
McEliece variation under
attack:
Cryptanalysis of a public key
cryptosystem based on algebraic
geometry codes

Master’s Project Mathematics

August 2021

Student: A. Tuijp

First supervisor: Prof.dr. J. Top

Second supervisors: dr. P. Kılıçer, prof. dr. C. Salgado Guimarães da Silva

1

Abstract:
The McEliece cryptosystem is a public key cryptosystem that has (so far) not
been broken by any quantum algorithms and may therefore be resistant to
quantum computer attacks. McEliece makes use of error correcting codes in
the process of encryption and decryption. The original McEliece cryptosystem
uses classical Goppa codes, but these have the disadvantage that the public
and private keys of the cryptosystem are very large matrices. Many variations
with shorter keys have been proposed - and then been proven to be insecure.
One example is the proposal to use algebraic geometry codes instead of classical
Goppa codes. An attack on this variation, based on Schur products and error
correcting pairs, is examined in detail in this project.

2

Contents

Introduction 5

1 Preliminaries 7
1.1 Public-key Cryptography . 7
1.2 Algebraic concepts . 8
1.3 Products of vector spaces . 15

2 Coding theory 17
2.1 Linear error correcting codes . 17
2.2 Hamming Codes . 20
2.3 Goppa Codes . 22
2.4 AG codes and geometric Goppa codes 26

3 The Schur product 32
3.1 The Schur product of vectors . 32
3.2 The Schur product of codes . 33
3.3 Schur squares of random codes 35
3.4 The Schur product of AG codes 36

4 Decoding 38
4.1 General decoding . 38
4.2 Patterson’s algorithm . 39
4.3 Error-correcting pairs . 39

5 McEliece cryptosystem 46
5.1 Description . 46
5.2 Security . 47
5.3 Pros and cons . 48
5.4 McEliece based on AG codes . 48

6 Variations and attacks 50
6.1 Propositions . 50
6.2 The attack . 53
6.3 Example . 54
6.4 Discussion . 58

3

Conclusion 59

Bibliography 62

A Schur square of random codes 63

B MAGMA code 66
B.1 Example 1.2.6 . 66
B.2 Example 2.3.3 . 67
B.3 Section 6.3 . 68

4

Introduction

Cryptology is the science concerned with sending messages across insecure chan-
nels: Alice sends Bob an encrypted message while Eve intercepts this message
and tries to decrypt it. Sometimes, ‘cryptography’ is used as a synonym of
‘cryptology’, but it is also understood as the sub-area of cryptology concerned
with designing cryptosystems. Cryptanalysis, on the other hand, is the sub-
area of cryptology concerned with breaking the systems. Usually, some people
propose a new cryptosystem (cryptography) and then others will try to break
it (cryptanalysis).

Many cryptosystems that are used nowadays rely on hard problems such as
factoring large integers or the (elliptic curve) discrete logarithm problem. How-
ever, thanks to Shor’s algorithm (see [21]), these problems could be solved too
quickly, using a quantum computer. In the year 2004, Bernstein wrote[2]:

Imagine that it’s fifteen years from now and someone announces
the successful construction of a large quantum computer. The New
York Times runs a frontpage article reporting that all of the public-
key algorithms used to protect the Internet have been broken. Users
panic.

About twelve years have passed since 2009. Much has happened, but - as far
as we know - there are no quantum computers yet that are powerful enough
to break cryptosystems. However, the interest in ‘post-quantum cryptography’
has not disappeared. Some examples of possible post-quantum classes of cryp-
tographic systems can be found in [2] and are hash-based cryptography, lattice
based cryptography, multivariate cryptography and, last but not least, code
based cryptography.

As the name suggests, the field of code based cryptography is based on codes.
To be precise, it is based on the theory of linear error correcting codes, which
is concerned with storing data in such a way that a certain number of errors in
the data can be found and even corrected. This finds applications for example
in CDs: we still want to be able to hear the music if there is a tiny scratch on
the disc. There exists many different types of error correcting codes, some of
which are based on algebra and algebraic geometry.

5

An example of a code based cryptosystem is the McEliece cryptosystem. Orig-
inally, this cryptosystem uses a certain type of codes called Goppa codes. This
is still considered as a good possibility, but there is a drawback: the size of the
key is very large. In order to solve this, many people have proposed variations
using other classes of codes. One example is the suggestion to use so called
‘algebraic geometry codes’. In this thesis, all ingredients will be studied that
are necessary in order to understand how the McEliece cryptosystem based on
AG codes may be attacked, as discussed in chapter 6.

In chapter 1, the general idea behind (public key) cryptography is discussed
and an example is given. Furthermore, some definitions and propositions about
curves, divisors, differentials and vector spaces are given, because these concepts
are important in algebraic geometry codes. Every chapter contains concrete
worked out examples of the given theory, either by hand or using MAGMA. In
chapter 2, some general theory about error correcting codes is given. After this,
Goppa codes and algebraic geometry codes are treated in more detail.

Chapter 3 introduces an operation on vectors called the Schur product and
gives examples. Not only the Schur product of two vectors is considered but
also (and perhaps more importantly) the Schur product of two codes. This turns
out to be a helpful tool in the process of ‘decoding’: finding and correcting the
errors. Chapter 4 is devoted to decoding and discusses two different algorithms,
one of which is based on Schur products. In chapter 5, we see how the theories
of cryptology and coding theory come together in the cryptosystem that was
designed by McEliece. Finally, in chapter 6, we will investigate an attack origi-
nally proposed in [4] on the McEliece variation using AG codes. In this attack,
the Schur product plays a crucial role and (almost) all propositions from the
entire thesis will come together in a beautiful way.

6

Chapter 1

Preliminaries

Before we can discuss the details of the McEliece cryptosystem and its variations,
we need to understand various concepts from cryptography, algebraic geometry
and coding theory. In this chapter, we give the definitions and propositions
needed for the rest of the thesis. Please note that this is not an introduction to
algebraic geometry or coding theory, since we only give the information that is
relevant to the rest of this thesis. However, no prior knowledge on cryptography
or coding theory is required and only a little bit of algebra or algebraic geometry.

1.1 Public-key Cryptography

Cryptosystems can be divided into two groups: symmetric cryptosystems and
asymmetric or public key systems. The oldest cryptosystems are symmetric.
In this form of cryptography, Alice and Bob share a secret key. Examples are
the (not so secure) substitution cipher and AES[6]. In cryptology, we always
assume that Eve knows exactly which cryptosystem is used. The security of
the system depends on the secrecy of the shared key. Alice and Bob therefore
have to find a way to somehow obtain the same key, while nobody else finds out
about it. Unless Alice and Bob can meet in person (or have a very trustworthy
mailman), this could be a tricky condition.
Public key cryptography doesn’t have this problem. Alice and Bob both have
their own personal secret keys, but as the name suggests, they also both have
public keys, which everyone may know. If Alice wishes to send a message to
Bob, she uses his public key to encrypt her message. Bob then uses his own
secret key to decrypt the message. Public key cryptosystems are always based
on a so called ‘one-way’ function, or a ‘trapdoor’ function: a function which is
easy to use but for which it is hard to find the inverse. A well known example of
a public key cryptosystem is RSA [20], which is based on the discrete logarithm
problem. We will give a slightly simplified version here, as an illustration.
Key generation: Bob picks two large prime numbers, p 6= q. He calculates
N = pq and φ(N) = (p−1)(q−1). Bob chooses e > 1 such that gcd(e, φ(N)) = 1

7

and computes d such that d · e ≡ e−1 mod φ(N). Note that ed = 1 + kφ(N)
for some integer k. Bob’s secret key is d and he presents his public key (N, e).
Encrypting: Suppose Alice has a secret message for Bob, namely m < N . We
will call m the plaintext. Alice converts the plaintext into a ‘ciphertext’ c := me

mod N and sends this to Bob.
Decrypting: In order to decrypt the ciphertext c, Bob computes m′ = cd =
med ≡ m mod N . This equivalence can be shown as follows: If m is a unit
modulo N , this follows from Euler’s theorem. If m is not a unit modulo N ,
then without loss of generality m ≡ 0 mod p and m 6≡ 0 mod q. We see that
med ≡ 0 mod p and med = m1+kφ(N) = m1+k(p−1)(q−1) = m(mq−1)k(p−1) ≡
m · 1k(p−1) ≡ m mod q. By the Chinese Remainder Theorem it follows that
indeed med ≡ m mod N . We see that Bob indeed finds the same plaintext m
that was sent to him by Alice.

Now suppose Eve intercepts the ciphertext. She knows which cryptosystem
is used and she knows the values of me and e, but it is still very hard for her
to find m. This is the discrete logarithm problem. Note that if Eve could find
p and q from N , she could easily find d and not only find m but also decrypt
any other future messages sent to Bob. Luckily, factoring integers is a hard
problem as well. These problems are obviously not logically impossible to solve:
if one would just try all possibilities, the right one will come up. However, if
we choose our p and q to be big enough, there are many, many possibilities.
If the expected time to find the solution, using the most efficient algorithms
known and the strongest computers, is long enough (for example, longer than
the expected lifetime of the earth), then we consider the cryptosystem secure
with the given parameters.

1.2 Algebraic concepts

The concepts, properties and propositions we discuss here will be needed for
the sections on algebraic geometry codes. When we talk about a curve X , we
always mean that X is an absolutely irreducible (that is, also irreducible over
field extensions) non-singular projective curve of genus g over a finite field F.
For a formal treatment of curves, or varieties in general, we refer to [11]. AG
codes involve divisors on curves. The properties of divisors and the notations
that we use are given in this section. Most of them are taken from [19].

Definition 1.2.1. Let X be a curve over F.

• A divisor on X is a formal sum D =
∑
P∈X nPP , with nP ∈ Z and

nP = 0 for all but a finite number of points P .

• The support of a divisor is the set of points with nonzero coefficient. A
divisor D is called effective if all coefficients nP are non-negative.

• The partial order ≥ on divisors is defined as follows: D ≥ E if and only
if D − E is effective.

8

• The degree deg(D) of the divisor D is
∑
nP .

• A divisor is said to be defined over F if for every term nP in the formal
sum, with P defined over some extension of F, also nQ appears in the sum
for every Galois conjugate Q of P .

• If f is a rational function on X , not identically 0, the divisor of f is
defined as (f) =

∑
P∈X vP (f)P , where vP (f) is the order of vanishing of

the function f at the point P (and a negative order of vanishing, say −n,
means that f has a pole of order n at P).

The divisor of a function f is in fact the ‘sum’ of the zeros and poles of f with
their multiplicities and orders. Because f is a rational function on a projective
curve, its number of zeros equals its number of poles. Therefore, the degree of
(f) is 0.

The following definitions and properties concern (divisors of) differentials on
curves:

Definition 1.2.2. Let X be a curve over F and let ω be a differential on X .

• The set of all rational differential forms on X is denoted by Ω(X).

• For every point P and local parameter tP , ω can be represented in a unique
way as ω = fP dtP , where fP is a rational function.

• Let ω be a differential on X . The valuation of ω at P is defined by
vP (ω) = vP (fP). (This does not depend on the choice of tP .)

• The divisor of ω is defined by

(ω) =
∑
P∈X

vP (ω)P.

• If W = (ω) for some differential ω, then W is called a canonical divisor.

• Let P be a point on X , t a local parameter at P and ω = f dt. f can be
written as

∑
i ait

i. The residue ResP (ω) of ω in the point P is defined
to be a−1.

The following two vector spaces are important:

Definition 1.2.3. Let D be a divisor on X , defined over F. We define the
Riemann Roch space L(D) over F by

L(D) = {f ∈ F(X)∗ | (f) +D ≥ 0} ∪ {0}.

The dimension of L(D) over F is denoted by l(D). Furthermore, we define

Ω(D) = {ω ∈ Ω(X) | (ω)−D ≥ 0}

and the dimension of Ω(D) over F is denoted by δ(D).

9

Proposition 1.2.4. Let F be an algebraic closure of F, let D be a divisor on
X and let W be a canonical divisor on X , both defined over F and let ω be a
differential on X . The following statements are true:

1. if deg(D) < 0, then l(D) = 0.

2. l(0) = 1

3. l(D)− l(W −D) = deg(D)− g + 1 (Riemann-Roch Theorem)

4. deg(W) = 2g − 2.

5. If deg(D) > 2g − 2, then l(D) = deg(D)− g + 1.

6.
∑
P∈X (F) ResP (ω) = 0 (Residue Theorem)

7. δ(D) = l(W −D)

Proof. 1. For every rational function f , the degree of (f) is zero. Therefore,
if deg(D) < 0 there is no f ∈ F(X)∗ such that (f) + D ≥ 0 which means
that L(D) = {0}, so indeed l(D) = 0.

2. The only rational functions on X with no poles are the constant functions,
so L(0) = F and l(0) = 1.

3. For a proof see [7], for example.

4. This is a corollary of the Riemann-Roch theorem. First, take D = 0 and
find l(W) = l(0)−deg(0)+g−1 = 1−0+g−1 = g. Next, choose D = W
and find deg(W) = l(W)− l(0) + g − 1 = g − 1 + g − 1 = 2g − 2.

5. This is also a corollary of the Riemann-Roch theorem. Because deg(D) >
2g − 2 and deg(W) = 2g − 2, it follows that deg(W −D) < 0. Statement
1 tells us that l(W − D) = 0. This statement now follows directly from
the Riemann-Roch theorem.

6. For a proof, see [22], for example.

7. Let W = (ω), then φ : L(W − D) → Ω(D) given by φ(f) = fω is an
isomorphism.

In the following example, which can also be found in [19], a Riemann-Roch space
is determined. We will encounter this curve and space again in later examples.

Example 1.2.5. Consider the projective curve over F4 given by the equation

X3 + Y 3 + Z3 = 0

and the two rational functions

f =
x

y + z
and g =

y

y + z
.

10

The genus of the curve is 1, as can be calculated with the Plücker formula:
g = 1

2 (m − 1)(m − 2) = 1 where m = 3 is the degree of the curve. The
elements of the field F4 are {0, 1, α, α2} where α2 = α + 1. The rational
function f = x

y+z has simple zeros at the points P1 = (0 : α : 1) and

P2 = (0 : α2 : 1) and a double pole at the point Q = (0 : 1 : 1). The divisor
of f is therefore

(f) = P1 + P2 − 2Q.

The rational function g = y
y+z has single zeros at the points P3 = (1 : 0 : 1),

P4 = (α : 0 : 1) and P5 = (α2 : 0 : 1) and a triple pole at the point Q, so

(g) = P3 + P4 + P5 − 3Q.

Now consider the divisor D = 3Q and the corresponding Riemann-Roch
space L(D). We see that (f) + D ≥ 0 and (g) + D ≥ 0. Also (1) + D =
D ≥ 0. It follows that {1, f, g} ⊆ L(D). Because these functions are linearly
independent, we have l(D) ≥ 3. Actually, because deg(D) = 3 > 0 = 2g− 2,
it follows from statement 5 that l(D) = deg(D) − g + 1 = 3 − 1 + 1 = 3, so
that {1, f, g} is in fact a basis of L(D).

The following example shows some explicit calculations involving differentials
on curves.

Example 1.2.6. Again, consider the projective curve X over F4 given by
the equation

X3 + Y 3 + Z3 = 0

and the point Q = (0 : 1 : 1). The elements of the field F4 are {0, 1, α, α2}
where α2 = α+ 1. Together with Q, all rational points on the curve are:

P1 = (0 : α : 1), P2 = (0 : α2 : 1), P3 = (1 : 0 : 1), P4 = (α : 0 : 1),

P5 = (α2 : 0 : 1), P6 = (1 : 1 : 0), P7 = (α : 1 : 0), P8 = (α2 : 1 : 0)

and let D = P1 + . . . P8. The space Ω(6Q − D) consists of all rational
differential forms ω on X such that (ω) − 6Q + D ≥ 0. That means that ω
has a zero of order at least 6 at Q and no poles, except for possibly poles
of order one at the points Pi. According to MAGMA (see Appendix B.1),
Ω(6Q−D) has dimension two and is generated by the two differential forms
η and ζ:

η =
y2 + 1

y3 + y2 + y
dy,

ζ =
xy + x

y3 + y2 + y
dy.

For every point P and local parameter tP , it is possible to write these differ-
ential forms as fP d(tP). We can do this for example as follows:

11

η1 =
y2z + z3

y3 + y2z + yz2
d
(y
z

)
when x 6= 0 and z 6= 0

η2 =
x2y3 + x2yz2

y2z3 + yz4 + z5
d

(
x

y

)
when y 6= 0 and z 6= 0

η3 =
x4y2 + x4z2

y5z + y4z2 + y3z3
d
(z
x

)
when x 6= 0 and y 6= 0

ζ1 =
xyz + xz2

y3 + y2z + yz2
d
(y
z

)
when x 6= 0 and z 6= 0

ζ2 =
x3y2 + x3yz

y2z3 + yz4 + z5
d

(
x

y

)
when y 6= 0 and z 6= 0

ζ3 =
x5y + x5z

y5z + y4z2 + y3z3
d
(z
x

)
when x 6= 0 and y 6= 0.

In order to see that for example η1 = η2 when x, y, z, 6= 0, notice that

d
(y
z

)
= d

((
z

y

)−1
)

= −
(
z

y

)−2

d

(
z

y

)
=
y2

z2
d

(
z

y

)
.

In order to find an expression for d(zy), differentiate(
x

y

)3

+ 1 +

(
z

y

)3

= 0

to get (
x

y

)2

d

(
x

y

)
+

(
z

y

)2

d

(
z

y

)
= 0,

which implies

d

(
z

y

)
=
x2

z2
d

(
x

y

)
.

