
E N E R G Y C O N S U M P T I O N PAT T E R N S A N D L O A D F O R E C A S T I N G W I T H
P R O F I L E D C N N - L S T M N E T W O R K S

kareem al-saudi

MSc. of Computing Science
Faculty of Science and Engineering

Rijksuniversiteit Groningen

August 28, 2021 – 1.0

[August 28, 2021 at 16:59 – 1.0]

Kareem Al-Saudi, MSc. of Computing Science, © August 28, 2021

supervisors:
Viktoriya Degeler
Michel Medema

[August 28, 2021 at 16:59 – 1.0]

A B S T R A C T

By virtue of the steady societal shift to smart technologies, built on
the increasingly popular smart grid framework, we have noticed an
increase in the need to analyze household electricity consumption at
the individual level. In order to work efficiently, these technologies rely
on load forecasting to be able to optimize operations that are related
to energy consumption (such as household appliance scheduling).
This paper proposes a novel load forecasting method that utilizes a
clustering step prior to the forecasting step to group together days
that exhibit similar patterns in energy consumption. Following that,
we attempt to classify new days into one of the pre-generated clusters
by making use of the available context information (day of the week,
month, predicted weather). Finally, using available historical data
(with regards to energy consumption) alongside meteorological and
temporal variables, we train a Convolutional Neural Network Long
Short-Term Memory (CNN-LSTM) model on a per-cluster basis that
each specializes in forecasting based on the energy profiles present
within each cluster. This method leads to improvements in forecasting
performance (upwards of a 10% increase in mean absolute percentage
error (MAPE) scores) and provides us with the added benefit of being
able to easily highlight and extract information that allows us to assess
which external variables have an effect on the energy consumption of
any individual household.

iii

[August 28, 2021 at 16:59 – 1.0]

C O N T E N T S

Abstract . iii
List of Figures . vi
List of Tables . x
Listings . xi

i introduction

1 introduction . 2

1.1 Introduction to the Data 4

1.1.1 REFIT . 5

1.1.2 UCID . 6

1.1.3 Meteorological Data 6

1.2 Proposed Model . 7

2 related work . 8

2.1 Clustering and Energy Profile Creation 8

2.2 Forecasting Models . 9

2.3 Summary . 11

ii foundation

3 background information 13

3.1 Dimension Reduction . 13

3.1.1 t-Distributed Stochastic Neighbor Embedding . 13

3.2 Clustering Algorithms 18

3.2.1 DBSCAN . 18

3.2.2 HDBSCAN . 20

3.3 Forecasting Models . 22

3.3.1 Convolutional Neural Networks 22

3.3.2 Long Short-Term Memory Networks 25

3.4 Performance Metrics . 28

3.4.1 Mean Absolute Error 28

3.4.2 Mean Absolute Percentage Error 28

3.4.3 Log-Cosh Loss 29

4 exploratory data analysis 30

4.1 Issues . 30

4.1.1 The ’Issues’ Column 30

4.1.2 Missing & Incomplete Data 32

4.1.3 Thresholding . 33

4.2 Data Visualization . 34

4.2.1 Sample Distribution 34

4.2.2 Time Series Decomposition 35

4.3 Causality & Correlation 36

4.3.1 Granger Causality Test 36

4.3.2 Mutual Information Gain 39

iv

[August 28, 2021 at 16:59 – 1.0]

contents v

iii empirical study

5 methodology . 41

5.1 Stage 1 - Data Collection and Cleaning 42

5.2 Stage 2 - Dimensionality Reduction and Clustering . . 42

5.3 Stage 3 - Further Data Preprocessing 48

5.4 Stage 4 - Training and Testing 52

5.4.1 Stage 4.1 - Classification Tree 52

5.4.2 Stage 4.2 - CNN-LSTM Network 55

6 results and discussion 58

6.1 Cluster Label Classification 58

6.2 Forecasting Accuracy . 59

7 conclusion and future work 63

iv appendix

a appendix - figures . 66

b appendix - tables . 72

Glossary . 75

Bibliography . 77

[August 28, 2021 at 16:59 – 1.0]

L I S T O F F I G U R E S

Figure 1.1 Historical/predicted growth in the number
of appliances being used worldwide. Image
source: [6] © 2019, Statista. 2

Figure 1.2 The HEMS architecture visualized. Image
source: [11] © 2013, IEEE. 3

Figure 1.3 High level overview of the steps pertaining to
our model. 7

Figure 2.1 Two widely different scenarios in the applica-
tion of DBSCAN. Images source: [10] © 2019,
IEEE. 9

Figure 3.1 Overlapping both a Gaussian distribution and
the t-Student, or Cauchy, distribution. Note the
heavy tails on the t-Student distribution. 15

Figure 3.2 Illustrating how the UMAP algorithm captures
more of the global structure in a sample data
set (Mammoth data set). Image source: [31],
licensed under CC BY-SA 4.0. 17

Figure 3.3 Depiction of the DBSCAN algorithm at work
with minPts set to 4. Here, point A, as well as
the other red points, are core points as the area
surrounding these points in a radius ε contains
at least 4 points (including the point itself).
Points B and C are reachable from A through
other core points and as a result can be con-
sidered density-reachable points. The cluster is
made up of the core points as well as points B
and C. Point N is neither a core point and can-
not be reached through any of the core points
and so is considered an outlier. Image source:
[32], licensed under CC BY-SA 3.0. 20

vi

[August 28, 2021 at 16:59 – 1.0]

list of figures vii

Figure 3.4 An illustration of the hierarchical aspects of
the HDBSCAN algorithm. In layman’s terms,
when presented with the density landscape the
HDBSCAN algorithm decides whether peaks
of a mountain are part of the same mountain
or whether they belong to different mountains
where each of these mountains represent a clus-
ter. When multiple peaks represent multiple
mountains the sum of their respective volumes
tends to be larger than the volume of their base.
The opposite is true for when multiple peaks
are just features of a singular mountain. 21

Figure 3.5 An example of a convolutional kernel at work.
A 3x3 kernel traverses over a 5x5 "image" with
a stride of 1 to produce the convolved feature
map. 23

Figure 3.6 A simplified demonstration of a ReLU operation. 23

Figure 3.7 Illustration of leaky ReLU. 24

Figure 3.8 An example of max pooling using a 2x2 window. 24

Figure 3.9 The repeating module in an LSTM that contains
four interacting layers. Image source: [38] (with
permission from the author). 25

Figure 3.10 An illustration of the forget gate in an LSTM
network. Image source: [38] (with permission
from the author). 26

Figure 3.11 An illustration of the input gate in an LSTM
network. Image source: [38] (with permission
from the author). 26

Figure 3.12 An illustration of the output gate in an LSTM
network. Image source: [38] (with permission
from the author). 27

Figure 4.1 Number of samples per day of the week over
the entirety of the data set. Data for this plot
was pulled from CLEAN_House12.csv of the
REFIT data set. 34

Figure 4.2 Number of samples per month over the entirety
of the data set. Data for this plot was pulled
from CLEAN_House12.csv of the REFIT data set. 35

Figure 4.3 Time series decomposition. Data for these plots
were pulled over a 3 month period that was
resampled into a resolution of 15 minutes from
CLEAN_House12.csv of the REFIT data set. . . 35

Figure 4.4 A trimmed subset of the Granger Causation
matrix (Figure A.5) that displays only the rele-
vant information with regards to our indepen-
dent variables causing our target variable. . . . 38

[August 28, 2021 at 16:59 – 1.0]

list of figures viii

Figure 4.5 Mutual information of our independent vari-
ables against our target variable. 39

Figure 5.1 Proposed daily profile extraction and load fore-
casting model. 41

Figure 5.2 The output of performing the UMAP algorithm
on the 20-dimensional UCID data set. Each
point in this figure represents a single sam-
ple (or day) within our data set mapped onto a
2-dimensional surface. 44

Figure 5.3 The output of performing the HDBSCAN al-
gorithm on the 2-dimensional UCID data set
previously seen in Figure 5.2. 45

Figure 5.4 The output of performing the k-means algo-
rithm on the 2-dimensional UCID data set pre-
viously seen in Figure 5.2. 45

Figure 5.5 Average power consumption per hour of the
day for each of the resulting clusters obtained
after utilizing the HDBSCAN algorithm on our
2-dimensional representation of the UCID data
set. 46

Figure 5.6 Distribution of the clusters over the different
months of the year. 47

Figure 5.7 Distribution of the clusters over the different
days of the week. 47

Figure 5.8 Spread in number of samples per cluster label. 48

Figure 5.9 By utilizing a combination of the sine function
and the cosine function, we eliminate the pos-
sibility that two different times would receive
the same value had we used either function
independently. The combination of both func-
tions can be thought of as an artificial 2-axis
coordinate system that represents the time of day. 49

Figure 5.10 Illustrating the distribution of values with re-
spect to the global active power of the UCID
data set both before and after removing outlier
values as defined by Equation 5.1. 50

Figure 5.11 Illustrating the application of both the moving
average method as well the Savitzky-Golay fil-
ter method in smoothing on a subset of our raw
data. 51

Figure 5.12 An illustration of the previously obtained trend
component both with and without the applica-
tion of LOESS. 51

[August 28, 2021 at 16:59 – 1.0]

list of figures ix

Figure 5.13 An illustration of the SMOTE algorithm in the
case of 2 classes depicted by blue squares (mi-
nority class) and red circles (majority class).
The blue square on the far left is isolated from
other members of its class and is surrounded by
members of the other class and is this consid-
ered to be a noise point. The cluster in the cen-
ter contains several blue squares surrounded
by members from the other class and thus is
indicative of potentially unsafe points that are
unlikely to be random noise. Finally, the cluster
in the far right contains predominantly isolated
blue squares. The algorithm would then gener-
ate new, synthetic samples prioritizing the safer
regions. 52

Figure 5.14 Number of samples per class label after apply-
ing the SMOTE algorithm. 53

Figure 5.15 Assessing the number of important features
through the use of the RFECV algorithm. In
this particular scenario, the optimal number of
features was pruned down from a total of 77 to
a mere 24. 54

Figure 5.16 The permutation importance of each of the fea-
tures chosen as part of our fitted Random Forest
classifier. 55

Figure 5.17 A simple, example CNN-LSTM network that
makes one-step-ahead predictions. 56

Figure 5.18 Illustration of early stopping. 57

Figure 6.1 Confusion matrix - UCID. 59

Figure 6.2 Confusion matrix - REFIT. 59

Figure 6.3 Showcasing the capabilities of our method
in making one-step-ahead predictions on the
UCID data set. 61

Figure 6.4 Showcasing the capabilities of our method in
making one-step-ahead predictions on the RE-
FIT data set. 62

Figure A.1 A sample stacked area chart showing the read-
ings of each appliance in each hour of a day.
These readings were averaged over the entirety
of the data present in the data set. Data for this
plot was pulled from CLEAN_House12.csv of
the REFIT data set. 66

Figure A.2 Number of samples per day of the week over
the entirety of the UCID data set. 66

Figure A.3 Number of samples per month over the entirety
of the UCID data set. 67

[August 28, 2021 at 16:59 – 1.0]

Figure A.4 Time series decomposition performed on the
UCID data set. Data for these plots were pulled
over a 6 month period that was resampled into
a resolution of 15 minutes. 67

Figure A.5 The complete Granger Causation matrix for the
REFIT data saet with all of the relevant features
included. 68

Figure A.6 The complete Granger Causation matrix for the
UCID data set with all of the relevant features
included. 69

Figure A.7 A trimmed subset of the Granger Causation
matrix (Figure A.6) that displays only the rele-
vant information with regards to our indepen-
dent variables causing our target variable. . . . 70

Figure A.8 Mutual information of our independent vari-
ables against our target variable. 71

Figure A.9 Distribution of values with regards to our target
variable. 71

L I S T O F TA B L E S

Table 2.1 Outline of related work in the field of energy
profile construction and load forecasting. . . . 11

Table 4.1 Range of dates in the REFIT data set as well as
the total number of values and the total number
of values that contain issues. 31

Table 4.2 Total number of days that are missing data in
the REFIT data set as well as the number of days
that contain incomplete data and the longest
period of consecutive days missing data. . . . 32

Table 4.3 Weighted scores for the top 5 scoring house-
holds in the REFIT data set. 33

Table 4.4 The results of performing the Augmented
Dicky-Fuller test on our target variable as well
as the meteorological variables introduced in
Section 1.1.3 and outlined in Table B.3. 37

Table 6.1 Result of training, optimizing and evaluating
a random forest classifier on the cluster labels
obtained for each of the UCID as well as the
REFIT data sets. 58

x

[August 28, 2021 at 16:59 – 1.0]

Table 6.2 Performance comparison of different methods
on each of UCID as well as the REFIT data
set. Note that these results were obtained for
one-step-ahead prediction at a resolution of 15

minutes over the raw data sets. 60

Table 6.3 Performance metrics obtained when applying
our method on the trend component of each
of the UCID as well as the REFIT data sets to
obtain a one-step-ahead prediction. 60

Table 6.4 Performance metrics obtained when applying
our method on both the raw data as well as
trend component of each of the UCID as well
as the REFIT data sets to obtain twelve-step-
ahead predictions. 61

Table B.1 List of temporal variables that are taken into
consideration during the feature engineering
process as outlined in Section 5.3. 72

Table B.2 The results of performing the Augmented
Dicky-Fuller test on our target variable as well
as the meteorological variables introduced in
Section 1.1.3 and outlined in Table B.3 for the
UCID data set. 73

Table B.3 List of meteorological parameters available to
us as per the Solcast data sets. 74

L I S T I N G S

Listing 3.1 The DBSCAN algorithm. 19

xi

[August 28, 2021 at 16:59 – 1.0]

Part I

I N T R O D U C T I O N

[August 28, 2021 at 16:59 – 1.0]

1
I N T R O D U C T I O N

Over the years, our reliance on electrical appliances has been slowly
increasing (as shown in Figure 1.1). As our dependence on electrical
appliances increases, so too does our consumption of energy [1, 2] and,
subsequently, our need for more sophisticated and advanced solutions
that can accommodate this growth. Thankfully, the convergence of
multiple technologies – such as machine learning, data mining and
ubiquitous computing – has led to the rise of a solution in the form
of smart (electric) grids as well as smart environments and smart meters
that are slowly but surely taking off in terms of their popularity
and availability [3]. The resulting growth in the prevalence of smart
grids gives us the opportunity to both control and monitor the energy
consumption of individual households on a real-time basis [4], and,
through the utilization of applications built upon this framework,
we are capable of achieving an overall reduction in terms of the
amount of energy that we, as the human race, consume. This opens
up the possibility to alleviate some of the inherent risks associated
with the growth in energy consumption, whether that be our overall
environmental footprint on the planet or, on a much smaller scale,
the financial impact on both suppliers as well as consumers due to
instabilities present in current, outdated power grid systems [5].

Figure 1.1: Historical/predicted growth in the number of appliances being
used worldwide. Image source: [6] © 2019, Statista.

Existing solutions developed under the increasingly popular smart
grid framework, such as the Home Energy Management System
(HEMS) and Battery Energy Management System (BEMS), aim to pro-
vide the end-user with the means to schedule, or otherwise manage,
daily appliance operations, taking into consideration external factors
such as weather conditions, utility tariff rates alongside any other

2

[August 28, 2021 at 16:59 – 1.0]

introduction 3

personal preferences [4]. To operate efficiently, these solutions rely on
our ability to capably forecast future trends in energy consumption at
the individual household level. This information is required to appro-
priately and sufficiently control and supply the correct energy load to
the end-user [7, 8]. This has lead to a shift in interest within the realm
of load forecasting, in which prior research has predominantly been
focused at the large-scale, regional level [9] where an amalgamation of
available data spanning numerous households provides more obvious
patterns as a result of the underlying diversity between households
being lost [10] towards the individual household level. Furthermore,
owing to the operational characteristics of both HEMS and BEMS and
similar applications, load forecasting in the very short term (anywhere
from a few minutes to a couple of hours), oftentimes referred to as
very short-term load forecasting (VSTLF), are more relevant than the
substantially studied longer term horizons that are predominantly
associated with long-term network planning and operations [4].

