ3*a xˆ2*a y

*rho xyy-6*rho zˆ3*a xˆ2*rho xy*a yy+6*rho zˆ3*a yˆ2*a x*
rho xxy-6*rho zˆ3*a yˆ2*a xy*rho xx-12*rhoˆ2*rho x*a y*a xy*

57

rho yzz*a xz-12*rhoˆ2*rho x*a y*a xy*rho xzz*a yz+12*rhoˆ2*
rho x*a y*a xy*rho xyz*a zz+12*rhoˆ2*rho x*a y*a xz*rho xzz*
a yy-12*rhoˆ2*rho x*a y*a xz*rho xyz*a yz+12*rhoˆ2*rho x*a y*
rho yzz*a yz*a xx-6*rhoˆ2*rho x*a y*a xx*rho yyz*a zz-6*rho
ˆ2*rho x*a y*a xx*rho zzz*a yy-6*rhoˆ2*rho x*a y*rho xxz*a zz

*a yy+12*rhoˆ2*rho x*a z*a xy*rho yyz*a xz-12*rhoˆ2*rho x*a z

*a xy*rho xyy*a zz+12*rhoˆ2*rho x*a z*a xy*rho xyz*a yz-12*
rhoˆ2*rho x*a z*a xz*rho xyz*a yy+12*rhoˆ2*rho x*a z*a xz*
rho xyy*a yz-12*rhoˆ2*rho x*a z*rho yyz*a yz*a xx+6*rhoˆ2*
rho x*a z*a xx*rho yyy*a zz+6*rhoˆ2*rho x*a z*a xx*rho yzz*
a yy+6*rhoˆ2*rho x*a z*rho xxy*a zz*a yy+12*rhoˆ2*rho y*a x*
a xy*rho yzz*a xz+12*rhoˆ2*rho y*a x*a xy*rho xzz*a yz-12*rho
ˆ2*rho y*a x*a xy*rho xyz*a zz-12*rhoˆ2*rho y*a x*a xz*
rho xzz*a yy+12*rhoˆ2*rho y*a x*a xz*rho xyz*a yz-12*rhoˆ2*
rho y*a x*rho yzz*a yz*a xx+6*rhoˆ2*rho y*a x*a xx*rho yyz*
a zz+6*rhoˆ2*rho y*a x*a xx*rho zzz*a yy+6*rhoˆ2*rho y*a x*
rho xxz*a zz*a yy+12*rhoˆ2*rho y*a z*a xy*rho xxy*a zz-12*rho
ˆ2*rho y*a z*a xy*rho xxz*a yz-12*rhoˆ2*rho y*a z*a xy*a xz*
rho xyz+12*rhoˆ2*rho y*a z*a xz*rho xxz*a yy-12*rhoˆ2*rho y*
a z*a xz*rho xxy*a yz+12*rhoˆ2*rho y*a z*rho xyz*a yz*a xx-6*
rhoˆ2*rho y*a z*a xx*rho xzz*a yy-6*rhoˆ2*rho y*a z*a xx*
rho xyy*a zz-6*rhoˆ2*rho y*a z*rho xxx*a zz*a yy-12*rhoˆ2*
rho z*a x*a xy*rho yyz*a xz-12*rhoˆ2*rho z*a x*a xy*rho xyz*
a yz+12*rhoˆ2*rho z*a x*a xy*rho xyy*a zz+12*rhoˆ2*rho z*a x*
a xz*rho xyz*a yy-12*rhoˆ2*rho z*a x*a xz*rho xyy*a yz+12*rho
ˆ2*rho z*a x*rho yyz*a yz*a xx-6*rhoˆ2*rho z*a x*a xx*rho yzz

