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Abstract 

Background: The omnipresence of food cues in our environment stimulates overeating and 

contributes to the obesity epidemic. The neural response when viewing these food cues could 

elucidate the mechanism through which they stimulate overconsumption. Heterogeneity 

between studies conducted so far may have impeded the detection of small effects. These 

limitations may be overcome by data pooling on the subject-level (i.e., mega-analysis).  

Objectives: The objective was to establish a mega-analysis of food viewing. We aim to 

investigate brain response to food versus non-food viewing (F>NF) and high caloric versus 

low-caloric food viewing (HC>LC) accounting for gender, age, BMI and hunger state. 

Methods: Studies were searched using the database PubMed. Eligibility criteria included: the 

publication in a peer-reviewed journal, in English, between 2005 and 2021 reporting fMRI 

brain response using a passive food viewing paradigm.  

Results: Data from 1030 individuals (15 studies) were included. Data harmonisation 

included, reslicing, realignment, masking and outlier exclusion. The main analyses were two 

multiple regressions investigating brain activation in response F>NF and HC>LC. Both 

analyses suffered from a large number of missing voxels. For F>NF brain activation in insula 

was found. Upon food cues, females compared to males demonstrated higher activations in 

the left inferior temporal gyrus. Hungrier participants showed increased brain response for 

F>NF in the left calcarine and cerebellum as well as the right inferior temporal gyrus and 

hippocampus. For HC>LC brain activation in left hippocampus, amygdala, middle frontal 

gyrus and the hypothalamus was found.   

Conclusion: Image quality was found to be suboptimal. Improvement opportunities for fMRI 

mega-analysis are discussed.   

 Keywords: fMRI, data pooling, food cue exposure, data harmonisation 
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Mega-Analysis on The Relationship Between Gender, Age, BMI and the Neural Correlates of 

Food Viewing 

Obesity is one of the most prevalent health threats and has been linked to a number 

of chronic diseases, including type two diabetes, coronary artery disease and cancer (Mitchell 

et al., 2011). A higher energy intake than expenditure is an important driver of obesity. This 

suggests that obesity is preventable in most cases. However, the omnipresence of food cues in 

the environment stimulate overeating and consequential energy imbalances in the body 

(Lawrence et al., 2012). Food cues stimulate the quantity of food intake and influence the 

types of foods consumed. The response to food cues is primarily guided by the visual system. 

Eye-tracking studies have demonstrated that a longer gaze duration and higher number of 

fixations are predictive of food choice. Specifically, food cues high in caloric density are 

looked upon longer and more frequently (Manippa et al., 2018). Similarly, neuroimaging 

studies demonstrated that food images evoke different brain responses than non-food images 

(e.g. Burger & Berner, 2014; Dagher, 2012; Pursey et al., 2014; van der Laan et al., 2011). 

The neural signature could elucidate the mechanisms through which food cues stimulate 

overconsumption. Heterogeneity between studies conducted so far may and small sample 

sizes have impeded the detection of small effects. These limitations may be overcome by data 

pooling on the subject-level (i.e., mega-analysis). The paper at hand, aims at establishing a 

fMRI mega-analysis to identify the neural signature of food cue exposure.   

Neural Correlates of Food Viewing 

Functional magnetic resonance imaging (fMRI) studies have demonstrated the 

involvement of different brain regions in response to food cues. A common fMRI paradigm to 

measure food cue reactivity involves participants’ passive viewing of food images and non-

food images. Across studies, the appetitive brain network is most consistently activated upon 

food cues. This includes the amygdala and hippocampus, the orbitofrontal cortex and 
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ventromedial prefrontal cortex, the striatum and the insula (Dagher, 2012; Neseliler et al., 

2017; Smeets et al., 2012). On the one hand, this network is regulated by the dorsolateral 

prefrontal cortex and the anterior cingulate gyrus, regions associated with self-regulation. On 

the other hand, the hypothalamus and ascending dopaminergic projections homeostatic 

signals regulate the network (Neseliler et al., 2017).  

Studies have shown that the brain response to food cues is modulated by different trait 

and state factors. The three most relevant trait factors are gender, age and Body Mass Index 

(BMI), while hunger constitutes an important state factor (Smeets et al., 2012).  

First, gender modulates the brain response to food cues. In a systematic review Chao 

et al. (2017) suggest that women demonstrate higher neural activation in the limbic system as 

well as the frontal and cortical system when viewing food cues compared to men. 

Anatomically, both the limbic and the frontal cortex are larger in females compared to males 

(Zaidi, 2010). Functionally these regions are involved in executive functioning, emotion 

regulation and reward processing. This suggests that females compared to males respond to 

food cues with increased cognitive and emotional control. Gender difference to food cue 

reactivity are also driven by biochemical signals (Zaidi, 2010). During the luteal phase 

compared to the follicular phase of the menstrual cycle, females eat more (Davidsen et al., 

2007) and demonstrate altered brain activation upon food cues in reward related brain regions 

(Frank et al., 2010; Van Vugt, 2010). While most studies report increase food cue reactivity in 

females (Chao et al., 2017), few studies (Geliebter et al., 2013) reported increased reactivity 

in the supplementary motor cortex in males compared to females. These studies include 

people with higher BMIs and it has been suggested that as BMI increases, gender differences 

in brain response to food cues are attenuated (Chao et al., 2017).  
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Second, age modulates the brain response to food cues: van Meer et al. (2016) showed 

that children compared to adults demonstrated different brain responses to food cues. 

Compared to adults, children viewing unhealthy compared to healthy foods demonstrate 

stronger activation in the left precentral gyrus. This suggests a higher motivational or motor 

response to unhealthy foods in younger people. In a food choice task, younger children, and 

children who were becoming overweight showed less brain activation in the dorsolateral 

prefrontal cortex, suggesting decreased self-control (van Meer et al., 2019). However in a 

meta-analysis, differences between children and adults upon food cue exposure diminished, 

possibly due to high between study variability (van Meer et al., 2015). Moreover, little is 

known about elderly; one study indicates that as age increases (from 20 to 53), the activation 

of the dorsolateral prefrontal cortex decreases in response to food versus non-food images 

(Cheah et al., 2014). This suggests a reduction in self-control with age. However, Charbonnier 

et al. (2018) found no differences between elderly and adults in response to food cues. 

Third, BMI modulates the brain response to food cues: in a meta-analysis, Brooks et 

al. (2013) found increased activation in the left dorsomedial prefrontal cortex, the right 

hippocampal and precentral gyrus as well as the right anterior cingulate cortex in people with 

higher compared to lower BMI in response to food cues. In addition, people with higher BMI 

demonstrated decreased brain activity in left dorsolateral prefrontal cortex and the left insular. 

For high caloric foods the reactivity is further amplified (Pursey et al., 2014). The increase in 

activation in reward related brain areas (i.e. increased positive appraisal)  together with the 

decrease in activation in control related brain areas upon food cues in individuals with higher 

BMIs suggest a neural mechanisms through which food cues stimulate overconsumption 

(Neseliler et al., 2017). This effect has been shown to be independent of age (Samara et al., 

2018; van Meer et al., 2016) and can be amplified by increased levels of hunger (Pursey et al., 

2014). Importantly, intervention studies have shown that higher activations in reward related 
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brain regions and lower activations in control related brain regions for high caloric versus low 

caloric food images predict lower weight loss success (e.g., Hermann et al., 2019; Murdaugh 

et al., 2012; Yokum et al., 2014). 