Figure 1.2: The HEMS architecture visualized. Image source: [11] © 2013,
IEEE.

When exploring energy consumption at the individual household
level, the diversity and complexity associated with human behavior
leads to extremely dynamic, volatile patterns that can prove to be
highly dissimilar between households. In addition to this, certain

[August 28, 2021 at 16:59 – 1.0]

1.1 introduction to the data 4

households exhibit no clear pattern in energy consumption due to a
high level of irregularity in the lifestyle of its occupants [10]. To account
for this dissimilarity, current, state-of-the-art methods benefit from a
precursory clustering step within the forecasting pipeline [4, 5, 10].
This precursory clustering step serves to amalgamate days that exhibit
a measure of similarity in terms of their energy consumption patterns
into the same cluster. By training individual forecasting models on
a per-cluster basis we should, in theory, see an improvement in load
forecasting performance as each of the respective models specializes
in predicting future trends in energy consumption based on patterns
present within the energy profile associated with its unique cluster.
This is the area of research that this paper seeks to tackle – how can we
best construct energy profiles out of historical data that truly capture
repeated patterns with regards to energy consumption and what are
the effects of a clustering step in the performance of a forecasting
pipeline.

The following Chapters of this paper are organized as follows: Chapter
2 presents related work within the field of clustering and classifying
energy profiles so as to establish a baseline with which to compare
our work to. Following that, Chapter 3 serves to provide a brief,
intuitive explanation of important concepts that are related to this
paper. Chapter 4 will both describe as well as visualize the historical
data that we have on hand, outlined in Section 1.1, for the duration of
this project. Ensuingly, Chapter 5 will outline our methodology with
regards to both our chosen clustering as well as forecasting techniques.
Finally Chapters 6 and 7 conclude the paper by presenting our results
alongside a discussion and potential direction with regards to future
work.

1.1 introduction to the data

At our disposal are a number of publicly available data sets that con-
tain historical data with regards to energy consumption. These include
the data collected by the Engineering and Physical Sciences Research
Council (EPSRC) via the project entitled "Personalised Retrofit Deci-
sion Support Tools for UK Homes using Smart Home Technology (REFIT)"
[12] which is a collaboration among the Universities of Strathclyde,
Loughborough and East Anglia, as well as the "Individual Household
Electric Power Consumption" data set [13] that is part of the University
of California, Irvine (UCI) Machine Learning Repository and that will
henceforth be acronymized as the "UCI data set (UCID)". This section
will serve to briefly describe the main aspects of each of these indi-
vidual data sets so that we may be better able to draw comparisons
between them and highlight any key differences. Further in-depth
analysis of each subsequent data set can be found in Chapter 4 of
this paper. Additionally, we aim to append meteorological features

[August 28, 2021 at 16:59 – 1.0]

1.1 introduction to the data 5

(e. g., temperature, wind speed, cloud coverage, precipitation) to each
of our respective data sets – an overview of this process and the data
that we will be utilizing will also be presented in this section.

1.1.1 REFIT

The REFIT Electrical Load Measurements data set [12] includes cleaned
electrical consumption data, in watts, for a total of 20 households la-
beled House 1 - House 21 (skipping House 14) located in the Loughbor-
ough area, a town in England, over the period of 2013 through early
2015. The electrical consumption data is collected at both the aggregate
level as well as the appliance level with each household containing
a total of 10 power sensors that comprise of a current clamp for the
household aggregate labeled as Aggregate in the data set as well as 9

individual appliance monitors (IAM) labelled as Appliance 1 - Appliance
9 in the data set. The appliance list associated with each of the IAMs
differs between households and comprise a measure of ambiguity as
applicants may have switched appliances around during the duration
of the data collection and the installation team responsible for setting
up the power sensors did not always collect relevant data associated
with said IAMs. The consequences of this is of course that we do not
know with 100% certainty whether an appliance or set of appliances
associated with an IAM is the same throughout the entirety of the data
set. Additionally, some labels are inherently ambiguous taking, for
example, the television site label which could comprise of any number
of appliances including: a television, DvD player, computer, speakers
etc. Finally, the makes and models of the appliances that were meant
to be collected by the installation team are not always present, further
compounding on the previously mentioned uncertainties.

The documentation associated with the data set states that active
power is collected, and subsequently recorded, at an interval of 8

seconds; however, a cursory glance at the data demonstrates that this
is not always the case. A potential reason for this could be the fact
that the aforementioned power sensors are not synchronized with the
associated collection script which polls within a range of 6 to 8 seconds
leaving us with a margin for error in the intervals between recorded
data samples. Moreover, the data set is riddled with long periods of
missing data making it exceptionally difficult to work with. All of
that said, the data collection team made an attempt to pre-process or
otherwise clean the data set by:

1. Correcting the time to account for the United Kingdom (UK)
daylight savings.

2. Merging timestamp duplicates.

[August 28, 2021 at 16:59 – 1.0]

1.1 introduction to the data 6

3. Moving sections of IAM columns to correctly match the ap-
pliance they were recording when said appliance was reset or
otherwise moved.

4. Forward filling not a number (NaN) values or zeroing them
depending on the duration of the time gap.

5. Removing spikes of greater than 4,000 watts from the IAM values
and replacing them with zeros.

6. Appending an additional issues columns that is set to 1 if the
sum of the sub-metering IAMs is greater than that of the house-
hold aggregate – in this case, data should either be discarded or,
at the very least, the discrepancy must be noted.

1.1.2 UCID

The UCID data set [13] contains a total of 2,075,259 measurements
gathered in a single house located in Sceaux, a commune in the
southern suburbs of Paris, France. The data within this data set was
recorded throughout a duration of 47 months spanning the period
between December 2006 and November 2010. Measurements were
made approximately once a minute and consist of the minute-averaged
active power consumption, in kilowatts, within the entire household
as well as 3 energy sub-metering measurements that correspond to
the kitchen, which includes a dishwasher and microwave, the laundry
room that consists of a washing machine and tumble dryer, and
the combination of both an electric water-heater as well as an air-
conditioner respectively. The UCID data set is not without fault either,
containing approximately 25,979 missing measurements which make
up roughly 1.25% of the entire data set; however, given the extensive
range covered as well as the immense number of total measurements
available on hand these missing values can easily be disregarded
and subsequently discarded during the preprocessing stage of our
forecasting pipeline.

1.1.3 Meteorological Data

As an addendum to both the REFIT and UCID data sets we will
be incorporating meteorological data as provided by Solcast [14], a
company based in Australia that aims to provide high quality and
easily-accessible solar data. For the purpose of this master’s thesis
project we requested meteorological data in variable time resolutions
(5, 10, 15 minutes) for both the Loughborough area in the UK for the
REFIT data set as well as meteorological data for the Sceaux commune
in the southern suburbs of Paris, France for the UCID data set. The
relevant periods are the 16th of September, 2013 up to and including

[August 28, 2021 at 16:59 – 1.0]

1.2 proposed model 7

the 11th of July, 2015 and the 1st of December, 2006 up to and including
the 30th of November, 2010 for each data set respectively. The provided
data is extensive, covering a wide range of parameters that are listed,
and described in detail, in Table B.3 which is located in Appendix B
of this paper.

1.2 proposed model

To attempt to solve the previously outlined problem of VSTLF forecast-
ing at an individual household level we propose a novel solution that
utilizes a combination of statistical knowledge and machine learning
techniques to both generate energy profiles that provide us with some
measure of insight as to the habits of a household’s occupants as well
as forecast future trends in their energy consumption. A high level
overview of the steps relevant to our proposed model can be seen in
Figure 1.3.

Figure 1.3: High level overview of the steps pertaining to our model.

In short, we devised a method that consists of 3 steps: cluster, classify,
forecast – first we cluster historical days based on similarity in terms
of active power consumption, then we classify new days into one
of the generated clusters and finally we generate forecasts based on
models that are trained on a per-cluster basis. These steps, alongside
a working example, will be discussed in-depth in Chapter 5.

[August 28, 2021 at 16:59 – 1.0]

2
R E L AT E D W O R K

Energy management systems, such as the previously introduced
HEMS and BEMS, are designed with the intent to both optimize
and control the smart grid energy market. As previously stated, to
be able to do this, these demand-side management systems require a
priori knowledge about the load patterns and, as a result of this, the
field of designing computationally intelligent load forecasting (CILF)
systems has expanded quite rapidly in recent years with over 50 re-
search papers related to the subject having been identified in existing
literature [15]. In this chapter we will be exploring a compiled subset
of this literature that specifically tackle the problem of energy profile
construction as well as load forecasting. This is done so as to establish
a baseline of understanding as to what has already been done within
the field in terms of the two focal points of our forecasting pipeline:
the precursory clustering step as well as the state-of-the-art forecasting
models. Furthermore, by doing so we will be able to position our
paper with respect to the current state-of-the-art and highlight the key
differences in our approach.

2.1 clustering and energy profile creation

The main issue that this paper seeks to address is that of creating
interesting profiles in terms of recurrent patterns in energy consump-
tion. To do this, we will be making use of clustering algorithms that
seek to partition our data into a number of clusters so that each of
these clusters exhibit some metric of similarity or goodness. However,
a measure of goodness can inherently be seen as quite subjective with
Backer and Jain [16] noting that, "in cluster analysis a group of objects
is split up into a number of more or less homogeneous subgroups
on the basis of an often subjectively chosen measure of similarity
(i. e., chosen subjectively based on its ability to create "interesting"
clusters) such that the similarity between objects within a subgroup
is larger than the similarity between objects belonging to different
subgroups.". We will be exploring papers in the existing literature that
present different takes both in how they define similarity as well as
their chosen clustering methodology.

Kong et al. [10] attempted to justify the observations made by Stephen
et al. [17] by using a density-based clustering technique known as Den-
sity Based Spatial Clustering of Applications with Noise (DBSCAN)
[18] to evaluate consistency in short-term load profiles. They remark
on the benefits of using DBSCAN, stating that, as it does not require

8

[August 28, 2021 at 16:59 – 1.0]

2.2 forecasting models 9

knowing the number of clusters in the data ahead of time and as it con-
tains the notion of outliers, it would be an ideal clustering technique
to identify consumption patterns that repeat with a measure of noise
akin to what is loosely defined by Practice Theory. Their findings are
that the number of clusters as well as outliers varies greatly between
households with some households exhibiting no clearly discernible
patterns and some households (mostly) following fairly consistent
daily profiles. This is visualized in Figures 2.1a and 2.1b.

(a) A case with only one outlier alongside
two major clusters and two minor clus-
ters.

(b) A case with no clusters at all.

Figure 2.1: Two widely different scenarios in the application of DBSCAN. Images
source: [10] © 2019, IEEE.

Yildiz et al. [4] expand on traditional load forecasting techniques, such
as the Smart Meter Based Model (SMBM) that they had previously
presented [19], and present their own take in the form of a Cluster-
Classify-Forecast (CCF) model. In traditional SMBMs, a chosen model,
whether that be of a statistical variant or from the plethora of existing
machine learning models, learns the relationship between the target
forecasted loads when presented with some input data which, in our
case, consists of some historical lags in terms of energy consump-
tion, data with regards to the weather and temporal information with
respect to the time, calendar date etc. The CCF takes this a step fur-
ther by making use of both K-means and Kohonen’s Self-Organizing
Maps (SOM) [20] to group profiles that are most similar to each other.
After obtaining and validating the output of their chosen clustering
techniques they investigate the relationship between the clustering
output and other temporal variables, such as the weather, by using a
Classification and Regression Tree (CART) method [21].

2.2 forecasting models

Numerous studies have been conducted with the intent to forecast
energy consumption which range from methods the likes assessed by
Fumo and Rafe Biswas [22] in the form of multiple linear regression
to methods such as novel deep pooling Recurrent Neural Networks

[August 28, 2021 at 16:59 – 1.0]

2.2 forecasting models 10

(RNN) introduced by Shi, Xu, and Li [23]. The majority of these
forecasting models, whether they be statistical, machine learning or
deep learning based, can be classified into 2 main categories: single
technique models in which only a single, heuristic algorithm (e. g., a
Multi-Layer Perceptron (MLP) or Support Vector Machine (SVM)) is
used as the primary forecasting method and hybrid methods that
encapsulate 2 or more algorithms [15] such as the Convolutional
Neural Network Long Short-Term Memory (CNN-LSTM).

Kong et al. [10] employ the use of a Long Short-Term Memory (LSTM)
network as it is generally the ideal candidate when attempting to learn
temporal correlations within time series data sets; however, their final
results are not very promising boasting a mean absolute percentage
error (MAPE) of approximately 44% over variable time steps. This
could be a result of poor hyperparameter tuning stating that, "tuning
69 models for each of the candidate methods is very time-consuming for this
proof-of-concept paper" leading us to believe that there is definitely room
for improvements to be made on the core concepts of their work.

Yildiz et al. [4] use the clusters they formed as described earlier
alongside their assignments to build SMBMs, in this case through
the use of a Support Vector Regression (SVR) model, and find that,
alongside improvements to load forecasting accuracy, they are able to
reveal vital information on the habitual load profiles of the households
they were exploring. Unfortunately, they do not indicate any potential
reasoning as to why they chose to use K-means and Kohonen’s SOMs
in place of potentially more effective clustering methods citing only
that K-means is the most popular clustering technique [21] and that
SOMs is generally used as an extension to neural networks for the
purposes of clustering. Additionally, their results only include values
that are indicative of their chosen technique’s performance on their
specific data set presenting performance metrics such as normalized
root mean square error (NRMSE) and normalized mean absolute error
(NMAE) rendering us unable to compare the performance of their
proposed method.

Kim and Cho [24] present a more modern take on load-forecasting
proposing a hybrid CNN-LSTM network that is capable of extracting
both temporal and spatial features present in the data. The use of
convolutional layers within the realm of load forecasting is brilliant
allowing for the network to take into account the correlation between
multivariate variables while minimizing noise that can eventually be
fed into the LSTM section of the network that finally generates pre-
dictions. Their paper proposes such a network citing that the major
difficulties with such an approach mainly boil down to hyperparam-
eter tuning which can be remedied through a variety of means that

[August 28, 2021 at 16:59 – 1.0]

2.3 summary 11

include the likes of genetic algorithms (GA) or through the use of
packages such as Keras Tuner maintained by O’Malley et al. [25].
Furthermore, Kim and Cho [24] did not explore the possibility of
implementing a precursory clustering step which could have lead
them to substantial improvements in their final MAPE.

2.3 summary

Table 2.1 depicts the wide variety in the different methods explored
throughout the duration of chapter 2. Major takeaways here are that
the use of SOMs alongside DBSCAN and a CNN-LSTM could lead
to substantial improvements in load forecasting accuracy as well as
provide us with energy profiles that allow us to better understand the
habits present on the smaller-scale individual household level and so
the proposed method, outlined in chapter 5, will be based on these
concepts.

category author(s) year method(s)

Statistical based
Fumo and Rafe Biswas [22] 2015 Linear regression

Amber, Aslam, and Hussain [26] 2015 GA & Multiple regression

Machine learning based
Lamedica et al. [27] 1996 SOM & MLP

Yildiz et al. [4] 2018 SOM, K-means, CART & SVR

Deep learning based
Kong et al. [10] 2019 DBSCAN & LSTM network

Kim and Cho [24] 2019 CNN-LSTM network

Table 2.1: Outline of related work in the field of energy profile construction and load forecasting.