If we combine this with the expression for d
(
y
z

)
, we find

d
(y
z

)
=
y2

z2
d

(
z

y

)
=
y2

z2

x2

z2
d

(
x

y

)
=
x2y2

z4
d

(
x

y

)
and if we substitute this in the expression for η1 we get indeed η2. In the
same way, it can be shown that ηi overlap on all intersections. There are no
points on X where two coordinates are zero, so for every point P , we have
written η (and ζ) in the form η = fP d(tP), where tP is a local parameter
at P .

Using MAGMA, we know that η has a zero of order 8 at Q and poles
of order 1 at all other Pi. ζ has a zero of order 6 at Q and poles of order 1

12

at P3, P4, P5, P6, P7, P8. It is also possible to verify these orders by hand.
As an example, we show that η has a pole of order 8 at Q. This means that

we need to rewrite η2 in the form
(
x
y

)8

f d
(
x
y

)
such that f is a rational

function which has no poles or zeroes at Q = (0 : 1 : 1). We compute such
an f as follows:

f =
y8

x8
· x2y3 + x2yz2

y2z3 + yz4 + z5

=
y9

x6
· y2 + z2

y2z3 + yz4 + z5

=
y9

z3
· 1

y2 + yz + z2
· y

2 + z2

x6

=
y9

z3
· 1

y2 + yz + z2
·
(
y + z

x3

)2

=
y9

z3
· 1

y2 + yz + z2
·
(

y + z

y3 + z3

)2

=
y9

z3
· 1

y2 + yz + z2
·
(

1

y2 + yz + z2

)2

=
y9

z3(y2 + yz + z2)3
.

Here we have used that the characteristic is 2 and that x3 + y3 + z3 = 0.
Similarly, we can show that η has a pole of order one at P3 = (1 : 0 : 1)

by writing η1 in the form
(
y
z

)−1
f d

(
y
z

)
in such a way that f is regular and

nonzero at P3:

f =
y

z
· y2z + z3

y3 + y2z + yz2

=
yz

yz
· y2 + z2

y2 + yz + z2

=
y2 + z2

y2 + yz + z2
.

Using MAGMA, we can show that ResPi
(η) = 1 for all i and that for ζ we

have the following residues:

ResP1(ζ) = 0, ResP3(ζ) = 0, ResP3(ζ) = 1, ResP4(ζ) = α,

ResP5
(ζ) = α2, ResP6

(ζ) = 1, ResP7
(ζ) = α, ResP8

(ζ) = α2.

Because η and ζ are elements of Ω(6Q − D), they have no poles other
than those at the Pi. Therefore, by proposition 1.2.4(7), we should have∑
i ResPi

(η) =
∑
i ResPi

(ζ) = 0. We can see that the residues indeed add
up to 0 (in characteristic 2).

13

It is also possible to calculate these residues by hand and we will
show two examples: ResP3

(η) and ResP4
(ζ). If we want to compute the

residue of η at P3 = (1 : 0 : 1), we need to find ai such that

y2z + z3

y3 + y2z + yz2
=
∑
i

ai

(y
z

)i
.

We set t = y
z . First notice that 1

t3+1 =
∑∞
i=0 t

3i, because

(t3 + 1)

∞∑
i=0

t3i = (t3 + t6 + t9 + t12 + . . .) + (1 + t3 + t6 + t9 + t12 . . .)

= 1 + (t3 + t3) + (t6 + t6) + (t9 + t9) + (t12 + t12) + . . .

= 1

Now we find the appropriate expression as follows:

y2z + z3

y3 + y2z + yz2
=

(
y
z

)2
+ 1(

y
z

)3
+
(
y
z

)2
+
(
y
z

)
=

t2 + 1

t3 + t2 + t

=
1

t
+

1

t2 + t+ 1

=
1

t
+

t+ 1

t3 + 1

=
1

t
+ (t+ 1)

1

t3 + 1

=
1

t
+ (t+ 1)

∞∑
i=0

t3i

=
1

t
+

∞∑
i=0

t3i +

∞∑
i=0

t3i+1

=
1

t
+ 1 + t+ t3 + t4 + t6 + t7 + t9 + t10 + . . .

We find that a−1 = 1 so indeed ResP3
(η) = 1. Now we continue to the second

(slightly more complicated) residue example. In order to find ResP4
(ζ), we

need to find ai such that

xyz + xz2

y3 + y2z + yz2
=
∑
i

ai

(y
z

)i
.

14

We set t = y
z and observe the following:

xyz + xz2

y3 + y2z + yz2
=

(
y
z

) (
x
z

)
+
(
x
z

)(
y
z

)3
+
(
y
z

)2
+
(
y
z

)
=
(x
z

) t+ 1

t3 + t2 + t

=
(x
z

)(1

t
+

t

t2 + t+ 1

)
=
(x
z

)(1

t
+
t2 + t

t3 + 1

)
=
(x
z

)(1

t
+ (t2 + t)

∞∑
i=0

t3i

)

=
(x
z

)(1

t
+ t+ t2 + t4 + t5 + t7 + t8 + t10 + . . .

)
We see that we need to write x

z as
∑
i ai
(
y
z

)i
. Again, we set t = y

z . Because
x
z has no poles in the point P4 = (α : 0 : 1), we know that

x

z
=

∞∑
i=0

bit
i = b0 + b1t+ b2t

2 + b3t
3 + b4t

4 + . . .

In order to compute the residue, the only interesting value is b0. In P4 we
have t = 0 so b0 = x

z = α
1 = α. This means that

xyz + xz2

y3 + y2z + yz2
=
(x
z

)(1

t
+ t+ t2 + t4 + t5 + t7 + t8 + t10 + . . .

)
=
(
α+ b1t+ b2t

2 + . . .
)(1

t
+ t+ t2 + t4 + t5 . . .

)
=
α

t
+O(1)

so we can conclude that ResP4
(ζ) = α.

1.3 Products of vector spaces

We have now seen some explicit examples of Riemann Roch spaces. In later
chapters, we will find that the products of two such spaces are going to be of
interest. The following definition explains what is meant by the product of
vector spaces.

Definition 1.3.1. Given two vector spaces V and W over F, their product is

15

defined as
V ·W := SpanF {vw | v ∈ V, w ∈W} .

The following proposition, concerning the product of two Riemann Roch spaces,
is taken from [4] without a proof. A different formulation including a proof using
sheaves can be found in [15] (Theorem 6).

Proposition 1.3.2. Let E and F be two divisors on X such that deg(E) ≥ 2g+1
and deg(F) ≥ 2g. Then

L(E) · L(F) = L(E + F).

Example 1.3.3. Again, consider the projective curve over F4 given by the
equation X3 + Y 3 + Z3 = 0, the point Q = (0 : 1 : 1), the divisor D = 3Q
and the two rational functions f = x

y+z and g = y
y+z . We have seen that

l(D) = 3 and that L(D) has {1, f, g} as a basis.
Now we consider the space L(D) · L(D). This space is spanned by the
products of the basis elements, that is: {1 · 1, 1 · f, 1 · g, f · f, f · g, g · g}. If
we look at these functions in the point Q, we see that f2 has a pole of order
4, fg has a pole of order 5 and g2 has a pole of order 6. These functions
have no other poles on X , so they are elements of L(6Q). The functions
in {1, f, g, f2, fg, g2} are linearly independent and because l(6Q) = 6
by statement 5 of Proposition 1.2.4, this is a basis of L(6Q). Indeed,
L(3Q) · L(3Q) = L(6Q).

In order to see that the equality in the proposition does not need to hold
when the conditions on the degrees are not met, we consider the following.
Instead of D = 3Q, we let D = 2Q and see whether L(2Q) ·L(2Q) = L(4Q).
Firstly, let us look at the space L(2Q). Because 1 and f have poles of order
≤ 2 at Q and no other poles on X , they are elements of L(2Q). Because 1
and f are linearly independent and because l(2Q) = 2, {1, f} is a basis of
L(2Q). It follows that L(2Q) · L(2Q) is spanned by {1, f, f2}.
Secondly, let us look at the space L(4Q). By similar arguments as be-
fore, this space has {1, f, g, f2} as a basis. We see that g ∈ L(4Q), but
g /∈ L(2Q) ·L(2Q) so this is indeed an example of a case where the conditions
on the degree are not met and L(D) · L(D) 6= L(D +D).

16

Chapter 2

Coding theory

Coding theory is concerned with storing and transmitting data. If we store
information, of if we send information across a noisy channel, we want to make
sure that the change of a few bits doesn’t make the whole message unreadable,
and preferably doesn’t change the message at all. We will give some definitions
to make this mathematically more precise. These (and much more information
about this subject) can be found for example in [19].

2.1 Linear error correcting codes

Definition 2.1.1. A linear code C is a linear subspace of Fnq , where Fq stands
for the finite field with q elements. n is called the length of the code C. The
dimension of a linear code is its dimension as a linear subspace over Fq.

We often refer to the elements of a code as ‘(code) words’. A code C is thus a set
of words of length n using the alphabet Fq. There are also non-linear codes, but
we will not consider those in this thesis. Therefore, whenever we write ‘code’,
we mean ‘linear code’. We are now going to define a metric, in order to be able
to speak about the distance between code words.

Definition 2.1.2. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fnq , the Hamming
distance d(x,y) is defined as the number of coordinates where x and y differ:

d(x,y) = |{i | xi 6= yi}| .

It is not hard to see that this is indeed a well-defined metric, that is, the following
properties hold for all x,y, z ∈ Fnq :

1. d(x,y) ≥ 0 and d(x,y) = 0 if and only if x = y;

2. d(x,y) = d(y,x);

3. d(x, z) ≤ d(x,y) + d(y, z).

17

Now that we have a way to describe the distance between words, we can define
the minimum distance of a code. This is the smallest number that can occur as
the distance between two different words in the code:

Definition 2.1.3. The minimum distance of a code C is defined as

d = d(C) = min {d(x,y) | x,y ∈ C, x 6= y}

if C consists of more than one element and is by definition n+ 1 if C consists
of one word.

Some more (not very deep or surprising, but nonetheless useful) concepts are
the following:

Definition 2.1.4. Let x ∈ Fnq and let C be a linear code.

• The support of x, denoted by supp(x), is defined as the set of nonzero
coordinate positions: supp(x) = {i | xi 6= 0}.

• The weight of x, denoted by wt(x), is is defined as the number of elements
in its support.

• The minimum weight of C, denoted by mwt(C), is defined as the min-
imal value of the weights of the nonzero code words:

mwt(C) = min {wt(c) | c ∈ C, c 6= 0}

if there is a nonzero c ∈ C and otherwise mwt(C) = n+ 1.

The definition of the minimum weight looks very similar to that of the minimum
distance. In fact, the two definitions are equivalent:

Proposition 2.1.5. The minimum distance of a linear code C is equal to its
minimum weight.

Proof. Let C be a linear code. Because it is a linear subspace of Fnq , we know
that 0 ∈ C and for every c1, c2 ∈ C, c1 − c2 ∈ C. On the one hand, we notice
that for every c ∈ C, wt(c) = d(0, c), so d(C) ≤ mwt(C). On the other hand,
we see that for every c1, c2 ∈ C, d(c1, c2) = wt(c1−c2), so mwt(C) ≤ d(C).

Note that in Definition 2.1.2, x and y do not necessarily need to be in a linear
code. Therefore, it makes sense to talk about the distance between a code word
c ∈ C ⊂ Fnq and any other element r ∈ Fnq . This is something we do a lot in
the theory of error-correcting codes. If we say that 3 errors have been added
to a code word c ∈ C, we mean that 3 coordinates of the word c have been
changed in order to form the ‘received word’ r. This received word clearly does
not need to be in the code C, but will sometimes still be referred to as a word.
The received word is often written as r = c+e, where e is the ‘error vector’ and
wt(e) is the number of errors. We can now understand the idea of ‘correcting
errors’: it is about retrieving c from r = c + e.

18

A very small minimum distance is not very useful in terms of error correct-
ing. For example, if d = 1, then there are two words x and y that only differ in
one coordinate. This means that we may not even be able to notice that a single
error occurred. On the other hand, suppose that d ≥ 3 for some code C and
that a single error has occurred to a word c. This means that c has changed into
some received ‘word’ r ∈ Fnq such that d(c, r) = 1. There is only one possible
code word that could have turned into r by only changing one coordinate. This
idea of detecting the errors and finding the original code word is discussed in
more detail in the paragraph on decoding.

Instead of writing “C is a linear code over Fq with length n, dimension k and
minimum distance d”, we often use the following abbreviation: C is an [n, k, d]
code (or [n, k, d]q code). We call n, k and d the parameters of C. Because a
linear code is a linear subspace of Fnq of dimension k, there exists a basis of
k code words. If we put these words in a matrix as row vectors, we obtain a
generator matrix of the code:

Definition 2.1.6. A k × n matrix G with entries in Fq is called a generator
matrix of an Fq-linear code C if the rows of G are a basis of C.

As we see, we can describe a code C by a generator matrix. Another way to
describe a code is by another matrix, which has C as its null space:

Definition 2.1.7. An (n − k) × n matrix H of rank n − k is called a parity
check matrix of an [n, k, d] code C if C is the null space of this matrix, that
is, if C = {x ∈ Fnq | HxT = 0}.

If a code has a large minimum distance, this means that many errors can (in
theory) be corrected. A high minimum distance could therefore be considered as
a good property for a code. The following theorem, called the Singleton Bound,
gives an upper bound for the minimum distance:

Theorem 2.1.8. If C is an [n, k, d] code, then

d ≤ n− k + 1.

Proof. Let C be an [n, k, d] code and assume that H is a parity check matrix
for the code C. This means that H consists of n − k rows which are linearly
independent. Because the minimum distance of C is d, there is no word x ∈ C
of weight d− 1 such that HxT = 0. In other words: every d− 1 columns of H
are linearly independent. Because the row rank of a matrix equals the column
rank of a matrix, d− 1 cannot be larger than n− k. Therefore, d− 1 ≤ n− k,
which implies d ≤ n− k + 1.

We see that a lower dimension implies a higher upper bound for the minimum
distance. However, a relatively high dimension is also a desirable property for
a code. For a given code word in an [n, k, d] code, only k coordinates contain

19

actual information. The other n− k coordinates are used to create redundancy
and the possibility to correct errors. If k is large, then the ‘information rate’ k/n
is high, which means that the available storage space is used efficiently. The Sin-
gleton Bound shows that we cannot have a high minimum distance and a high
dimension at the same time: there is always a trade-off between the information
rate on one hand and the error correcting capability of a code on the other hand.

The inner product (dot product) of code words in Fnq is defined as usual for
vectors: (x1, . . . , xn) · (y1, . . . , yn) = x1y1 + . . .+xnyn. Using this, we can define
the dual code of a code C:

Definition 2.1.9. For a code C of length n, the dual code C⊥ is defined as

C⊥ = {x ∈ Fnq | c · x = 0 for all c ∈ C}.

It follows from these definitions that G is a generator matrix of a code C if and
only if G is a parity check matrix of C⊥. Similarly, H is a parity check matrix
of a code C if and only if H is a generator matrix of C⊥.

Another concept that we know from linear algebra and will come back in the
definition of error correcting pairs (chapter 4) is the orthogonality of subspaces
of Fnq :

Definition 2.1.10. Two subspaces A,B ⊆ Fnq are orthogonal, notation: A ⊥ B,
if a · b = 0 for all a ∈ A and all b ∈ B.

Clearly, for a code C, it is true that C⊥ ⊥ C. Furthermore, if A ⊥ C for some
A ⊆ Fnq , then A ⊆ C⊥.

2.2 Hamming Codes

One of the first examples of an error correcting code was the Hamming (7,4)
code, which was introduced by Richard W. Hamming in 1950 [10] and can be
explained using Figure 2.1. Such a diagram is not found in the original paper
by Hamming but it is used in most modern explanations of the Hamming code.
This particular picture is taken from [19].

Example 2.2.1. Suppose we have a message of four bits: m =
(m1,m2,m3,m4). We can put these four bits in their corresponding po-
sition in the diagram and determine the bits r1, r2 and r3 using the following
rule: the number of ones in each circle must be even. The code word c ∈ C
corresponding to m is c = (m1,m2,m3,m4, r1, r2, r3). The three bits r1, r2

and r3 are called redundant bits or parity bits. If a received word r has a
single error, we can look at the diagram to locate the error: if the number of
ones inside a certain circle is odd, then the error must be inside this circle.
Therefore, by counting the ones in each circle, we can uniquely determine

20

Figure 2.1: Venn diagram of the Hamming (7,4) code

the location of the error and therefore correct the error. In fact, the code C
consisting of all words c ∈ F7

2 that follow the rules of the diagram is a [7, 4, 3]
code, called the Hamming (7,4) code. A generator matrix of this code is

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

As we have seen, a single error can be detected and corrected. If there are
two errors, this can be detected (because the minimum distance is 3), but
it cannot be corrected: Suppose that there are errors located at the r3 and
the m4 bits. This is detected by an odd number of ones in the left and right
circle. If we try to decode this in the standard way, we would conclude that
there is a single error in the m3 bit, so we would decode incorrectly. Even if
we would know that there are two errors, we cannot determine whether the
errors are located at r1 and r2 or at r3 and m4.