Fourth, hunger state modulates the brain response to food cues: in a meta-analysis, van 

der Laan et al. (2011) demonstrated greater activation in the right parahippocampal gyrus 

extending to the amygdala as well as the left lateral orbitofrontal cortex in fasted compared to 

satiated subjects. This may reflect higher desirability and expected pleasantness of food in 

hungry compared to satiated subjects. In addition, Charbonnier et al. (2018) demonstrated 

increased activation in the dorsomedial and dorsolateral prefrontal cortex upon viewing high 

caloric foods in hungry compared to satiated participants indicating higher valuation of food 

and increased inhibitory response, respectively.  

However, low power in fMRI studies, large flexibility in analyses protocols (Carp, 

2012) and a lack of replication (Button et al., 2013; Poldrack et al., 2017) affects nutritional 

neuroscience just as other areas of neuroscience (Smeets et al., 2019). For example, in a meta-

analysis of children’s and adolescents’ brain response to food cues, van Meer et al. (2015) 

suggest that low concurrence in some clusters is partly due to large between study 

variability. Moreover, in a recent reliability study, Yokum et al. (2021) investigated test-retest 

reliability of the teams’ previously published longitudinal studies on brain responses to food 

cues. The overall test-retest reliability was poor. While some brain regions demonstrated good 

test-retest reliability within studies, this did not replicate between studies.  

Variability between studies ranges from different experimental protocols (Smeets et 

al., 2012), scanner type and strength (Friedman et al., 2006), subject sample composition 

(D’Esposito et al., 2003), pre-processing data and statistical analysis implemented (Strother et 

al., 2004) as well as impreciseness in labelling (Thirion et al., 2007). Thus, a key factor to 

achieve a better understanding of the neural processing of food cues is fostering comparability 
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between studies (Smeets et al., 2019). This requires higher standardization of neuroimaging 

protocols and data analysis which in turn facilitates data pooling. Data pooling refers to the 

combination of multiple studies such that one can more easily distinguish variation arising 

from the measure of interest from that arising of noise. Data pooling leads to increased power, 

higher generalizability through more representative samples and potentially new insights 

(Costafreda, 2009; Smeets et al., 2012). Yet, there are different ways to pool fMRI data.  

Data Pooling Techniques 

In neuroimaging, data pooling can be done at two levels: first, meta-analyses pool 

effect sizes across different studies in a field; Second, mega-analyses pool across subjects of 

different studies in a field (Costafreda, 2009).  

 First, the most commonly used pooling methods are fMRI meta-analyses, of which 

coordinate based meta-analyses are most often employed (Costafreda, 2009). This technique 

compares the published peak coordinates of activation across different studies employing a 

similar paradigm. Hence, the resulting coordinates are based on the group means of studies 

included (Wager et al., 2007). This technique disregards the number of subjects, statistical 

information including variance and significance as well as the shape and size of significant 

clusters. Moreover, by comparing group means, statistical power is not improved (Costafreda, 

2009). Matthews et al. (2006) demonstrated that small variation of a visual cue can already 

result in significant differences in visual cortical blood-oxygen-level-dependent (BOLD) 

response. This emphasises the likelihood of poor convergence across peak activations using 

coordinate-based meta-analyses.  

Second, traditional fMRI mega-analyses compare the raw fMRI time series of 

individuals across different studies in a field. Raw time series include hundreds of images for 

each subject. The unprocessed images of subjects across studies are combined and analysed 

together. This increases statistical power. While this analysis takes within subject variability 
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into account, the data load is enormous. Other challenges include the reluctance of authors to 

share their datasets, the quantity of data and platforms available for sharing these files, as well 

as the complexity of data processing (Costafreda, 2009, 2011). An intermediate pooling 

technique are designed mega-analyses (sometimes referred to as multi-site studies; 

Costafreda, 2009): rather than comparing entire fMRI time series, this technique compares the 

subject-level contrast images and/or corresponding statistical maps (t-maps) across multiple 

studies. In fMRI research a subject-level contrast image is a subject’s average brain response 

to one condition versus another condition (e.g., a subject’s average brain response to food 

versus non-food images). By subtracting brain response to one type of visual stimuli from 

another, only the difference in brain response is preserved. The corresponding t-map entails 

the information about within subject variability for that contrast. By taking the average brain 

responses of each participant into account, statistical power is increased, and data load is 

reduced which in turn attenuates data basing and processing. Moreover, authors are no longer 

required to share their full datasets, which may be more appealing and improve overall data 

availability (Costafreda, 2009). 

Despite these advantages, mega-analyses are rarely used in practice. There are 

endeavours to use mega-analyses for resting state data in clinical groups (see the ENIGMA 

consortium; (Adhikari et al., 2019; Thompson et al., 2014). Yet, mega-analyses for task-based 

fMRI data and non-clinical groups are scarce. Resting state fMRI is used to characterise 

specialisation and segregation of brain regions or networks and aims to enhance 

understanding in the brain’s organisation and functionality. Task-based fMRI  is adopted to 

explore the involvement of specific brain regions during a cognitive task (Zhang et al., 2016). 

To the authors knowledge, mega-analyses for fMRI studies employing a food viewing 

paradigm have not been conducted until now. Yet, such endeavour may substantially improve 

knowledge about brain responses to food cues and subsequent eating behaviour. 
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Objectives 

In the present paper, we aim to perform a mega-analysis on brain response to food 

viewing. Specifically, we aim to establish a sensible method to pool subject-level data across 

studies in nutritional neuroscience. For this, we will explore differences in brain response to 

food images versus non-food images (F>NF) and high caloric versus low caloric food images 

(HC>LC). We expect differences in brain response for F>NF and HC>LC. Further, we are 

interested in exploring the modulating role of gender, age, BMI and hunger state for both 

contrasts. We expect gender, age, BMI and hunger state to modulate brain response to F>NF 

and HC>LC.  

Methods  

Registration 

 The mega-analysis was pre-registered (https://osf.io/ctdqh). An updated study protocol 

can be found on the Open Science Framework (https://osf.io/eh795/). 

Data Sources and Searches 

Studies were searched in the PubMed database (https://pubmed.ncbi.nlm.nih.gov/) 

using the following keyword search (all fields): (brain OR neural) AND (food OR nutrition) 

AND (pictures OR images). Additional studies were searched by examining references of 

relevant articles.  

Study Selection 

The eligibility criteria for studies included the following: first, studies had to be 

published in a peer reviewed journal. Second, studies were published in or after 2005. Third, 

studies involved a visual presentation of pictures of food during fMRI. More specifically, 

only studies in which participants passively view food pictures were eligible. Fourth, PET, 

MEG, and fNIR food viewing studies were not eligible for this analysis. Fifth, studies had to 

include healthy subjects. Based on these criteria we identified 144 eligible studies. The total 
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number of studies and subjects included relied on the willingness of authors to contribute their 

data to this project in the short time frame (two months) given. Figure 1 provides a PRISMA 

flow diagram of the search and selection criteria.   
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a Note. Other reasons include author deceased, loved one of author deceased and maternity  
b Note. Unfit data includes the following: group contrasts, rather than subject-level contrasts, ROI-based contrasts, rather than 
whole brain analysis, t-maps only, missing contrast images; beta-images only, missing t-maps.  
 
Figure 1. PRISMA Flow Chart (adapted from Page et al., 2021) 
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Data Extraction  

Authors of the identified studies were contacted and asked to collaborate in this 

project. After two weeks a reminder was sent to those who did not respond to the first request. 