[August 28, 2021 at 16:59 – 1.0]

Part II

F O U N D AT I O N

[August 28, 2021 at 16:59 – 1.0]

3
B A C K G R O U N D I N F O R M AT I O N

This chapter serves predominantly to explain concepts and methods
relevant to the research. This includes dimensionality reduction tech-
niques, such as t-Distributed Stochastic Neighbor Embedding (t-SNE)
and Uniform Manifold Approximation and Projection (UMAP), as
well as our chosen clustering and forecasting techniques (Hierarchical
Density Based Spatial Clustering of Applications with Noise (HDB-
SCAN) and Convolutional Neural Network Long Short-Term Memory
(CNN-LSTM) respectively). Most, if not all, of the information in this
chapter might be considered prior knowledge to most readers but
regardless may still suffice as a brisk refresher. Feel free to click here
if you would prefer to skip this chapter.

3.1 dimension reduction

Depending on how we choose to transform our data set(s) each indi-
vidual candidate day could be represented by feature vectors of up to
96 temporal dimensions, if not more when taking into consideration
supplementary external variables. As a precursory step to our cluster-
ing algorithms we can make use of various manifold approximation
techniques (such as t-Distributed Stochastic Neighbor Embedding (t-
SNE) and Uniform Manifold Approximation and Projection (UMAP)
to project our data onto a feature space that is much lower in terms of
the overall dimensionality thus allowing us to achieve visibly clearer
clusters in terms of days that express high levels of similarity in their
overall energy consumption patterns.

3.1.1 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE), proposed by
Laurens van der Maaten and Geoffrey Hinton [28], is a statistical, or
otherwise stochastic, method, that is utilized primarily for visualizing
high-dimensional data. In principle, t-SNE works by giving each high-
dimensional point in the data set a location in an easy-to-digest 2

or 3-dimensional map. In contrast to Principal Component Analysis
(PCA), a well-known linear dimensionality reduction technique, t-SNE
is a non-linear technique for dimensionality reduction that allows for
the separation of our data set in a manner that cannot be separated
by any straight line. In order to keep things relatively simple, we can
best understand how t-SNE works by breaking it down and providing
an overview of the steps the algorithm undertakes.

13

[August 28, 2021 at 16:59 – 1.0]

3.1 dimension reduction 14

Let us take a data point, from a subset of N total data points, xi in the
original, high-dimensional space RD where D represents the dimen-
sionality of said original space. A map point, yi, that lies in the map
space R2 or, less commonly, R3 represents one of our original points
in a lower-dimensional mapping that serves as the final representation
of our data. To preserve the global structure of the data set in this
lower-dimensional space we first define a conditional similarity, or
conditional probability, that any point xi would pick another point xj
as its neighbor if neighbors were picked in proportion to their proba-
bility density under a Gaussian distribution centered around xi with a
given variance σ2

i . This is defined by Equation 3.1.

pj|i =
exp

(
−

∣∣xi − xj
∣∣2 /2σ2

i

)
∑k 6=i exp

(
− |xi − xk|2 /2σ2

i

) (3.1)

The variance (σ2
i) differs between points and is chosen in such a way

that points in dense areas are given a smaller variance than points in
sparse areas. This is introduced as the concept of Perplexity within the
realm of the t-SNE algorithm (determining optimal σ for each point)
and is defined as:

Perplexity = 2−∑j pj|i log2 pj|i (3.2)

Similarity is the defined as a symmetrized version of the previously
defined conditional probability in Equation 3.1:

pij =
pi|j + pj|i

2N
(3.3)

Equation 3.3 provides us with a similarity matrix for our original data
set that represents the similarity between all of our data points as
they lie in their original, high-dimensional space. We then define a
similarity matrix for the points that lie on the mapping space as such:

qij =

(
1 +

∣∣yi − yj
∣∣2)−1

∑k 6=i

(
1 + |yk − yi|2

)−1 (3.4)

The goal then is to minimize the differences between the 2 similarity
matrices in order to achieve a good overall representation of our data
points in the lower-dimensional, mapping space. To do this the t-SNE

[August 28, 2021 at 16:59 – 1.0]

3.1 dimension reduction 15

algorithm minimizes the Kullback-Leiber divergence between the 2

distributions pij and qij:

KL(P‖Q) = ∑
ij

pij log
pij

qij
(3.5)

This score is minimized by performing a gradient descent that can
be computed analytically and, in essence, represents the magnitude
of the pull between data points in our lower-dimensional, mapping
space as well as the direction of said pull:

∂KL
∂yi

= 4 ∑
j
(pij − qij)(yi − yj)

(
1 +

∣∣yi − yj
∣∣2)−1

(3.6)

The choice of using the so-called t-Student (or Cauchy) distribution,
as seen in Equation 3.4, for the map points as opposed to the Gaus-
sian distribution used for the original data points is to alleviate the
crowding problem. This problem is defined in the original paper as
follows – "the area of the two-dimensional map that is available to
accommodate moderately distant data points will not be nearly large
enough compared with the area available to accommodate nearby data
points".

Figure 3.1: Overlapping both a Gaussian distribution and the t-Student, or
Cauchy, distribution. Note the heavy tails on the t-Student distri-
bution.

In essence, using the same Gaussian distribution for the original data
points and the map points would lead to an imbalance in the distri-
bution of the distances of a point’s neighbors due to the fact that the

[August 28, 2021 at 16:59 – 1.0]

3.1 dimension reduction 16

distribution of the distances varies vastly between high-dimensional
spaces and low-dimensional spaces. By using the t-Student distribu-
tion, points close in the high-dimensional, original space get even
closer in the lower-dimensional, mapping space while points that
are further away from each other in the high-dimensional, original
space get even further in the lower-dimensional, mapping space. The
differences between both distributions can be seen in Figure 3.1.

To round things off, we note that the t-SNE algorithm is heavily reliant
on the hyperparameters chosen on initialization (predominantly with
respect to the chosen value for perplexity) and, as it is a stochastic
algorithm, different runs performed on the same data set will pro-
duce different, albeit similar, results. Furthermore, standard deviations
between clusters (or cluster size in terms of bounding box measure-
ments) are not representative of the relative sizes of the actual clusters
and generally mean nothing. Finally, distances between clusters in the
mapping space does not always give us a good sense of the global
geometry – that is, in the sense that distance between clusters may (or
may not) mean anything significant.

3.1.1.1 Uniform Manifold Approximation and Projection

Although t-SNE is fine to use as a dimensionality reduction technique
it is predominantly cited as a visualization heuristic. Interpreting the
resulting map obtained from performing or otherwise executing the
algorithm must generally be done with some measure of caution. A
novel algorithm proposed by Leland McInnes, John Healy and James
Melville [29], and aptly named Uniform Manifold Approximation and
Projection (UMAP) claims to be competitive with t-SNE in terms of
visualization quality and argues that it preserves more of the global
structure present in the data while being superior in terms of run
time performance (e. g., taking a mere 3 minutes to project the 784-
dimensional, 70,000 point MNIST data set in contrast to the 45 minutes
it would take for the t-SNE algorithm [30]). Given the novelty of the
algorithm, it lacks the rigorous testing and mathematical analysis that
its counterpart, the t-SNE algorithm, is subject to. Nonetheless, we
will be making use of the UMAP algorithm for the purpose of this
project and refer the reader to the original paper located here [29] to
better understand the core concepts of the algorithm as well as what
differentiates it from the t-SNE algorithm.

At its core, UMAP works very similarly to the t-SNE algorithm. The
biggest difference between the output of the UMAP algorithm in com-
parison to the output of the t-SNE algorithm is the balance between
local as well as global structure. Given that the authors of the UMAP
algorithm claim that it is often better at preserving global structure
in the final projection in comparison to the t-SNE algorithm, it is safe

[August 28, 2021 at 16:59 – 1.0]

https://arxiv.org/abs/1802.03426

3.1 dimension reduction 17

to assume that inter-cluster relations are probably more meaningful
than the projections made by the t-SNE algorithm. This preservation
of global structure when running both algorithms under a similar set
of hyperparameters can be seen in Figure 3.2

Figure 3.2: Illustrating how the UMAP algorithm captures more of the global
structure in a sample data set (Mammoth data set). Image source:
[31], licensed under CC BY-SA 4.0.

[August 28, 2021 at 16:59 – 1.0]

3.2 clustering algorithms 18

3.2 clustering algorithms

Throughout the duration of this project we will be making use of the
Hierarchical Density Based Spatial Clustering of Applications with
Noise (HDBSCAN) clustering algorithm. This section serves to both
introduce readers to the DBSCAN algorithm that precedes HDBSCAN
as well as provide a high-level, intuitive explanation of both algorithms
so that we may better understand the differences between them.

3.2.1 DBSCAN

Density Based Spatial Clustering of Applications with Noise (DB-
SCAN), proposed by Ester et al. [18], is a non-parametric data clus-
tering algorithm that works on the principle of grouping together
points that are closely packed together (i. e., located in high-density
regions) while marking points that lie alone in low-density regions as
outliers. This allows the DBSCAN algorithm to find arbitrarily shaped
clusters while also rendering it robust to noise present in the data.
Furthermore, the DBSCAN algorithm does not require us to specify,
or otherwise know ahead of time, the number of clusters that our data
contains and instead automatically determines this number based on
the input data as well as the hyperparameters passed to the algorithm
on its initialization. This leads us to the very first downside associated
with the DBSCAN algorithm and that is that it is exceptionally sensitive
to hyperparameter selection and thus it is imperative to have a solid
grasp on the understanding of said hyperparameters so as to obtain
ideal and meaningful results.

The DBSCAN algorithm classifies points in a feature space as either
core points, density-reachable points, and outliers. To best understand
how this is done we must first define the two hyperparameters that are
essential to the initialization of the algorithm. The first, and arguably,
most important hyperparameter is labeled ε and defines the maximum
distance between two points or, in other words, the radius of a neigh-
borhood with respect to a point. The second hyperparameter is aptly
titled minPts (mpts) and represents the minimum number of points
that must be within distance ε of a point to define it as a core point.
If a point does not contain the minimum number of points within
its neighborhood to define it as a core point but is within distance ε

from a core point then we consider it a density-reachable point and it
belongs to the cluster. Any points that cannot be reached from any
other point are considered outliers or noise points. In essence, any
core point forms a cluster together with all points (core or not) that
are within distance ε from said core point. Non-core points cannot be
used to reach more points and belong to the "edge" of the cluster. The
pseudocode in Listing 3.1 below depicts an explanation of how this
process works.

[August 28, 2021 at 16:59 – 1.0]

3.2 clustering algorithms 19

1 DBSCAN(D, eps, minPts)

2 C = 0

3 foreach unvisited point P in dataset D

4 P = visited

5 neighborPts_P = queryNeighborhood(P, eps)

6 if(neighborPts < minPts)

7 P = noise

8 else

9 C = C + 1

10 expandCluster(P, neighborPts, C, eps, minPts)

11

12 expandCluster(P, neighborPts, C, eps, minPts)

13 add P to C

14 foreach point Q in neighborPts_P

15 if Q = unvisited

16 Q = visited

17 neighborPts_Q = queryNeighborhood(Q, eps)

18 if(neighborPts_Q >= minPts)

19 join(neighborPts_Q, neighborPts_P)

20 else

21 add Q to C

22

23 queryNeighborhood(P, eps)

24 return all points within distance eps to P

Listing 3.1: The DBSCAN algorithm.

To round things off, we present the main advantages and disadvan-
tages of the DBSCAN algorithm:

+ No prior knowledge of the number of clusters is required.

+ Can find arbitrarily shaped clusters.

+ Contains the notion of noise and outliers.

+ Only two hyperparameters need to be set.

− Reliant on the distance metric being used.

− Choosing a meaningful distance threshold can be quite difficult
if the data and scale are not well understood.

[August 28, 2021 at 16:59 – 1.0]

3.2 clustering algorithms 20

Figure 3.3: Depiction of the DBSCAN algorithm at work with minPts set to
4. Here, point A, as well as the other red points, are core points
as the area surrounding these points in a radius ε contains at
least 4 points (including the point itself). Points B and C are
reachable from A through other core points and as a result can
be considered density-reachable points. The cluster is made up
of the core points as well as points B and C. Point N is neither a
core point and cannot be reached through any of the core points
and so is considered an outlier. Image source: [32], licensed under
CC BY-SA 3.0.

3.2.2 HDBSCAN

Hierarchical Density Based Spatial Clustering of Applications with
Noise (HDBSCAN), proposed by Campello, Moulavi, and Sander
[33], is a hierarchical non-parametric clustering algorithm that was
designed to overcome the main limitations of DBSCAN. The most
substantial changes come in the form of no longer explicitly needing
to predefine a value for the distance threshold ε. Instead, HDBSCAN
generates a complete density-based clustering hierarchy over variable
densities from which we can extract a simplified hierarchy composed
only of the most significant clusters in our data. Without delving
deep into the concepts of cluster stability, minimum spanning trees
and hierarchy construction we instead refer the reader to the detailed
explanation in the literature [33] and leave off with Figure 3.4 that does
well to illustrate how HDBSCAN works as a hierarchical clustering
algorithm.

[August 28, 2021 at 16:59 – 1.0]

3.2 clustering algorithms 21

(a) HDBSCAN clustering applied in the case of 3 clusters. (b) HDBSCAN clustering applied in the case of 2 clusters.

(c) Cluster hierarchy of 3.4a. (d) Cluster hierarchy of 3.4b.

(e) Density landscape of 3.4a. (f) Density landscape of 3.4b.

Figure 3.4: An illustration of the hierarchical aspects of the HDBSCAN algorithm. In layman’s terms, when presented
with the density landscape the HDBSCAN algorithm decides whether peaks of a mountain are part
of the same mountain or whether they belong to different mountains where each of these mountains
represent a cluster. When multiple peaks represent multiple mountains the sum of their respective
volumes tends to be larger than the volume of their base. The opposite is true for when multiple peaks
are just features of a singular mountain.

[August 28, 2021 at 16:59 – 1.0]

3.3 forecasting models 22

3.3 forecasting models

The primary forecasting model that we will be utilizing in our forecast-
ing pipeline is a hybrid CNN-LSTM network. This section serves to
introduce readers to both the Convolutional Neural Network (CNN)
component as well as the LSTM component of this network.

3.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) first truly started gaining
traction in the 1990s when Lecun et al. [34] demonstrated that a CNN
which aggregates simple features into progressively more complex
features can be successfully used for the task of recognizing hand-
written characters. Since then, their relevance has become more and
more widespread with applications in image and video classification,
natural language processing [35], and when working with time series
data sets [36]. The following sections will briefly outline key points of
the inner machinations of key CNN components.

3.3.1.1 Convolutional Layers

Firstly, and most importantly, CNNs derive their name from the so-
called "convolution" operator whose primary function is to extract
features from the input vector while maintaining the spatial rela-
tionship between the features in said input vector. Put simply, the
convolutional layer works by sliding a pre-determined number of
filters, otherwise known as ’kernels’, a pre-determined ’distance’ or
stride over an input vector and returning a feature map per filter. The
value of said filters are, in practice, learned by the network during
the training process while other hyperparameters, such as the number
of filters as well as their respective sizes are pre-determined by the
network architect. Other things to keep note of are that the resulting
feature maps are reduced in dimensionality when compared to the
input; however this can be offset by utilizing a variation of techniques
such as the application of a form of padding.

3.3.1.2 Rectified Linear Unit Operation

Following every convolution operation is a Rectified Linear Unit
(ReLU) operation where ReLU is a non-linear operation whose output
is given by:

R(z) = max(0, z) (3.7)

The purpose of the ReLU operation is to replace all negative values
in the feature map by zero. This nonlinear function allows for the

[August 28, 2021 at 16:59 – 1.0]

3.3 forecasting models 23

Figure 3.5: An example of a convolutional kernel at work. A 3x3 kernel
traverses over a 5x5 "image" with a stride of 1 to produce the
convolved feature map.

use of stochastic gradient descent with backpropagation of errors
that enables us to learn complex relationships within the data. Other
operations, or activation functions, such as tanh or sigmoid can also be
used here but generally ReLU performs much better in most situations
and is much quicker to perform due to its sheer simplicity.