*a yy-6*rhoˆ2*rho z*a x*a xx*rho yyy*a zz-6*rhoˆ2*rho z*a x*
rho xxy*a zz*a yy-12*rhoˆ2*rho z*a y*a xy*rho xxy*a zz+12*rho
ˆ2*rho z*a y*a xy*rho xxz*a yz+12*rhoˆ2*rho z*a y*a xy*a xz*
rho xyz-12*rhoˆ2*rho z*a y*a xz*rho xxz*a yy+12*rhoˆ2*rho z*
a y*a xz*rho xxy*a yz-12*rhoˆ2*rho z*a y*rho xyz*a yz*a xx+6*
rhoˆ2*rho z*a y*a xx*rho xzz*a yy+6*rhoˆ2*rho z*a y*a xx*
rho xyy*a zz+6*rhoˆ2*rho z*a y*rho xxx*a zz*a yy-6*rho*rho x
ˆ2*a x*a y*rho yyz*a zz-6*rho*rho xˆ2*a x*a y*rho zzz*a yy
+12*rho*rho xˆ2*a x*a y*rho yzz*a yz-12*rho*rho xˆ2*a x*a z*
rho yyz*a yz+6*rho*rho xˆ2*a x*a z*rho yyy*a zz+6*rho*rho x
ˆ2*a x*a z*rho yzz*a yy+12*rho*rho xˆ2*a y*a z*rho yyz*a xz
+6*rho*rho xˆ2*a y*a z*rho xzz*a yy-6*rho*rho xˆ2*a y*a z*
rho xyy*a zz-12*rho*rho xˆ2*a y*a z*rho yzz*a xy-12*rho*rho x
ˆ2*a y*a xy*rho yz*a zz+12*rho*rho xˆ2*a y*a xy*a yz*rho zz
+12*rho*rho xˆ2*a y*a xz*a yz*rho yz-12*rho*rho xˆ2*a y*a xz*
rho zz*a yy+12*rho*rho xˆ2*a y*rho xz*a yy*a zz-12*rho*rho x
ˆ2*a z*a xy*a yz*rho yz+12*rho*rho xˆ2*a z*a xy*rho yy*a zz
+12*rho*rho xˆ2*a z*a xz*rho yz*a yy-12*rho*rho xˆ2*a z*a xz*
a yz*rho yy-12*rho*rho xˆ2*a z*rho xy*a yy*a zz+6*rho*rho x*
rho y*a xˆ2*rho yyz*a zz+6*rho*rho x*rho y*a xˆ2*rho zzz*a yy
-12*rho*rho x*rho y*a xˆ2*rho yzz*a yz+12*rho*rho x*rho y*a x

*rho xz*a yzˆ2-6*rho*rho x*rho y*a yˆ2*rho xxz*a zz+12*rho*
rho x*rho y*a yˆ2*a xz*rho xzz-6*rho*rho x*rho y*a yˆ2*a xx*

58

rho zzz-12*rho*rho x*rho y*a y*rho yz*a xzˆ2-6*rho*rho x*
rho y*a zˆ2*rho yyz*a xx+6*rho*rho x*rho y*a zˆ2*rho xxz*a yy
-12*rho*rho x*rho y*a zˆ2*rho xxy*a yz+12*rho*rho x*rho y*a z
ˆ2*rho xyy*a xz+12*rho*rho x*rho y*a z*rho yy*a xzˆ2-12*rho*
rho x*rho y*a z*rho xx*a yzˆ2-6*rho*rho x*rho z*a xˆ2*rho yyy