The authors of approximately half of the studies (n = 63)1 did not respond, partly because 

their current email address could not be retrieved (n = 19). Other authors could not retrieve 

the data of requested studies (n = 8), or did not have the time to collaborate in this project (n = 

39).  

A total of 36 corresponding authors (51 studies) declared their willingness to share 

their data. These authors were asked to upload participant-level contrast images and t-

maps (i.e., F>NF, and/or HC>LC) to the NeuroVault platform (https://neurovault.org/). In 

addition, they were asked to indicate relevant characteristics of each participant including 

gender, age, BMI and hunger state in NeuroVault. NeuroVault offers the opportunity to 

specify such subject-level metadata in a standardized manner, which facilitates the subsequent 

data analyses.  

Overall, data of 28 studies was received. We had to exclude 13 datasets for this 

analysis because the data was unfit. Unfit data includes group images opposed to subject-level 

images, region-of-interest images opposed to whole-brain images, t-maps only opposed to 

contrast images and t-maps, beta-images (i.e., this refers to the averaged subject-level image 

for one condition) opposed to contrast images. Of the remaining 15 studies, 13 studies 

included the contrast FNF (amounting to 621 participants) and 8 studies included the contrast 

HCLC (amounting to 684 participants). An overview of the characteristics of the studies 

included is summarized in Table 1.  It should be emphasised that the studies differed in terms 

of scanner, site, experimental design and procedure, pre-processing software, pre-processing 

settings. 

 
1 It should be noted that the number of studies does not correspond to the number of authors, because some 
authors published multiple eligible studies.  
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Table 1 
Studies included in the Mega-Analysis (N – number of participants, F -females, SD – Standard deviation, HS - hunger state, numbers indicate hours since last meal) 
Study N  

(F) 
Age 
(SD) 

BMI 
(SD) 

HS 
(SD) 

Design Food Images Nonfood Images Contrasts 

Allen et al., 2016 42  
(30F) 

15,79 
(1,87) 

31,45 
(13,38) 

3 Event High Caloric and Low 
Caloric Foods 

Nonfood Objects 
Visually Matched 

Both 

Bach et al., 2021 46  
(29F) 

41,33 
(11,78) 

28,88 
(8,5) 

6 Block High Caloric and Low 
Caloric Foods 

Scrambled Food 
Images 

Food Images > 
Nonfood Images 

Charbonnier et al., 
2018 

122 
(63F) 

33,52 
(23,08) 

20,74 
(1,48) 

10 Block High Caloric and Low 
Caloric Foods 

Office Supplies Both 

Chen et al., 2017 36  
(36F) 

19,64 
(1,31) 

23,87 
(3,09) 

2 Event Palatable Foods Nonfood Scenery Food Images > 
Nonfood Images 

Dorton et al., 2018 40  
(16 F) 

21,84 
(1,89) 

27,99 
(6,58) 

10 Block High Caloric and Low 
Caloric Foods 

Office Supplies Both 

English et al., 2017 47  
(27F) 

23,56 
(2,99) 

22,1 
(2,24) 

1 Block High Caloric and Low 
Caloric Foods 

Furniture Both 

García-García et al., 
2020 

58  
(58F) 

26,33 
(3,69) 

25,63 
(5,84) 

2,16 
(2,45) 

Block Palatable Foods Objects Food Images > 
Nonfood Images 

Hermann et al., 2019 29  
(26F) 

47,59 
(12,64) 

36,88 
(5,5) 

4 Block High Caloric and Low 
Caloric Foods 

Neutral Objects Both 

Horster et al., 2020 27  
(24F) 

8,86  
(1,2) 

16,66 
(2,56) 

2 Block Food On Plates Nonfood Objects on 
Plates 

Food Images > 
Nonfood Images 

Karra et al., 2013 24  
(0F) 

22,54 
(3,02) 

21,96 
(1,56) 

12 Block High Caloric and Low 
Caloric Foods 

Household And Office 
Items 

Botha 
 

Luo et al., 2019 111 
(68F) 

8,6  
(0,98) 

19,11 
(4,21) 

10 Block Palatable Foods Household Objects and 
Supplies 

Food Images > 
Nonfood Images 

Nolde et al., 2019 23  
(0F) 

24,3 
(2,62) 

23,45 
(1,34) 

28 Event Food Images Rated by 
Participant 

Nonfood Items Botha 
 

Smeets et al., 2013 30  
(30F) 

22,1 
(2,02) 

23,56 
(1,97) 

3 Block Palatable Foods Office Supplies Food Images > 
Nonfood Images 

van Meer et al., 2016 59  
(39F) 

28,71 
(16,77) 

21,87 
(5,03) 

9,58 
(3,94) 

Block High Caloric and Low 
Caloric Foods 

None High Caloric Food Images > 
Low Caloric Food Images 

van Meer et al., 2021 
(in prep.) 

350 
(190F) 

29,71 
(14,24) 

23,57 
(5,77) 

3,82 
(2,18) 

Block High Caloric and Low 
Caloric Foods 

None High Caloric Food Images > 
Low Caloric Food Images 

Total 1044 
(636F) 

23,65 
(15,98) 

24,96 
(7,11) 

7,61 
(7,08) 

    

a Note: For the contrast Food Images > Nonfood Images, we took the contrast High Caloric Food Images > Nonfood Images
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Data Synthesis 

 A major challenge for mega-analyses is data synthesis. As mentioned earlier, mega-

analyses are used to pool across resting state fMRI images in clinical groups (compare 

ENIGMA consortium; Adhikari et al., 2019; Thompson et al., 2014), but are rarely used for 

task-based fMRI. Overall, the field of mega-analysis is new and to the authors’ knowledge 

guidelines about methods do not exist. 

Preliminary considerations about suitable methods. Given the data to be collected, 

the most suitable model seemed to be a mixed effects model. To our mind such model would 

allow for taking within and between subject, as well as within study and between study 

variability into account. This initial idea led us to consider 3dMEMA (Chen et al., 2012) a 

mixed analysis meta-analysis R package for fMRI data analysis in AFNI (Cox, 1996). After 

correspondence with developer, it became clear that the package could only take within and 

between subject variability into account, but not variability underlying study differences. The 

opposite was the case for 3dLME (Chen et al., 2013a), this package would take between and 

within study variability into account but omit variability underlying subject differences. 

Besides the limitations of both packages, we were not familiar with the software and were 

concerned about lacking guidelines for data harmonisation.  

A recent publication of Zunhammer et al. (2021) investigating neural systems 

underlying placebo analgesia from provides a GitHub (available at: 

https://github.com/mzunhammer/PlaceboImagingMetaAnalysis) in which the authors 

document their approach to subject-level data pooling. Opposed to resting state fMRI mega-

analysis which commonly uses subject-level beta images (Adhikari et al., 2019), Zunhammer 

et al. (2021) used and created contrast images (e.g., placebo versus control) for their whole-

brain analysis. Besides the similarity in types of images used, the procedure provided us with 

a guiding script in more familiar programming language and software (i.e., Matlab 18b and 
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SPM12). Consequently, we adopted and adapted Zunhammer’s procedure, one of many 

possible procedures for this type of analysis.  