Figure 3.6: A simplified demonstration of a ReLU operation.

It is worth mentioning that in contrast to the ReLU activation function
we will be utilizing the leaky ReLU activation function (illustrated
in Figure 3.7) so as to avoid the "dying" ReLU problem in which the
ReLU neurons of a network always output a value of 0 thus effectively
not contributing anything to the learning of the network.

[August 28, 2021 at 16:59 – 1.0]

3.3 forecasting models 24

Figure 3.7: Illustration of leaky ReLU.

3.3.1.3 Max Pooling Layers

Inter-mingled between convolutional layers are a set of pooling layers
that serve to reduce the dimensionality of each feature map while
retaining the most important information. In the case of max pooling
layers, the network defines a spatial neighborhood and takes the
largest element from the rectified feature map within that window.
The goal of pooling layers then is to reduce the feature dimensions of
our input vectors thus making them smaller and more manageable
to work with while also reducing the number of parameters and
computations needed to fit our network, thus minimizing the risk of
overfitting. Furthermore, this renders the network invariant to small
transformations, distortions and translations in the input vector by
providing us with what is essentially a scale invariant representation
of our vector.

Figure 3.8: An example of max pooling using a 2x2 window.

[August 28, 2021 at 16:59 – 1.0]

3.3 forecasting models 25

3.3.2 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks, first proposed by Hochre-
iter & Schmidhuber in 1997 [37], are a special kind of RNN network
that are capable of learning long-term dependencies while overcoming
the main limitations that plagued traditional RNN networks (such
as the exploding/vanishing gradient problem). The cell state of an
LSTM can be seen as a highway that transfers relative information all
the way down the sequence chain allowing information throughout
the processing of the sequence to be retained giving the network a
form of "memory". The key to the functionality of the LSTM is through
the use of a number of gates that give it the ability to remove or add
information to this cell state by learning what information is relevant
to keep, or otherwise forget, during training. The following sections
will serve to outline the functionality of the cell state and gates so that
we may gain a better understanding of them.

Figure 3.9: The repeating module in an LSTM that contains four interacting
layers. Image source: [38] (with permission from the author).

3.3.2.1 Forget Gate

The first gate that we will be taking a look at is the forget gate (ft).
This gate decides what information should be thrown away and what
information should be kept from prior steps. Information from the
previous hidden state (ht−1) and information from the current input
(xt) are passed through a sigmoid (σ) function where values come
out between 0 and 1 for each number in the cell state (Ct−1). Values
closer to and including 0 indicate that we should completely forget
this information while values closer to and including 1 indicate that
we should completely retain all of this information. The formulation
of the forget gate can be seen in equation 3.8.

ft = σ(W f · [ht−1, xt] + b f) (3.8)

[August 28, 2021 at 16:59 – 1.0]

3.3 forecasting models 26

Figure 3.10: An illustration of the forget gate in an LSTM network. Image
source: [38] (with permission from the author).

3.3.2.2 Input Gate

The input gate (it) mainly serves to decide what new information will
be stored in the cell state from the current step. The input gate is a
sigmoid (σ) function that is passed the previous hidden state (ht−1)

and the current input (xt) and outputs values between 0 and 1 where
values closer to and including 0 indicate that the information is not
important while values closer to and including 1 indicate that the
information is important. This value is multiplied by a tanh layer that
serves the purpose of creating a vector of new candidate values (C̃t)

that could potentially be added to the cell state. The formulation of
the input gate and its respective layers can be seen in equations 3.9.

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)
(3.9)

Figure 3.11: An illustration of the input gate in an LSTM network. Image
source: [38] (with permission from the author).

3.3.2.3 Output Gate

The final gate is the output gate (ot) which decides what the next
hidden state (ht) should be. As like in the previous gates, we pass the
previous hidden state (ht−1) and the current input (xt) into a sigmoid
(σ) function which is multiplied by the output of the tanh function
applied to the modified cell state (Ct) which finally gives us our new

[August 28, 2021 at 16:59 – 1.0]

3.3 forecasting models 27

hidden state. The new hidden state as well as the new cell state are
carried over to the next time step. The formulation of the output gate
and its respective layers can be seen in equations 3.10.

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(3.10)

Figure 3.12: An illustration of the output gate in an LSTM network. Image
source: [38] (with permission from the author).

[August 28, 2021 at 16:59 – 1.0]

3.4 performance metrics 28

3.4 performance metrics

Throughout the duration of this project we will be making use of a
variety of performance metrics. These performance metrics, as well as
the reasoning behind choosing them, will be explained in the following
sections.

3.4.1 Mean Absolute Error

The first performance metric that we will be taking a look at is the
mean absolute error (MAE). It provides us with a direct interpretation
of how far off the predictions made by our forecasting models were
from the actual, ground truth. However, the MAE does not provide us
with the capability of drawing comparisons between results obtained
from disparate data sets as it is a scale-dependent metric. That said it
provides a satisfactory level of insight nonetheless. Its equation is:

MAE =

n
∑

i=1
|ŷi − yi|

n
(3.11)

where:

ŷi = predicted value.

yi = actual value.

n = total number of data points.

3.4.2 Mean Absolute Percentage Error

The second performance metric we will be taking a look at is the mean
absolute percentage error (MAPE). As it is a scale-invariant metric,
its primary purpose is to allow us to assess the performance of our
forecasting models across the multiple, disparate data sets we have on
hand and draw comparisons between them. Its equation is:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi

yi

∣∣∣∣ (3.12)

where:

ŷi = predicted value.

yi = actual value.

n = total number of data points.

[August 28, 2021 at 16:59 – 1.0]

3.4 performance metrics 29

3.4.3 Log-Cosh Loss

The final metric that we will be working with is the log-cosh function.
Its primary purpose is to serve as a cost function that our forecasting
models will seek to minimize. The primary reason behind choosing
log-cosh to act as our cost function is that it is robust against the
occasional wildly incorrect prediction that our networks are bound to
make. Its equation is:

Log-Cosh L =
n

∑
i=1

log(cosh (ŷi − yi)) (3.13)

where:

ŷi = predicted value.

yi = actual value.

n = total number of data points.

[August 28, 2021 at 16:59 – 1.0]

4
E X P L O R AT O RY D ATA A N A LY S I S

Before we can get into the details of our model, it behooves us to
perform an initial exploratory data analysis (EDA) so that we may be
able to summarize the main characteristics of the data sets that we
have on hand. This will both help us understand how to perform the
necessary data transformations needed to render our data serviceable
as well as aid in the discovery of patterns or anomalies that might be
present in the data. To this end, we will be applying and discussing
the use of a variety of visualization techniques and statistical tests on
the REFIT data set. In order to maintain the length and readability of
the overall paper, the relevant Figures and Tables for the UCID data
set will be shifted to the Appendix.

4.1 issues

Given that the REFIT data set consists of numerous households, each
comprising its own subset of data, the first step in our EDA will be
to determine which of these households contains the cleanest data, or
in other words, the least amount of issues. We define issues here as
any one of the following: missing periods of data, days that exhibit an
incomplete number of data, or any values recorded that are labeled
’issue’ by the data collection team.

4.1.1 The ’Issues’ Column

The first issue that we will be tackling is the aptly named Issues
column. As previously mentioned in section 1.1.1, the data collection
team responsible for the curation of the REFIT data set appended an
Issues column to the data set so as to indicate whether the sample
being recorded either contains no issues and can be treated normally,
given a recorded value of 0, or whether the sum of the IAMs is greater
than that of the household aggregate, given a recorded value of 1. In
the cases where the recorded value for the Issues column reads 1, the
data collection team recommends either completely discarding the
data or, at the very least, noting the discrepancy. Table 4.1 outlines the
total number of recorded values alongside the number of values with
the Issues column set to 1 (i. e., values with issues).

30

[August 28, 2021 at 16:59 – 1.0]

4.1 issues 31

house no. date range values recorded values with issues

1 2013-10-09→ 2015-07-10 6,960,008 58,183 (0.84%)

2 2013-09-17→ 2015-05-28 5,733,526 28,444 (0.5%)

3 2013-09-25→ 2015-06-02 6,994,594 408,627 (5.84%)

4 2013-10-11→ 2015-07-07 6,760,511 67,441 (1.0%)

5 2013-09-26→ 2015-07-06 7,430,755 425,766 (5.73%)

6 2013-11-28→ 2015-06-28 6,241,971 34,451 (0.55%)

7 2013-11-01→ 2015-07-08 6,756,034 161,919 (2.4%)

8 2013-11-01→ 2015-05-10 6,118,469 25,000 (0.41%)

9 2013-12-17→ 2015-07-08 6,169,525 32,226 (0.52%)

10 2013-11-20→ 2015-06-30 6,739,284 30,162 (0.45%)

11 2014-06-03→ 2015-06-30 4,431,541 40,114 (0.91%)

12 2014-03-07→ 2015-07-08 5,859,544 14,183 (0.24%)

13 2014-01-17→ 2015-05-31 4,737,371 123,796 (2.61%)

15 2013-12-17→ 2015-07-08 6,225,696 23,349 (0.38%)

16 2014-01-10→ 2015-07-08 5,722,544 14,713 (0.26%)

17 2014-03-06→ 2015-06-19 5,431,577 85,937 (1.58%)

18 2014-03-07→ 2015-05-24 5,007,721 174,490 (3.48%)

19 2014-03-06→ 2015-06-20 5,622,610 62,636 (1.11%)

20 2014-03-20→ 2015-06-23 5,168,605 19,594 (0.38%)

21 2014-03-07→ 2015-07-10 5,383,993 206,832 (3.84%)

Table 4.1: Range of dates in the REFIT data set as well as the total number of values and the total number of values
that contain issues.

We note that, for the majority of the households, the number of values
recorded that contain issues are rather small, with only a small number
of households, namely numbers 3 and 5, presenting a problematic
number of values with issues and households 7, 13, 18 and 21 closely
following suit.

[August 28, 2021 at 16:59 – 1.0]

4.1 issues 32

4.1.2 Missing & Incomplete Data

The second issue that we will be tackling is that of missing or otherwise
incomplete data. Here, we refer to missing data as any dates that fall
within the period of recorded data but for which we have no recorded
values while incomplete data refers to any days that contain less than
96 readings when considering a resolution of 15 minutes. The results
of our analysis can be seen in Table 4.2 which also includes a column
that indicates the longest period of consecutive missing days.

house no. no. of days missing days incomplete days stretch

1 640 61 (9.53%) 57 (8.91%) 40 days

2 619 128 (20.68%) 58 (9.37%) 61 days

3 616 54 (8.77%) 47(7.63%) 40 days

4 635 41 (6.46%) 79 (12.44%) 13 days

5 649 21 (3.24%) 76 (11.71%) 8 days

6 578 69 (11.94%) 52 (9.0%) 32 days

7 615 61 (9.92%) 51 (8.29%) 40 days

8 556 43 (7.73%) 43 (7.73%) 38 days

9 569 74 (13.01%) 35 (6.15%) 40 days

10 588 22 (3.74%) 79 (13.44%) 8 days

11 393 31 (7.89%) 33 (8.4%) 9 days

12 489 20 (4.09%) 37 (7.57%) 8 days

13 500 89 (17.8%) 79 (15.8%) 40 days

15 569 38 (6.68%) 69 (12.13%) 8 days

16 545 52 (9.54%) 70 (12.84%) 17 days

17 471 19 (4.03%) 37 (7.86%) 8 days

18 444 15 (3.38%) 34 (7.66%) 8 days

19 472 19 (4.03%) 33 (6.99%) 8 days

20 461 19 (4.12%) 27 (5.86%) 8 days

21 491 33 (6.72%) 45 (9.16%) 14 days

Table 4.2: Total number of days that are missing data in the REFIT data set as well as the number of days that
contain incomplete data and the longest period of consecutive days missing data.

[August 28, 2021 at 16:59 – 1.0]

4.1 issues 33

We note that the earlier households, in order of numbering (houses
1 through 10), tend to contain a larger range of dates recorded and,
subsequently, also tend to contain a larger number of missing days
as well as a larger period of consecutive missing days. The largest
outages seem to span the entirety of the month of February in the year
2014, which is also indicated in the documentation of the REFIT data
set, and, as the earlier households tend to have been set up prior to
that date it makes sense that they would also contain a larger overall
number of missing days. The number of incomplete days displays no
such correlation and can likely be attributed to any number of factors
on a smaller-scale including household internet failure, hardware
failures, network routing issues etc.

4.1.3 Thresholding

To wrap up Section 4.1, we will be selecting a single household with
which to continue our EDA based on the analysis conducted in sections
4.1.1 and 4.1.2. This selection is done in order to maintain a high level
of integrity in the data of the households we choose to work with and
so as to minimize the overall number of transformations that must be
undertaken on said data to render it feasible to work with. We score
each household by taking the normalized (between a range of 0 →
1) mean of the number of incomplete days, missing days and values
with issues and subtracting the obtained value from 1. The results of
this can be seen in Table 4.3.

house no. score

20 0.98

12 0.92

19 0.91

11 0.89

17 0.87

Table 4.3: Weighted scores for the top 5 scoring households in the REFIT data
set.

Given that, the top candidates are households 20, 12 and 19 as they
make up the days that contain the least number of issues. We arbitrarily
narrow our choice down to house number 12 although realistically,
any of the remaining candidates would work just as fine and can be
used to ascertain the findings within the scope of the entire project.

[August 28, 2021 at 16:59 – 1.0]

4.2 data visualization 34

4.2 data visualization

Data visualization is a rather broad term encompassing a large variety
of different techniques that serve to display a variety of different
aspects of our data set. Within the scope of this project we have chosen
to narrow down our focus on a small subset of visualizations that
display vital information relevant to the overall forecasting pipeline
and these will be presented in Sections 4.2.1 and 4.2.2.

4.2.1 Sample Distribution

Figures 4.1 and 4.2 serve to provide an overview of the distribution of
samples over the days of the week as well as the months of the year.
Noting the distribution of our samples over these different criteria
is essential when considering the results of our clustering algorithm
as we will be attempting to classify new samples into the generated
clusters based on these temporal variables later on in this project..

Figure 4.1: Number of samples per day of the week over the entirety of the
data set. Data for this plot was pulled from CLEAN_House12.csv
of the REFIT data set.

At a glance, we note that the distribution of the samples over the
days of the week is relatively even with no one day containing a
much larger number of samples than the other. The distribution of the
samples over the months, on the other hand, is heavily dominated by
the months of March through June and, to a lesser extent, July. When
inspecting the results of our clustering algorithm, the impact of having
nearly twice as many samples for the aforementioned months might
skew the results and as such, we will have to keep that in mind when
interpreting said results.

[August 28, 2021 at 16:59 – 1.0]

4.2 data visualization 35

Figure 4.2: Number of samples per month over the entirety of the data set.
Data for this plot was pulled from CLEAN_House12.csv of the
REFIT data set.

N.B. We note that the plots in Figures 4.1 and 4.2 represent our data set after
removing days that contain an incomplete number of values.

4.2.2 Time Series Decomposition

The decomposition of a time series is a statistical task that deconstructs
it into three principle components: trend, seasonality and noise.

Figure 4.3: Time series decomposition. Data for these plots were pulled over
a 3 month period that was resampled into a resolution of 15

minutes from CLEAN_House12.csv of the REFIT data set.