*a zz-6*rho*rho x*rho z*a xˆ2*rho yzz*a yy+12*rho*rho x*rho z

*a xˆ2*rho yyz*a yz-12*rho*rho x*rho z*a x*rho xy*a yzˆ2-12*
rho*rho x*rho z*a yˆ2*rho xzz*a xy+6*rho*rho x*rho z*a yˆ2*
rho yzz*a xx-6*rho*rho x*rho z*a yˆ2*rho xxy*a zz+12*rho*
rho x*rho z*a yˆ2*rho xxz*a yz-12*rho*rho x*rho z*a y*rho zz*
a xyˆ2+12*rho*rho x*rho z*a y*rho xx*a yzˆ2-12*rho*rho x*
rho z*a zˆ2*rho xyy*a xy+6*rho*rho x*rho z*a zˆ2*a xx*rho yyy
+6*rho*rho x*rho z*a zˆ2*rho xxy*a yy+12*rho*rho x*rho z*a z*
a xyˆ2*rho yz-12*rho*rho yˆ2*a x*a y*a xz*rho xzz+6*rho*rho y
ˆ2*a x*a y*a xx*rho zzz+6*rho*rho yˆ2*a x*a y*rho xxz*a zz
+12*rho*rho yˆ2*a x*a z*rho xzz*a xy+6*rho*rho yˆ2*a x*a z*
rho xxy*a zz-6*rho*rho yˆ2*a x*a z*rho yzz*a xx-12*rho*rho y
ˆ2*a x*a z*rho xxz*a yz-12*rho*rho yˆ2*a x*a xy*a xz*rho zz
+12*rho*rho yˆ2*a x*a xy*rho xz*a zz-12*rho*rho yˆ2*a x*a xz*
rho xz*a yz+12*rho*rho yˆ2*a x*a xx*a yz*rho zz-12*rho*rho y
ˆ2*a x*a xx*rho yz*a zz-6*rho*rho yˆ2*a z*a y*rho xzz*a xx-6*
rho*rho yˆ2*a z*a y*rho xxx*a zz+12*rho*rho yˆ2*a z*a y*
rho xxz*a xz+12*rho*rho yˆ2*a z*a xy*rho xz*a xz-12*rho*rho y
ˆ2*a z*a xy*a zz*rho xx+12*rho*rho yˆ2*a z*rho xx*a yz*a xz
+12*rho*rho yˆ2*a z*a xx*rho xy*a zz-12*rho*rho yˆ2*a z*a xx*
rho xz*a yz-12*rho*rho z*rho y*a xˆ2*rho yyz*a xz+12*rho*
rho z*rho y*a xˆ2*rho yzz*a xy+6*rho*rho z*rho y*a xˆ2*
rho xyy*a zz-6*rho*rho z*rho y*a xˆ2*rho xzz*a yy+12*rho*
rho z*rho y*a x*rho zz*a xyˆ2-12*rho*rho z*rho y*a x*rho yy*
a xzˆ2+6*rho*rho z*rho y*a yˆ2*rho xzz*a xx+6*rho*rho z*rho y

*a yˆ2*rho xxx*a zz-12*rho*rho z*rho y*a yˆ2*rho xxz*a xz+12*
rho*rho z*rho y*a y*rho xy*a xzˆ2+12*rho*rho z*rho y*a zˆ2*
rho xxy*a xy-6*rho*rho z*rho y*a zˆ2*a yy*rho xxx-6*rho*rho z

*rho y*a zˆ2*rho xyy*a xx-12*rho*rho z*rho y*a z*rho xz*a xy
ˆ2+12*rho*rho zˆ2*a x*a y*rho xxy*a yz-12*rho*rho zˆ2*a x*a y

*rho xyy*a xz-6*rho*rho zˆ2*a x*a y*rho xxz*a yy+6*rho*rho z
ˆ2*a x*a y*rho yyz*a xx+12*rho*rho zˆ2*a x*a z*rho xyy*a xy
-6*rho*rho zˆ2*a x*a z*a xx*rho yyy-6*rho*rho zˆ2*a x*a z*
rho xxy*a yy+12*rho*rho zˆ2*a x*a xy*a xz*rho yy+12*rho*rho z
ˆ2*a x*a xy*a yz*rho xy-12*rho*rho zˆ2*a x*rho xy*a xz*a yy
+12*rho*rho zˆ2*a x*a xx*rho yz*a yy-12*rho*rho zˆ2*a x*a xx*
a yz*rho yy-12*rho*rho zˆ2*a y*a z*rho xxy*a xy+6*rho*rho z
ˆ2*a y*a z*a yy*rho xxx+6*rho*rho zˆ2*a y*a z*rho xyy*a xx
-12*rho*rho zˆ2*a y*a xy*rho xy*a xz-12*rho*rho zˆ2*a y*a xy*
a yz*rho xx+12*rho*rho zˆ2*a y*rho xx*a yy*a xz-12*rho*rho z
ˆ2*a y*a xx*rho xz*a yy+12*rho*rho zˆ2*a y*a xx*a yz*rho xy
+12*rho xˆ2*rho y*a x*a y*rho yz*a zz-12*rho xˆ2*rho y*a x*
a y*a yz*rho zz+12*rho xˆ2*rho y*a x*a y*rho yzz*a z+6*rho x
ˆ2*rho y*a x*a z*rho zz*a yy-6*rho xˆ2*rho y*a x*a z*rho yy*