More generally, Hamming introduced codes of length 2m − 1 and dimension
k = 2m−m−1, for m ∈ N, m > 1, all of which have minimum distance d = 3 so
can correct a single error and detect a double error. Note that it is not possible
to do these things at the same time: if you want to uses this code, you need to
choose whether you want to correct single errors (and if more errors occurred,
correct wrongly) or if you want to detect whether words contain single or double
errors (not knowing how many errors there are and not correcting any errors).
Hamming suggested to add an extra parity bit that makes sure the total number
of ones in every word is even. In this way, it is possible to distinguish between
a single and a double error: in case of a double error, the number of ones in the
word is even, whereas in case of a single error, the number of ones in the word is
odd. In these codes, it is still not possible to correct double errors but at least
one can now correct single errors and detect double errors at the same time.

21

2.3 Goppa Codes

An example of an error correcting code that will turn out to be interesting for
our purposes is the Goppa Code. They were introduced (in Russian) by V.D.
Goppa in 1970, see [8]. Even though Goppa origininally only considered binary
Goppa codes, later definitions consider Fq-linear Goppa codes. The following
definition is from [19].

Definition 2.3.1. Let L = (a1, . . . , an) be an n-tuple of n distinct elements of
Fqm . A polynomial g with coefficients in Fqm such that g(aj) 6= 0 for all j is
called a Goppa polynomial with respect to L. The Fq-linear Goppa code
with respect to L and g is defined by

Γ(L, g) :=

c ∈ Fnq :

n∑
j=1

cj
X − aj

≡ 0 mod g(X)

 .

Note that (X − ai) mod g is a unit in Fq[X]/(g), because g(ai) is nonzero for
all i. Therefore, 1

X−ai mod g is indeed well defined.
Let us now investigate a small example of a Goppa code.

Example 2.3.2. We consider the field F8 with the element α satisfying
α3 = α + 1 and we choose L = (0, 1, α, α2, . . . , a6). Because α has order 7
in F×8 , these 7 coordinates are indeed distinct elements of F8. Let g(X) =
X2+X+α3, having no roots in F8, be our Goppa polynomial. The description
of our code is as follows:

Γ(L, g) :=

c ∈ F8
2 :

c1
X

+

8∑
j=2

cj
X + αj−2

≡ 0 mod (X2 +X + α3)

 .

We need the inverses of X and (X + αj−2) mod g(X). Using that X2 ≡
X + α3 and α3 = α+ 1, we find:

• X−1 ≡ α4X + α4 mod g(X)

• (X + 1)−1 ≡ α4X mod g(X)

• (X + α)−1 ≡ αX + α4 mod g(X)

• (X + α2)−1 ≡ X + α6 mod g(X)

• (X + α3)−1 ≡ αX + α2 mod g(X)

• (X + α4)−1 ≡ α2X + 1 mod g(X)

• (X + α5)−1 ≡ α2X + α6 mod g(X)

• (X + α6)−1 ≡ X + α2 mod g(X)

22

If we substitute these inverses in the description of our Goppa code, we see
that our words (c1, c2, . . . , c8) satisfy:

n∑
j=1

cj
X − aj

= c1(α4X + α4) + c2(α4X) + c3(αX + α4) + c4(X + α6)

+ c5(αX + α2) + c6(α2X + 1) + c7(α2X + α6) + c8(X + α2)

≡ 0 mod g(X).

Because both the coefficient of X and the constant coefficient must equal
zero, we are looking for the solutions of the following system:(

α4 α4 α 1 α α2 α2 1
α4 0 α4 α6 α2 1 α6 α2

)
c =

(
0
0

)
.

Using the relations in F8, we rewrite this as follows:(
α2 + α α2 + α α 1 α α2 α2 1
α2 + α 0 α2 + α α2 + 1 α2 1 α2 + 1 α2

)
c =

(
0
0

)
.

This is useful, because if we look at the coefficients of α2, α and 1 for each
equation, we see that we can write these two equations over F8 as six equa-
tions over F2: 

1 1 0 0 0 1 1 0
1 1 1 0 1 0 0 0
0 0 0 1 0 0 0 1
1 0 1 1 1 0 1 1
1 0 1 0 0 0 0 0
0 0 0 1 0 1 1 0

 c =


0
0
0
0
0
0

 .

This is equivalent to
1 0 0 0 0 0 1 1
0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 1

 c =


0
0
0
0
0
0

 .

We see that the solutions are k1



1
1
1
0
1
1
1
0


+ k2



1
0
1
1
0
1
0
1


, with k1, k2 ∈ F2. In other

words, the Goppa code Γ(L, g) is generated by the matrix

G =

(
1 1 1 0 1 1 1 0
1 0 1 1 0 1 0 1

)
23

or, equivalently, by

G =

(
1 0 1 1 0 1 0 1
0 1 0 1 1 0 1 1

)
.

The minimum distance of this code is easily found, since there are only four
words in the code. We have already seen the three nonzero code words and
they have weight 5 or 6, which means that the minimum distance of this code
is 5. This code is therefore an [8, 2, 5] code.

It is also possible to use MAGMA to compute (generator matrices of) codes.
An example which is a bit larger than the previous one is the following. The
MAGMA code can be found in Appendix B.2.

Example 2.3.3. Consider the field F32 with the element α satisfying α5 =
α2 +1 and choose L = (0, 1, α, α2, . . . , a30). Let g = x5 +α13x4 +α12x2 +α26,
having no roots in F32, be our Goppa polynomial. This gives the Goppa code
with parameters [32, 7, 11] and generator matrix

G =



1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1
0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1
0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 1
0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1
0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1
0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1


.

Proposition 2.3.4. The Goppa code Γ(L, g) is an [n, k, d] code with k ≥ n−mr
and d ≥ r + 1, where r is the degree of g, a Goppa polynomial over Fqm .

Proof. The fact about the dimension is illustrated by the example above. If the
degree of g is r, comparing the coefficients of X0 up to Xr−1 gives r equations
over Fqm . Each of these r equations leads to m equations over Fq. This means
that there are at most rm linear independent equations, corresponding to at
most rm rows in the parity check matrix of Γ(L, g). This means that the
dimension of Γ(L, g) must be at least n−mr.
In order to prove the fact about the minimal distance d, assume d ≤ deg(g).
This means that there is a code word c with weight d. Let the nonzero positions
of this word be S = {i1, . . . , id}. Because c ∈ Γ(L, g), the following equation is
satisfied:

ci1
X − ai1

+ . . .+
cid

X − aid
≡ 0 mod g(X).

If we multiply both sides of this equation by
∏
j∈S(X − aj), we get

∑
1≤k≤d

cik ∏
j∈S, j 6=ik

(X − ak)

 ≡ 0 mod g(X).

24

Because the left hand side is a polynomial of degree d−1 < deg(g), we conclude
that it must be the zero polynomial. If we evaluate the left hand side at X = ai1 ,
we get

ci1
∏

j∈S, j 6=i1

(ai1 − ak) = 0.

Because all ai are distinct, this yields a contradiction.

A subset of Goppa codes that turns out to be interesting for our purposes is
the set of binary Goppa codes generated by a square free polynomial g. These
codes have a higher lower bound for the minimum distance. This follows from
the fact that a square free polynomial and its square generate the same Goppa
code.

Lemma 2.3.5. Let g be a square free Goppa polynomial of degree r with coef-
ficients in F2m . Then the binary Goppa code Γ(L, g) is equal to Γ(L, g2).

Proof. First of all, we note that if g is a Goppa polynomial with respect to
L, then g2 is also a Goppa polynomial with respect to L, so the Goppa code
Γ(L, g2) is well defined.
(⊇) This is the easier inclusion. Let c = (c1, . . . , cn) ∈ Γ(L, g2), which means
that

∑n
j=1

cj
X−aj ≡ 0 mod g2(X). Because g divides g2, it is also true that∑n

j=1
cj

X−aj ≡ 0 mod g(X), which means that c ∈ Γ(L, g).

(⊆) Let c = (c1, . . . , cn) ∈ Γ(L, g) and define the polynomial

f(X) :=

n∏
j=1

(X − aj)cj .

The derivative of f(X) is

f ′(X) =

 n∑
j=1

cj(X − aj)cj−1
∏
i6=j

(X − ai)ci
 .

Note that this expression is well defined as an element of F2m [X]/(g) because
g(aj) is nonzero for all j. This polynomial will be useful because

f ′(X)

f(X)
=

n∑
j=1

cj
X − aj

.

f(X) is a polynomial of degree n, so let us write it as f(X) =
∑n
j=0 fjX

j .

The derivative is f ′(X) =
∑n
j=1 jfjX

j−1. We work in characteristic two, so all
coefficients of the terms with odd exponents are zero, which means that f ′(X)
only has terms with even exponents. Because we work in F2m [X]/(g), it is true

that (b(2
m−1))2 = b(2

m) = b and we see that:

f ′(X) =

k∑
j=0

bjx
2j =

k∑
j=0

(
b
(2m−1)
j xj

)2

=

 k∑
j=0

b
(2m−1)
j xj

2

,

25

which means that f ′(X) is a square.

Because c ∈ Γ(L, g), we know that
∑n
j=1

cj
X−aj ≡ 0 mod g(X), so also f ′(X)

f(X) ≡
0 mod g(X). This means that g(X), a square free polynomial, divides f ′(X).
This implies that g2(X) divides f ′(X) as well. We conclude that

n∑
j=1

cj
X − aj

=
f ′(X)

f(X)
≡ 0 mod g2(X),

and because ci ∈ F2 (by the definition of f), it is indeed true that c ∈ Γ(L, g2).

Proposition 2.3.6. Let g be a square free Goppa polynomial of degree r with
coefficients in F2m . Then the binary Goppa code Γ(L, g) is an [n, k, d] code with
k ≥ n−mr and d ≥ 2r + 1.

Proof. The statement about the dimension follows directly from Proposition
2.3.4. The statement about the minimum distance follows from the fact that
the minimum distance of Γ(L, g2) is at least deg(g2) + 1 = 2r + 1 (Proposition
2.3.4) and the fact that Γ(L, g) = Γ(L, g2) (Lemma 2.3.5).

The following is used by McEliece [14, p.114], and we will need it again in section
5.1 about the McEliece cryptosystem:

Proposition 2.3.7. Corresponding to each irreducible polynomial of degree t
over F2m , there exists a binary irreducible Goppa code of length n = 2m, di-
mension k ≥ n − tm, capable of correcting any pattern of t or fewer errors.
Moreover, there exists a fast algorithm for decoding these codes.

Proof. Let g be an irreducible polynomial of degree t over F2m . Since g does
not have any zeroes in F2m , we can choose L to contain exactly all elements of
F2m and obtain a code of length n = 2m. The dimension, k ≥ n − tm, follows
from Proposition 2.3.4. Because an irreducible polynomial is certainly square
free, we can use Proposition 2.3.6 to conclude that the mimimum distance is
d ≥ 2t+ 1. This means that, for every received word with t or less errors, there
exists a unique closest code word, which means that t or fewer errors can be
corrected. The fast decoding algorithm is Patterson’s algorithm, to which we
will come back in chapter 4.

2.4 AG codes and geometric Goppa codes

This section considers two types of codes which are based on algebraic geome-
try. Just like the Goppa codes from the previous section, these codes were also
introduced by Goppa, see [9]. Even for those who do not speak Russian, the
two classes of codes are clearly recognizable in the article. In some sources, the
algebraic geometry codes that we discuss in this section are also called Goppa
codes. In order to avoid confusion, we will refer to the Goppa codes from the

26

previous section as ‘classical Goppa codes’. We follow [19] in the names and
definitions of the codes in this section. First, the ‘AG code’ will be introduced,
and then the ‘geometric Goppa code’.

From now on, let X be an absolutely irreducible non-singular projective curve
over Fq. Let P1, . . . , Pn be distinct rational points on X , let P be the sequence
(Pi) and let D be the divisor P1 + · · · + Pn. Let G be some other divisor that
has support disjoint from D. Furthermore, assume 2g − 2 < deg(G) < n.

Definition 2.4.1. The AG code (or geometric RS code) CL(D,G) is the
image of the linear map

evP : L(G)→ Fnq , f 7→ (f(P1), . . . , f(Pn)).

Because G and D have disjoint support, the fact that f ∈ L(G) means that f
can have no poles at the Pi. Therefore, the AG code is well defined. Note that
the order of the Pi determines the order of the coordinates. Because the divisor
D does not contain information about the order of the points, a more precise
notation would perhaps have been CL(X ,P, G) (as is used in [4]), but we will
stick to the notation CL(D,G) and remember that the order of the points Pi
matters. Let us look at a small example of an AG code, using a curve we have
already seen in section 1.2:

Example 2.4.2. Let the curve over F4 be defined by X3 + Y 3 + Z3 = 0.
Let Q = (0 : 1 : 1), G = 3Q and n = 8. This means that we must choose the
points Pi to be all of the remaining rational points, that is:

P1 = (0 : α : 1), P2 = (0 : α2 : 1), P3 = (1 : 0 : 1), P4 = (α : 0 : 1),

P5 = (α2 : 0 : 1), P6 = (1 : 1 : 0), P7 = (α : 1 : 0), P8 = (α2 : 1 : 0).

We have already seen that L(G) has dimension 3 and basis {1, x
y+z ,

y
y+z}.

If we compute the images of our basis functions, we find the following code
words:

evP(1) = (1, 1, 1, 1, 1, 1, 1, 1),

evP

(
x

y + z

)
= (0, 0, 1, α, α2, 1, α, α2),

evP

(
y

y + z

)
= (α2, α, 0, 0, 0, 1, 1, 1),

These words are clearly linearly independent, so we have found a generator
matrix for our code CL(D,G):

G′ =

 1 1 1 1 1 1 1 1
0 0 1 α α2 1 α α2

α2 α 0 0 0 1 1 1

 .

27

We have seen that n = 8 and k = 3. The third row of the generator matrix
is a code word of weight 5, which means that the minimum distance should
be at most 5. It turns out that d is also at least 5, so that CL(D,G) is an
[8, 3, 5] code.

This lower bound for d follows from the following general proposition concerning
the dimension and minimum distance of AG codes:

Proposition 2.4.3. The code CL(D,G) has dimension k = deg(G)−g+ 1 and
minimum distance d ≥ n− deg(G).

Proof. (i) First we show that evP : L(G) → Fnq is injective. Suppose f ∈
ker(evP). That means f(Pi) = 0 for all Pi in the support of D, so all Pi
occur in (f) with a positive coefficient. Because the Pi are distinct and D =
P1 + . . .+ Pn, all Pi occur in (f)−D with a nonzero coefficient. We remember
that L(G) = {f ∈ F(X)∗ | (f) + G ≥ 0} ∪ {0}. The fact that f ∈ L(G) means
that (f) +G ≥ 0 and because D and G have distinct support, we conclude that
(f) +G−D ≥ 0, which means that f ∈ L(G−D). However, we assumed that
deg(G) < n and deg(D) = n, so deg(G−D) < 0 which implies that l(G−D) = 0
and therefore f = 0. So indeed evP : L(G)→ Fnq is injective. Then we use the
fact that l(G) = deg(G) − g + 1 if deg(G) > 2g − 2 and conclude that this is
indeed the dimension of CL(D,G).
(ii) Let d be the minimum distance and let f be such that evP(f) has weight d.
Then there are n− d points Pi for which f(Pi) = 0. Enumerate these points by
Pi1 , . . . , Pin−d

and let E = Pi1 + . . . + Pin−d
. By the same argument as above,

f ∈ L(G−E). So (f)+G−E ≥ 0, which means that deg(G−E) ≥ deg((f)) = 0.
We use that deg(G−E) = deg(G)−deg(E) and that deg(E) = n−d to conclude
that deg(G)− n+ d ≥ 0, so indeed d ≥ n− deg(G).

There is another type of algebraic geometry code, also called the geometric
Goppa code. We will see later that these codes are in fact the dual codes of the
AG codes we introduced above.

Definition 2.4.4. The geometric Goppa code CΩ(D,G) of length n over
Fq is the image of the linear map ResP : Ω(G − D) → Fnq defined by η 7→
(ResP1

(η), . . . ,ResPn
(η)).

Actually, we have already encountered an example of a geometric Goppa code:
a special case of the (classical) Goppa code from section 2.3. Suppose that
Γ(L, g) is an Fq-linear Goppa code as defined in Definition 2.3.1, such that
L = (a1, . . . , an) with ai ∈ Fq and let g be the Goppa polynomial with coef-
ficients in Fq. We can take X to be the projective line, define Pi := (ai : 1),
Q := (1 : 0), D := P1 + . . . + Pn and let E be the divisor given by the ze-
ros of g on the projective line, counted with multiplicity. It is then true that
Γ(L, g) = CΩ(D,E −Q). For a proof, see [5] (Thm 37). They also explain that
in general, a classical Fq-linear Goppa code is defined by a polynomial g with
coefficients in Fqm and ai ∈ Fqm . If q 6= qm, then the classical Goppa code

28

is not exactly a geometric Goppa code, but the restriction of some geometric
Goppa code, or, in other words, a ‘subfield subcode’ of some geometric Goppa
code from the projective line: Γ(L, g) = CΩ(D,E −Q)|Fq

.

Another example of a geometric Goppa code, using a familiar curve and space,
is the following:

Example 2.4.5. Consider the same curve and points as in example 2.4.2.
This time, let G = 6Q. In example 1.2.6, we already looked at the space
Ω(6Q−D) and we found two differentials η and ζ that formed its basis. This
means that CΩ(D, 6Q) is generated by ResP(η) and ResP(ζ). A generator
matrix for CΩ(D,G) is therefore

GΩ =

(
1 1 1 1 1 1 1 1
0 0 1 α α2 1 α α2

)
.