[August 28, 2021 at 16:59 – 1.0]

4.3 causality & correlation 36

Figure 4.3 depicts the result obtained when performing additive time
series decomposition on our observed electric energy consumption
data [39]. Our reasoning for selecting an additive model is due to the
fact that our data is stationary (i. e., no sharp increase or decrease in
trend over time). Alongside the raw data, we will also be attempting
to train models that learn to forecast future values for the trend com-
ponent of this decomposition as it captures the main essence of the
energy consumption patterns present in the individual household(s)
that we are exploring.

4.3 causality & correlation

Given the substantial number of features or, in other words, inde-
pendent variables (both temporal and meteorological) that we will
be appending to our data set in the feature engineering step of our
forecasting pipeline it is only appropriate then to perform a cursory
examination as to the relative importance of each of these features
with respect to their ability to aid us in forecasting our target variable.
In this case, our target variable is the aggregate power consumption, or
global active power consumption, of an individual household. To this
end, a variety of tests, statistical or otherwise, are available that allow
us to ascertain the relationship between the independent variables in
our data set and our target variable.

4.3.1 Granger Causality Test

The first of these tests that we will be performing is the Granger
Causality test. First proposed in 1969 by Granger [40], the Granger
Causality test is a statistical hypothesis test that allows us to determine
whether one time series is useful in forecasting another. In essence, one
time series Tx is said to Granger-cause another time series Ty if it can
be shown that, through a series of t-tests and F-tests on lagged values
of both Tx and Ty, that the values present in Tx provide information
that is of some statistical significance with respect to future values
of Ty. The null hypothesis that we are testing here is that the past
values of one time series Tx does not cause the other time series Ty. If a
p-value obtained from the test is less than the significance level of 0.05

i. e., 95% confidence, then we can safely reject the null hypothesis and
ascertain that a relationship exists between the two time series. Figures
A.5 and 4.4 depict the output of performing the Granger Causality test
on the meteorological features present in our data set as well as the
relevant target variable, the aggregate power consumption (Aggregate).
We keep in mind that to perform the Granger Causality test we make
the assumption that all of the variables of our data set are stationary
i. e., characteristics such as mean and variance do not change heavily

[August 28, 2021 at 16:59 – 1.0]

4.3 causality & correlation 37

over time. To confirm this we perform the Augmented Dicky-Fuller
test, a unit-root test, that tests the null hypothesis that a unit root
is present in our time series data set. Given a significance level of
0.05 i. e., 95% confidence, then we can safely reject the null hypothesis
for any p-values less than 0.05 and state that the relevant feature
does not contain a unit-root and is thus stationary. Our findings, as
shown in Table 4.4, are that each of our independent variables are
indeed stationary and so we can reaffirm the plausibility of the results
obtained from performing the Granger Causality test.

feature p-value stationary

AirTemp 1.68e-05 True

AlbedoDaily 3.22e-19 True

Azimuth 0.0 True

CloudOpacity 0.0 True

DewpointTemp 4.02e-12 True

Dhi 0.0 True

Dni 0.0 True

Ebh 0.0 True

Ghi 0.0 True

GtiFixedTilt 0.0 True

GtiTracking 0.0 True

PrecipitableWater 1.21e-22 True

RelativeHumidity 1.85e-21 True

SnowDepth 8.96e-05 True

SurfacePressure 6.43e-14 True

WindDirection10m 6.75e-23 True

WindSpeed10m 3.02e-22 True

Zenith 0.02 True

Aggregate 0.0 True

Table 4.4: The results of performing the Augmented Dicky-Fuller test on our
target variable as well as the meteorological variables introduced
in Section 1.1.3 and outlined in Table B.3.

In the output of the Granger Causality test we performed, as seen
in Figure A.5, the rows represent the predictor series (Tx) while the
columns represent the response series (Ty) where Tx causes Ty. The
values in the matrix represent the respective p-values obtained from
the test where any value that falls under the significance level of
0.05 indicates that the corresponding Tx could be considered to have
an effect on or otherwise be causing Ty. For the purposes of our

[August 28, 2021 at 16:59 – 1.0]

4.3 causality & correlation 38

test, we considered the Chi-squared test
(

χ2 = ∑ (Oi−Ei)
2

Ei

)
, testing for

causality among lags up to a maximum of 12. As we can see, the
majority of the meteorological features seem to form a relationship
with our target variable, barre the AlbedoDaily, CloudOpacity, Direct
(Beam) Horizontal Irradiance (EBH) and WindDirection which we can
safely drop from our data set.

Figure 4.4: A trimmed subset of the Granger Causation matrix (Figure A.5)
that displays only the relevant information with regards to our
independent variables causing our target variable.

The complete Granger Causation Matrix is located in the Appendix
(Figure A.5)

[August 28, 2021 at 16:59 – 1.0]

4.3 causality & correlation 39

4.3.2 Mutual Information Gain

Another measure of dependence between our independent variables
and our target variable would be to calculate the mutual information
gain. Mutual information quantifies the "amount of information" ob-
tained about one variable through the observation of another variable.
The results of calculating mutual information of all our independent
variables, including temporal variables, against our target variable can
be seen in Figure 4.5. The results seen in Figure 4.5 are more or less in
line with the output of the results seen in the output of the Granger
Causality test further ascertaining our assumptions that certain fea-
tures, such as AlbedoDaily, CloudOpacity, EBH and WindDirection,
can safely be dropped from our data set and excluded from further
consideration as part of this feature selection process.

Figure 4.5: Mutual information of our independent variables against our
target variable.

[August 28, 2021 at 16:59 – 1.0]

Part III

E M P I R I C A L S T U D Y

[August 28, 2021 at 16:59 – 1.0]

5
M E T H O D O L O G Y

This paper proposes a forecasting method that utilizes dimensionality
reduction and clustering techniques to group days that exhibit similar-
ity in terms of electric consumption behavior. Days that are grouped
into the same cluster are thought to contain shared features, whether
those features be temporal or meteorological or otherwise, that cause
this similarity in behavior. The formed clusters (per household) are
used for 2 purposes: firstly, they will be used to train a classification
model that utilizes available context information to assign a new day
to the correct cluster. Secondly, and finally, a novel deep learning
method will be applied on a per-cluster basis to forecast future en-
ergy consumption. A detailed outline of the proposed model, first
introduced in Section 1.2, can be seen in Figure 5.1.

Figure 5.1: Proposed daily profile extraction and load forecasting model.

In short, we start off by resampling the data present in both the REFIT
data set as well as the UCID into a common resolution in order be able
to directly compare results. In this case we will be resampling both
data sets to a common resolution of 15 minutes per sample as this lines
up well with the native resolution of the meteorological data we have
on hand that was provided to us by Solcast. Following this, we clean
both data sets and rid them of any days that contain an incomplete
number of records (incomplete here referring to any days that contain

41

[August 28, 2021 at 16:59 – 1.0]

5.1 stage 1 - data collection and cleaning 42

less than 96 records given we split each day into a total of 96 chunks).
After this, we take a subset of each of our data sets (60% of the total
data for each of the REFIT as well as the UCID data sets henceforth
referred to as Set A) and leave out the remaining 40% (henceforth
referred to as Set B) in order to validate the results of our forecasting
model. We then reduce the overall dimensionality of a single day, going
from a total of 96 features to a much more manageable 2 through
a combination of statistical and machine learning techniques and
generate clusters based on the new, 2-dimensional data set by utilizing
a density-based clustering algorithm. Following this, we train and
optimize a classifier on Set A and use it to generate cluster labels
for the previously withheld Set B. Finally, we train our forecasting
models, one per cluster, on the data present in Set A and use the data
present in Set B to act as both a validation set as well as a training set
with which to obtain final results. In this Chapter, we will provide a
working example alongside in-depth explanations of each of the steps
previously discussed that make up our overall forecasting pipeline.

5.1 stage 1 - data collection and cleaning

Step 1.1: As mentioned previously, this paper utilizes available historical data
with regards to energy consumption on an individual household basis.
In reality, as part of stage 1 of our forecasting pipeline, time series
data of daily electricity consumption would need to be collected from
an individual household meter for an adequate amount of time at an
ideal resolution so as to obtain acceptable results.

Step 1.2: After collecting, or in our case loading in, the data, we perform com-
mon preprocessing techniques to account for noisy or otherwise miss-
ing data that occurred during the transmission of the data from the
meters. In our case, the available data was resampled into a resolution
of 15 minutes and any days that contained less than 96 values (given
that there are 96 15 minute chunks in a day) were dropped from our
data set. All other days that contained NaN values were also not
considered and subsequently dropped from our data set.

5.2 stage 2 - dimensionality reduction and clustering

Step 2.1: Given that each day in our data set is represented by 96 dimensions,
each dimension comprising mean active power consumption over a
time period of 15 minutes, the first logical step to undertake would
be to transform the data in a manner that enables our clustering
techniques to more efficiently determine which days exhibit similarity
in terms of electric consumption behavior. This dimensionality reduction
step comprises 2 parts that are outlined in the sub-steps below.

[August 28, 2021 at 16:59 – 1.0]

5.2 stage 2 - dimensionality reduction and clustering 43

To start things off we divide each day into 5 different periods (as per
the work of Yildiz et al. [4]) as follows:

1: Morning: 06:00 - 11:00

2: Late morning/afternoon: 11:00 - 15:00

3: Late afternoon/early evening: 15:00 - 20:30

4: Evening: 20:30 - 23:30

5: Late evening/early morning: 23:30 - 06:00

Following that, we represent each period by its respective mean, mini-
mum, maximum value as well as its standard deviation. The outcome
of performing this is that each day is now represented by a total of 20

dimensions rather than the initial 96 which is a reduction of ∼ 80%.
We can reduce this even further, and even visualize our data in 2 or 3

dimensions, by making use of either of the t-SNE or UMAP algorithms
outlined in Section 3.1.1. The most important hyperparameter to tune
for either algorithm is the perplexity hyperparameter for the t-SNE
algorithm and the equivalent nneighbors hyperparameter for the UMAP
algorithm. During our research, we found that an optimal value for
either of these hyperparameters is N

1
2 where N is the number of sam-

ples present in the data set. To better understand each of the steps
of our proposed model, we will now begin a series of visualizations
showcasing each step as performed on the UCID data set throughout
the entirety of stage 2 as well as the remainder of the stages that
make up our overall forecasting pipeline. We start off by presenting
a scatter plot of the 2-dimensional output obtained as a result of per-
forming the t-SNE algorithm which can be seen in Figure 5.2 that
allows us to clearly visualize the 2-dimensional interpretation of the
samples present in the UCID data set. Each of the points found on the
2-dimensional surface in Figure 5.2 represents a single day, and given
that the UMAP algorithm claims to preserve both local as well as most
of the global structure present in the data we can safely assume that
distances between the samples are conducive to the similarity in terms
of energy consumption as per the previously segmented (into various
periods) interpretation of the data.

[August 28, 2021 at 16:59 – 1.0]

5.2 stage 2 - dimensionality reduction and clustering 44

Figure 5.2: The output of performing the UMAP algorithm on the 20-
dimensional UCID data set. Each point in this figure represents
a single sample (or day) within our data set mapped onto a
2-dimensional surface.

Step 2.2: After performing the dimensionality reduction step on our data, we
proceed to cluster the resulting output by applying the HDBSCAN
algorithm, as outlined in Section 3.2.2. As previously mentioned, the
only important parameters that need to be passed to the HDBSCAN al-
gorithm are the minimum size we expect each cluster to be. In this case
we set that value to 1

10 (N) where N is the number of samples present
in the data set. Our reasoning for selecting this value is predominantly
based on the adequate results observed by Kong et al. [10] in their
implementation of the DBSCAN algorithm in a similar setting whilst
utilizing a similar selection in terms of hyperparameter settings. The
other hyperparameter we choose to tune is the min_samples hyperpa-
rameter, which, in layman’s terms, denotes how conservative we would
like to be with our clustering in terms of restricting clusters to pro-
gressively more dense areas and classifying samples from our data set
as noise. In our case, an arbitrary value of 15 was selected, in contrast
to the default value that sets min_samples = min_cluster_size. The
results of performing the HDBSCAN algorithm on our 2-dimensional
representation of the UCID data set (shown in Figure 5.2) can be seen
in Figure 5.3.

[August 28, 2021 at 16:59 – 1.0]

5.2 stage 2 - dimensionality reduction and clustering 45

Figure 5.3: The output of performing the HDBSCAN algorithm on the 2-
dimensional UCID data set previously seen in Figure 5.2.

For the sake of comparison, we present the output of applying
the k-means clustering algorithm (assuming k = 3) on the same
2-dimensional representation of the UCID data set. This can be seen in
Figure 5.4. We note immediately the capability of the HDBSCAN algo-
rithm in capturing a better representation of the clusters present in our
2-dimensional representation of the UCID data set. The representation
of outliers as noise points and not having to have a priori knowledge
on the number of clusters present in the data we are working with is
a definite pro as well further compounding our choice of clustering
algorithm in our proposed model.

Figure 5.4: The output of performing the k-means algorithm on the 2-
dimensional UCID data set previously seen in Figure 5.2.

[August 28, 2021 at 16:59 – 1.0]

5.2 stage 2 - dimensionality reduction and clustering 46

Step 2.3: Visualizing, or otherwise manually inspecting, the clusters we obtain
as a result of our application of the HDBSCAN algorithm is necessary
so that we can better understand whether our clustering algorithm
truly captures the habits of the individuals residing in the households
we are working with. The first step in our analysis of the resulting
clusters would be to plot the averaged power consumption on a per
cluster basis so that we may be able to clearly visualize the patterns
in power consumption per cluster. An example of this, in line with
the previous examples showcasing our proposed model on the UCID
data set, can be seen in Figure 5.5. We note that, in this example, a
subset of our data (24 samples in total), were recorded as noise by
the HDBSCAN algorithm. Inspecting these samples manually lead
us to the confirmation that, of the 4 year’s worth of data, these 24

days were the only days that exhibited no tangible shift in terms of
power consumption throughout the entirety of the day (i. e., the global
active power draw observed was completely stationary throughout this
period); however, this is not explicitly outlined in the documentation
of the UCID data set. This can be seen as a more or less flat line in
Figure 5.5.

Figure 5.5: Average power consumption per hour of the day for each of the re-
sulting clusters obtained after utilizing the HDBSCAN algorithm
on our 2-dimensional representation of the UCID data set.

Following this, Figures 5.6 and 5.7 help us visualize the distribution
of the clusters over the months of the year as well as the days of the
week to ascertain whether any of the clusters present any correlation
with these temporal variables. Given that the initial spread of the
data throughout the months of the year and days of the week of the
UCID were relatively uniform, we should not see any bias towards any
particular month or day in either Figure 5.6 or Figure 5.7 respectively.

[August 28, 2021 at 16:59 – 1.0]

5.2 stage 2 - dimensionality reduction and clustering 47

Figure 5.6: Distribution of the clusters over the different months of the year.

Figure 5.7: Distribution of the clusters over the different days of the week.

At a glance, we notice that clusters 1 and 2 are more likely to occur
on the weekdays with cluster 3 taking over the majority share of the
weekend which tends to explain the more consistent draw in power
throughout the entirety of the day for samples that belong to cluster
3. Furthermore, samples in cluster 1 tend to gravitate towards the
warmer, summer months peaking in terms of number of occurrences
in the month of July while samples in clusters 2 and 3 exhibit a more
uniform spread over the remainder of the colder months which could
explain the lower average draw in power present in samples that
belong to cluster 1 being a result of the owners of the home not being
in as often or potentially not needing to make use of appliances to

[August 28, 2021 at 16:59 – 1.0]

5.3 stage 3 - further data preprocessing 48

heat up their home (we note that this data was collected in Sceaux,
France that experiences a warm season of ∼3 months with otherwise,
generally, cooler temperatures).

Figure 5.8: Spread in number of samples per cluster label.

N.B.: It is worth noting that performing these same steps on households from
within the REFIT data set exhibit similar results.