Preliminary considerations about data inclusion. Before data synthesis, we had to 

make several decisions about the final inclusion criteria of the data received. First, for studies 

with repeated measures, we included only one scan per participant. That is, for intervention 

studies (e.g., batik surgery or diet) we included the pre-scan, for studies where participants’ 

hunger state was altered, we included participants in their fasted state, for studies in which 

participants received water or glucose before the scan, we included the water condition. One 

reason for this choice was that the inclusion of multiple images per participant would violate 

the assumption of independence of observations. The other reason was that SPM12 has 

difficulties handling more complex models (Chen et al., 2013) (here: a model that would 

accommodate a hierarchical grouping factor, several between subject factors and in cases of 

some data within subject factors). Second, for the contrast F>NF we preferably took the 

contrast of averaged food images (high caloric and low caloric) compared to non-food 

images. However, in the case of two studies, this contrast was not available, and we included 

the contrast high caloric food images > non-food images, rather than low caloric food images 

> non-food images (see Table 1). Third, our dataset contained two studies (Charbonnier et al., 

2018; van Meer, 2021 in prep.), in which data was collected at different sites. We did not 

account for scanner site to avoid overfitting of the model (see model specification study 

dummies). While we might miss out on accounting for a potential confound (i.e., scanner 

site), these studies used the same food viewing paradigm, protocol and pre-processing 

procedures. We aimed at providing a parsimonious model preserving enough degrees of 

freedom to avoid overfitting (Babyak, 2004; Hawkins, 2004).   

Pre-processing and Harmonizing Data. Each study pre-processed their images 

differently. To harmonise the data, we followed and adapted the pre-processing procedures 
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from Zunhammer et al. (2021). Besides the difference in subject matter, a major difference 

was that we used only contrast images, while Zunhammer et al. (2021) used a combination of 

beta images and contrast images. As mentioned earlier, contrast images are a subject’s 

averaged brain response to one condition subtracted by another, whereas beta images are a 

subject’s averaged brain response to one condition. Opposed to Zunhammer et al (2021), we 

did not have to define new contrasts using the beta images for different conditions in our 

script (available at: https://osf.io/g54d7/). We combined the images as follows: first, we 

imported the data and the relevant metadata. Second, we realigned, resampled and masked the 

images. Specifically, we realigned the images to MNI space, resampled them at 2x2x2 voxels 

and masked them using SPM12’s template brain mask available in the FieldMap toolbox 

(Appendix A). Third we vectorised all images to determine outliers and mask missing voxels. 

An overview of the 90% coverage for all studies combined as well as each individual study 

can be found in Appendix B1 and B2, respectively. Appendix C demonstrates the proportion 

of missing brain voxels of each study. Most studies have about 17% of missing voxels. 

Subjects with a total coverage of two standard deviations below the average coverage were 

excluded from the analysis. The total number of subjects excluded was 43. This corresponds 

to a total number of subjects of 594 for the contrast F>NF and 668 for the contrast HC>LC.  

Food Viewing Mega-Analysis   

We ran two multiple regression analyses of the entire brain in SPM12. For this, we 

analysed subject-level contrast images for F>NF (n=594) and HC>LC (n=668) across 

studies. Consequently, our outcome variables were the difference in brain response to F>NF 

and HC>LC.  

The following covariates of interest were included into the analysis: gender, age, BMI 

and hunger state. The latter three were mean centred across studies. We included dummy 

nuisance variables for all studies to control for differences between studies. Hence, for the 
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analysis of F>NF, we include 13 studies, amounting to 12 dummy variables. For the analysis 

HC>LC, we include 8 studies, amounting to 7 dummy variables.  

Initially we planned to correct for multiple comparisons using p=.05 family wise error 

(FWE). We lowered this threshold for most reported activations, because the FWE correction 

did not yield any significant activations. Missing voxels were masked out from the analyses 

(SPM12 default).   

Coordinates were reported in MNI space and matched to brain regions using the 

Automated Anatomic Labelling map (Tzourio-Mazoyer et al., 2002) in MRIcron (Rorden & 

Brett, 2000) and NeuroSynth (Yarkoni, et al., 2011).  

Results 

Image quality 

The included studies aimed at covering the entire brain. Image alignment was 

satisfactory for all studies, yet brain coverage differed between studies (Appendix B2). The 

missing voxels may be explained by between-study differences in field of view and signal 

dropout artefacts (Zunhammer et al., 2021). For the both main analyses missing voxels were 

excluded on a subject level, that is a voxel was removed from an analysis, if it was missing in 

at least one subject of that analysis (SPM12 default). Subsequently, the large number of 

subjects, resulted in a large number of missing voxels that were excluded from the analyses 

(see Appendix D). This may have led to an increase in Type II error (Vaden et al., 2012).  

Main Analysis 

 Food Versus Nonfood Viewing. The results of the multiple regression for the 

contrast F>NF are summarized in Table 2. We explored different models with the inclusion of 

different combinations of the covariates gender, age, BMI and hunger state. The models 

covered 70125 voxels. We found significant peak activations in the anterior cingulate cortex 

[-12 -6 28] for food compared to non-food images (z=3.36, p<.001) in almost all models 
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tested (Table 2). The model with the dummy variables and the covariates gender and BMI 

yielded a significant peak activation at the superior temporal gyrus/ insula ([14 4 26], z =3.35, 

p<.001) for the contrast F>NF. The model with the dummy variables and BMI only yielded 

additional activations in the right caudate ([14 4 26], z =3.35, p<.001), the right rolandic 

operculum ([42-20 26], z =3.29, p<.001; [40 -22 28], z=3.18, p<.001) and the left insula ([-40 

6 8], z=3.16, p<.001; [-36 -16 22], z=3.12, p<.001).  

Of the covariates tested, only gender and BMI modulated brain response to F>NF in 

some brain regions. In females, brain response to F>NF was stronger in the opercular part of 

the left inferior frontal gyrus ([-40 6 26], z=4.09, p<.001), the left superior frontal gyrus and 

the precentral gyrus ([-6 -24 42], z=3.48, p<.001); the precentral gyrus ([54 4 32], z=3.31, 

p<.001), the right middle temporal gyrus ([52 -34 0], z=3.20,  p<.001) and the right 

parahippocampal gyrus ([30 -36 -8], z=3.13, p<.001) compared to males (see Table 3). Males 

on the other hand demonstrated on average higher activations for F>NF in the left middle 

temporal gyrus ([-34 -48 6] z=3.77, p<.001; [-42 -58 6] z=3.24, p<.001) the anterior cingulate 

and paracingulate gyri ([12 50 12], z=3.23, p<.001) as well as the right caudate ([4 20 12] 

z=3.17, p<.001) compared to females (Table 3). 

 With respect to BMI, subjects with larger BMIs were more likely to demonstrate 

higher activations for F>NF in middle temporal gyrus([-36 -42 6], kE=109, p<.001) the right 

and left middle frontal gyri ([34 40 4], kE=176, p<.001); ([-28 42 28], kE=28, p<.001), the left 

orbital part of the inferior frontal gyrus ([-34 22 -14], kE=294, p<.001), the left hippocampus 

([-22 -42 2], kE=100, p<.001) as well as the right and left thalamus ([26 -24 6], kE=111, 

p<.001); ([-12 -16 14], kE=42, p<.001) (Table 4). 
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Table 2.  
Brain activation for food versus to non-food viewing 
Contrast Z MNI coordinates Associated Brain Region 
 Model  x y z  
Food > Non-food      
 Dummies - - - - - 
 Dummies + gender - - - - - 
 Dummies + age - - - - - 
 Dummies + BMI 4.03* 

3.43* 
3.29* 
3.18* 
3.16* 
3.12* 

-10 
14 
42 
40 
-40 
-36 

-8 
2 

-20 
-22 
6 

-16 

26 
26 
26 
28 
8 
22 

Anterior Cingulate Cortex L 
Caudate R 
Rolandic Operculum R 
Rolandic Operculum R 
Insula L  
Insula L  

 Dummies + gender + age - - - - - 
 Dummies + gender + BMI 4.00* 

3.35* 
-12 
14 

-6 
4 

28 
26 

Anterior Cingulate Cortex L 
Superior Temporal Gyrus/Insula 

 Dummies + age + BMI 3.68* -10 -6 28 Anterior Cingulate Cortex L 
 Dummies + gender + age + BMI 3.68* -12 -6 28 Anterior Cingulate Cortex L 
 Dummies + gender + age + BMI + HS 3.10* 

 
-12 

 
-6 28 Anterior Cingulate Cortex L 

Note: * indicates p<.001 (uncorrected). 
 