We see that the dimension is 2 and as there is only one other nonzero word,
we easily see that the minimum distance is 6.

Proposition 2.4.6. The code CΩ(D,G) has dimension k∗ = n−deg(G)+g−1
and minimum distance d∗ ≥ deg(G)− 2g + 2.

Proof. (i) Again we have an injective map, which we show as follows. Suppose
η ∈ ker(ResP). That means ResPi(η) = 0 for all Pi in the support of D, so η has
no single poles at the Pi. Because η ∈ Ω(G−D), we know that (η)−G+D ≥ 0.
Since D = P1 + . . .+ Pn and since G and D have distinct support, this means
that if η has a pole at one of the points Pi, the order of the pole can at most be
1, so we conclude that η has no poles at the points Pi. Therefore (η)−G ≥ 0,
which means η ∈ Ω(G). According to proposition 1.2.4(7), the dimension of
this space is δ(G) = l(W −G). We know that deg(W) = 2g − 2 for a canonical
divisor, and our assumption deg(G) > 2g − 2 then gives that deg(W −G) < 0,
so l(W −G) = 0. This means that η = 0 and that ResP indeed is injective.
The dimension of Ω(G − D), which we denote by δ(G − D), is by proposition
1.2.4(7) equal to l(W −G+D) for a canonical divisor W . Riemann-Roch gives
us:

l(G−D)− l(W −G+D) = deg(G−D)− g + 1, which leads to

0− l(W −G+D) = deg(G)− n− g + 1,

so indeed l(W −G+D) = n− deg(G) + g − 1.
(ii) Let η ∈ Ω(G −D) be a differential such that (ResP1

(η), . . . ,ResPn
(η)) has

weight d∗. Just as before, this means that there are n − d∗ points for which
ResPi(η) = 0. Let us enumerate these points by Pi1 , . . . , Pin−d∗ . Let E =
Pi1 + . . . + Pin−d∗ . We know that (η) − G + D ≥ 0 and because there are no
single poles at points in the support of E we get that (η)−G+D − E ≥ 0. It
follows that d∗ = deg(D−E) ≥ deg(G)− deg((η)). (η) is a canonical divisor so
its degree is 2g − 2. This gives the desired result d∗ ≥ deg(G)− 2g + 2.

29

We have seen that both CL(D,G) and CΩ(D,G) have a lower bound for their
minimum distance. These lower bounds are useful because they ensure (at least
in theory) a possibility to correct errors. The lower bounds are also called the
designed minimum distance:

Definition 2.4.7. The designed minimum distance of CL(D,G) is n −
deg(G) and the designed minimum distance of CΩ(D,G) is deg(G)−2g+2.

Proposition 2.4.8. The codes CL(D,G) and CΩ(D,G) are dual codes.

Proof. First of all, we notice that the dimensions of CL(D,G) and CΩ(D,G)
add up to n: k + k∗ = (deg(G) − g + 1) + (n − deg(G) + g − 1) = n. Now we
will take one word from both codes and show that the dot product is zero. Let
c1 ∈ CL(D,G) and c2 ∈ CΩ(D,G). There are f ∈ L(G) and η ∈ Ω(G − D)
such that c1 = (f(P1), . . . , f(Pn)) and c2 = (ResP1

(η), . . . ,ResPn
(η)). Since

f ∈ L(G), (f) + G ≥ 0 and since η ∈ Ω(G − D), (η) − G + D ≥ 0. It follows
that (fη) + D = (f) + (η) + D ≥ 0. Therefore, if fη has any poles, they are
poles of order 1 located at the Pi. We use proposition 1.2.4(6) to see that

0 =
∑
P∈X

ResP (fη) =
∑
Pi

ResPi
(fη) =

∑
Pi

f(Pi)ResPi
(η) = c1 · c2,

where the third equality follows from the fact that f has no poles at Pi. This
concludes the proof.

Example 2.4.9. In example 2.4.5, we computed the code CΩ(D, 6Q).
According to the previous proposition, this should be the dual code
of CL(D, 6Q). We already found a basis for L(6Q) in example 1.3.3:
{1, f, g, f2, fg, g2} with f = x

y+z and g = y
y+z . A generator matrix of

CL(D, 6Q) is therefore given by

GL =


evP(1)
evP(f)
evP(g)
evP(f2)
evP(fg)
evP(g2)

 =


1 1 1 1 1 1 1 1
0 0 1 α α2 1 α α2

α2 α 0 0 0 1 1 1
0 0 1 α2 α 1 α2 α
0 0 0 0 0 1 α α2

α α2 0 0 0 1 1 1

 .

In order to check that CΩ(D, 6Q) en CL(D, 6Q) are indeed dual codes, we can
compute the matrix multiplication GL(GΩ)T and see that this gives the zero
matrix. This means that CL(D, 6Q) ⊥ CΩ(D, 6Q). Because the dimensions
of CΩ(D, 6Q) en CL(D, 6Q) add up to 8 = n, they are indeed dual codes.

Proposition 2.4.10. Let CL(D,G) be an AG code as in Definition 2.4.1. There
exists a differential form ω with simple poles at the Pi such that ResPi

(ω) = 1
for all i. Let W be the divisor of ω. Then

(CL(D,G))⊥ = CL(D,W +D −G).

30

Proof. The fact that the differential form ω exists, follows from [22] (Lemma
2.2.9 on page 53). Before we prove that the codes are equal, we notice that
CL(D,W + D − G) is well defined. Because ω has poles of order 1 at the Pi
and W = (ω), we can write W = W ′ − P1 − . . .− Pn = W ′ −D, where W ′ and
D have disjoint support. In de definition of CL(D,G) we assumed that D and
G have disjoint support so we conclude that W + D − G = W ′ − G also has
support disjoint from D. Therefore, the code on the right hand side is indeed
well defined.

Now we will show that the codes are the same. We already know that

(CL(D,G))⊥ = CΩ(D,G).

By proposition 1.2.4(7), δ(G − D) = l(W + D − G), which means that the
dimensions of CΩ(D,G) and CL(D,W + D − G) are equal. In order to show
that CL(D,W +D −G) ⊆ CΩ(D,G), take c ∈ CL(D,W +D −G). Then

c = (f(P1), . . . , f(Pn))

= (f(P1)ResP1(ω), . . . , f(Pn)ResPn(ω))

= (ResP1(fω), . . . ,ResPn(fω)).

In order to see that fω ∈ Ω(G −D), we use the fact that f ∈ L(W + D −G),
which means that (f) +W +D −G ≥ 0, and see that

(fω)− (G−D) = (f) + (ω) +D −G = (f) +W +D −G ≥ 0.

This means that indeed fω ∈ Ω(G −D), so c ∈ CΩ(D,G). Together with the
equality of the dimensions, this implies that

(CL(D,G))⊥ = CΩ(D,G) = CL(D,W +D −G).

Example 2.4.11. In example 2.4.5, we computed CΩ(D, 6Q). In example
1.2.6, we already saw that η has simple poles and residue 1 at all points Pi
and divisor (η) = E = 8Q −D. According to proposition 2.4.10, we should
have

CΩ(D, 6Q) = CL(D,E+D− 6Q) = CL(D, 8Q−D+D− 6Q) = CL(D, 2Q).

It is indeed true that {1, f} is a basis for L(2Q) and evaluating these functions
in the Pi gives the same generator matrix as we saw in example 2.4.5.

The following property of AG codes will turn out to be crucial in the attack in
chapter 6.

Corollary 2.4.12. Every AG code is the dual of another AG code.

Proof. If you take the dual code on both sides of the equation of proposition
2.4.10, you see that CL(D,G) = CL(D,W +D −G)⊥.

31

Chapter 3

The Schur product

In section 4.3 about decoding and in chapter 6 about the attack on AG codes, we
will encounter an operation called the Schur product. This chapter is dedicated
to this operation and its properties, in particular in relation to codes.

3.1 The Schur product of vectors

The Schur product on vectors, also called the Hadamard product, entry-wise
product or element-wise product, is defined as follows:

Definition 3.1.1. For two vectors a = (a1, . . . , an) and b = (b1, . . . , bn), both
in Fnq , the Schur product a ∗ b is defined by a ∗ b := (a1b1, . . . , anbn).

There are some properties of the Schur product that follow directly from this
definition:

Proposition 3.1.2. Let a, b ∈ Fnq and c ∈ Fq. The Schur product is symmetric
and bilinear over Fq, i.e., for a, b ∈ Fnq and c ∈ Fq, the following statements are
true:

1. a ∗ b = b ∗ a

2. (ca) ∗ b = c(a ∗ b) = a ∗ (cb)

3. (a + b) ∗ d = a ∗ d + b ∗ d and a ∗ (b + d) = a ∗ d + a ∗ d

Proof. 1. Because multiplication in Fq is commutative,

a ∗ b = (a1b1, . . . , anbn) = (b1a1, . . . , bnan) = b ∗ a.

2. ca = c(a1, . . . , an) = (ca1, . . . , can), so

(ca) ∗ b = (ca1b1, . . . , canbn) = c(a1b1, . . . , anbn) = c(a ∗ b).

The second equality follows in the same way.

32

3. Because Fq is distributive,

(a+b)∗d = (a1 + b1)d1, . . . , (an+ bn)dn = (a1d1 + b1d1, . . . , andn+ bndn)

= (a1d1, . . . , andn) + (b1d1, . . . , bndn) = a ∗ d + b ∗ d.

The second equality follows in the same way.

Combining these properties, we find the following:

Corollary 3.1.3. ∑
i

aiai ∗
∑
j

bjbj =
∑
i

∑
j

aibj (ai ∗ bj) .

Proof. We can apply property 3 repeatedly to see that
∑
i aiai ∗

∑
j bjbj =∑

i

(
aiai ∗

∑
j bjbj

)
=
∑
i

∑
j (aiai ∗ bjbj) and then we use statement 2 to see

that this equals
∑
i

∑
j aibj (ai ∗ bj) .

3.2 The Schur product of codes

We now define the Schur product of two codes, that is, linear subspaces of Fnq :

Definition 3.2.1. For two codes A,B ⊆ Fnq , the Schur product A∗B is de code
defined by

A ∗B := SpanFq
{a ∗ b | a ∈ A and b ∈ B}.

In the special case B = A, we call A∗A the Schur square and we use the shorter
notation A(2) := A ∗A.

Example 3.2.2. The Schur square of the Hamming code
Let us look again at the Hamming code C from section 2.2: the [7, 4, 3]-code
over F2 with generator matrix

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

Let the rows of this matrix be called g1, g2, g3 and g4. The Schur square C(2)

of this code contains g1 ∗g1 = g1. Furthermore, g1 ∗g2 = (0, 0, 0, 0, 0, 0, 1) ∈
C(2) and also g1 ∗ g3 = (0, 0, 0, 0, 0, 1, 0) ∈ C(2). Therefore, it follows that
g1 + (0, 0, 0, 0, 0, 0, 1) + (0, 0, 0, 0, 0, 1, 0) = (1, 0, 0, 0, 0, 0, 0) ∈ C(2). In fact,
if we continue in this way, we quickly find that the Schur square of the
Hamming code C is equal to F7

2.

33

It is not always the case that the Schur square of a code equals the whole space.
For example, look at the Goppa code C from section 2.3.

Example 3.2.3. The Schur square of a Goppa code
The code C over F2 has generator matrix

G =

(
1 0 1 1 0 1 0 1
0 1 0 1 1 0 1 1

)
.

Let the rows of this matrix be g1 and g2. The only other nonzero word in
C is g3 := g1 + g2 = (1, 1, 1, 0, 1, 1, 1, 0).

This means that C(2) is spanned by

{g1 ∗ g1, g2 ∗ g2, g3 ∗ g3, g1 ∗ g2, g1 ∗ g3, g2 ∗ g3} .

However, it follows from Prop. 3.1.2 that

g1 ∗ g3 = g1 ∗ (g1 + g2) = g1 ∗ g1 + g1 ∗ g2,

g2 ∗ g3 = g2 ∗ (g2 + g1) = g2 ∗ g2 + g2 ∗ g1 = g2 ∗ g2 + g1 ∗ g2 and

g3 ∗ g3 = (g1 + g2) ∗ (g1 + g2) = (g1 + g2) ∗ g1 + (g1 + g2) ∗ g2

= g1 ∗ g1 + g2 ∗ g1 + g1 ∗ g2 + g2 ∗ g2

= g1 ∗ g1 + g1 ∗ g2 + g1 ∗ g2 + g2 ∗ g2,

which means that C(2) is spanned by

g1 ∗ g1 = (1, 0, 1, 1, 0, 1, 0, 1),

g2 ∗ g2 = (0, 1, 0, 1, 1, 0, 1, 1),

g1 ∗ g2 = (0, 0, 0, 1, 0, 0, 0, 1).

Because these are clearly linearly independent, C(2) is a code of dimension 3
generated by

G′ =

1 0 1 1 0 1 0 1
0 1 0 1 1 0 1 1
0 0 0 1 0 0 0 1

 .

Note that in codes over F2, it is always true that c ∗ c = c. This means that
in fact C(2) = Span{g1, g2, g1 ∗ g2}.

In general, when finding the Schur product of two codes, it is only necessary to
look at the Schur products of the basis words:

Proposition 3.2.4. If A,B ⊆ Fnq are two codes and if A′ and B′ are bases for
A and B, respectively, then

A ∗B = SpanFq
{a ∗ b | a ∈ A′ and b ∈ B′}.

34

Proof. The obvious inclusion is SpanFq
{a ∗ b | a ∈ A′ and b ∈ B′} ⊆ A ∗ B.

In order to show the other inclusion, suppose c ∈ A ∗ B = SpanFq
{a ∗ b | a ∈

A and b ∈ B}. Then there are ai ∈ A and bi ∈ B such that c =
∑
i ci(ai ∗ bi).

We can write these ai and bi as a combination of the elements in the basis, that
is, ai =

∑
j aija

′
ij and bi =

∑
j bijb

′
ij . This gives

c =
∑
i

ci

∑
j

aija
′
ij ∗

∑
k

bikb
′
ik

 .

Using corollary 3.1.3, we see that

c =
∑
i

ci

∑
j

∑
k

aijbik
(
a′ij ∗ b′ik

) =
∑
i

∑
j

∑
k

ciaijbik
(
a′ij ∗ b′ik

)
,

so indeed c ∈ SpanFq
{a∗b | a ∈ A′ and b ∈ B′}, which completes the proof.

3.3 Schur squares of random codes

It is possible to give an upper bound on the dimension of C(2), given the di-
mension of a code C:

Proposition 3.3.1. If C ⊆ Fnq is a code of dimension k, the dimension of C(2)

is at most
(
k
2

)
+ k.

Proof. Let C ′ be a basis for C. There are k elements in C ′ and we have

C(2) = Span{c1 ∗ c2 | c1, c2 ∈ C ′}.

= Span {{c1 ∗ c2 | c1, c2 ∈ C ′, c1 6= c2} ∪ {c ∗ c | c ∈ C ′}}

We want to know the number of distinct c1 ∗ c2. There are
(
k
2

)
ways to pick

c1 6= c2 from C ′. Because c1 ∗c2 = c2 ∗c1, there are at most
(
k
2

)
distinct c1 ∗c2

with c1 6= c2. Clearly, there are at most k distinct c ∗ c. This means that C(2)

is the span of a set with at most
(
k
2

)
+k elements, that is, the dimension of C(2)

is at most
(
k
2

)
+ k.

As we have already mentioned before, in codes over F2 we always have c∗c = c.
This means that C ⊆ C(2) and therefore dim(C) ≤ dim(C(2)). Over a general
finite field, c∗c = c is not necessarily the case, but the fact about the dimension
is true, so we also have a lower bound on the dimension of C(2):

Proposition 3.3.2. If C ⊆ Fnq is a code of dimension k, then the dimension of

C(2) is at least k.

35

Proof. Let G be an k × n generator matrix for C, in reduced row echelon form
and let the rows of G be gi. That is: the leading entry in each gi is a one
and if gj has a leading one in position m, then all gi with i 6= j have a zero in
position m. The gi form a basis for C. Now consider the Schur squares: gi ∗gi.
All leading ones and all zeros stay the same, so all of the gi ∗ gi are linearly
independent. Since all of these gi ∗ gi are in the basis of C(2), it follows that
the dimension of C(2) is at least k.

We have seen that the dimension of the Schur square of an [n, k] is at least k
and at most

(
k
2

)
+k. In example 3.2.2, we saw that the Schur square of an [n, k]

code can fill the whole space Fnq . In fact, this is fairly common: if C is an [n, k]

code with k a large number and n smaller than k(k+1)
2 , the probability that

this happens is very high. The bigger the difference between n and k(k + 1)/2,
the higher the probability. A proposition by Cascudo and others [3] makes this
mathematically more precise. More on this can be found in Appendix 6.4.

3.4 The Schur product of AG codes

Before we look at any theorems, let us first examine the Schur square of an AG
code we have already seen before:

Example 3.4.1. The Schur square of an AG code (1)
Let C be the AG code from example 2.4.2. The code over F4 has generator
matrix

G′ =

 1 1 1 1 1 1 1 1
0 0 1 α α2 1 α α2

α2 α 0 0 0 1 1 1

 .