5.3 stage 3 - further data preprocessing

Step 3.1: The details pertaining to the majority of the steps undertaken through-
out the entirety of stage 3 of the proposed model have, to an extent,
been explained in-depth during the EDA performed in Chapter 4.
Nonetheless, a brief summary will be provided as part of Chapter 5.
The first step undertaken, again on a per-cluster basis, is to append
both temporal data as well as meteorological data to our data sets.
Table B.1 pertains to the temporal variables that will be taken into
consideration as part of this feature engineering step while Table B.3
pertains to the obtained, historical meteorological data that concern
the regions associated with our data sets. Incidentally, as outlined in
Table B.1, the temporal variables we have chosen to append do not
hold much value given their current format. This is due mostly in part
to their cyclical nature (think of how the 23rd hour of the day is rather
close to hours 0 and 1). To handle this we can encode our temporal
variables (for example, through the use of both the sine and cosine
function) in an attempt to transpose our linear interpretation of time
into a cyclical state that can be better interpreted by our deep learning
model further down the line. The result of performing this so-called
encoding can be seen in both Figures 5.9a and 5.9b.

[August 28, 2021 at 16:59 – 1.0]

5.3 stage 3 - further data preprocessing 49

(a) Representing the time of the day as a combination of both
sine and cosine waves.

(b) Visualizing our cyclical encoding of the time of day.

Figure 5.9: By utilizing a combination of the sine function and the cosine function, we eliminate the possibility
that two different times would receive the same value had we used either function independently. The
combination of both functions can be thought of as an artificial 2-axis coordinate system that represents
the time of day.

Step 3.2: Following the feature engineering process, the feature selection pro-
cess, heavily revolves around minimizing the overall number of fea-
tures that do not serve as good predictors of our target variable. This
has been explored predominantly in Section 4.3. To summarize on the
steps undertaken in the sections mentioned prior – we performed a
series of tests to determine whether our variables (temporal or meteo-
rological) present a significant level of independent (or combinatorial)
correlation or causation against our target variable for each of the
REFIT and UCID data sets. The primary tests conducted revolved
around the concepts of Granger Causality and mutual information
gain although other factors (such as a per-variable variance threshold)
were also looked into.

Step 3.3: When taking our target variable into consideration, the notion of
outliers (and how to deal with them), is inevitable. Scaling the values
in such a fashion that accounts for outliers is one possibility whilst
defining a threshold and trimming outlier values is another possibility.
Alternatively, leaving them in is another possibility as some level of
noise is unavoidable in the data collection process and training our
models on unrealistically curated data does not serve to produce an
accurate representation of a real-life scenario in which a model of this
caliber could be applied. Nonetheless, we explore a few possibilities
with respect to dealing with outlier values. One possibility, assuming
a Gaussian distribution of the values of our target variable, would
be to remove all values that fall a pre-defined number of standard
deviations, generally 2 or 3, away from the mean. Unfortunately, the
distribution of our target variable does not fall under this pre-condition
(as seen in Figure A.9) and so this is not a feasible option. Another

[August 28, 2021 at 16:59 – 1.0]

5.3 stage 3 - further data preprocessing 50

method, explored during prior, related research [8], worked on the
basis of defining an upper and lower bound based on the interquartile
range (IQR). The IQR is calculated as the difference between the 75th
(Q3) and 25th (Q1) percentiles of the data and comprises the box in
a traditional box and whiskers plot. Using the IQR we can define
outliers as any values that are a pre-defined factor below the 25th
percentile or above the 75th percentile as follows:

Q1− (1.5 ∗ IQR) < x < Q3 + (1.5 ∗ IQR) (5.1)

Figures 5.10a and 5.10b represent the distribution of values for our
target variable over the different months of the year both before and
after removing outliers respectively.

(a) Before removing outliers. (b) After removing outliers.

Figure 5.10: Illustrating the distribution of values with respect to the global active power of the UCID data set both
before and after removing outlier values as defined by Equation 5.1.

Smoothing, or otherwise filtering, the data can also be done through
the use of a variety of techniques and can help alleviate some of the
issues inherent to the noise present in our data as a byproduct of
the data collection process. An example of performing a preliminary
smoothing step on energy consumption data can be seen in the work
of Hsiao [5] in which a moving (or rolling) average method was
utilized. With regards to our proposed forecasting pipeline, we will
be utilizing Savitzky-Golay filters [41] to smooth our raw, electrical
energy consumption data as, when compared to the moving average
method, Savitzky-Golay filters tend to do a better job at preserving
the integrity of the raw data. Figures 5.11a and 5.11b serve to illustrate
the application of both the moving average method as well as the
Savitzky-Golay filter method on a subset of our (raw) data set in order
to better visualize the differences between both methods.

[August 28, 2021 at 16:59 – 1.0]

5.3 stage 3 - further data preprocessing 51

(a) Application of the moving average method with a window
size of 3.

(b) Application of the Savitzky-Golay filter method with a
polynomial order of 3 and a window size of 5.

Figure 5.11: Illustrating the application of both the moving average method as well the Savitzky-Golay filter method
in smoothing on a subset of our raw data.

Similarily, when considering the trend component of our data (as
seen in Figure 4.3); a preliminary smoothing step can be undertaken
through the use of Locally Weighted Scatterplot Smoothing (LOESS) –
this is illustrated in Figure 5.12.

Figure 5.12: An illustration of the previously obtained trend component both
with and without the application of LOESS.

Step 3.4: The final step taken as part of Stage 3 of the forecasting pipeline is
to split the data into 3 subsets that serve to act as training, validation
and testing sets that will be fed to both our classification tree as well
as the CNN-LSTM network that we will be using for the purpose of
forecasting. A split employing an arbitrarily selected ratio of 60:20:20 is
taken. Given the nature of our study, we choose not to shuffle the data

[August 28, 2021 at 16:59 – 1.0]

5.4 stage 4 - training and testing 52

in either of the generated sets as we are primarily interested in our
model’s capability of forecasting future trends in energy consumption
given a measure of historically available data.

5.4 stage 4 - training and testing

In contrast to the earlier stages, stage 4 will be subdivided into Sub-
sections 5.4.1 and 5.4.2, where Subsection 5.4.1 serves to present an
overview of our classification model while Subsection 5.4.2 serves to
present an overview of our forecasting model.

5.4.1 Stage 4.1 - Classification Tree

Before we can begin attempting to forecast trends in energy consump-
tion we will need to establish, or otherwise ascertain, our ability to
correctly assign a new point (or day) to the correct cluster. Given that
the previously discussed clustering step separated the days in our data
set on the basis of similarity in terms of patterns in energy consump-
tion; this will not be an easy feat as the remaining, available context
information may not suffice in providing the relevant information to
draw up a decision boundary (of sorts) that serves to differentiate
individual clusters.

Figure 5.13: An illustration of the Synthetic Minority Oversampling Tech-
nique (SMOTE) algorithm in the case of 2 classes depicted by
blue squares (minority class) and red circles (majority class). The
blue square on the far left is isolated from other members of
its class and is surrounded by members of the other class and
is this considered to be a noise point. The cluster in the center
contains several blue squares surrounded by members from the
other class and thus is indicative of potentially unsafe points that
are unlikely to be random noise. Finally, the cluster in the far
right contains predominantly isolated blue squares. The algo-
rithm would then generate new, synthetic samples prioritizing
the safer regions.

[August 28, 2021 at 16:59 – 1.0]

5.4 stage 4 - training and testing 53

The first step in insuring a decently trained classifier is to deal with
the glaring problem of class imbalance that can be seen in Figure 5.8.
The results of our clustering step lead us to an uneven distribution
of days among the different class labels which could lead to poor
predictive performance as standard classification algorithms are inher-
ently biased to the majority class. A common means to alleviate this
issue is to either undersample the majority class(es) or oversample the
minority class(es). In this paper we will be implementing the SMOTE
algorithm, a form of informed oversampling, that works on the basis of
generalizing the decision region for minority classes and thus provides
us with synthetic samples while preventing overfitting. For further
explanations as to the workings, advantages as well as shortcomings
of this algorithm we refer the reader to the initial paper by Chawla
et al. [42] as well as Figure 5.13 that provides a layman’s explanation
of the algorithm. The results of applying the SMOTE algorithm, and
the overall negation of the previously mentioned class imbalance, can
be seen in Figure 5.14.

Figure 5.14: Number of samples per class label after applying the SMOTE
algorithm.

After handling the class imbalance problem we can shift our attention
to both the feature engineering as well as the feature selection process
of this particular classification problem. In this scenario, the available
context information we have is purely temporal (ordinal day of the
week/year, month, season, etc.), and historical as well as forecasted
meteorological data (air temperature, humidity, cloud opacity, etc.),
as provided by Solcast, and these will serve to act as the base-line
number of features that our classifier will receive with which to assign
a new sample into one of the previously generated clusters. Numerous

[August 28, 2021 at 16:59 – 1.0]

5.4 stage 4 - training and testing 54

methods exist to minimize the overall amount of features being passed
to our classification model, some of which we explored in Chapter 3 of
this paper and can be reapplied here to similar effect. In brief, we chose
to make use of a Random Forest Classifier, the hyperparameters of
which were tuned through a randomized search over a pre-determined
distribution of values per hyperparameter. After assessing the optimal
hyperparameters for our use-case, we passed the model as well as the
complete set of features through a feature selection algorithm titled
Recursive Feature Elimination and Cross-Validation (RFECV). RFECV
works on the basis providing a cross-validated selection of the most
important features when considering a target label and pruning the
less important features. Applying this algorithm reduces the overall
number of features that our Random Forest Classifier utilizes from
an initial 77 down to a mere 24 (as shown in Figure 5.15) which is an
overall reduction of ∼ 68%.

Figure 5.15: Assessing the number of important features through the use of
the RFECV algorithm. In this particular scenario, the optimal
number of features was pruned down from a total of 77 to a
mere 24.

After transforming the data set and pruning the less important features
we, once again, train the model on the new, transformed data set
utilizing 5-fold stratified cross-validation to assess whether our model
is overfitting at any stage and so as to ensure an even distribution of
class labels per validation set. We can conduct a quick inspection of the
now fitted model by calculating the permutation feature importance
on a per-feature basis to validate whether the final set of features are
relevant when attempting to classify a new sample into the correct
cluster. By definition, the permutation importance of a feature is the
overall decrease in accuracy of our model when said feature’s values

[August 28, 2021 at 16:59 – 1.0]

5.4 stage 4 - training and testing 55

are randomly shuffled and, by doing so, we break the relationship
between the feature and the target label. By doing this we can assess
how much our model depends on said feature, the results of which can
be seen in Figure 5.16. it is important to note that, when calculating the
permutation importance of strongly correlated features – the model
will still have access to the shuffled feature through its correlated
feature which will result in a lower importance value for both features
when they might actually be important. To address this, it is possible
to further prune the data set and remove subsets of features that
present strong inter-correlation.

Figure 5.16: The permutation importance of each of the features chosen as
part of our fitted Random Forest classifier.

The final model is then ready to accept new samples and assigns them
a cluster based on the training procedure outlined through Section
5.4.1.

5.4.2 Stage 4.2 - CNN-LSTM Network

The focal point of our research lies in the implementation of a CNN-
LSTM model in which the CNN component serves to learn the relative
importance of each of the features (cyclical, temporal as well as meteo-
rological) that we pass to the network as input in what we can loosely
call a feature extraction step. The extracted features are then passed to
the LSTM portion of the network that learns the temporal relationship
between past, or otherwise historical, values of said features with
the present, or future, value(s) of the target variable where finally, an
output prediction is made. The combination of both CNN and LSTM
components allows the network to learn spatio-temporal relationships

[August 28, 2021 at 16:59 – 1.0]

5.4 stage 4 - training and testing 56

between the features being passed as input and the target variable that
we are attempting to forecast. In contrast to other architectures and
forecasting models, this architecture is demonstrably more efficient
[24] when tackling time series problems such as that of residential
energy consumption forecasting. The sample network illustrated in
Figure 5.17 can be expanded to forecast multiple time steps ahead
with minor adjustments and is capable of understanding patterns at
variable time resolutions. For the purposes of this example, we will be
moving forward with the previously defined resolution of 15 minutes
using a window of 24 historical values (t− 24, t− 23, ..., t) to make
a prediction one step into the future (t + 1) for both the previously
established trend component as well as the raw, unadulterated data.

Figure 5.17: A simple, example CNN-LSTM network that makes one-step-ahead predictions.

To train our network, we will be utilizing Adam [43]: an adaptive
learning rate optimization algorithm that was designed specifically for
training deep neural networks. In contrast to the ever-familiar Stochas-
tic Gradient Descent (SGD), Adam leverages the power of adaptive
learning rate methods and momentum to allocate individual learning
rates for each parameter of the network being trained. For further
explanations as to the workings of this algorithm we refer the reader to
the initial paper by Kingma and Ba [43]. Additionally, when training
our network(s), we will be making use of a variety of techniques to
improve generalization and prevent overfitting to the training data
set(s). The first of these techniques is the notion of early stopping (illus-
trated in Figure 5.18). Early stopping is a form of regularization that
monitors the validation loss (or generalization error) and aborts the
training when the monitored values either begin to degrade or do not
shift for an arbitrarily set number of epochs. The second technique we
will be using works on the notion of employing a variable learning rate

[August 28, 2021 at 16:59 – 1.0]

5.4 stage 4 - training and testing 57

that, in theory, facilitates convergence of our weight update rule and
prevents learning from stagnating thus allowing us to break through
plateaus and avoid settling at local minima.

Figure 5.18: Illustration of early stopping.

For the purposes of our experiments and procuring the results show-
cased in Chapter 6, we will be implementing a network on a per-cluster
basis for both the raw data as well as the trend component of each
of our data sets. The networks implemented will serve to provide
one-step-ahead forecasts as well as one-shot 12-step-ahead (3 hour)
forecasts as proof of concept.

[August 28, 2021 at 16:59 – 1.0]

6
R E S U LT S A N D D I S C U S S I O N

Following the brief example demonstration of the method in Chapter
5, we extended the implementation to house 12 of the REFIT data set.
The subsequent sections serve to demonstrate the efficacy of both the
classification step as well as the forecasting step of our method.

6.1 cluster label classification

The first results that we will be demonstrating are that of the classifi-
cation step of our method – refer to Table 6.1.

data set no. of clusters accuracy

UCID 3 76%

REFIT - House 12 3 66%

Table 6.1: Result of training, optimizing and evaluating a random forest
classifier on the cluster labels obtained for each of the UCID as
well as the REFIT data sets.

Being able to correctly assign new samples into the correct cluster
is imperative so as to insure the highest likelihood of achieving con-
sistently reliable forecasting accuracy. Given that we had an equal
number of 3 clusters per data set and that we were working with a
(synthetic) uniform distribution of samples over the different clusters,
the scores outlined in Table 6.1 are fairly good (a random predictor
would achieve an accuracy of 33.3%). The disparity in the results be-
tween the 2 data sets could predominantly be linked to the following
2 reasons:

1. The UCID data set contained a much larger number of samples
(days).

2. The distribution of the samples over the different days of the
week as well as the months is much more uniform in the UCID
data set.

Figures 6.1 and 6.2 allow us to clearly visualize both the correct as
well as the incorrect predictions made by our model. Interestingly,
given that both the clusters formed for each of the UCID as well as
the REFIT data set were quite similar in terms of the overall patterns

58

[August 28, 2021 at 16:59 – 1.0]

6.2 forecasting accuracy 59

that were captured, the fitted model per data set seems to be making
mistakes, or otherwise incorrect predictions, of a similar magnitude
with cluster 2 containing the largest number of incorrect predictions
for each of the data sets and cluster 1 containing the largest amount
of correct predictions.

Figure 6.1: Confusion matrix - UCID.

Figure 6.2: Confusion matrix - REFIT.