Table 3.  
Gender differences for food versus non-food viewing.  
 Z MNI coordinates Associated Brain Region 
  x y z  
Female>Male 4.09* -40  6 26 Inferior Frontal Gyrus, Opercular Part L 
 3.52* 48  30 16 Inferior Frontal Gyrus, Triangular Part R 
 3.48* -6  -24 42 Superior Frontal Gyrus, Medial L 
 3.31* 54  4 32 Precentral Gyrus R 
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 3.20* 52  -34 0 Middle Temporal Gyrus R 
 3.13* 30  -36 -8 Parahipoocampal Gyrus R 
Male>Female 3.77* -34  -48 6 Middle Temporal Gyrus L 
 3.24* -42 -58 6 Middle Temporal Gyrus L 
 3.23* 12 50 12 Anterior Cingulate and Paracingulate Gyri R 
 3.17* 4 20 12 Caudate R 
 3.15* -38  -48 26 Middle Temporal Gyrus L 
Note. The associated brain regions are reported for the full model (including all covariates), models with fewer covariates demonstrated similar 
brain regions. * indicates p<.001 (uncorrected). 
 
 
Table 4.  
Association of BMI with food versus non-food images.  
 kE MNI coordinates Associated Brain Region 
  x y z  
BMI 109* -36 -42 6 Middle Temporal Gyrus L 
 28* -28 42 28 Middle Frontal Gyrus L 
 294* -34 22 -14 Inferior Frontal Gyrus, Opercular Part L 
 176* 34 40 4 Middle Frontal Gyrus R 
 42* -12 -16 14 Thalamus L 
 100* -22 -42 2 Hippocampus L 
 111* 26 -24 6 Thalamus R 
Note. The associated brain regions are reported for the full model (including all covariates), models with fewer covariates demonstrated similar 
brain regions.  * indicates p<.005 (FWE). 
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High Caloric Versus Low Caloric Food Viewing. The analysis of HC>LC analyses 

comprised 69877 voxels. While in the analyses of the contrast F>NF, leaving out covariates 

led to the significant activation of additional, this was not the case for the contrast HC>LC. 

Overall, our models did not yield differences in activations upon viewing high caloric 

compared to low caloric food images.  

We found significant differences in peak activations between males and females. Upon 

high caloric food images, we found higher brain activations in the left caudate ([-4 22 12], 

z=3.38, p <.001), the left middle cingulate gyrus ([-50 -46 4], z=3.53, p <.001) and the right 

caudate ([8 14 14], z=3.19, p <.001) in females compared to males. On the other hand, males 

demonstrated increased activations in the right inferior frontal gyrus ([28 18 18], z=3.71, p 

<.001), the left middle temporal gyrus ([-50 -46 4], z=3.53, p <.001), the left Rolandic 

operculum ([-46 -18 26], z=3.47, p <.001) as well as the triangulate part of the left inferior 

frontal gyrus ([-44 38 0], z=3.38, p <.001) compared to females (Table 5).  
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Table 5.  
Brain activation for high caloric versus low caloric food viewing for the full model including all covariates.  
Contrast Z MNI coordinates Associated Brain Region 

  x y z  
HC>LC - - - - - 
Female>Male 3.38* -4 22 12 Corpus callosum/caudate L 
 3.23* -8 -18 26 Middle Cingulate Gyrus L (bilateral) 
 3.19* 8 14 14 Caudate R 
Male>Female 3.71** 28 18 18 Inferior Frontal Gyrus R 
 3.53** -50 -46 4 Middle Temporal Gyrus, L 
 3.47** -46 -18 26 Rolandic Operculum L 
 3.38** -44 38 0 Inferior Frontal Gyrus, Triangular Part L 
Age - - - - - 
BMI 3.98*** 28 12 26 Caudate R 
 3.89*** 46 -12 0 Superior Temporal Gyrus R 
 3.85*** 16 14 20 Caudate R 
Hunger State - - - - - 
Note. The associated brain regions are reported for the full model (including all covariates), models with fewer covariates demonstrated similar 
brain regions. * indicates p<.001 (uncorrected); ** indicates p<.0005 (uncorrected); ***p<.0001 (uncorrected) 
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Exploratory Analysis 

While intensity nonuniformity can create bias in single studies (Arnold et al., 2001),  it 

may result in large distortions when pooling across studies. Consequently aligning intensity 

distributions across studies is an essential component of multisite fMRI data harmonisation 

(Wrobel et al., 2020). To test wether intensity nonuniformity was a problem in our data, we 

compared voxel intensities of the averaged masked contrast image of each study with each 

other. We found large differences between studies. In particular, the intensity ranges of the 

datasets of Allen et al. (2016), Luo et al. (2017) and Dorton et al. (2018) deviated from other 

studies (Figure 3).  

 

Note: Abbreviations on the x axis refer to the studies included: f21 – van Meer et al. 2021; f16 – van Meer et al., 2016; s18 - 
Charbonnier et al., 2018; s13- Smeets et al., 2012; a16-Allen et al., 2016; b20 - Bach et al., 2021; b13- Karra et al., 2013; 
c16-  Chen et al., 2017; g19 - k16- English et al., 2017; m20 - García-García et al., 2020 ; n19 - Nolde et al., 2019; p18a- 
Dorton et al., 2018; p18b - Luo et al., 2019;  v19 - Hermann et al., 2019 
 
Figure 3. Averaged masked maximum and minimum voxel intensities per study. Figure 
created in Matlab 18b. 
  



MEGA-ANALYSIS: NEURAL CORRELATES OF FOOD VIEWING  
 

24 

Consequently, we decided to check the effect of nonuniformity in our analyses and 

reran the multiple regression without the mentioned studies. This meant that for the analysis 

of F>NF we excluded three studies and for the analysis of HC>LC we excluded one study 

resulting in 422 and 637 subjects, respectively. For these exploratory analyses we used the 

full model including all covariates. The exploratoy F>NF and HC>LC analyses comprised 

76622 and 73340 voxels, respectively. The results for both analyses are specified in Table 6 

and 7. Interestingly, leaving out these studies did not improve the overall masks (Appendix 

E3 and E4).   

The volume coverage of the F>NF analyses comprised 76622 voxels. For the analyses 

of F>NF we found peak activations in the left and right insula ([-36 -6 6], z=4.46, p <.001); 

([-38 6 -12], z=3.93, p <.001) (Figure 4a) as well as the cuneus ([14 -92 8], z=3.28, p <.001) 

for the contrast food versus nonfood images. Compared to men, women demonstrated a 

higher activation in the left inferior temporal gyrus([-48 -52 -12], z=3.52, p <.001) (Figure 5). 