59

a zz-12*rho xˆ2*rho y*a z*a y*rho xy*a zz+12*rho xˆ2*rho y*
a z*a y*a xy*rho zz+6*rho xˆ2*rho z*a x*a y*rho zz*a yy-6*
rho xˆ2*rho z*a x*a y*rho yy*a zz-12*rho xˆ2*rho z*a x*a y*
rho yyz*a z-12*rho xˆ2*rho z*a x*a z*rho yz*a yy+12*rho xˆ2*
rho z*a x*a z*a yz*rho yy+12*rho xˆ2*rho z*a z*a y*rho xz*
a yy-12*rho xˆ2*rho z*a z*a y*a xz*rho yy+12*rho x*rho yˆ2*
a x*a y*a xz*rho zz-12*rho x*rho yˆ2*a x*a y*a z*rho xzz-12*
rho x*rho yˆ2*a x*a y*rho xz*a zz+12*rho x*rho yˆ2*a x*a z*
rho xy*a zz-12*rho x*rho yˆ2*a x*a z*a xy*rho zz-6*rho x*
rho yˆ2*a z*a y*a xx*rho zz+6*rho x*rho yˆ2*a z*a y*a zz*
rho xx-12*rho x*rho z*rho y*a xˆ2*a y*rho yzz+12*rho x*rho z*
rho y*a xˆ2*rho yyz*a z-6*rho x*rho z*rho y*a xˆ2*rho zz*a yy
+6*rho x*rho z*rho y*a xˆ2*rho yy*a zz+12*rho x*rho z*rho y*
a x*rho xzz*a yˆ2-12*rho x*rho z*rho y*a x*a zˆ2*rho xyy-6*
rho x*rho z*rho y*a yˆ2*a zz*rho xx-12*rho x*rho z*rho y*a y
ˆ2*a z*rho xxz+6*rho x*rho z*rho y*a yˆ2*a xx*rho zz+12*rho x

*rho z*rho y*a zˆ2*a y*rho xxy+6*rho x*rho z*rho y*a zˆ2*a yy

*rho xx-6*rho x*rho z*rho y*a zˆ2*rho yy*a xx+12*rho x*rho z
ˆ2*a x*a y*a z*rho xyy-12*rho x*rho zˆ2*a x*a y*rho xz*a yy
+12*rho x*rho zˆ2*a x*a y*a xz*rho yy+12*rho x*rho zˆ2*a x*
a z*rho xy*a yy-12*rho x*rho zˆ2*a x*a z*rho yy*a xy-6*rho x*
rho zˆ2*a y*a z*a yy*rho xx+6*rho x*rho zˆ2*a y*a z*rho yy*
a xx+6*rho z*rho yˆ2*a x*a y*a zz*rho xx+12*rho z*rho yˆ2*a x

*a y*a z*rho xxz-6*rho z*rho yˆ2*a x*a y*a xx*rho zz+12*rho z

*rho yˆ2*a x*a z*a yz*rho xx-12*rho z*rho yˆ2*a x*a z*rho yz*
a xx+12*rho z*rho yˆ2*a z*a y*a xx*rho xz-12*rho z*rho yˆ2*
a z*a y*a xz*rho xx+12*rho zˆ2*rho y*a x*a y*rho yz*a xx-12*
rho zˆ2*rho y*a x*a y*a z*rho xxy-12*rho zˆ2*rho y*a x*a y*
a yz*rho xx-6*rho zˆ2*rho y*a x*a z*a yy*rho xx+6*rho zˆ2*
rho y*a x*a z*rho yy*a xx+12*rho zˆ2*rho y*a y*a z*a xy*
rho xx-12*rho zˆ2*rho y*a y*a z*a xx*rho xy+2*rho xˆ3*rho zzz