6.2 forecasting accuracy

When compared to the current state-of-the-art in modern literature,
particularly with regards to data available on hand pertaining to the

[August 28, 2021 at 16:59 – 1.0]

6.2 forecasting accuracy 60

UCID data set, our method yields superior forecasting accuracy at
variable resolution. Table 6.2 presents a performance comparison of
common models discussed in the literature and our method. We note
that, at the time of writing, no published results attempting to forecast
energy consumption on the REFIT data set could be found and thus,
barre attempting to recreate the results ourselves, we have had to omit
them from Table 6.2 for the time being.

data set method mae (kw) rmse (kw) mape

UCID
LSTM [24] 0.62 0.86 51.45%

CNN-LSTM [24] 0.34 0.61 34.84%

Proposed 0.14 0.19 21.62%

REFIT
LSTM N/A N/A N/A

CNN-LSTM N/A N/A N/A

Proposed 0.11 0.17 25.77%

Table 6.2: Performance comparison of different methods on each of UCID as
well as the REFIT data set. Note that these results were obtained
for one-step-ahead prediction at a resolution of 15 minutes over
the raw data sets.

Another component that is frequently (attempted to be) forecasted in
the literature is the trend component obtained as part of a time-series
decomposition step that was previously discussed in Chapter 4. We
attempted to tackle this problem ourselves and applied the method
to both the smoothed, trend component of the UCID data set as well
as house 12 of the REFIT data set, the results of which can be seen
in Table 6.3. We note that the results here are considerably good,
achieving a MAPE of ∼ 2% for both data sets.

data set mae (kw) rmse (kw) mape

UCID 0.02 0.02 2.58%

REFIT 0.02 0.02 4.32%

Table 6.3: Performance metrics obtained when applying our method on the
trend component of each of the UCID as well as the REFIT data
sets to obtain a one-step-ahead prediction.

Finally, we attempted to extend our model by scaling up the number
of predictions from a singular step (15 minutes into the future in this
scenario) to a total of 12 sequential steps (leading to a grand total of
3 hours being forecasted given the previously mentioned step size

[August 28, 2021 at 16:59 – 1.0]

6.2 forecasting accuracy 61

of 15 minutes) ,the results of which can be seen in Table 6.4. Oddly
enough, for both the UCID data set as well as house 12 of the REFIT
data set, we achieved marginal improvements with regards to MAPE
scores when attempting to build twelve-step-ahead forecasts on their
respective trend components. On the other hand, MAPE scores for the
raw data for each of our data sets fell somewhat substantially, with
an overall loss of about ∼ 10%, when moving from one-step-ahead
forecasts to twelve-step-ahead forecasts which is more in line with
what one could expect in this scenario.

data set method mae (kw) rmse (kw) mape

UCID
Raw 0.37 0.59 38.23%

Trend 0.02 0.02 3.15%

REFIT
Raw 0.17 0.31 39.75%

Trend 0.02 0.02 4.75%

Table 6.4: Performance metrics obtained when applying our method on both
the raw data as well as trend component of each of the UCID as
well as the REFIT data sets to obtain twelve-step-ahead predictions.

To further showcase, or otherwise visualize, the capabilities of our
model we present Figures 6.3a, 6.3b, 6.4a and 6.4b that serve to illus-
trate one-step-ahead forecasts generated for a subset of each of the
UCID data set as well as house 12 of the REFIT data set. These figures
illustrate predictions made by each of our individual models on both
the raw data as well as the trend component for each of the REFIT
data set as well as the UCID data set over a period of 1 day out of our
test set.

(a) UCID - Raw data. (b) UCID - Trend.

Figure 6.3: Showcasing the capabilities of our method in making one-step-ahead predictions on the UCID data set.

[August 28, 2021 at 16:59 – 1.0]

6.2 forecasting accuracy 62

(a) REFIT - Raw data. (b) REFIT - Trend.

Figure 6.4: Showcasing the capabilities of our method in making one-step-ahead predictions on the REFIT data set.

A cursory glance at Figures 6.3b and 6.4b shows us that our model
seems to excel at making one step predictions on the trend component
of the UCID data set while the predictions being made for the trend
component of the REFIT data set seem to be slightly less accurate.
When considering the raw data for each of the data sets (Figures 6.3a
and 6.4a) the differences are less pronounced and it seems that the
model is capable of making accurate predictions one step into the
future. This might vary in between days though and, given that the
days chosen for these illustrations were completely random, it might
be the case that the model performs better (or worse).

N.B. we note that the results obtained as part of Section 6.2 are the averaged
results obtained from training, optimizing and assessing multiple models, one
for each of the respective clusters obtained as part of stage 2 of our method.
Furthermore, all results were obtained at a resampled resolution of 15 minutes
per time-step; however, similar results have been observed for variable time
resolutions (1 minute, 1 hour etc.)

[August 28, 2021 at 16:59 – 1.0]

7
C O N C L U S I O N A N D F U T U R E W O R K

In this study, we have shown that the application of a clustering
step that utilizes dimensionality reduction techniques such as t-SNE
and hierarchical, density-based clustering in the form of HDBSCAN
leads to significant improvements in forecasting accuracy when taking
individual households into consideration. While this technique is
certainly more complex, in particular with regards to the number
of steps and moving parts associated with the entire pipeline, we
maintain that the benefits in terms of improved forecasting accuracy
outweigh the overall increase with regards to the time and effort
it would take to train and set up such a model. The practicality
of the model lies in the availability of the data that it requires to
function – primarily with respect to historical energy consumption
data for the individual households in question (which is becoming
easier and easier to obtain thanks to the prevalence of smart meters)
and meteorological data that can easily be obtained from numerous
sources. Furthermore, it is highly likely that, given enough historical
data, the need to further train the model(s) after the initial setup is
rather low further compounding the efficacy of our method.

Furthermore, one of the benefits of our method that we previously
discussed is that no prior knowledge of the number of clusters is
required. As there is no guarantee that any 2 individual households
contain a similar number of repeating patterns we avoid running into
the problem of overly generalizing a single working solution that may
or may not work given said change in energy consumption patterns
and instead present a solution that could potentially extend to a much
larger scale. A potential issue with this implementation however, is
that an individual household may contain a large number of repeating
consumption patterns which could possibly lead to an overall decline
in what can already be considered sub-par performance from our
classifier. That said, there is definitely room for improvement that
could accommodate these potential risks, specifically with regards to
the feature engineering step – for example, improvements in classifier
accuracy could be seen through the utilization of a more efficient
classifier. Alternatively, the current lack of contextual information that
serves to explain the emergence of the clusters as part of the clustering
step could likely be the reason for obtaining sub-par accuracy scores
as, in its current iteration, the premise of our clustering step was
to group together days that exhibited the highest similarity purely
in terms of their energy consumption patterns and, given that this

63

[August 28, 2021 at 16:59 – 1.0]

conclusion and future work 64

information is not readily available to us when considering a new day,
we are left reaching for straws when attempting to explain when any
individual household is likely to observe energy consumption patterns
that fall within any of the obtained clusters. Evidently, temporal and
meteorological information is not enough to explain the emergence
of said clusters and other information (perhaps patterns in terms of
cluster labels leading up to the new sample) could serve to improve
classifier accuracy. This is definitely an area of this study that could be
looked into as part of future research. Additionally, regardless of the
fact that the performance of our forecasting model is the highlight of
this paper, it is interesting to note that a byproduct of our method is
the potential to extract insights into variables that have an effect on the
daily energy consumption patterns of unique households. A cursory
glance at applying our method to a portion of the data at hand, as
an example of the insights that we can obtain, shows us that some
households have frequently occurring patterns that tend to deviate
among the different days of the week while other households have
an even bigger separation across months of the year or even among
meteorological factors such as the temperature or chance of rain.

To conclude, we note that, as a result of pre-clustering our data, and
then training separate models on a per-cluster basis we achieved an im-
provement in overall forecasting accuracy with superior MAPE scores
in contrast to the current state-of-the-art (LSTM networks, clustering
based on K-means, etc.).

[August 28, 2021 at 16:59 – 1.0]

Part IV

A P P E N D I X

[August 28, 2021 at 16:59 – 1.0]

A
A P P E N D I X - F I G U R E S

Figure A.1: A sample stacked area chart showing the readings of each appli-
ance in each hour of a day. These readings were averaged over
the entirety of the data present in the data set. Data for this plot
was pulled from CLEAN_House12.csv of the REFIT data set.

Figure A.2: Number of samples per day of the week over the entirety of the
UCID data set.

66

[August 28, 2021 at 16:59 – 1.0]

appendix - figures 67

Figure A.3: Number of samples per month over the entirety of the UCID
data set.

Figure A.4: Time series decomposition performed on the UCID data set.
Data for these plots were pulled over a 6 month period that was
resampled into a resolution of 15 minutes.

[August 28, 2021 at 16:59 – 1.0]

appendix - figures 68

Figure A.5: The complete Granger Causation matrix for the REFIT data saet
with all of the relevant features included.

[August 28, 2021 at 16:59 – 1.0]

appendix - figures 69

Figure A.6: The complete Granger Causation matrix for the UCID data set
with all of the relevant features included.

[August 28, 2021 at 16:59 – 1.0]

appendix - figures 70

Figure A.7: A trimmed subset of the Granger Causation matrix (Figure A.6)
that displays only the relevant information with regards to our
independent variables causing our target variable.

[August 28, 2021 at 16:59 – 1.0]

appendix - figures 71

Figure A.8: Mutual information of our independent variables against our
target variable.

Figure A.9: Distribution of values with regards to our target variable.

[August 28, 2021 at 16:59 – 1.0]

B
A P P E N D I X - TA B L E S

variable description

Day An integer value between 1 and 31.

Weekday An integer value between 0 and 6 denoting the different days of the week.

Month An integer value between 1 and 12.

Year An integer value between 2007 and 2010.

Hour An integer value between 0 and 23.

Minute An integer value between 0 and 45 in increments of 15.

Season An integer value between 0 and 3 where 0 denotes Spring, 1 denotes Summer, 2 denotes
Fall and 3 denotes Winter.

Holiday A categorical variable that takes on an integer value of 1 when the day concerned is a
public holiday and 0 otherwise.

Table B.1: List of temporal variables that are taken into consideration during the feature engineering process as
outlined in Section 5.3.

72

[August 28, 2021 at 16:59 – 1.0]

appendix - tables 73

feature p-value stationary

AirTemp 6.37e-04 True

AlbedoDaily 4.07e-27 True

Azimuth 0.0 True

CloudOpacity 0.0 True

DewpointTemp 5.06e-15 True

Dhi 0.0 True

Dni 0.0 True

Ebh 0.0 True

Ghi 0.0 True

GtiFixedTilt 0.0 True

GtiTracking 0.0 True

PrecipitableWater 3.26e-26 True

RelativeHumidity 1.29e-23 True

SnowDepth 1.98e-26 True

SurfacePressure 1.29e-22 True

WindDirection10m 0.0 True

WindSpeed10m 0.0 True

Zenith 0.04 True

Global_active_power 0.0 True

Table B.2: The results of performing the Augmented Dicky-Fuller test on our
target variable as well as the meteorological variables introduced
in Section 1.1.3 and outlined in Table B.3 for the UCID data set.

[August 28, 2021 at 16:59 – 1.0]

appendix - tables 74

parameter description

Air Temperature The air temperature (2 meters above ground level). Units in
Celsius.

Albedo Average daytime surface reflectivity of visible light, expressed
as a value between 0 and 1. 0 represents complete absorption. 1

represents complete reflection.

Azimuth The angle between a line pointing due north to the sun’s current
position in the sky. Negative to the East. Positive to the West. 0

at due North. Units in degrees.

Cloud Opacity The measurement of how opaque the clouds are to solar radiation
in the given location. Units in percentage.

Dewpoint The air dewpoint temperature (2 meters above ground level).
Units in Celsius.

DNI Solar irradiance arriving in a direct line from the sun as measured
on a surface held perpendicular to the sun. Units in W/m2.

EBH The horizontal component of Direct Normal Irradiance (DNI).
Units in W/m2.

GHI The total irradiance received on a horizontal surface. It is the
sum of the horizontal components of direct (beam) and diffuse
irradiance. Units in W/m2.

GTI Fixed The total irradiance received on a surface with a fixed tilt. The
tilt is set to latitude of the location. Units in W/m2.

GTI Horizontal Single-Axis Tracker The total irradiance received on a sun-tracking surface. Units in
W/m2.

Preciptable Water The total column preciptable water content. Units in kg/m2.

Relative Humidity The air relative humidity (2 meters above ground level). Units in
percentage.

SFC pressure The air pressure at ground level. Units in hPa.

Snow Depth The snow depth liquid-water-equivalent. Units in cm.

Wind Direction The wind direction (10 meters above ground level). This is the
meteorological convention. 0 is a northerly (from the north); 90

is an easterly (from the east); 180 is a southerly (from the south);
270 is a westerly (from the west). Units in degrees.

Wind Speed The wind speed (10 meters above ground level). Units in m/s.

Zenith The angle between a line perpendicular to the earth’s surface
and the sun (90 deg = sunrise and sunset; 0 deg = sun directly
overhead). Units in degrees.

Table B.3: List of meteorological parameters available to us as per the Solcast data sets.

[August 28, 2021 at 16:59 – 1.0]

G L O S S A RY

bems Battery Energy Management System. 2, 3, 8

cart Classification and Regression Tree. 9, 11

ccf Cluster-Classify-Forecast. 9

cilf Computationally intelligent load forecasting. 8

cnn Convolutional Neural Network. 22, 55

cnn-lstm Convolutional Neural Network Long Short-Term
Memory. iii, ix, 10, 11, 22, 55, 56

dbscan Density Based Spatial Clustering of Applications
with Noise. vi, xi, 8, 9, 11, 18–20, 44

dni Direct Normal Irradiance. 74

ebh Direct (Beam) Horizontal Irradiance. 39, 74

eda Exploratory data analysis. 30, 33, 48

epsrc Engineering and Physical Sciences Research Council.
4

ga Genetic algorithm. 11

ghi Global Horizontal Irradiance. 74

gti Global Tilted Irradiance. 74

hdbscan Hierarchical Density Based Spatial Clustering of Ap-
plications with Noise. vii, viii, 18, 20, 21, 44–46, 63

hems Home Energy Management System. vi, 2, 3, 8

iam Individual appliance monitor. 5, 6, 30

iqr Interquartile range. 50

loess Locally Weighted Scatterplot Smoothing. viii, 51

lstm Long Short-Term Memory. vii, 10, 11, 22, 25–27, 55,
64

mae Mean absolute error. 28

75

[August 28, 2021 at 16:59 – 1.0]

Glossary 76

mape Mean absolute percentage error. iii, 10, 11, 60, 61, 64

mlp Multi-Layer Perceptron. 10, 11

nan Not a number. 6, 42

nmae Normalized mean absolute error. 10

nrmse Normalized root mean square error. 10

pca Principal Component Analysis. 13

refit Personalised Retrofit Decision Support Tools for UK
Homes using Smart Home Technology. vii, ix–xi, 4–6,
30–35, 41, 42, 48, 49, 58–62, 66, 68

relu Rectified Linear Unit. vii, 22–24

rfecv Recursive Feature Elimination and Cross-Validation.
ix, 54

rnn Recurrent Neural Network. 9, 25

sgd Stochastic Gradient Descent. 56

smbm Smart Meter Based Model. 9, 10

smote Synthetic Minority Oversampling Technique. ix, 52,
53

som Self-Organizing Map. 9–11

svm Support Vector Machine. 10

svr Support Vector Regression. 10, 11

t-sne T-Distributed Stochastic Neighbor Embedding. 13,
14, 16, 17, 43, 63

uci University of California, Irvine. 4

ucid UCI data set. viii–xi, 4, 6, 30, 41–46, 49, 50, 58–62, 66,
67, 69, 73

uk United Kingdom. 5, 6

umap Uniform Manifold Approximation and Projection. vi,
viii, 13, 16, 17, 43, 44

vstlf Very short-term load forecasting. 3, 7

[August 28, 2021 at 16:59 – 1.0]

B I B L I O G R A P H Y

[1] Energy Efficiency in Buildings. url: https://www.wbcsd.org/
programs / cities - and - mobility / energy - efficiency - in -

buildings.