Let the rows be g1, g2 and g3. The Schur square is spanned by:

g1 ∗ g1 = (1, 1, 1, 1, 1, 1, 1, 1)

g1 ∗ g2 = (0, 0, 1, α, α2, 1, α, α2)

g1 ∗ g3 = (α2, α, 0, 0, 0, 1, 1, 1)

g2 ∗ g2 = (0, 0, 1, α2, α, 1, α2, α)

g2 ∗ g3 = (0, 0, 0, 0, 0, 1, α, α2)

g3 ∗ g3 = (α, α2, 0, 0, 0, 1, 1, 1)

We can write the generator matrix of C(2) as

G′′ =


1 0 0 0 0 0 α2 α
0 1 0 0 0 0 α2 α
0 0 1 0 0 0 α α2

0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 α α2


and see that C(2) is an [8, 6, 2]-code.

36

Proposition 3.4.2. Let E and F be two divisors on a curve X , both with
support disjoint from D, such that deg(E) ≥ 2g + 1 and deg(F) ≥ 2g. Then

CL(D,E) ∗ CL(D,F) = CL(D,E + F).

Proof. This is a consequence of Proposition 1.3.2 on the product of Riemann
Roch spaces:

CL(D,E) ∗ CL(D,F) = Span {a ∗ b | a ∈ CL(D,E), b ∈ CL(D,F)}
= Span {(f(P1), . . . , f(Pn)) ∗ (g(P1), . . . , g(Pn)) | f ∈ L(E), g ∈ L(F)}
= Span {(fg(P1), . . . , fg(Pn)) | f ∈ L(E), g ∈ L(F)}
= {(h(P1), . . . , h(Pn)) | h ∈ Span{fg | f ∈ L(E), g ∈ L(F)}}
= {(h(P1), . . . , h(Pn)) | h ∈ L(E) · L(F)}
= {(h(P1), . . . , h(Pn)) | h ∈ L(E + F)}
= CL(D,E + F).

Example 3.4.3. The Schur square of an AG code (2)
Let us look at the previous example (3.4.1) again, where we computed
CL(D, 3Q) ∗ CL(D, 3Q). Instead of computing the Schur products of the
code words that form the basis of CL(D, 3Q), we could have used propo-
sition 3.4.2 to see that CL(D, 3Q) ∗ CL(D, 3Q) = CL(D, 6Q). In example
2.4.9, we already computed this code, using the basis {1, f, g, f2, fg, g2} for
L(6Q). Of course, these two ways directly give the same result, because
evP(hi) ∗ evP(hj) = evP(hihj).
In example 1.3.3, we already saw that L(2Q) ∗ L(2Q) 6= L(4Q). It follows
that also GL(D, 2Q) ∗ GL(D, 2Q) 6= GL(D, 4Q). Therefore, the conditions
on the degrees of E and F in proposition 3.4.2 are really necessary.

37

Chapter 4

Decoding

As explained in chapter 2, the idea behind error correcting codes is that data
can be stored in such a way that a certain number of errors in the data can
be found and corrected. If c is an original code word and e is an error vector
(containing a relatively small number of nonzero coordinates) then the process
of retrieving c given r = c + e is what we call decoding.

4.1 General decoding

Let C be an [n, k, d]q code and let t be a positive integer such that t < 1
2d. Let

c ∈ C be a code word, let e ∈ Fnq be a random (error) vector with wt(e) ≤ t
and let r = c + e. We know that there is only one possible code word c ∈ C
that could have turned into r by changing at most t coordinates: suppose that
r = c1 + e1 = c2 + e2 with c1, c2 ∈ C and wt(e1), wt(e2) ≤ t. Then
d(c1, c2) ≤ d(c1, r) + d(r, c2) = wt(e1) + wt(e2) ≤ t + t < d. Because the
minimum distance of C is at least d, this implies that indeed c1 = c2.

The argument above shows that if wt(e) < 1
2d, there exists a unique ‘clos-

est code word’ c. When wt(e) ≥ 1
2d, a closest code word may not exist or

decoding may return the ‘wrong’ code word. This case is not interesting for our
purposes. On the other hand, a very interesting question for us is the following:
when we know that a closest code word exists, can we also find it in practice?
This will prove to be the key question for the McEliece cryptosystem that we
discuss later. The answer is: for some codes (for example Goppa codes), we
know efficient algorithms to do this. For a random linear code however, we
cannot do it efficiently.

The general decoding problem comes down to the following. Suppose you have
a random linear code, a code word c such that r = c + e and wt(e) ≤ w for
some number w. If H is the parity check matrix of the code, then HrT = s 6= 0.

38

Because
HrT = H(c + e)T = HcT +HeT = HeT ,

finding the error e means finding a word of weight ≤ w such that HeT = s. In
[1], it is shown that if you have a random triple (H, s, w) where H is an m× n
matrix over F2, s ∈ Fm2 and w ∈ N, deciding whether there is a x ∈ Fn2 such
that HxT = (s) and x with weight ≤ w, is an NP-complete problem.

4.2 Patterson’s algorithm

For some classes of codes, there are algorithms that can decode ‘efficiently’.
In 1975, Patterson published a decoding algorithm for Goppa codes [16]. This
algorithm can decode t errors, where t is the designed minimal distance of the
Goppa code, in polynomial time. We will have a look at this algorithm for
decoding Goppa codes.

Let K = Fqm and J = Fq. Let g(x) be the Goppa polynomial with respect
to L ⊂ K. Let C be a codeword and R the received word, so that R = C + E.

Define the syndrome S(x) as the polynomial of degree < n such that

S(x) =

n∑
j=1

Rj
x− aj

mod g(x)

and define
σ(x) =

∏
aj∈L , Ej 6=0

(x− aj)

and define η(x) of degree < n by

η(x) ≡ σ(x)S(x) mod g(x).

If you substitute the expressions for S(x) and σ(x) you find that

η(aj) = Ej
∏

ai∈L , Ei 6=0 , i 6=j

(aj − ai) = Ejσ
′(aj)

So if we can find σ and η then we know the errors Eaj . Patterson’s algorithm
makes use of Berlekamp-Massey to solve this equation. See [16] for more details.

4.3 Error-correcting pairs

In the year 1992, Pellikaan [17] and Kötter [13] independently introcuced a de-
coding algorithm using ‘error-correcting pairs’. In order to discuss this decoding
algorithm, we first define the error correcting pair itself:

39

Definition 4.3.1. Let C be an Fq-linear code of length n. Let A,B be subspaces
of Fnqm . Then (A,B) is called a t-error-correcting pair for C if the following
conditions are satisfied:

1. (A ∗B) ⊥ C,

2. dim(A) > t,

3. d(B⊥) > t,

4. d(A) + d(C) > n.

Example 4.3.2. Let C be the [7, 3, 5] code over F8 (with α such that α3 =
α+ 1) with generator matrix

G =

1 1 1 1 1 1 1
1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

 ,

and parity check matrix

H =


1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

1 α3 α6 α2 α5 α α4

1 α4 α α5 α2 α6 α3

 .

let A = C and let B be generated by

GB =

(
1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

)
.

Let the rows of G be a1,a2 and a3, let the rows of GB be b1 and b2 and
let the rows of H be h1,h2,h3 and h4. We will now verify that (A,B) is a
2-error-correcting pair for C.

1. First of al, note that A ∗B is generated by

• a1 ∗ b1 = h1

• a1 ∗ b2 = h2

• a2 ∗ b1 = h2

• a2 ∗ b2 = h3

• a3 ∗ b1 = h3

• a3 ∗ b2 = h4

This means that A ∗B = C⊥ so indeed clearly (A ∗B) ⊥ C.

2. dim(A) = 3 > 2 = t,

40

3. The matrix GB is a parity check matrix for B⊥. If it would be the case
that d(B⊥) ≤ t, there would be a word b ∈ B⊥ satisfying wt(b) ≤ 2
and GBb = 0. This means that one of the columns of GB is a multiple
of one of the other columns, which is not true. Therefore, d(B⊥) > t.

4. d(A) + d(C) = 5 + 5 > 7 = n.

Remark 4.3.3. The codes from the previous example are all from a special
class of codes called Reed-Solomon codes. These codes are not discussed in this
thesis but information can be found in [19]. In fact, we had C = A = RS3(7, 1)
and B = RS2(7, 0). More generally, (see proposition 6.2.9 from [19]), it is true
that RSt+1(n, 1) and RSt(n, n − b + 1) form a t-error-correcting pair for the
code RSn−2t(n, b).

The following proposition from Pellikaan [4] will turn out to be essential in the
attack in chapter 6.

Proposition 4.3.4. Let CL(D,G) be an AG code as defined in definition 2.4.1
such that 3g − 1 < deg(E) (remember that also 2g − 2 < deg(E) < n) and
consider the dual code C = CL(D,G)⊥. The designed minimal distance of

CL(D,G)⊥ is d∗ = deg(G) + 2− 2g. Let t :=
⌊
d∗−1−g

2

⌋
and let F be a divisor

on X with disjoint support from D such that deg(F) = t+ g. The pair defined
by

A = CL(D,F) and B = CL(D,G− F)

is a t-error correcting pair for C.

Proof. 1. Take z ∈ A∗B, that is, z = a∗b for some a ∈ A and b ∈ B. Then
there exist f ∈ L(F) and g ∈ L(G− F) such that

z = (f(P1), . . . , f(Pn)) ∗ (g(P1), . . . , g(Pn)) = (fg(P1), . . . , fg(Pn)).

Because (f) + F ≥ 0 and (g) + G − F ≥ 0, it follows that (fg) + G ≥ 0,
which means that fg ∈ L(G). This implies that z ∈ CL(D,G) = C⊥. We
see that A ∗B ⊆ C⊥ so it is indeed true that (A ∗B) ⊥ C.

2. By proposition 2.4.3, dim(A) = deg(F)− g− 1 = t+ g− g+ 1 = t+ 1 > t.

3. Because

t =

⌊
d∗ − 1− g

2

⌋
=

⌊
deg(G) + 2− 2g − 1− g

2

⌋
=

⌊
deg(G)− 3g + 1

2

⌋
,

either 2t = deg(G) − 3g or 2t = deg(G) − 3g + 1. Therefore, either

41

deg(G) = 2t+ 3g or deg(G) = 2t+ 3g − 1. By Proposition 2.4.6,

d(B⊥) ≥ deg(G− F) + 2− 2g

= deg(G)− deg(F) + 2− 2g

≥ (2t+ 3g − 1)− deg(F) + 2− 2g

= 2t+ 3g − 1− (t+ g) + 2− 2g

= t+ 1

> t

4. First of all,
d(A) ≥ n− deg(F) = n− t− g.

Secondly,

d(C) ≥ deg(G) + 2− 2g ≥ (2t+ 3g − 1) + 2− 2g = 2t+ g + 1.

It follows that

d(A) + d(C) ≥ n− t− g + 2t+ g + 1 = n+ t+ 1 > n.

Since all four properties are satisfied, (A, B) is indeed a t-error correcting pair
for C.

Now, we will introduce some new concepts/objects to see why the given prop-
erties of an error-correcting pair could be useful in a decoding algorithm. These
definitions, lemmas and the proposition can be found in [19] (paragraph 6.2).

Definition 4.3.5. Let A,B be linear subspaces of Fnqm . Let r ∈ Fnq . Define the
kernel of r by

K(r) = {a ∈ A | (a ∗ b) · r = 0 ∀b ∈ B} .

Lemma 4.3.6. Let C be an Fq-linear code of length n. Let r be a received word
with error vector e. If (A ∗B) ⊥ C, then K(r) = K(e).

Proof. Because r is a received word with error vector e, we can write r = c + e,
where c is a code word in the code C. Let a ∈ A and b ∈ B. Because
a ∗ b ∈ A ∗ B, c ∈ C and (A ∗ B) ⊥ C, it follows that (a ∗ b) · c = 0. We see
that (a ∗ b) · r = (a ∗ b) · (c + e) = (a ∗ b) · c + (a ∗ b) · e = 0 + (a ∗ b) · e =
(a ∗ b) · e. The conclusion follows directly from the definition of the kernel:
K(r) = {a ∈ A | (a ∗ b) · r = 0 ∀b ∈ B} = {a ∈ A | (a ∗ b) · e = 0 ∀b ∈ B} =
K(e).

Definition 4.3.7. Let J be a subset of {1, . . . , n}. Then

A(J) := {a ∈ A | aj = 0 ∀j ∈ J}.

Lemma 4.3.8. Let (A∗B) ⊥ C. Let e be the error vector of the received word r.
If I = supp(e) = {i | ei 6= 0}, then A(I) ⊆ K(r). If moreover d(B⊥) > wt(e),
then A(I) = K(r).

42

Proof. (⊆) Let a ∈ A(I). Then a ∈ A and ai = 0 for all i ∈ I. Because
I = {i | ei 6= 0}, we know that ei = 0 for all i such that i /∈ I. Now we see that
for all b ∈ B, we have

(a ∗ b) · e =

n∑
i=1

aibiei =
∑
i∈I

aibiei +
∑
i/∈I

aibiei =
∑
i∈I

0biei +
∑
i/∈I

aibi0 = 0,

so a ∈ K(e). By Lemma 4.3.6 we know that K(r) = K(e) if (A ∗ B) ⊥ C, so
indeed a ∈ K(r) which is what we wanted to show.
(⊇) Suppose d(B⊥) > wt(e) and let a ∈ K(r). Then by Lemma 4.3.6, a ∈ K(e),
so (a ∗b) · e = 0 for all b ∈ B. Furthermore, (a ∗b) · e = e · (a ∗b) = (e ∗ a) ·b,
which must then also equal 0 for all b ∈ B. In other words, e ∗ a ∈ B⊥. Since
wt(e ∗ a) < wt(e) < d(B⊥), it follows that e ∗ a = 0 which means that aiei = 0
for all i ∈ {1, . . . , n}. Therefore, ai must be 0 for every i such that ei 6= 0, that
is, ai = 0 for all i ∈ I. In other words: a ∈ A(I).

Proposition 4.3.9. Let C be an Fq-linear code of length n. Let A, B be
subspaces of Fnqm such that (A,B) is a t-error-correcting pair for C. Then there
exists an algorithm correcting t errors for the code C with complexity O((mn)3).

Proof. Let a1, . . . ,al be a basis of A and let b1, . . . ,bm be a basis of B. Let
r ∈ Fnq be a received word with ≤ t errors, that is, r = c + e where c is a code
word and e has weight ≤ t. The algorithm goes as follows:

• Compute sij := (bi ∗ aj) · r for 1 ≤ i ≤ m, 1 ≤ j ≤ l.

• Compute K(r), i.e. compute the right null space of the matrix Sr = (sij).

In order to see that we do indeed need the right null space of (sij),
we note that a ∈ A can be written as a = a1a1 + . . .+alal. It follows
that

K(r) = {a ∈ A | (a ∗ b) · r = 0 ∀b ∈ B}
= {a ∈ A | (a ∗ bi) · r = 0 ∀i ∈ {1, . . . ,m}}
= {a ∈ A | ((a1a1 + . . .+ alal) ∗ bi) · r = 0 ∀i ∈ {1, . . . ,m}}
= {a ∈ A | a1(a1 ∗ bi) · r + . . .+ al(al ∗ bi) · r = 0 ∀i ∈ {1, . . . ,m}}

=

a ∈ A |

 a1(a1 ∗ b1) · r + . . .+ al(al ∗ b1) · r
...

a1(a1 ∗ bm) · r + . . .+ al(al ∗ bm) · r

 =

0
...
0




=

a ∈ A |

 (a1 ∗ b1) · r . . . (al ∗ b1) · r
...

...
(a1 ∗ bm) · r . . . (al ∗ bm) · r


a1

...
al

 =

0
...
0




= {a ∈ A | (a1, . . . , al) is in the right null space of (sij)} .

• Take a nonzero a in K(r).

43

Since (A,B) is a t-error-correcting pair for C, all conditions in Lemma
4.3.8 are satisfied, which means that K(r) = A(I) where I = supp(e).
Therefore, our nonzero a is an element of A(I), which means that
a ∈ A and aj = 0 ∀j ∈ supp(e).

• Compute J := {j | aj = 0}.

It follows from the previous step that supp(e) ⊆ J . Because a ∈ A,
we know that wt(a) ≥ d(A). It follows that the cardinality of J is
|J | < n − d(A). Since (A,B) is an error correcting pair for C, we
have d(A) + d(C) > n, which implies |J | < d(C).

• Solve HxT = HrT and xj = 0 for all j /∈ J . Let the unique solution be
x0 and compute c = r− x0.

We now explain that the error vector e must satisfy these conditions.
Firstly, HrT = H(c + e)T = HcT + HeT = HeT . Secondly, we
have already seen that supp(e) ⊆ J , so indeed ej = 0 for all j /∈ J .
Therefore, if the solution x0 we found is unique, then it must be the
error vector e and we can compute the closest code word c = r−e =
r− x0.
Now suppose that the solution is not unique: apart from the error
vector e, let there be another solution x1. This means that HxT1 =
HeT . It follows that H(x1−e)T = 0, so x1−e ∈ C. Since supp(x1) ⊆
J and supp(e) ⊆ J , it is also true that supp(x1 − e) ⊆ J . We
have already seen that |J | < d(C), so we end up with the fact that
wt(x1−e) ≤ |J | < d(C) while x1−e ∈ C. This means that x1−e = 0,
so x1 = e and we conclude that the solution is indeed unique.

This proves the existence of the algorithm and even gives the algorithm itself.
For the complexity, see [19].

Example 4.3.10. Consider the same code as in example 4.3.2. Suppose
that r = (0, α3, α5, α, α3, α4, α2) is a received word with at most two errors.
Let us use the error-correcting pair to decode, that is, find the closest code
word c ∈ C such that r = c + e with wt(e) ≤ 2.