In this analysis age and BMI did not covary with brain resonse to food versus non food 

viewing. However, hunger state affected subjects’ response to food images, such that hungrier 

subjects demonstrated higher peak activations in left calcerine ([-4 -76 18], z=5.11, 

p<.05(FWE)), the left cerebellum ([-14 -50 -12], z=4.80, p<.05(FWE)), as well as the right 

inferior temoral gyrus ([52 -56 -12] z=4.65, p<.05(FWE)) and the right hippocampus([20 -30 

-4], z=4.10, p<.05(FWE)). 

For the analyses of HC>LC we found peak activations in the left hippocampus([-20 -

20 -16], z=4.50, p <.001) (Figure 4b), the left amygdala ([-20 -4 -14], z=3.83, p <.001), the 

left middle temporal gyrus ([-48 2 -20], z=3.64, p <.001), the left hypthalamus ([-2 -4 -8], 

z=3.32, p <.001) and the right fusiform gyrus ([28 -64 -6], z=3.12, p <.001). The covariates 

did not yield any significant effects.  
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Note. The associated brain regions are reported for the full model (including all covariates).  
* indicates p<.001 (uncorrected); **indicates p<.05 (FWE). 
 
Table 7.  
Intensity corrected brain activation for high caloric versus low caloric food viewing for the full model including all covariates.  
Contrast  Z  MNI coordinates Associated Brain Region 

  x y z  
High Caloric<Low Caloric 4.50* -20  -20 -16 Hippocampus L 

 3.83* -20 -4 -14 Amygdala L  
 3.64* -48  2 -20 Middle Temporal Gyrus L 
 3.32* -2  -4 -8 Hypothalamus L 
 3.16* -48  -60 0 Middle Temporal Gyrus L 
 3.12* 28  -64 -6 Fusiform Gyrus R  
 3.12* -46 -62 2 Middle Temporal Gyrus L 

Note. The associated brain regions are reported for the full model (including all covariates).  
* indicates p<.001 (uncorrected)

Table 6.  
Intensity corrected brain activation for food versus to non-food viewing for the full model including all covariates 
Contrast  Z  MNI coordinates Associated Brain Region 

  x y z  
Food > Nonfood 4.46* -36 -6 6 Insula L 

 3.93* -38 6 -12 Insula L 
 3.28* 14 -92 8 Cuneus R 
 3.16* 40 10 -14 Insula R 

Female>Male 3.55* -48 -52 -12 Inferior Temporal Gyrus L 
Male>Female - - - - - 
Age - - - - - 
BMI - - - - - 
Hunger state 5.11** -4  -76 18 Calcarine L  
 4.80** -14  -50 -12 Cerebellum L 
 4.65** 52  -56 -12 Inferior Temporal Gyrus R  
 4.10** 20  -30 -4 Hippocampus R  
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Figure 4. Intensity corrected brain activation to (a) food versus non-food viewing, activation 

in the right insula and (b) high caloric versus low caloric food viewing, activation in the left 

hippocampus. Image create in MRIcron (Rorden & Brett, 2000) using SPM12 canonical 305 

averaged T1 template 

 

 

     

Figure  5. Intensity corrected average cluster activation in (a) Females > Male and (b) 

Male>Female in the left inferior temporal gyrus for food versus non-food viewing. Image 

created in MarsBar (Brett et al., 2002).  

  

(a) (b) 

(a) (b) 
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Discussion 

A preliminary approach towards a fMRI mega-analysis of food viewing was provided. 

The analyses included 15 studies and 1030 subjects. Data synthesis proved challenging and 

despite the high number of subjects, brain activations were arbitrary. One reason may be the 

large number of missing voxels resulting in brain coverage. Consequently, the results of the 

paper at hand may have suffered from undetected effects and should be interpreted with 

caution. Another reason was the high differences in intensities that may have biased results 

for the main analyses of F>NF and HC>LC. After correcting for intensities, brain coverage 

was not improved, and activations found in both corrected analyses may still be subject to 

chance. For F>NF, peak activations in the insula and the right cuneus were found. Compared 

to males, females demonstrated higher brain activations in the left inferior frontal gyrus for 

F>NF.  Hungrier participants showed higher brain activations in the left calcarine and 

cerebellum as well as the right inferior temporal gyrus and the right hippocampus. For 

HC>LC peak activations in the left middle temporal gyrus, the left hippocampus and 

amygdala as well as the hypothalamus were found. Gender, age, BMI and hunger state did not 

affect brain response to HC>LC.  

Mega-Analysis Food Viewing 

The mega-analysis presented did not brain response to F>NF and HC>LC. Only after 

lowering the threshold some peak activations were found. Given the large number of subjects, 

these activations may be false positives. In addition, brain coverage (Appendix D1 and D2) in 

both analyses was poor. In particular, large fMRI datasets are susceptible to inconsistently 

missing voxels across subjects which negatively affects the analyses if not handled 

appropriately (Vaden et al., 2012). While fMRI mega-analyses offer the potential of detecting 

small effects, poor brain coverage obstructs firm conclusions about the effect sizes of the 

findings. One reason for the high number of missing voxels in this analysis may be large 
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differences between studies due to the scanner, including field of view scanner artefacts. 

Another reason for poor coverage, in particular in prefrontal and temporal brain regions 

include factors such as nearby air circulation and bone (Cutler et al., 2018). Yet, another 

reason may be problems underlying the data harmonisation procedure. Harmonisation 

procedures were adapted from Zunhammer et al. (2021). This yielded good alignment 

between studies but did not correct for the large number of missing voxels in the main 

analyses. Poor brain coverage was also reported by Zunhammer et al. (2021). However, their 

main analysis was a generic inverse variance method which is robust against missing voxels 

of single subjects, unlike the analyses presented here (Deeks & Higgins, 2007). Different 

ways to handle poor brain coverage are discussed below. 

Another unexpected finding was the difference in intensities between studies. 

Removing the studies with the most extreme differences in intensities changed the overall 

brain activations for both analyses (F>NF and HC>LC). Consequently, the results of both 

main analyses are likely biased. Therefore, only results of the intensity corrected analysis are 

discussed further. However, after removing the studies differing in intensity brain coverage 

remained poor and the significant threshold low. Poor brain coverage is susceptible to an 

elevated risk of type II error, whereas a low significant threshold increases the risk of type I 

error. This should be kept in mind when interpreting the findings below.  

Food Versus Nonfood Viewing 

            For F>NF, activated brain regions activated comprised right and left insula as well as 

the right cuneus. The insula plays a prominent role in a variety of human functions including 

sensory and affective processing as well as higher-level cognition (Uddin et al., 2017).  

Within nutritional neuroscience, the insula has been identified as a crucial component in the 

appetitive brain network (Neseliler et al., 2017). A meta-analysis found, that the insula was 

the only brain region consistently activated upon cross-modal food cues (i.e., taste, smell, 
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sight) (Huerta et al., 2014). Moreover, the insula has been associated with encoding the 

reward value of foods, nutritional expectations and information underlying food choice 

(Neseliler et al., 2017). Even though the significance threshold was low in the intensity 

corrected F>NF analysis, increased brain response in the insula upon food versus non-food 

cues is in line with the literature (Dagher, 2012; Neseliler et al., 2017; Smeets et al., 2012).  

 The function of cuneus has been associated to primary and secondary visual 

processing. Moreover, extrastriatal areas of this region have been demonstrated to be involved 

in higher cognitive functioning such as reward anticipation, attention, working memory 

processes (Cohen, 2018). Even though a fMRI food viewing meta-analysis (Huerta et al., 

2014) and a systematic review (Pursey et al., 2014) report increased activation in the cuneus 

for food versus non-food viewing, the authors do not interpret its role. In one study, Tuulari et 

al. (2015) found increased activation in the cuneus for F>NF when participants were 

instructed to inhibit urges to eat food compared to imagining eating the food. The authors 

suggest that the cuneus may play a role in goal-directed appetite control. Even though, this 

mega-analysis aimed at revealing small effects, the role of the cuneus in F>NF remains 

questionable in the light of the poor coverage and otherwise lacking brain response upon food 

versus non-food cues.  