*a yˆ3-2*rho xˆ3*a zˆ3*rho yyy-2*rho yˆ3*rho zzz*a xˆ3+2*
rho yˆ3*a zˆ3*rho xxx+2*rho zˆ3*rho yyy*a xˆ3-2*rho zˆ3*a y
ˆ3*rho xxx+12*rho*rho x*rho y*a x*a xz*rho zz*a yy-12*rho*
rho x*rho y*a x*rho xz*a yy*a zz-24*rho*rho x*rho y*a y*a z*
a xz*rho xyz+12*rho*rho x*rho y*a y*a z*rho xxy*a zz+12*rho*
rho x*rho y*a y*a z*rho yzz*a xx-12*rho*rho x*rho y*a y*a xy*
rho xz*a zz+12*rho*rho x*rho y*a y*a xy*a xz*rho zz+12*rho*
rho x*rho y*a y*a xz*rho xz*a yz-12*rho*rho x*rho y*a y*a xx*
a yz*rho zz+12*rho*rho x*rho y*a y*a xx*rho yz*a zz+12*rho*
rho x*rho y*a z*a xy*rho xz*a yz-12*rho*rho x*rho y*a z*a xy*
rho yz*a xz-12*rho*rho x*rho y*a z*rho xz*a xz*a yy+12*rho*
rho x*rho y*a z*a yz*a xx*rho yz+12*rho*rho x*rho y*a z*a zz*
a yy*rho xx-12*rho*rho x*rho y*a z*a zz*rho yy*a xx-24*rho*
rho x*rho z*a x*a y*rho xyz*a yz+12*rho*rho x*rho z*a x*a y*
rho xzz*a yy+12*rho*rho x*rho z*a x*a y*rho xyy*a zz-12*rho*
rho x*rho z*a x*a xy*rho yy*a zz+12*rho*rho x*rho z*a x*a xy*
a yz*rho yz-12*rho*rho x*rho z*a x*a xz*rho yz*a yy+12*rho*
rho x*rho z*a x*a xz*a yz*rho yy+12*rho*rho x*rho z*a x*