• We need to compute sij := (bi ∗ aj) · r for 1 ≤ i ≤ m, 1 ≤ j ≤ l. In
example 4.3.2, we have seen that bi ∗ aj = hi+j−1, so we only need to
compute hi · r:

s11 = h1 · r = α4

s12 = s21 = h2 · r = α2

s13 = s22 = h3 · r = 0

s23 = h4 · r = α

44

• We need to find a nonzero element in the right null space of

(sij) =

(
α4 α2 0
α2 0 α

)
.

Take (a1, a2, a3) = (1, α2, α).

• The nonzero element of K(r) corresponding to this is a = ev(1+α2x+
αx2) = (α5, 1, 0, α5, 0, α4, α4).

• J = {j | aj = 0} = {3, 5}, so we know that the errors are located at
the positions 3 and 5.

• The equations HxT = HrT and xj = 0 for all j /∈ {3, 5} lead to the
following system to solve:

α2 α4

α4 α
α6 α5

α α2

(x3

x5

)
=


α4

α2

0
α


The solution to this system is (x3, x5) = (α, α2), so the error vector is

e = x = (0, 0, α, 0, α2, 0, 0).

• The closest code word c is

c = r− e

= (0, α3, α5, α, α3, α4, α2)− (0, 0, α, 0, α2, 0, 0)

= (0, α3, α6, α, α5, α4, α2).

45

Chapter 5

McEliece cryptosystem

In 1978, Robert McEliece proposed the public-key cryptosystem now known as
the McEliece Cryptosystem[14]. He presented it as a cryptosystem which is
“ideal for use in multi-user communication networks, such as those envisioned
by NASA for the distribution of space-acquired data.” In this chapter, this
cryptosystem and its security are investigated. We will also consider the pros
and cons of the McEliece cryptosystem and look at a possible variation.

5.1 Description

The McEliece cryptosystem works as follows.

Key generation: Bob picks desirable values for n = 2l and t and chooses a
binary irreducible Goppa code C of length n and dimension k ≥ n− tl with an
efficient decoding algorithm that can decode up to t errors. We have seen in
Proposition 2.3.7 that this code does indeed exist. Let G be the (k×n) generator
matrix for C. Now Bob picks a random dense k × k nonsingular matrix S and
a random n× n permutation matrix P . He computes G′ = SGP , which will be
called the public generator matrix. Bob presents his public key (G′, t).
Encrypting: If Alice wants to send Bob a message, she converts the message
into k-bit blocks. If m is such a block, she converts this into a word of the
‘public code’, that is, she computes mG′. Now she needs to add t errors, that is,
a random word e of length n and weight t. She sends the ciphertext c = mG′+e
to Bob.
Decrypting: Bob receives the ciphertext c and computes c′ = cP−1 = (mG′+
e)P−1 = mSG+ eP−1. Since P is a permutation matrix, P−1 is as well, which
means that eP−1 has the same weight as e, namely t. Because mSG is a word
in Bob’s secret Goppa code, Bob can use his efficient decoding algorithm on c′

in order to find mS. Then he only needs to compute m′ = (mS)S−1 = m.

46

5.2 Security

We have seen that the cryptosystem is correct: Alice can convert a secret mes-
sage into a public message, send this to Bob and then Bob can recover the
secret message from the public message. The next question would be whether
Eve could also recover the secret message from the information that is available
to her. If this would be the case, the system would not be secure.

Before we look at a couple of possible attacks, we investigate the public code a
bit more. We know that G is the generator matrix of the secret Goppa code.
Because S is an invertible k × k matrix, the matrix SG consists of k linearly
independent rows, all of which are linear combinations of the rows of G. This
means that SG is in fact just a different (random) generator matrix of the secret
code. Because P is a permutation matrix, the columns of SGP are a permu-
tation of the columns of SG. Therefore, the code words in the public code are
exactly the permutations of the code words in the secret code: if c ∈ C, then cP
is a word in the public code. This means that the public code is also a Goppa
code, generated by the same g as the secret code. The L′ of the public code is
just a permutation of the L of the secret code.

Now suppose Eve wants to recover the secret message. First of all, she could
try to decode directly in the public code (that is, find mG′ from mG′ + e). If
she could do this, then she could immediately find m and the system would
obviously not be secure. The general idea behind the McEliece system is that
the public generator matrix looks like a generator matrix of a random code, so
decoding would come down to decoding in a random code, which we know is
hard. As McEliece himself already noticed (see [14]), a promising possible at-
tack would be ‘information set decoding’, which comes down to trying to guess
k coordinates which do not contain an error. However, for large enough param-
eters, this is not considered an effective attack.

Another possible attack would be to try to somehow recover the secret key,
that is: find g, L and P . If Eve has access to these, she can use P−1 to find
mSG, then use g and L in Patterson’s algorithm to find mSG. Using P , she
can compute mSGP and then, using linear algebra and the public generator
matrix, she can find m. A possible attack to do this, is trying different Goppa
polynomials g of degree ≥ t, taking an L′ consisting of the elements of the field
Fq, create the corresponding Goppa code and then trying to find out whether
there exists a permutation P ′ that transforms this Goppa code into the public
code. This problem is known as the permutation code equivalence problem and
it is not NP-complete but hard enough to make this attack infeasable. Note
that, if Eve would indeed find a Goppa polynomial which gives an equivalent
code, she computes the permutation P ′ and in the same way as described above,
find m.

The idea behind this attempted ‘attack’, is that Eve was not necessarily trying

47

to find the original P and L from the secret key, but using the fact that the
original code is a Goppa code in order to find a decoding algorithm. If she would
be able to accomplish this, she could recover the secret message without finding
the secret key and without decoding in a random code. She did have to solve
some hard problems though, so this attack is not considered efficient enough to
break the McEliece system using Goppa codes. However, as we will see in the
next chapter, in some way this same tactic will be used when AG codes are used
instead of Goppa codes: trying to find an efficient decoding algorithm for the
public code, while not finding the secret key itself.

5.3 Pros and cons

A pro of the McEliece cryptosystem is that encoding and decoding is relatively
fast [14]. Encoding is only multiplying a vector with a matrix and adding
another vector. Decoding is done using an available efficient algorithm: Patter-
son’s algorithm. Since 1978, computers have improved, so the numbers which
McEliece originally proposed for n and k are not considered safe anymore. How-
ever, with larger numbers, the cryptosystem as McEliece described it is still not
broken, not even by possible quantum computers.

On the other side, the cryptosystem as described here is also not very prac-
tical, because both the private key and the public key are very large: they are
very large matrices. The private code can be stored by only the Goppa polyno-
mial and the list L, which could possibly be smaller than a k×n matrix. If this
is not the case, the secret generator matrix could also be written in systematic
form, such that only a k × (n− k) matrix needs to be stored. The public code
however, must be represented as an k × n matrix, because the structure of the
code should remain secret.

5.4 McEliece based on AG codes

In order to solve the problem with the large key size, variations to the original
McEliece system have been suggested. For example, people have suggested to
use other codes instead of the classical Goppa code, because this results in a key
that can be presented in a more compact way. We have not found a conclusive
argument for why exactly the use of these codes results in shorter keys, but it
could for example be along the lines that some other codes codes over a larger
field require smaller parameters in order to reach the same level of security. If
a code has a higher error correcting capability than a binary Goppa code, then
more errors could be added and a computer would need to do more work in order
to decode in a code that could have a shorter length than the binary Goppa code.

However, most of the variations that have been suggested, have already been
broken. We will discuss one such suggestion in more detail. In 1966, [12] pro-

48

posed to use AG codes. In this case, the secret code is an AG code C = CL(D,E)
of length n together with an efficient decoding algorithm that can decode up to
t errors. Apart from this, there are no changes to the original McEliece system.

When you use AG codes instead of Goppa codes, it remains true that the public
code is just a permutation of the secret code. The ‘security’ of the McEliece
system therefore relies on the difficulty of decoding an AG code CL(D,E) with-
out knowing D and E. However, as we will see in the next chapter, decoding an
unknown AG code turns out to be easier than decoding a random linear code.

49

Chapter 6

Variations and attacks

As promised, this chapter discusses an attack to the modified McEliece system
using AG codes. The attack was published in [4]. In this attack, Schur products
and many other different aspects from coding theory, cryptography and alge-
braic geometry come together in a beautiful way. Most of the definitions and
propositions that we studied in earlier chapters will pop up again.

6.1 Propositions

Apart from the propositions we already looked at, there are several new propo-
sitions that will be used in the attack. These will be discussed in this section.
All of the propositions and lemmas are taken from [4]. The proofs presented
here are either more detailed versions of proofs in [4], or my own work.

Proposition 6.1.1. If 2g+ 1 ≤ deg(E) < n
2 and k1 and k2 are the dimensions

of C = CL(D,E) and C(2), respectively, then

deg(E) = k2 − k1 and g = k2 − 2k1 + 1.

Proof. Because deg(E) ≥ 2g + 1, if follows from proposition 3.4.2 that C(2) =
CL(D, 2E). From 2g − 2 < deg(E) < n

2 , it follows that 2g − 2 < deg(2E) < n,

so we can use proposition 2.4.3 to find the dimension of both C and C(2):

k1 = deg(E)− g + 1

k2 = deg(2E)− g + 1 = 2 deg(E)− g + 1.

From this, we can conclude that

k2 − k1 = (2 deg(E)− g + 1)− (deg(E)− g + 1) = deg(E),

k2 − 2k1 + 1 = (2 deg(E)− g + 1)− 2(deg(E)− g + 1) + 1 = g,

which proves both statements of the proposition.

50

Lemma 6.1.2. Let A and B be two codes in Fnq . Then

{z ∈ Fnq | z ∗A ⊆ B} =
(
A ∗B⊥

)⊥
.

Proof. Let z ∈ Fnq . Then

z ∗A ⊆ B ⇐⇒ z ∗ a ∈ B ∀a ∈ A
⇐⇒ (z ∗ a) · c = 0 ∀a ∈ A and ∀c ∈ B⊥

⇐⇒ z · (a ∗ c) = 0 ∀a ∈ A and ∀c ∈ B⊥

⇐⇒ z · x = 0 ∀x ∈ A ∗B⊥

⇐⇒ z ∈
(
A ∗B⊥

)⊥
.

Lemma 6.1.3. Let E,F be two divisors on the curve X , both with disjoint
support with D, such that deg(F) ≥ 2g and deg(E) ≤ n− 3. Then,

CL(D,E − F) =
(
CL(D,F) ∗ CL(D,E)⊥

)⊥
=
{
z ∈ Fnq | z ∗ CL(D,F) ⊆ CL(D,E)

}
Proof. In order to prove the first equality, let W be the divisor of the differen-
tial form ω with simple poles and residue 1 at the Pi. By Proposition 2.4.10,
CL(D,E)⊥ = CL(D,W +D−E). Because W is a canonical divisor, its degree
is 2g − 2, so

deg(W +D − E) = (2g − 2) + n− deg(E) ≥ 2g − 2 + n− (n− 3) = 2g + 1,

which means we can use Proposition 3.4.2 to deduce that

CL(D,F) ∗ CL(D,E)⊥ = CL(D,F) ∗ CL(D,W +D − E)

= CL(D,W +D − (E − F))

= CL(D,E − F)⊥

By taking duals on both sides, we see that indeed(
CL(D,F) ∗ CL(D,E)⊥

)⊥
= CL(D,E − F).

The second equality follows directly from Lemma 6.1.2.

Lemma 6.1.4. Under the conditions of Proposition 4.3.4 and assuming that
deg(E) ≤ n− 3 and t ≥ 1, it is true that A = (B ∗ C)⊥, that is:

CL(D,F) =
(
CL(D,E − F) ∗ CL(D,E)⊥

)⊥
.

Proof. If deg(E − F) ≥ 2g, this follows directly from Lemma 6.1.3. Remember
that d∗ = deg(E)+2−2g and t = b(d∗−1−g)/2c, so that deg(E) = d∗−2+2g

51

and 2t ≤ d∗ − 1− g. It follows that indeed

deg(E − F) = deg(E)− deg(F)

= (d∗ − 2 + 2g)− (t+ g)

= d∗ − 2 + 3g − 2t+ t

≥ d∗ − 2 + 3g − (d∗ − 1− g) + t

= 2g + t− 1

≥ 2g,

which completes the proof.

Definition 6.1.5. Given a point P in the support of D, let D′ = D − P and
define the following codes of length n− 1 for all i ∈ Z:

Ui := CL(D′, iP), Vi := CL(D′, E + iP).

Proposition 6.1.6. If i ≥ 1 and deg(E)− n−4
2 ≤ i ≤ deg(E)− 2g − 1, then†

V−i−1 =
{
z ∈ V−i | z ∗ V−i+1 ⊆ V (2)

−i

}
.

Proof. Suppose i ≥ 1 and deg(E)− n−4
2 ≤ i ≤ deg(E)− 2g− 1. First of all, we

see that the following (in)equalities hold:

deg(E + (−i+ 1)P) = deg(E)− i+ 1 ≥ 2g + 2 > 2g,

deg(2E − 2iP) = 2 deg(E)− 2i ≤ n− 4 = (n− 1)− 3

deg(E − iP) = deg(E)− i ≥ 2g + 1

The first two of these are necessary to apply Lemma 6.1.3, the third one is
necessary to apply Proposition 3.4.2.

V−i−1 = CL(D′, E − (i+ 1)P)

= CL(D′, 2E − E − 2iP + iP − P)

= CL
(
D′, (2E − 2iP)− (E + (−i+ 1)P)

)
=
{

z ∈ Fn−1
q | z ∗ CL(D′, E + (−i+ 1)P) ⊆ CL(D′, 2E − 2iP)

}
by 6.1.3

=
{

z ∈ Fn−1
q | z ∗ V−i+1 ⊆ CL(D′, 2E − 2iP)

}
=
{

z ∈ Fn−1
q | z ∗ V−i+1 ⊆

(
CL(D′, E − iP)

)(2)
}

by 3.4.2

=
{

z ∈ Fn−1
q | z ∗ V−i+1 ⊆ V (2)

−i

}
=
{

z ∈ V−i | z ∗ V−i+1 ⊆ V (2)
−i

}
because V−i−1 ⊆ V−i.

This completes the proof.

†In [4], the above proposition has deg(E)−2g+1 as the upper bound, but we believe that
deg(E)− 2g − 1 is necessary.

52

6.2 The attack

Now we will study the actual attack. We know that our public generator ma-
trix is the generator matrix of an AG code. We also know from corollary 2.4.12
that every AG code is the dual of another AG code. Therefore, we will assume
that our public generator matrix G′ is the generator matrix of the AG code
CL(D,E)⊥ for some D and E.

Let d∗ be the designed minimal distance of CL(D,E)⊥, that is, d∗ = deg(E)−
2g + 2. We assume that t ≤ b(d∗ − g − 1)/2c. This is a reasonable as-
sumption if we assume that Bob uses a decoding algorithm based on error
correcting pairs, in order to decode in his secret code. Of course, we also as-
sume that t ≥ 1. These assumptions on t give a lower bound for deg(E):
Since t ≤ b(deg(E) − 2g + 2 − g − 1)/2c, we know 2t ≤ deg(E) − 3g + 1, so
deg(E)− 3g − t+ 1 ≥ t ≥ 1, which means that deg(E) ≥ 3g + t.

The idea of the attack is to puncture the public code at one position. This
comes down to removing one column from the generator matrix and this gives
the code CL(D′, E)⊥. Then the code V−t−g = CL(D′, E−(t+g)P) is computed.
Using Lemma 6.1.4, U−t−g = CL(D, (t + g)P) can be determined and accord-
ing to 4.3.4, these two codes make up an error correcting pair for CL(D′, E)⊥.
Using this pair, one can decode in the punctured public code. After this, the
only thing left to do is correcting a single erasure: find the missing coordinate
of the word in the public code.

Assume that 3g + t ≤ deg(E) ≤ n
2 − 2.† Let r = c + e be the received word.

• Given the generator matrix of CL(D,E)⊥, compute its parity check ma-
trix, that is, the generator matrix of CL(D,E). This can be done by
writing the generator matrix of CL(D,E)⊥ in reduced row echelon form.
Perform a column permutation to get the form G′ = (I|P), compute
H ′ = (−PT |I) and perform the inverse column permutation. It can easily
be seen that this indeed gives the parity check matrix H of CL(D,E)⊥.

• Compute the generator matrix of the Schur square of CL(D,E), deduce
the dimension of the Schur square and find g and deg(E) using proposition
6.1.1.

• Choose one coordinate j corresponding to (an unknown) P := Pj in the
support of D and define D′ := D − P .

• Compute V0 = CL(D′, E). This is done by puncturing CL(D,E) at posi-
tion j: just remove the j-th column from the generator matrix of CL(D,E)
and obtain a generator matrix for V0.

†In [4], the lower bound is 3g + t− 2, but we believe that 3g + t ≤ deg(E) is necessary in
order to use proposition 6.1.6 to compute V−t−g . As we explained, this is a reasonable lower
bound.

53

• Compute V−1 = CL(D′, E − P). This code is obtained by taking all
words from CL(D,E) which have a 0 as their j-th coordinate, and then
removing the j-th coordinate from these words. In coding theory, this is
called shortening CL(D,E) at position j: write the generator matrix of
CL(D,E) in such a way that there is only one nonzero entry in the j-th
column, in, say, row k. Then remove row k and column j to obtain a
generator matrix for V−1.

• Using Proposition 6.1.6, compute V−2, . . . , V−t−g.