For F>NF, females demonstrated increased activation in the left inferior temporal 

gyrus. Moreover, Figure 5 demonstrates that within this brain females’ activation is increased, 

whereas that of males is inhibited. Functionality of this brain region has been linked to 

language comprehension and production and higher order visual processing (Guido, 2011). A 

systematic review of gender differences in food viewing did not yield increased activations in 

the left inferior temporal gyrus for females upon food versus non-food cues (Chao et al., 

2017). This review demonstrated that females compared to males demonstrate higher 

activations in frontal and striatal brain regions as well as the fusiform gyrus upon F>NF. A 
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primate study suggested that the inferior temporal lobe plays a role in projecting higher level 

visual cues to the orbitofrontal cortex, which in turn is involved in the evaluation of food cues 

(Murray & Izquierdo, 2007). In that study no indications of gender differences were implied. 

Overall, the lack of literature associating the left inferior temporal gyrus to gender differences 

in food cue reactivity, combined with the poor brain coverage and the low significant 

threshold the role of the left inferior temporal gyrus remains uncertain.  

            For F>NF, there was a modulating effects of hunger state in the left calcarine and 

cerebellum as well as the right inferior temporal gyrus and hippocampus. Neither of these 

regions have been consistently to be associated to hunger state in F>NF. Specifically, the 

calcarine is involved in primary visual processing (Meadows, 2018) and has been linked to 

increased activation to high caloric versus low caloric food viewing (van Meer et al., 2016).  

The cerebellum is best known for its involvement in motor coordination (Zaydan, 2011), but 

it is also connected to prefrontal and posterior parietal regions suggesting its involvement in 

cognition and affect (Strick et al., 2009). While the hippocampus has traditionally been linked 

to learning and memory, it also plays a role in motivation and eating behaviour (Neseliler et 

al., 2017). Rat and lesion studies have shown that the hippocampus is involved in the 

utilisation of hunger state signals (Davidson & Jarrard, 1993) and may play a prominent role 

in regulating energy intake (Davidson et al., 2007). However, meta-studies and systematic 

reviews (e.g. Brooks et al., 2013; Huerta et al., 2014; Pursey et al., 2014) did not report 

associations of these regions to hunger state in F>NF.  Overall, no compelling evidence for an 

effect of hunger state on either of the four brain regions activated upon food versus non-food 

cues was found in this analysis. It seems more likely that the activations were false positives 

resulting from a low significant threshold.  
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            In sum, the activation in the insula for F>NF is in line with the literature. The 

modulating effects of gender and hunger state are less conclusive. Low significant thresholds 

and poor coverage may have increased Type I and II error respectively.  

High Caloric Versus Low Caloric Food Viewing 

            For HC>LC, peak activations in the left middle temporal gyrus as well as the left 

hippocampus and amygdala were found. The middle temporal gyrus has been associated to a 

range of different functions including language and semantic processing, perception and 

multimodal sensory integration (Onitsuka et al., 2004). One food viewing study (Junghans et 

al., 2015) reported higher activation in the middle temporal gyrus for high caloric versus low 

caloric food images. The authors suggest this may reflect increased attention towards the high 

caloric food cues.  Both the amygdala and the hippocampus are part of the appetitive brain 

network (Dagher, 2012; Neseliler et al., 2017; Smeets et al., 2012). The amygdala is involved 

in emotional processing reward valuation and ingestive behaviours and affects cognitive, 

attentional and memory processes (McQuiston, 2018). Therefore, the amygdala is well 

connected to the hippocampus. IN food viewing studies, it has been suggested that higher 

activations in the amygdala for HC>LC may reflect an increased emotional processing load 

which in turn affects reward and memory processes (Beaver et al., 2006). Similarly, an 

increased activation in the hippocampus may reflect emotional processing (Wallner-

Liebmann et al., 2010) as well as recalling previous experiences with perceived food (Papies, 

2013). In sum, the activations in the left middle temporal gyrus as well as the left 

hippocampus and amygdala found in this analysis are in line with the literature. 

Strength, Limitations and Future Outlook 

            The study at hand has several strengths: First, it is the first attempt to pool across 

subject-level functional scans in nutritional neuroscience. One of many possible procedures 

was provided and alternatives may prove more suitable. From this attempt, many lessons 
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learnt can be derived including the importance of standardised procedures, time, preparation 

and organisation, challenges of data harmonisation and missing voxels and the adoption of a 

suitable analysis (See Appendix E for an overview). Second, a major part of data 

harmonization was realized including aligning, reslicing and masking the images (Appendix 

B2). This demonstrates external validity of Zunhammer et al. (2021) harmonization 

procedure. Third, in a relative short timeframe, many authors declared their willingness of 

collaboration and provided their datasets. This suggests an interest in data pooling in the field. 

 Limitations of the study include time constraints, the categorisation into high and low 

caloric food images and the statistical analyses. First, this project was a Master Thesis project 

and constraint to half a year. Within this time frame study search and selection, as well as data 

extraction synthesis and analysis had to be performed. Moreover, the conceptual 

considerations regarding appropriate harmonisation and analysis proved time-consuming. An 

additional laborious factor was the adaptation of Zunhammer and colleagues (2021) 

harmonisation procedure. Also, the correspondence with authors and obtaining the data took 

its time. As a result, the analysis presented here is the initial approach towards a fMRI mega-

analysis on food viewing and the project will be continued.   

Second, the categorization into high and low caloric food images was imperfect: each 

study used slightly different contrasts. For example, van Meer et al. (2021, 2016) used healthy 

and unhealthy foods; English et al. (2017) and Charbonnier et al. (2018) differentiated 

between high and low energy dense foods; then again Nolde et al. (2019) used prior ratings by 

the participant to categorize images into liked (usually higher energy density) and unliked 

(usually lower energy density) food images. The ambiguous terminology and coarse 

categorization may have confounded the effects underlying processing of high caloric food 

images (Poldrack et al., 2011). Consequently, the results at hand emphasize the importance of 
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consistent terminology and careful consideration of categorization when pooling across 

studies.   

Third, the statistical analyses presented here was imperfect. Here a multiple regression 

analyses with dummy variables for the studies included was conducted. The large number of 

dummies reduced the models’ degrees of freedom and consequently affected the significance 

threshold. Instead of taking a conservative p=.05 family-wise error correction as planned the 

significance threshold was adjusted to p=.0001 (uncorrected). While it is important to account 

for the variability between studies, there are more appropriate ways to account for between 

study variability: For example, one could adopt a statistical analysis more appropriate for the 

nested data inherent to mega-analyses. A hierarchical mixed effects model combines fixed 

and random effects. Fixed effects comprise the variables of interest, here gender, age, BMI, 

and hunger state. Random effects comprise the effects arising from variability between 

grouping variables, here the different studies pooled across (level 2) and the variability arising 

from each subject (level 1) (Singmann & Kellen, 2019). To the authors knowledge, such 

models can only be realized in SPM12’s first level analyses which combines the time series of 

a subject and not for SPM12’s second level analysis which combines all subjects (Friston et 

al., 2005). Thus, different software may provide more flexible approaches to handle nested 

data. For example, AFNI’s 3DLME implements a mixed effects analyses on the group level 

(Chen et al., 2013b).  