[2] Yixuan Wei et al. “A Review of Data-Driven Approaches for
Prediction and Classification of Building Energy Consumption.”
In: Renewable and Sustainable Energy Reviews 82 (2018), pp. 1027–
1047. issn: 1364-0321. doi: https://doi.org/10.1016/j.rser.
2017.09.108. url: https://www.sciencedirect.com/science/
article/pii/s136403211731362x.

[3] Chao Chen, Barnan Das, and Diane Cook. “Energy Prediction in
Smart Environments.” In: Jan. 2010, pp. 148–157. doi: 10.3233/
978-1-60750-638-6-148.

[4] Baran Yildiz et al. “Household Electricity Load Forecasting Us-
ing Historical Smart Meter Data with Clustering and Classifica-
tion Techniques.” In: 2018 IEEE Innovative Smart Grid Technolo-
gies - Asia (ISGT Asia) (2018). doi: 10.1109/ISGT-ASIA.2018.
8467837.

[5] Yu-Hsiang Hsiao. “Household Electricity Demand Forecast
Based on Context Information and User Daily Schedule Analysis
From Meter Data.” In: IEEE Transactions on Industrial Informatics
11.1 (2015), pp. 33–43. doi: 10.1109/TII.2014.2363584.

[6] Household Appliances - Worldwide: Statista Market Forecast. url:
https://www.statista.com/outlook/256/100/household-

appliances/worldwide.

[7] Muhammad Qamar Raza and Abbas Khosravi. “A Review on
Artificial Intelligence Based Load Demand Forecasting Tech-
niques for Smart Grid and Buildings.” In: Renewable and Sus-
tainable Energy Reviews 50 (2015), pp. 1352–1372. issn: 1364-0321.
doi: https://doi.org/10.1016/j.rser.2015.04.065. url:
https : / / www . sciencedirect . com / science / article / pii /

s1364032115003354.

[8] Kareem Al-Saudi. The Effectiveness of Different Forecasting Models
on Multiple Disparate Datasets.

[9] Aurélie Foucquier et al. “State of the Art in Building Modelling
and Energy Performances Prediction: A Review.” In: Renewable
and Sustainable Energy Reviews 23 (2013), pp. 272–288. issn: 1364-
0321. doi: https://doi.org/10.1016/j.rser.2013.03.004.
url: https://www.sciencedirect.com/science/article/pii/
s1364032113001536.

77

[August 28, 2021 at 16:59 – 1.0]

https://www.wbcsd.org/programs/cities-and-mobility/energy-efficiency-in-buildings
https://www.wbcsd.org/programs/cities-and-mobility/energy-efficiency-in-buildings
https://www.wbcsd.org/programs/cities-and-mobility/energy-efficiency-in-buildings
https://doi.org/https://doi.org/10.1016/j.rser.2017.09.108
https://doi.org/https://doi.org/10.1016/j.rser.2017.09.108
https://www.sciencedirect.com/science/article/pii/s136403211731362x
https://www.sciencedirect.com/science/article/pii/s136403211731362x
https://doi.org/10.3233/978-1-60750-638-6-148
https://doi.org/10.3233/978-1-60750-638-6-148
https://doi.org/10.1109/ISGT-ASIA.2018.8467837
https://doi.org/10.1109/ISGT-ASIA.2018.8467837
https://doi.org/10.1109/TII.2014.2363584
https://www.statista.com/outlook/256/100/household-appliances/worldwide
https://www.statista.com/outlook/256/100/household-appliances/worldwide
https://doi.org/https://doi.org/10.1016/j.rser.2015.04.065
https://www.sciencedirect.com/science/article/pii/s1364032115003354
https://www.sciencedirect.com/science/article/pii/s1364032115003354
https://doi.org/https://doi.org/10.1016/j.rser.2013.03.004
https://www.sciencedirect.com/science/article/pii/s1364032113001536
https://www.sciencedirect.com/science/article/pii/s1364032113001536

bibliography 78

[10] W. Kong et al. “Short-Term Residential Load Forecasting Based
on LSTM Recurrent Neural Network.” In: IEEE Transactions on
Smart Grid 10.1 (2019), pp. 841–851. doi: 10.1109/TSG.2017.
2753802.

[11] Hong-Tzer Yang, Jian-Tang Liao, and Che-I Lin. “A Load Fore-
casting Method for HEMS Applications.” In: 2013 IEEE Grenoble
Conference (2013). doi: 10.1109/PTC.2013.6652195.

[12] David Murray et al. “A Data Management Platform for Person-
alised Real-Time Energy Feedback.” In: Proceedings of the 8th
International Conference on Energy Efficiency in Domestic Appliances
and Lighting. Aug. 2015.

[13] UCI Machine Learning Repository: Individual Household Electric
Power Consumption Data Set. url: https://archive.ics.uci.
edu/ml/datasets/individual+household+electric+power+

consumption.

[14] Global Solar Irradiance Data and PV System Power Output Data.
2019. url: https://solcast.com/.

[15] Seyedeh Narjes Fallah et al. “Computational Intelligence Ap-
proaches for Energy Load Forecasting in Smart Energy Manage-
ment Grids: State of the Art, Future Challenges, and Research
Directions.” In: Energies 11.3 (2018). issn: 1996-1073. url: https:
//www.mdpi.com/1996-1073/11/3/596.

[16] Eric Backer and Anil K. Jain. “A Clustering Performance Mea-
sure Based on Fuzzy Set Decomposition.” In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence PAMI-3.1 (1981),
pp. 66–75. doi: 10.1109/TPAMI.1981.4767051.

[17] B. Stephen et al. “Incorporating Practice Theory in Sub-Profile
Models for Short Term Aggregated Residential Load Forecast-
ing.” In: IEEE Transactions on Smart Grid 8.4 (2017), pp. 1591–
1598. doi: 10.1109/TSG.2015.2493205.

[18] Martin Ester et al. “A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise.” In: KDD’96.
Portland, Oregon: AAAI Press, 1996.

[19] B. Yildiz et al. “Recent Advances in the Analysis of Residential
Electricity Consumption and Applications of Smart Meter Data.”
In: Applied Energy 208 (2017), pp. 402–427. issn: 0306-2619. doi:
https://doi.org/10.1016/j.apenergy.2017.10.014.

[20] Teuvo Kohonen. “The Self-Organizing Map.” In: Proceedings of
the IEEE 78.9 (1990), pp. 1464–1480.

[21] Gareth James et al. An Introduction to Statistical Learning with
Applications in R. Springer, 2017.

[August 28, 2021 at 16:59 – 1.0]

https://doi.org/10.1109/TSG.2017.2753802
https://doi.org/10.1109/TSG.2017.2753802
https://doi.org/10.1109/PTC.2013.6652195
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://solcast.com/
https://www.mdpi.com/1996-1073/11/3/596
https://www.mdpi.com/1996-1073/11/3/596
https://doi.org/10.1109/TPAMI.1981.4767051
https://doi.org/10.1109/TSG.2015.2493205
https://doi.org/https://doi.org/10.1016/j.apenergy.2017.10.014

bibliography 79

[22] Nelson Fumo and M.A. Rafe Biswas. “Regression Analysis for
Prediction of Residential Energy Consumption.” In: Renewable
and Sustainable Energy Reviews 47 (2015), pp. 332–343. issn: 1364-
0321. doi: https://doi.org/10.1016/j.rser.2015.03.035.
url: https://www.sciencedirect.com/science/article/pii/
s1364032115001884.

[23] Heng Shi, Minghao Xu, and Ran Li. “Deep Learning for House-
hold Load Forecasting – A Novel Pooling Deep RNN.” English.
In: IEEE Transactions on Smart Grids 9.5 (Sept. 2018), pp. 5271–
5280. issn: 1949-3053. doi: 10.1109/TSG.2017.2686012.

[24] Tae-Young Kim and Sung-Bae Cho. “Predicting Residential En-
ergy Consumption Using CNN-LSTM Neural Networks.” In:
Energy 182 (2019), pp. 72–81. issn: 0360-5442. doi: https://doi.
org/10.1016/j.energy.2019.05.230.

[25] Tom O’Malley et al. Keras Tuner. https://github.com/keras-
team/keras-tuner. 2019.

[26] K.P. Amber, M.W. Aslam, and S.K. Hussain. “Electricity Con-
sumption Forecasting Models for Administration Buildings of
the UK Higher Education Sector.” In: Energy and Buildings 90

(2015), pp. 127–136. issn: 0378-7788. doi: https://doi.org/10.
1016/j.enbuild.2015.01.008.

[27] R. Lamedica et al. “A Neural Network Based Technique for
Short-Term Forecasting of Anomalous Load Periods.” In: IEEE
Transactions on Power Systems 11.4 (1996), pp. 1749–1756. doi:
10.1109/59.544638.

[28] Laurens van der Maaten and Geoffrey Hinton. “Visualizing
Data using t-SNE.” In: Journal of Machine Learning Research 9.86

(2008), pp. 2579–2605. url: http : / / jmlr . org / papers / v9 /

vandermaaten08a.html.

[29] Leland McInnes, John Healy and James Melville. UMAP: Uni-
form Manifold Approximation and Projection for Dimension Reduc-
tion. 2020. arXiv: 1802.03426 [stat.ML].

[30] Understanding UMAP. url: https://pair-code.github.io/
understanding-umap/.

[31] Yingfan Wang et al. “Understanding How Dimension Reduc-
tion Tools Work: An Empirical Approach to Deciphering t-SNE,
UMAP, TriMAP, and PaCMAP for Data Visualization.” In: (Dec.
2020).

[32] DBSCAN. Feb. 2021. url: https://en.wikipedia.org/wiki/
DBSCAN.

[August 28, 2021 at 16:59 – 1.0]

https://doi.org/https://doi.org/10.1016/j.rser.2015.03.035
https://www.sciencedirect.com/science/article/pii/s1364032115001884
https://www.sciencedirect.com/science/article/pii/s1364032115001884
https://doi.org/10.1109/TSG.2017.2686012
https://doi.org/https://doi.org/10.1016/j.energy.2019.05.230
https://doi.org/https://doi.org/10.1016/j.energy.2019.05.230
https://doi.org/https://doi.org/10.1016/j.enbuild.2015.01.008
https://doi.org/https://doi.org/10.1016/j.enbuild.2015.01.008
https://doi.org/10.1109/59.544638
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1802.03426
https://pair-code.github.io/understanding-umap/
https://pair-code.github.io/understanding-umap/
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/DBSCAN

bibliography 80

[33] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander.
“Density-Based Clustering Based on Hierarchical Density Esti-
mates.” In: Advances in Knowledge Discovery and Data Mining. Ed.
by Jian Pei et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 160–172. isbn: 978-3-642-37456-2.

[34] Yann Lecun et al. “Gradient-Based Learning Applied to Doc-
ument Recognition.” In: Proceedings of the IEEE 86 (Dec. 1998),
pp. 2278–2324. doi: 10.1109/5.726791.

[35] Ronan Collobert and Jason Weston. “A Unified Architecture
for Natural Language Processing: Deep Neural Networks with
Multitask Learning.” In: Proceedings of the 25th International Con-
ference on Machine Learning. ICML ’08. Helsinki, Finland: As-
sociation for Computing Machinery, 2008, pp. 160–167. isbn:
9781605582054. doi: 10.1145/1390156.1390177. url: https:
//doi.org/10.1145/1390156.1390177.

[36] A. Tsantekidis et al. “Forecasting Stock Prices from the Limit
Order Book Using Convolutional Neural Networks.” In: 2017
IEEE 19th Conference on Business Informatics (CBI). Vol. 01. 2017,
pp. 7–12. doi: 10.1109/CBI.2017.23.

[37] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term
Memory.” In: Neural Comput. 9.8 (1997), pp. 1735–1780. issn:
0899-7667. doi: 10.1162/NECO.1997.9.8.1735. url: https:
//doi.org/10.1162/neco.1997.9.8.1735.

[38] Understanding LSTM Networks. url: https://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

[39] Pasapitch Chujai, Nittaya Kerdprasop, and Kittisak Kerdprasop.
“Time Series Analysis of Household Electric Consumption with
ARIMA and ARMA Models.” In: Lecture Notes in Engineering
and Computer Science 2202 (Mar. 2013), pp. 295–300.

[40] C. W. J. Granger. “Investigating Causal Relations by Econo-
metric Models and Cross-spectral Methods.” In: Econometrica
37.3 (1969), pp. 424–438. issn: 00129682, 14680262. url: http:
//www.jstor.org/stable/1912791.

[41] Abraham. Savitzky and M. J. E. Golay. “Smoothing and Differ-
entiation of Data by Simplified Least Squares Procedures.” In:
Analytical Chemistry 36.8 (1964), pp. 1627–1639. doi: 10.1021/
ac60214a047. url: https://doi.org/10.1021/ac60214a047.

[42] N. V. Chawla et al. “SMOTE: Synthetic Minority Over-sampling
Technique.” In: Journal of Artificial Intelligence Research 16 (2002),
pp. 321–357. doi: 10.1613/jair.953.

[43] D.P. Kingma and J. Ba. “Adam: A Method For Stochastic Opti-
mization.” In: ICLR (2015).

[August 28, 2021 at 16:59 – 1.0]

https://doi.org/10.1109/5.726791
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1109/CBI.2017.23
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.jstor.org/stable/1912791
http://www.jstor.org/stable/1912791
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1613/jair.953

	Abstract
	Abstract
	Contents

	List of Figures
	List of Figures

	List of Tables
	List of Tables

	Listings
	Listings

	 Introduction
	1 Introduction
	1.1 Introduction to the Data
	1.1.1 REFIT
	1.1.2 UCID
	1.1.3 Meteorological Data

	1.2 Proposed Model

	2 Related Work
	2.1 Clustering and Energy Profile Creation
	2.2 Forecasting Models
	2.3 Summary

	 Foundation
	3 Background Information
	3.1 Dimension Reduction
	3.1.1 t-Distributed Stochastic Neighbor Embedding

	3.2 Clustering Algorithms
	3.2.1 DBSCAN
	3.2.2 HDBSCAN

	3.3 Forecasting Models
	3.3.1 Convolutional Neural Networks
	3.3.2 Long Short-Term Memory Networks

	3.4 Performance Metrics
	3.4.1 Mean Absolute Error
	3.4.2 Mean Absolute Percentage Error
	3.4.3 Log-Cosh Loss

	4 Exploratory Data Analysis
	4.1 Issues
	4.1.1 The 'Issues' Column
	4.1.2 Missing & Incomplete Data
	4.1.3 Thresholding

	4.2 Data Visualization
	4.2.1 Sample Distribution
	4.2.2 Time Series Decomposition

	4.3 Causality & Correlation
	4.3.1 Granger Causality Test
	4.3.2 Mutual Information Gain

	 Empirical Study
	5 Methodology
	5.1 Stage 1 - Data Collection and Cleaning
	5.2 Stage 2 - Dimensionality Reduction and Clustering
	5.3 Stage 3 - Further Data Preprocessing
	5.4 Stage 4 - Training and Testing
	5.4.1 Stage 4.1 - Classification Tree
	5.4.2 Stage 4.2 - CNN-LSTM Network

	6 Results and Discussion
	6.1 Cluster Label Classification
	6.2 Forecasting Accuracy

	7 Conclusion and Future Work

	 Appendix
	A Appendix - Figures
	B Appendix - Tables
	Glossary
	Glossary

	Bibliography