We can indeed use proposition 6.1.6 for 1 ≤ i ≤ t + g − 1, because
3g + t ≤ deg(E) ≤ n−4

2 :

i ≥ 1 ≥ 0 ≥ deg(E)− n− 4

2
i ≤ t+ g − 1 = (t+ 3g)− 2g − 1 ≤ deg(E)− 2g − 1

• Using Lemma 6.1.4, compute U−t−g = CL(D, (t + g)P). According to
Proposition 4.3.4, A = U−t−g and B = V−t−g make up an error correcting
pair for CL(D′, E)⊥.

• Remove the j-th coordinate from r and let this word be denoted by r′.
Using the error correcting pair and the decoding algorithm described in
4.3.9, find the codeword c′ ∈ CL(D′, E)⊥ such that r′ = c′ + e′ where
wt(e′) ≤ t. Now all coordinates of c are known except for the j-th.

• Find the j-th coordinate of c by correcting an erasure. This can be done
using the parity check matrix H of CL(D,E)⊥: solve HcT = 0 for the
missing coordinate cj .

• Using linear algebra, solve mG = c and find the secret message m.

6.3 Example

In this section we will discuss a small example. It is too small to be of any
practical purpose, but it will illustrate the attack nicely. The MAGMA code
used for the calculations can be found in Appendix B.3.

Setting

The secret curve is the curve of genus 1 defined by X3 + Y 3 +Z3 = 0 over F17.
There are 18 rational points on this curve. Take P1, . . . , P17 to be the following
17 points: (16 : 1 : 0), (16 : 0 : 1), (5 : 3 : 1), (1 : 9 : 1), (8 : 10 : 1), (6 : 13 : 1), (3 :
5 : 1), (14 : 15 : 1), (12 : 11 : 1), (0 : 16 : 1), (15 : 14 : 1), (10 : 8 : 1), (4 : 7 : 1), (7 :
4 : 1), (11 : 12 : 1), (2 : 2 : 1), (13 : 6 : 1) and let D = P1 + . . . + P17. Let Q be

54

the remaining point, (9 : 1 : 1), and define the divisor E to be 6Q. The private
code is the [17, 11, 6] code (CL(D,E))⊥ with generator matrix

G =



1 0 0 0 0 0 0 0 0 0 0 1 15 16 0 6 12
0 1 0 0 0 0 0 0 0 0 0 12 11 10 4 1 12
0 0 1 0 0 0 0 0 0 0 0 12 10 16 16 13 0
0 0 0 1 0 0 0 0 0 0 0 13 0 7 12 11 7
0 0 0 0 1 0 0 0 0 0 0 3 14 10 5 12 6
0 0 0 0 0 1 0 0 0 0 0 13 2 10 2 15 8
0 0 0 0 0 0 1 0 0 0 0 6 11 5 7 0 4
0 0 0 0 0 0 0 1 0 0 0 12 12 14 3 13 13
0 0 0 0 0 0 0 0 1 0 0 11 4 2 12 14 7
0 0 0 0 0 0 0 0 0 1 0 0 12 11 12 11 4
0 0 0 0 0 0 0 0 0 0 1 9 7 3 3 16 12


.

The designed minimal distance of this code is d∗ = deg(E) − 2g + 2 = 6 and t
is chosen to be 2.
The public key is a 11 × 17 matrix which is obtained by first permuting the
columns of G and then multiplying from the left by an invertible 11×11 matrix.
For practical purposes, we will assume that the secret key actually contained a
different order of the points Pi, and that the order presented above is in fact
already the permuted order. In that case, G is indeed the reduced Row Echelon
form of the public generator matrix and we can perform the attack on G directly.

Attack by Eve

Eve has access to the matrix G and the number t. First of all, she computes
the generator matrix of CL(D,E), which is the parity check matrix of the pub-
lic code. Because G is already in the form G = (I|P), this can be done by
computing H = (−PT |I). This gives (in reduced form) the following:

H =


1 0 0 0 0 0 16 15 8 12 9 2 6 11 3 9 0
0 1 0 0 0 0 12 6 15 9 5 5 2 0 1 7 12
0 0 1 0 0 0 13 14 9 10 8 3 7 5 8 15 8
0 0 0 1 0 0 3 0 14 4 8 2 1 13 14 6 8
0 0 0 0 1 0 13 9 12 2 7 5 0 8 7 7 1
0 0 0 0 0 1 12 8 11 15 15 1 2 15 2 8 6

 .

Using this matrix, Eve can compute the degree of E and the genus of the curve.
In order to do this, Eve first uses the generator matrix of CL(D,E) to compute

55

the Schur square of CL(D,E). The generator matrix of the Schur square is

H2 =



1 0 0 0 0 0 0 0 0 0 0 10 0 9 15 9 16
0 1 0 0 0 0 0 0 0 0 0 16 0 6 10 7 2
0 0 1 0 0 0 0 0 0 0 0 7 0 10 9 16 9
0 0 0 1 0 0 0 0 0 0 0 9 0 9 1 6 10
0 0 0 0 1 0 0 0 0 0 0 13 0 0 9 7 16
0 0 0 0 0 1 0 0 0 0 0 10 0 6 0 3 12
0 0 0 0 0 0 1 0 0 0 0 12 0 5 11 3 11
0 0 0 0 0 0 0 1 0 0 0 5 0 9 11 1 13
0 0 0 0 0 0 0 0 1 0 0 8 0 16 9 5 0
0 0 0 0 0 0 0 0 0 1 0 1 0 11 8 0 5
0 0 0 0 0 0 0 0 0 0 1 12 0 8 13 4 3
0 0 0 0 0 0 0 0 0 0 0 0 1 14 7 8 6



.

It can be seen that k2, the dimension of the Schur square of CL(D,E), is 12.
Because the dimension of CL(D,E) is k1 = 6, it follows from proposition 6.1.1
that

• deg(E) = k2 − k1 = 12− 6 = 6 and

• g = k2 − 2k1 + 1 = 12− 12 + 1 = 1.

This means that Eve needs to find B = V−3 and A = U−3. The next step is
to create V0, that is, to puncture CL(D,E) at one position. If Eve chooses to
puncture at the first position, this comes down to removing the first column of
the generator matrix H. After some row operations, this leads to the following
generator matrix of the punctured code V0:

G0 =


1 0 0 0 0 0 16 9 0 11 12 6 13 3 13 12
0 1 0 0 0 0 5 11 13 6 12 0 12 13 13 8
0 0 1 0 0 0 11 4 6 1 8 2 12 6 16 8
0 0 0 1 0 0 0 14 5 5 14 10 15 12 5 1
0 0 0 0 1 0 1 5 6 4 8 6 11 4 14 6
0 0 0 0 0 1 2 9 5 8 15 11 6 14 8 0

 .

In order to determine V−1, CL(D,E) must be shortened at the same position
as before. This means that all words having a zero in the first position are kept
and then the first coordinate is removed. Because the first column of H contains
only one nonzero entry, which is in the first row, the generator matrix of V−1 is
obtained by removing the first row and the first column of H:

G−1 =


1 0 0 0 0 12 6 15 9 5 5 2 0 1 7 12
0 1 0 0 0 13 14 9 10 8 3 7 5 8 15 8
0 0 1 0 0 3 0 14 4 8 2 1 13 14 6 8
0 0 0 1 0 13 9 12 2 7 5 0 8 7 7 1
0 0 0 0 1 12 8 11 15 15 1 2 15 2 8 6

 .

56

Because i = 1 and i = 2 satisfy

deg(E)− n− 4

2
= −1

2
≤ i ≤ 3 = deg(E)− 2g − 1,

proposition 6.1.6 can be used to find V−2 and V−3:

V−i−1 =
{

z ∈ V−i | z ∗ V−i+1 ⊆ V (2)
−i

}
.

Let G0 be the generator matrix of V0, let gj be the rows of G0, let H−1 be the
parity check matrix of V−1, let hj be the rows of H−1, let H2

−1 be the parity

check matrix of V
(2)
−1 and let kj be the rows of H2

−1. Observe the following:

V−2 =
{

z ∈ V−1 | z ∗ V0 ⊆ V (2)
−1

}
=
{

z ∈ V−1 | z ∗ b ∈ V (2)
−1 ∀b ∈ V0

}
=
{

z ∈ V−1 | z ∗ gj ∈ V
(2)
−1 ∀j

}
=
{
z ∈ V−1 | (z ∗ gj) · ki = 0 ∀j, i

}
=
{
z ∈ V−1 | z · (gj ∗ ki) = 0 ∀j, i

}
=
{
z ∈ F16

17 | z · hl = z · (gj ∗ ki) = 0 ∀j, i, l
}
.

Computing this comes down to computing the right null space of the matrix
which has as its rows hl and gj ∗ ki. This gives

G−2 =


1 0 0 2 0 4 7 5 13 2 15 2 16 15 4 14
0 1 0 6 0 6 0 13 5 16 16 7 2 16 6 14
0 0 1 3 0 8 10 16 10 12 0 1 3 1 10 11
0 0 0 0 1 12 8 11 15 15 1 2 15 2 8 6

 .

In the same way, the generator matrix of V−3 =
{

z ∈ V−2 | z ∗ V−1 ⊆ V (2)
−2

}
can

be computed, which is

G−3 =

1 0 0 2 14 2 0 6 2 8 12 13 5 9 14 13
0 1 0 6 16 11 9 2 7 1 15 5 4 14 15 8
0 0 1 3 10 9 5 7 7 9 10 4 0 4 5 3

 .

This is B of the Error Correcting Pair. In order to find A, Eve uses Lemma
6.1.4 to compute A = (B ∗ V ⊥0)⊥. This gives A = U−3, which is generated by

U−3 =

1 0 0 13 15 3 0 11 13 16 6 10 16 13 16 7
0 1 0 13 13 14 5 5 1 12 11 10 2 8 13 1
0 0 1 9 7 1 13 2 4 7 1 15 0 14 6 10

 .

So Eve has indeed succeeded in finding an error correcting pair for the punc-
tured code CL(D′, E)⊥.

57

Once Eve intercepts a message, r, she removes the first coordinate and uses
her error correcting pair to find the closest code word in the punctured code.
This gives her every coordinate of the word c in the public code, except for the
first coordinate. Then she uses the parity check matrix H to solve HcT = 0
for the first coordinate. Now she only needs to solve mG = c to find the secret
message m.

Check

Because we know the secret key that was used in this system, we can check
whether the algorithm indeed gave Eve the codes V−i = CL(D′, 6Q − iP) and
U−3 = CL(D′, 3P), with P = P1 = (16 : 1 : 0). This can be checked using
MAGMA, see Appendix B.3 for the code: MAGMA can compute the AG codes
CL(D′, 6Q − iP) and CL(D′, 3P) and we can see that Eve indeed found the
same codes.

6.4 Discussion

The attack as described above, is proven to be work under the assumptions that
3g + t ≤ deg(E) ≤ n

2 − 2. As we saw, the lower bound is reasonable, because
we assume that t ≤ b(d∗ − g − 1)/2c. The upper bound however, leaves some
work to do. When deg(E) ≥ n

2 + 2g, one can work with the dual code instead
of the given code. For values of deg(E) that lie in between, one can sometimes
work with the dual code and/or use shortening tactics. For values of deg(E)
such that n

2 − 2 < deg(E) < n
2 + g and deg(E) ≤ 4g − 2, the attack is not

proved to work, but the authors of [4] think that it is unlikely that there exists
a large family of codes such that the attack does not work for both the pub-
lic code and the dual code, for any choice of shortening and for any point P ∈ P.

We said that the assumption t ≤ b(d∗ − g − 1)/2c makes sense if Bob uses
a decoding algorithm based on error correcting pairs. However, there are other
algorithms that can correct more errors, see for example [18]. Apart from the
attack that we described in this chapter, [4] also contains an approach using
‘error correcting arrays’, which covers the case t ≤ b(d∗ − 1)/2c.

So far, there still has not been a successful attack to the original McEliece
System. [4] discusses an attack to subcodes of AG codes, using the ‘s-closure’.
As we saw in chapter 2, classical (binary) Goppa codes are subfield subcodes of
AG codes, so one might wonder why subfield subcodes are not susceptible to
this attack. This is explained on page 23 of [4].

58

Conclusion

In this thesis, the possibly post-quantum McEliece cryptosystem has been in-
vestigated. In order to understand the cryptosystem itself, some concepts from
cryptology and linear codes over the finite field Fq had to be studied. The
original McEliece cryptosystem makes use of binary Goppa codes, which have
better error correcting capacities than Goppa codes over arbitrary finite fields.
An example of a binary Goppa code was worked out in detail.

Because of the large key size in the McEliece system, many suggestions for
improvements or variations have been made. One example is the suggestion to
use AG codes instead of Goppa codes. In order to understand these AG codes,
many concepts and propositions concerning divisors, Riemann Roch spaces and
differentials had to be studied. The propositions and definitions were illustrated
by small examples which were treated with much detail. It was shown that the
two types of algebraic geometry codes, AG codes and geometric Goppa codes,
are in fact each other’s duals.

An important concept that kept showing up was the Schur product: the co-
ordinatewise product of two vectors. The Schur product of two linear spaces
was defined as the space which is spanned by the Schur products of the vectors
from both spaces. One application of the Schur square is decoding by Error
Correcting Pairs. This efficient decoding algorithm was studied in detail and
illustrated by an example. Because AG codes are obtained by evaluating func-
tions from the Riemann Roch space in various points, the Schur square of an
AG code satisfies some properties that follow from the Riemann Roch theorem.
It turned out that these properties make AG codes unsuitable for the McEliece
cryptosystem.

In the McEliece cryptosystem, the private key is a secret code with an efficient
decoding algorithm. The public code is a permuted and camouflaged version
of the same code. The security of McEliece depends on the idea that the pub-
lic code should look like a random code. If that would be the case, breaking
the system comes down to solving the general decoding problem, which is NP-
complete. It turned out that AG codes do not behave like random codes. Under
some conditions, the properties of an AG code with respect to the Schur prod-
uct can be used to construct an Error Correcting Pair for the public code. An

59

illustrative example of this attack was worked out in detail.

There remain some questions that we have not been able to answer conclusively.
For example, why exactly is it true that using AG codes results in shorter keys?
And why exactly are subfield subcodes (such as classical Goppa codes) not vul-
nerable to this attack? And is it possible to prove that it is not possible to find
a large class of codes for which the attack in [4] does not work?

60

Bibliography

[1] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the inherent
intractability of certain coding problems. IEEE Transactions on Informa-
tion Theory, 24(3):384–386, 1978.

[2] D.J. Bernstein. Introduction to post-quantum cryptography. In D.J. Bern-
stein, J. Buchmann, and E. Dahmen, editors, Post-Quantum Cryptography.
Springer, Berlin, Heidelberg, 2009.

[3] I. Cascudo, R. Cramer, D. Mirandola, and G. Zémor. Squares of random
linear codes. IEEE Transactions on Information Theory, 61(3):1159–1173,
2015.

[4] A. Couvreur, I. Marquez-Corbella, and G.R. Pellikaan. Cryptanalysis of
mceliece cryptosystem based on algebraic geometry codes and their sub-
codes. IEEE Transactions on Information Theory, 63(8):5404–5418, 2017.

[5] A. Couvreur and H. Randriambololona. Algebraic geometry codes and
some applications. Preprint, arXiv:2009.01281v1, 2020.

[6] J. Daemen and V. Rijmen. The Design of Rijndael: The Advanced Encryp-
tion Standard (AES). Springer, Berlin, 2nd edition, 2010.

[7] William Fulton. Algebraic curves. Advanced Book Classics. Addison-
Wesley Publishing Company, Advanced Book Program, Redwood City, CA,
1989. An introduction to algebraic geometry, Notes written with the col-
laboration of Richard Weiss, Reprint of 1969 original.

[8] V.D. Goppa. A new class of linear correcting codes. Problemy Peredachi
Informatsii, 6:24–30, 1970.

[9] V.D. Goppa. Algebraico-geometric codes. Izvestiya Akademii Nauk SSSR.
Seriya Matematicheskaya, 46:762–781, 1982.

[10] R.W. Hamming. Error detecting and error correcting codes. The Bell
System Technical Journal, 29(2):147–160, 1950.

[11] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics (52).
Springer-Verlag, New York, 1977.

61

[12] H. Janwa and O. Moreno. Mceliece public key cryptosystems using
algebraic-geometric codes. Designs, Codes and Cryptography, 8:293–307,
1996.

[13] R. Kötter. A unified description of an error locating procedure for linear
codes. In Proceedings of Algebraic and Combinatorial Coding Theory, pages
113–117. Voneshta Voda, 1992.

[14] R.J. McEliece. A public-key cryptosystem based on algebraic coding theory.
DSN Progress Report, 42-44:114–116, 1978.

[15] D. Mumford. Varieties defined by quadratic equations. In Questions on
algebraic varieties, C.I.M.E., III Ciclo, Varenna, 1969, pages 29–100. Edi-
zioni Cremonese, Rome, 1970.

[16] N. Patterson. The algebraic decoding of goppa codes. IEEE Transactions
on Information Theory, 21:203–207, 1975.

[17] G.R. Pellikaan. On decoding by error location and dependent sets of error
positions. Discrete Mathematics, 106-107(1):369–381, 1992.

[18] R. Pellikaan. On the efficient decoding of algebraic-geometric codes. In Eu-
rocode 92, page 231–253. Udine, CISM Courses and Lectures 339, Springer,
Wien, 1993.

[19] R. Pellikaan, X. Wu, S. Bulygin, and R. Jurrius. Codes, cryptology and
curves with computer algebra. Cambridge University Press, Cambridge,
2018.