 In sum, strengths of the analyses at hand include the provision of a novel approach to 

pool across food viewing studies, external validity of Zunhammer et al. (2021) harmonisation 

procedure as well as relevance of data pooling. Limitations include time-constraints, the 

categorisation into high caloric and low caloric stimuli as well as problems underlying 

multiple regression analyses.  

Future Outlook 
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 We provided one of many possible approaches towards fMRI subject-level data 

pooling. It is recommended to consider two points: how missing voxels should be handled 

and how intensities should be corrected. 

First, there are different ways to handle missing voxels: one way is to mask out all 

voxels for which one subject lacks data resulting (SPM12 default). This may be appropriate 

for small datasets, but in a large dataset the method results in an overall poor brain coverage 

which in turn increases the potential of Type II errors (Mulugeta et al., 2017; Vaden et al., 

2012). Another way to handle missing voxels is to replace them with zeros. While this 

method improves the mask it does not affect the results of the analyses. The consequences of 

this approach may be problematic: Consider a missing voxel, surrounded by highly activated 

voxels: the likelihood of this voxel being not activated is low. Consequently, replacing it by 

zero would similarly to the first option increase the risk for Type II errors. A third way to 

handle missing data is to use multiple imputations. For example, Vaden et al. (2012) 

demonstrate, how multiple imputations reduce false negatives compared to voxel omission. In 

comparison to mean replacement, that is the missing voxel is replaced by the mean 

surrounding it, multiple imputations retain variance comparable to voxels with no missing 

data and reduce false positives (Vaden et al., 2012). Importantly, in a mega analysis, 

imputations should be done on a study level, because voxels are likely to be missing at 

random within a particular study, but not across studies. As the coverage in Appendix B2 

suggests, studies differ in their overall brain coverage (data not missing at random). A recent 

preprint provides an alternative imputation method using deep learning architectures (Calhas 

& Henriques, 2020).Multiple imputations provide a promising approach to handle missing 

voxels, whether it is appropriate for mega-analysis is subject to future research. 

Second, removing the studies with the most extreme differences in intensities changed 

the overall brain activations for both analyses (F>NF and HC>LC). Rather than excluding 
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studies an additional step in harmonising the data, that is adjusting the intensities of the 

signal, may be appropriate. Overall, a different harmonisation procedure may be adopted: 

ComBat was originally proposed to adjust batch effects in genomic data (Johnson et al., 

2007). Since then, it has been adapted and applied to diffusion tensor imaging (Fortin et al., 

2017), cortical thickness measurements (Fortin et al., 2018) as well as fMRI functional 

connectivity analyses in multisite studies (Yu et al., 2018). In all scenarios, ComBat removed 

unwanted variability arising from different scanners and sites, while preserving variability 

arising from covariates of interest. The documentation of ComBat suggests that the procedure 

does not include (multiple) imputation procedures to correct for missing data. Nevertheless, 

ComBat provides a promising tool to harmonise data including the correction of variability 

arising from differences in intensities.  

In sum, future studies should consider implementing multiple imputations in their 

analysis and adopt ComBat for harmonisation procedures. 

Conclusion 

 FMRI mega-analysis may improve between study variability in food viewing and 

elucidate the neural response towards these cues. This paper demonstrates the challenges 

when pooling fMRI data on the subject level. We found little activations at a very low 

threshold and struggled with an overall poor brain coverage. The consideration of multiple 

imputations, data harmonisation using ComBat and more appropriate statistical analysis is 

strongly encouraged. 
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Appendix A 

 

 

Appendix A. Brain mask SPM12 Toolbox Fieldmap  
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Appendix B 

Ninety percent coverage of data 

 

Appendix B1. Overview of overall 90% coverage for all studies. Created in SPM12 
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Appendix B2. Overview of overall 90% coverage for each individual study. Created in SPM12 
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Appendix C 

 

Note: Abbreviations on the x axis refer to the studies included:: f21 – van Meet et al., 2021; f16 – van Meer et al., 2016; s18 
– Charbonnier et al. 2018; s13- Smeets et al., 2012; a16-Allen, et al. 2016; b20 - Bach et al., 2021; b13- Karra et al., 2013; 
c16-  Chen et al., 2017; g19 - k16- English et al., 2017; m20 - García-García et al., 2020 ; n19 - Nolde et al., 2019; p18a- 
Dorton et al., 2018; p18b - Luo et al., 2019; v19 - Hermann et al., 2019  
 

Appendix C. Proportion of missing voxels per study.  
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Appendix D 

Brain Masks of Main Analyses 

 

Appendix D1. Brain mask displaying the surviving voxels (white) of the analysis food images 

> non-food viewing  
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Appendix D2. Brain mask displaying the surviving voxels (white) of the analysis high caloric 

food images > low caloric food viewing 
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Appendix D3. Brain mask displaying the surviving voxels (white) of the analysis food images 

> non-food viewing  
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Appendix D4. Brain mask displaying the surviving voxels (white) of the analysis high caloric 

food images > low caloric food viewing  
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Appendix E 

Appendix F: Summary of lessons learnt 

 Description  

Standardisation  The lack of standardised procedures in fMRI research and the many 

potential processing pipelines (Carp, 2012) complicate pooling 

strategies. Transparent reporting and or the standardisation of fMRI 

protocols is highly recommended to facilitate future pooling 

endeavours. For example, fMRIprep (Esteban et al., 2019) offers an 

easily accessible transparent and robust pipeline for fMRI pre-

processing. 

Time Enough time for the conducting of a mega-analyses should be 

planned in. This includes time for the selection of appropriate 

studies, time for authors to provide their data and time for data 

harmonization and main analyses.  

Preparation Preparation includes careful consideration of inclusion and 

exclusion criteria, as well as a narrow definition of the images 

required. Here an emphasis on quality, rather than quantity should 

be made. This may decrease miscommunications with collaborators 

and increase responsiveness 

Organisation  Organisation refers to the data sharing and storage. Here data was 

shared using NeuroVault - an open-source platform accommodating 

possibilities for private and public data sharing as well as 

standardized metadata. Data on NeuroVault can be best processed 

in Python among other options data does not have to be 

downloaded to be analysed. Considering the large datasets of mega-

analyses, running analyses in Python may be a suitable software to 

reduce storage shortage of servers. 

Harmonisation  Harmonisation refers to the combination of data from different 

studies or sites with the aim of making its combination more 

meaningful. Here harmonization procedures were realized from 

Zunhammer et al. (2021), which is one of many ways to harmonise 

data. Other tools include ComBat (Fortin et al., 2017, 2018; Wrobel 

et al., 2020) or Neuroharmony (Garcia-Dias et al., 2020). 

Missing Voxels Missing voxels are common in large datasets and pose a threat to 

false negatives (i.e. inflated Type II Error) (Vaden et al., 2012). 

Consequently, accounting for them is essential and should be 

determined before the actual analyses, for example in a 

preregistration. One possibility may be multiple imputations 

(Calhas & Henriques, 2020; Vaden et al., 2012)  

Type of Analyses The type of analyses remains an important point of consideration. 

Here a multiple regression is presented, mega-analyses comprise 

nested data, that is subjects are nested in studies. A mixed effects 

analyses including study as a random factor may be more 

appropriate than the inclusion of many (number of studies -1) 

dummy variables in a multiple regression. Alternatively, 

harmonisation tools like ComBat can correct for site effects of 

multi-site studies (Yu, 2018). 

 