60

rho xy*a yy*a zz-12*rho*rho x*rho z*a y*a z*rho xxz*a yy-12*
rho*rho x*rho z*a y*a z*rho yyz*a xx+24*rho*rho x*rho z*a y*
a z*rho xyz*a xy+12*rho*rho x*rho z*a y*a xy*rho yz*a xz+12*
rho*rho x*rho z*a y*a xy*rho xy*a zz-12*rho*rho x*rho z*a y*
a yz*rho xy*a xz-12*rho*rho x*rho z*a y*a yz*a xx*rho yz-12*
rho*rho x*rho z*a y*a zz*a yy*rho xx+12*rho*rho x*rho z*a y*
a yy*a xx*rho zz-12*rho*rho x*rho z*a z*a xy*a xz*rho yy-12*
rho*rho x*rho z*a z*a xy*a yz*rho xy+12*rho*rho x*rho z*a z*
rho xy*a xz*a yy-12*rho*rho x*rho z*a z*a xx*rho yz*a yy+12*
rho*rho x*rho z*a z*a xx*a yz*rho yy-12*rho*rho z*rho y*a x*
a y*rho yzz*a xx-12*rho*rho z*rho y*a x*a y*rho xxy*a zz+24*
rho*rho z*rho y*a x*a y*a xz*rho xyz+12*rho*rho z*rho y*a x*
a z*rho yyz*a xx-24*rho*rho z*rho y*a x*a z*rho xyz*a xy+12*
rho*rho z*rho y*a x*a z*rho xxz*a yy-12*rho*rho z*rho y*a x*
a xy*rho xz*a yz-12*rho*rho z*rho y*a x*a xy*rho xy*a zz+12*
rho*rho z*rho y*a x*rho xz*a xz*a yy+12*rho*rho z*rho y*a x*
a yz*rho xy*a xz-12*rho*rho z*rho y*a x*a yy*a xx*rho zz+12*
rho*rho z*rho y*a x*a zz*rho yy*a xx-12*rho*rho z*rho y*a y*
a xy*rho xz*a xz+12*rho*rho z*rho y*a y*a xy*a zz*rho xx-12*
rho*rho z*rho y*a y*rho xx*a yz*a xz-12*rho*rho z*rho y*a y*
a xx*rho xy*a zz+12*rho*rho z*rho y*a y*a xx*rho xz*a yz+12*
rho*rho z*rho y*a z*a xy*rho xy*a xz+12*rho*rho z*rho y*a z*
a xy*a yz*rho xx-12*rho*rho z*rho y*a z*rho xx*a yy*a xz+12*
rho*rho z*rho y*a z*a xx*rho xz*a yy-12*rho*rho z*rho y*a z*
a xx*a yz*rho xy+24*rho x*rho z*rho y*a x*a y*rho xz*a yz-24*
rho x*rho z*rho y*a x*a y*rho yz*a xz+24*rho x*rho z*rho y*
a x*a z*rho yz*a xy-24*rho x*rho z*rho y*a x*a z*a yz*rho xy
+24*rho x*rho z*rho y*a z*a y*rho xy*a xz-24*rho x*rho z*
rho y*a z*a y*a xy*rho xz+12*rho x*rho yˆ2*a zˆ2*a xy*rho xz
+6*rho x*rho zˆ2*a xˆ2*rho yz*a yy+6*rho x*rho zˆ2*a xˆ2*
rho yyz*a y-6*rho x*rho zˆ2*a xˆ2*a yz*rho yy-6*rho x*rho z
ˆ2*a xˆ2*a z*rho yyy-12*rho x*rho zˆ2*a x*rho xyz*a yˆ2+6*
rho x*rho zˆ2*a yˆ2*a yz*rho xx+12*rho x*rho zˆ2*a yˆ2*a xy*
rho xz-6*rho x*rho zˆ2*a yˆ2*a z*rho xxy-12*rho x*rho zˆ2*a y
ˆ2*rho xy*a xz-6*rho x*rho zˆ2*a yˆ2*rho yz*a xx+6*rho yˆ3*
a z*a x*a xx*rho zz-6*rho yˆ3*a z*a x*a zz*rho xx-12*rho z*
rho yˆ2*a xˆ2*rho xz*a yz-6*rho z*rho yˆ2*a xˆ2*a y*rho xzz
-6*rho z*rho yˆ2*a xˆ2*rho xy*a zz+6*rho z*rho yˆ2*a xˆ2*a xy

*rho zz+12*rho z*rho yˆ2*a xˆ2*rho yz*a xz-12*rho z*rho yˆ2*
a xˆ2*a z*rho xyz+6*rho z*rho yˆ2*a x*a zˆ2*rho xxy-6*rho z*
rho yˆ2*a y*a zˆ2*rho xxx-6*rho z*rho yˆ2*a zˆ2*a xy*rho xx
+6*rho z*rho yˆ2*a zˆ2*a xx*rho xy-12*rho zˆ2*rho y*a xˆ2*
rho yz*a xy-6*rho zˆ2*rho y*a xˆ2*a xz*rho yy+6*rho zˆ2*rho y

*a xˆ2*rho xz*a yy+12*rho zˆ2*rho y*a xˆ2*a yz*rho xy+12*
rho zˆ2*rho y*a xˆ2*a y*rho xyz+6*rho zˆ2*rho y*a xˆ2*a z*
rho xyy-6*rho zˆ2*rho y*a x*rho xxz*a yˆ2+6*rho zˆ2*rho y*a y
ˆ2*a z*rho xxx-6*rho zˆ2*rho y*a yˆ2*a xx*rho xz+6*rho zˆ2*
rho y*a yˆ2*a xz*rho xx+6*rho zˆ3*a y*a x*a yy*rho xx-6*rho z
ˆ3*a y*a x*rho yy*a xx+6*rho zˆ3*a yˆ2*a xx*rho xy:

61

B Unskewed Polynomials ȧ′ and ρ̇′

1 adotUnskew := 6*a xˆ3*a yzz*rho yˆ2*rho z+12*a xˆ2*a xy*a yzz*
rho*rho y*rho z+6*a xˆ2*a xz*a yzz*rho*rho yˆ2+6*a xˆ2*a y*
a yyz*rho x*rho zˆ2+6*a xˆ2*a y*a zzz*rho x*rho yˆ2+6*a xˆ2*
a yy*a zzz*rho*rho x*rho y+12*a xˆ2*a yyz*a yz*rho*rho x*
rho z+12*a xˆ2*a yyz*a z*rho x*rho y*rho z+6*a xˆ2*a yyz*a zz

*rho*rho x*rho y+6*a x*a xx*a y*a yyz*rho*rho zˆ2+6*a x*a xx*
a y*a zzz*rho*rho yˆ2+6*a x*a xx*a yy*a zzz*rhoˆ2*rho y+12*
a x*a xx*a yyz*a yz*rhoˆ2*rho z+12*a x*a xx*a yyz*a z*rho*
rho y*rho z+6*a x*a xx*a yyz*a zz*rhoˆ2*rho y+6*a x*a xyˆ2*
a yzz*rhoˆ2*rho z+12*a x*a xy*a xz*a yzz*rhoˆ2*rho y+12*a x*
a xyz*a xz*a yz*rhoˆ2*rho y+24*a x*a xyz*a yz*a z*rho*rho x*
rho y+12*a x*a xyz*a zˆ2*rho x*rho yˆ2+6*a x*a yˆ2*a yzz*
rho xˆ2*rho z+12*a x*a y*a yz*a yzz*rho*rho xˆ2+12*a x*a y*
a yzz*a z*rho xˆ2*rho y+6*a x*a yy*a yzz*a z*rho*rho xˆ2+12*
a xx*a xyz*a yz*a z*rhoˆ2*rho y+6*a xx*a yˆ2*a yzz*rho*rho x*
rho z+12*a xx*a y*a yz*a yzz*rhoˆ2*rho x+12*a xx*a y*a yzz*
a z*rho*rho x*rho y+6*a xx*a yy*a yzz*a z*rhoˆ2*rho x+6*a xxx

*a yzˆ2*a z*rhoˆ2*rho y+6*a xxx*a yz*a zˆ2*rho*rho yˆ2+12*
a xy*a xz*a yyz*a z*rhoˆ2*rho x+6*a xy*a yyz*a zˆ2*rho*rho x
ˆ2+6*a xyz*a yˆ2*a zz*rho*rho xˆ2+6*a xzˆ2*a y*a yyz*rhoˆ2*
rho x+12*a xz*a y*a yyz*a z*rho*rho xˆ2+2*a yˆ3*a zzz*rho x
ˆ3+6*a y*a yyz*a zˆ2*rho xˆ3:

2 rhodotUnskew := 12*a xˆ2*a yz*rho*rho x*rho yyz*rho z+6*a xˆ2*
a yz*rho*rho xzz*rho yˆ2+6*a xˆ2*a yz*rho x*rho yˆ2*rho zz
+12*a xˆ2*a yz*rho xy*rho y*rho zˆ2+6*a xˆ2*a zz*rho*rho x*
rho y*rho yyz+6*a xˆ2*a zz*rho*rho xyy*rho y*rho z+6*a xˆ2*
a zz*rho x*rho y*rho yy*rho z+6*a xˆ2*a zz*rho xz*rho yˆ3+12*
a x*a xx*a yz*rhoˆ2*rho yyz*rho z+12*a x*a xx*a yz*rho*rho y
ˆ2*rho zz+12*a x*a xz*a yz*rhoˆ2*rho xyz*rho y+12*a x*a xz*
a yz*rho*rho x*rho yy*rho z+12*a x*a xz*a yz*rho*rho xy*rho y

*rho z+12*a x*a y*a yz*rho*rho xˆ2*rho yzz+12*a x*a y*a yz*
rho*rho xxy*rho zˆ2+24*a x*a y*a yz*rho x*rho xz*rho y*rho z
+12*a x*a y*a z*rho xˆ2*rho y*rho yzz+12*a x*a y*a zz*rho*
rho x*rho xyy*rho z+6*a x*a y*a zz*rho*rho xxz*rho yˆ2+12*a x

*a y*a zz*rho xˆ2*rho y*rho yz+6*a x*a y*a zz*rho xx*rho yˆ2*
rho z+6*a x*a yy*a zz*rhoˆ2*rho xxz*rho y+12*a x*a yy*a zz*
rho*rho x*rho xy*rho z+6*a x*a yzˆ2*rhoˆ2*rho xxy*rho z+12*
a x*a yzˆ2*rho*rho x*rho xz*rho y+24*a x*a yz*a z*rho*rho x*
rho xyz*rho y+12*a x*a yz*a z*rho xˆ2*rho yy*rho z+12*a x*
a yz*a z*rho xx*rho yˆ2*rho z+6*a x*a zˆ2*rho xˆ2*rho yyy*
rho z+12*a x*a zˆ2*rho x*rho xyz*rho yˆ2+6*a x*a zˆ2*rho xxy*
rho yˆ2*rho z+6*a x*a z*a zz*rho*rho xˆ2*rho yyy+6*a x*a z*
a zz*rho*rho xxy*rho yˆ2+12*a x*a z*a zz*rho x*rho xy*rho y
ˆ2+12*a xx*a y*a yz*rhoˆ2*rho x*rho yzz+12*a xx*a y*a yz*rho*
rho xy*rho zˆ2+12*a xx*a y*a yz*rho*rho xz*rho y*rho z+12*

62

a xx*a yz*a z*rhoˆ2*rho xyz*rho y+12*a xx*a yz*a z*rho*rho x*
rho y*rho yz+12*a xx*a yz*a z*rho*rho x*rho yy*rho z+12*a xz*
a y*a yz*rhoˆ2*rho xxy*rho z+12*a xz*a y*a yz*rho*rho xˆ2*
rho yz+12*a xz*a y*a yz*rho*rho x*rho xz*rho y+12*a xz*a yz*
a z*rhoˆ2*rho x*rho xyy+12*a xz*a yz*a z*rho*rho xx*rho y
ˆ2+12*a yˆ2*a yz*rho*rho x*rho xxz*rho z+6*a yˆ2*a yz*rho x
ˆ3*rho zz+6*a yˆ2*a yz*rho x*rho xx*rho zˆ2+6*a yˆ2*a zz*rho*
rho xˆ2*rho xyz+6*a yˆ2*a zz*rho*rho xxx*rho y*rho z+6*a yˆ2*
a zz*rho xˆ2*rho xy*rho z+6*a yˆ2*a zz*rho xˆ2*rho xz*rho y
+6*a y*a yy*a zz*rhoˆ2*rho xxx*rho z+12*a y*a yy*a zz*rho*
rho xˆ2*rho xz+6*a y*a yzˆ2*rhoˆ2*rho x*rho xxz+12*a y*a yz
ˆ2*rho*rho x*rho xx*rho z+6*a y*a zˆ2*rho xˆ3*rho yyz+12*a y*
a zˆ2*rho x*rho xxy*rho y*rho z+6*a y*a zˆ2*rho x*rho xxz*
rho yˆ2+12*a y*a z*a zz*rho*rho x*rho xxy*rho y+6*a y*a z*
a zz*rho xˆ3*rho yy+6*a y*a z*a zz*rho x*rho xx*rho yˆ2+6*
a yy*a z*a zz*rhoˆ2*rho x*rho xxy+12*a yy*a z*a zz*rho*rho x*
rho xx*rho y+6*a yzˆ2*a z*rhoˆ2*rho xxx*rho y+12*a yzˆ2*a z*
rho*rho xˆ2*rho xy+6*a yz*a zˆ2*rho*rho xˆ2*rho xyy+6*a yz*
a zˆ2*rho*rho xxx*rho yˆ2+12*a yz*a zˆ2*rho xˆ2*rho xy*rho y
+6*a zˆ3*rho xˆ2*rho xyy*rho y+2*a zˆ3*rho xxx*rho yˆ3:

63