[20] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[21] P.W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Com-
puter Science, pages 124–134, 1994.

[22] H. Stichtenoth. Algebraic Function Fields and Codes. Graduate Texts in
Mathematics (254). Springer-Verlag, Berlin Heidelberg, 2nd edition, 2009.

62

Appendix A

Schur square of random
codes

For a code of dimension k and n, [3] proves that if the difference k(k+ 1)/2−n
goes to infinity as a function of k, the probability that the Schur square equals
the whole space goes to one. The speed of convergence is exponential if the
difference k(k+ 1)/2−n is at least linear in k. To make this even more precise,
define C(n, k) to be the set of all [n, k] codes over Fq whose first k coordinates
make up an information set. One of the main results of [3] is the following:

Proposition A.0.1. Let n : N → N be such that k(k + 1)/2 ≥ n(k) ≥ k for
all k ∈ N and define t : N → N, t(k) := k(k + 1)/2 − n(k). Then there exist
constants γ, δ ∈ R>0 such that, for all large enough k,

Pr(C(2) = Fn(k)
q) ≥ 1− 2−γk − 2−δt(k),

where C is chosen uniformly at random from C(n(k), k).

We will try to give an idea of the proof.

The first step is to look at codes V of length n = k(k + 1)/2 and then show
that d((V (2))⊥), the minimal distance of the dual of the Schur square of V , is
probably very large. The following construction is crucial in the proof:

Lemma A.0.2. Let V ∈ C(k(k + 1)/2, k) with generator matrix

G =

1 g1

. . .
...

1 gk


and let D be the dual of the code Span{gi ∗ gj | 1 ≤ i ≤ k < j ≤ k}. Then

d((V (2))⊥) ≥ d(D).

63

Proof. Suppose x = (x1, . . . , xk(k+1)/2) ∈ (V (2))⊥ and wt(x) = m. If we can
show that D contains a word with weight m (or less), we are done. Because
x ∈ (V (2))⊥, we know that x · (ci ∗ cj) = 0 for all rows ci and cj of G. In
particular, x · (ci ∗ cj) = 0 for all i and j such that i ≤ k < j 6= j. If i 6= j,
the first k coordinates of (ci ∗ cj) are zero. Now, let y := (xk+1, . . . , xk(k+1)/2).
Then y has weight ≤ m and y · (gi ∗ gj) = x · (ci ∗ cj) = 0 for all i ≤ k < j,
which means that y ∈ D.

It is then shown, using Gaussian binomial coefficients and the q-ary entropy
function, that for such a code D, the sum of the probabilities that there exist
code words of weight w ≤ c · k(k + 1)/2 is small:

Lemma A.0.3. There exist c, c̃ ∈ R>0 such that, for all large enough k,

c·k(k+1)/2∑
w=1

Pr

((
D(2)

)⊥
contains a code word of weight w

)
≤ 2−c̃k.

The probability that D contains a code word of weight at most c · k(k + 1)/2
is even smaller or equal, so together with the previous lemmas, this proves the
following lemma:

Lemma A.0.4. There exist constants (depending only on q) c, c̃ ∈ R>0 such
that, for all large enough k, if V is chosen uniformly at random from C(k(k +
1)/2, k), then

Pr

(
d

((
V (2)

)⊥)
≤ c · k(k + 1)

2

)
≤ 2−c̃k.

Note that we are actually interested in codes C of dimension k and length
n < k(k + 1)/2. Such a code can be obtained by taking a random code V ∈
C(k(k + 1)/2, k) and then puncturing (that is, removing some coordinates) at
k(k + 1)/2 − k random positions (but not the first k). Any code word in the
dual of C(2) gives a word of the same weight in the dual of V (2) (by padding
with zeros at the punctured coordinates). According to [3], this implies that

Pr
(
C(2) 6= Fn(k)

q

)
≤ Pr

(
d

((
V (2)

)⊥)
≤ c · k(k + 1)

2

)
,

where c and c̃ are the constants from the previous lemma. We have not suc-
ceeded in providing a convincing argument for this. Combined with the previous
lemma, this gives the following proposition, which is in fact a weaker version of
proposition A.0.1:

Proposition A.0.5. There exist constants (depending only on q) c, c̃ ∈ R>0

such that, if n : N → N satisfies k ≤ n(k) ≤ c · k(k+1)
2 for all k ∈ N, then, for

all large enough k,
Pr(C(2) = Fn(k)

q) ≥ 1− 2−c̃k

where C is chosen uniformly at random from C(n(k), k).

64

The proof of proposition A.0.1 involves the vector space of quadratic forms on
Fkq , denoted by Quad(Fkq). If an [n, k] code C is generated by generator matrix

G, the columns of G are denoted by π1, . . . , πn ∈ Fkq and a linear map is defined
as follows:

evC : Quad(Fkq)→ Fnq
Q 7→ (Q(π1), . . . , Q(πn))

Because the Schur square of C is spanned by the Schur products of the rows of
G, the image of this map is exactly the Schur square of C. This means that the
map is surjective if and only if C(2) = Fnq . Since the dimension of the domain
equals the dimension of the image plus the dimension of the kernel, it follows
that C(2) = Fnq if and only if the dimension of ker(evC) equals the dimension of

Quad(Fkq) minus n, that is, if and only if dim(ker(evC)) = k(k+1)/2−n. For the
kernel, the expected value of the cardinality is computed when n = k(k + 1)/2
and k goes to infinity, and this turns out to be 2. This fact is then used to
finally prove proposition A.0.1.

65

Appendix B

MAGMA code

In this Appendix, the MAGMA code is given that was used in some Examples.
Please note that I am no coding expert and everything could probably have
been done more efficiently and elegantly.

B.1 Example 1.2.6

K<a>:=GF(4);

P2<X,Y,Z> := ProjectiveSpace(K,2);

C := Curve(P2,X^3 + Y^3 + Z^3);

F<x,y> := FunctionField(C);

Q := C ! [0,1,1];

P:=Places(C,1);

P:=Remove(P,9); P:=Rotate(P,2); S:=P;

S[3]:=P[6];S[6]:=P[3];S[4]:=P[7];S[7]:=P[4];S[5]:=P[8];S[8]:=P[5];

X:=[*0,0,0,0,0,0,0,0*];

for i in [1..8] do

X[i]:=Divisor(S[i]);

end for;

X;

G:=6*Divisor(Q);

Z:= DifferentialBasis(G-X[1]-X[2]-X[3]-X[4]-X[5]-X[6]-X[7]-X[8]);

print "Basis of Omega(6Q-D):", Z;

print "Valuations and residues of eta:";

print "Q", Valuation(Z[1],Place(Q));

for i in [1..8] do

print i, Valuation(Z[1],P[i]), Residue(Z[1],P[i]);

end for;

print "Valuations and residues of zeta:";

print "Q", Valuation(Z[2],Place(Q));

for i in [1..8] do

66

print i, Valuation(Z[2],P[i]), Residue(Z[2],P[i]);

end for;

This returns the following:

[*

Divisor 1*Place at (0 : a : 1),

Divisor 1*Place at (0 : a^2 : 1),

Divisor 1*Place at (1 : 0 : 1),

Divisor 1*Place at (a : 0 : 1),

Divisor 1*Place at (a^2 : 0 : 1),

Divisor 1*Place at (1 : 1 : 0),

Divisor 1*Place at (a : 1 : 0),

Divisor 1*Place at (a^2 : 1 : 0)

*]

Basis of Omega(6Q-D): [((y^2 + 1)/(y^3 + y^2 + y)) d(y),

((y + 1)/(y^3 + y^2 + y)*x) d(y)]

Valuations and residues of eta:

Q 8

x_ser_val, n, v, e = 0, 3, 1, 3

val_den_bound = 9

1 -1 1

x_ser_val, n, v, e = 0, 3, 1, 3

val_den_bound = 9

2 -1 1

3 -1 1

4 -1 1

5 -1 1

6 -1 1

7 -1 1

8 -1 1

Valuations and residues of zeta:

Q 6

1 0 0

2 0 0

3 -1 1

4 -1 a

5 -1 a^2

6 -1 1

7 -1 a

8 -1 a^2

B.2 Example 2.3.3

K<a> := FiniteField(2^5);

MinimalPolynomial(a);

67

P<x> := PolynomialRing(K);

G := x^5 + a^13*x^4+a^12*x^2+a^26;

IsIrreducible(G);

L := [0] cat [a^i : i in [0 .. 30]];

GoppaCode(L, G);

This returns the following:

$.1^5 + $.1^2 + 1

true

[32, 7, 11] "Goppa code (r = 5)" Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1]

[0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1]

[0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 1]

[0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1]

[0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1]

[0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1]

B.3 Section 6.3

F:=GF(17);

squarecode := function(C);

k:=Dimension(C);

n:=Length(C);

G:=GeneratorMatrix(C);

R:=[];

for i in [1..k] do

for j in [i..k] do

for k in [1..n] do

Append(~R,G[i,k]*G[j,k]);

end for;

end for;

end for;

MP := KMatrixSpace(F, Binomial(k+1,2), n);

R := MP ! R;

return LinearCode(R);

end function;

productvectors := function(A,B);

a:=NumberOfRows(A); b:=NumberOfRows(B); c:=NumberOfColumns(A);

R:=[];

for i in [1..a] do

for j in [1..b] do

for k in [1..c] do

Append(~R,A[i,k]*B[j,k]);

68

end for;

end for;

end for;

MP := KMatrixSpace(F, a*b, c);

R := MP ! R;

return GeneratorMatrix(LinearCode(R));

end function;

P2<X,Y,Z> := ProjectiveSpace(F,2);

CC := Curve(P2,X^3 + Y^3 + Z^3);

P:=Places(CC,1);

P;

Q := CC ! [9,1,1];

S:=Remove(P,18);

D:=6*Divisor(Q);

CL:=AlgebraicGeometricCode(S,D);

CLD:=Dual(CL);

G:=GeneratorMatrix(CLD); //this is the public code

//now the attack starts

C:=LinearCode(G);

H:=ParityCheckMatrix(C);

print "H is", H;

k1:=NumberOfRows(H);

H2:=GeneratorMatrix(squarecode(LinearCode(H)));

print "H2 is", H2;

k2:=NumberOfRows(H2);

print "deg(E) = ", k2-k1, "en g =", k2-2*k1+1;

//in the end, we need V_(-t-g)=V_-3

//First, we compute V_0

GV0:=EchelonForm(RemoveColumn(H,1));

print "The generator matrix of V_0 is", GV0;

//Now we compute V_1

GV1:=RemoveRow(RemoveColumn(H,1),1);

print "The generator matrix of V_-1 is", GV1;

//Now we compute V_-2

V1:=LinearCode(GV1);

HV1:=ParityCheckMatrix(V1);

V12:=squarecode(V1);

HV12:=ParityCheckMatrix(V12);

V0HV12:=productvectors(GV0,HV12);

V2:=LinearCode(RowNullSpace(VerticalJoin(V0HV12,HV1)));

GV2:=GeneratorMatrix(V2);

69

print "The generator matrix of V_-2 is", GV2;

//Now we compute V_-3 (=B)

HV2:=ParityCheckMatrix(V2);

V22:=squarecode(V2);

HV22:=ParityCheckMatrix(V22);

V1HV22:=productvectors(GV1,HV22);

V3:=LinearCode(RowNullSpace(VerticalJoin(V1HV22,HV2)));

print "B is"; V3;

//Now we need U_-3 = A of the error correcting pair

BB:=GeneratorMatrix(V3);

CC:=ParityCheckMatrix(LinearCode(GV0));

BBCC:=productvectors(BB,CC);

AA:=ParityCheckMatrix(LinearCode(BBCC));

print "A is"; LinearCode(AA);

//Checking whether we found the right codes

PP:=S[1];

DD:=6*Divisor(Q)-Divisor(PP);

SS:=Remove(S,1);

VV0:=AlgebraicGeometricCode(SS,D); //test whether this equals V_0

VV1:=AlgebraicGeometricCode(SS,DD); //test whether this equals V_-1

DDD:=6*Divisor(Q)-2*Divisor(PP);

VV2:=AlgebraicGeometricCode(SS,DDD); //test whether this equals V_-2

DDDD:=6*Divisor(Q)-3*Divisor(PP);

VV3:=AlgebraicGeometricCode(SS,DDDD);//does this equal V_-3 (=B)

UU3:=AlgebraicGeometricCode(SS,3*Divisor(PP));//equals U_-3 (=A)?

print "Time to check!";

print "V_0:", VV0, "V_-1:", VV1, "V_-2:", VV2, "V_-3:", VV3, "U_-3:", UU3

This returns the following:

[

Place at (16 : 1 : 0),

Place at (16 : 0 : 1),

Place at (5 : 3 : 1),

Place at (1 : 9 : 1),

Place at (8 : 10 : 1),

Place at (6 : 13 : 1),

Place at (3 : 5 : 1),

Place at (14 : 15 : 1),

Place at (12 : 11 : 1),

Place at (0 : 16 : 1),

Place at (15 : 14 : 1),

Place at (10 : 8 : 1),

70

Place at (4 : 7 : 1),

Place at (7 : 4 : 1),

Place at (11 : 12 : 1),

Place at (2 : 2 : 1),

Place at (13 : 6 : 1),

Place at (9 : 1 : 1)

]

H is

[1 0 0 0 0 0 16 15 8 12 9 2 6 11 3 9 0]

[0 1 0 0 0 0 12 6 15 9 5 5 2 0 1 7 12]

[0 0 1 0 0 0 13 14 9 10 8 3 7 5 8 15 8]

[0 0 0 1 0 0 3 0 14 4 8 2 1 13 14 6 8]

[0 0 0 0 1 0 13 9 12 2 7 5 0 8 7 7 1]

[0 0 0 0 0 1 12 8 11 15 15 1 2 15 2 8 6]

H2 is

[1 0 0 0 0 0 0 0 0 0 0 10 0 9 15 9 16]

[0 1 0 0 0 0 0 0 0 0 0 16 0 6 10 7 2]

[0 0 1 0 0 0 0 0 0 0 0 7 0 10 9 16 9]

[0 0 0 1 0 0 0 0 0 0 0 9 0 9 1 6 10]

[0 0 0 0 1 0 0 0 0 0 0 13 0 0 9 7 16]

[0 0 0 0 0 1 0 0 0 0 0 10 0 6 0 3 12]

[0 0 0 0 0 0 1 0 0 0 0 12 0 5 11 3 11]

[0 0 0 0 0 0 0 1 0 0 0 5 0 9 11 1 13]

[0 0 0 0 0 0 0 0 1 0 0 8 0 16 9 5 0]

[0 0 0 0 0 0 0 0 0 1 0 1 0 11 8 0 5]

[0 0 0 0 0 0 0 0 0 0 1 12 0 8 13 4 3]

[0 0 0 0 0 0 0 0 0 0 0 0 1 14 7 8 6]

deg(E) = 6 en g = 1

The generator matrix of V_0 is

[1 0 0 0 0 0 16 9 0 11 12 6 13 3 13 12]

[0 1 0 0 0 0 5 11 13 6 12 0 12 13 13 8]

[0 0 1 0 0 0 11 4 6 1 8 2 12 6 16 8]

[0 0 0 1 0 0 0 14 5 5 14 10 15 12 5 1]

[0 0 0 0 1 0 1 5 6 4 8 6 11 4 14 6]

[0 0 0 0 0 1 2 9 5 8 15 11 6 14 8 0]

The generator matrix of V_-1 is

[1 0 0 0 0 12 6 15 9 5 5 2 0 1 7 12]

[0 1 0 0 0 13 14 9 10 8 3 7 5 8 15 8]

[0 0 1 0 0 3 0 14 4 8 2 1 13 14 6 8]

[0 0 0 1 0 13 9 12 2 7 5 0 8 7 7 1]

[0 0 0 0 1 12 8 11 15 15 1 2 15 2 8 6]

The generator matrix of V_-2 is

[1 0 0 2 0 4 7 5 13 2 15 2 16 15 4 14]

[0 1 0 6 0 6 0 13 5 16 16 7 2 16 6 14]

[0 0 1 3 0 8 10 16 10 12 0 1 3 1 10 11]

[0 0 0 0 1 12 8 11 15 15 1 2 15 2 8 6]

71

B is

[16, 3, 13] Linear Code over GF(17)

Generator matrix:

[1 0 0 2 14 2 0 6 2 8 12 13 5 9 14 13]

[0 1 0 6 16 11 9 2 7 1 15 5 4 14 15 8]

[0 0 1 3 10 9 5 7 7 9 10 4 0 4 5 3]

A is

[16, 3, 13] Linear Code over GF(17)

Generator matrix:

[1 0 0 13 15 3 0 11 13 16 6 10 16 13 16 7]

[0 1 0 13 13 14 5 5 1 12 11 10 2 8 13 1]

[0 0 1 9 7 1 13 2 4 7 1 15 0 14 6 10]

Time to check!

V_0: [16, 6] Linear Code over GF(17)

Generator matrix:

[1 0 0 0 0 0 16 9 0 11 12 6 13 3 13 12]

[0 1 0 0 0 0 5 11 13 6 12 0 12 13 13 8]

[0 0 1 0 0 0 11 4 6 1 8 2 12 6 16 8]

[0 0 0 1 0 0 0 14 5 5 14 10 15 12 5 1]

[0 0 0 0 1 0 1 5 6 4 8 6 11 4 14 6]

[0 0 0 0 0 1 2 9 5 8 15 11 6 14 8 0]

V_-1: [16, 5] Linear Code over GF(17)

Generator matrix:

[1 0 0 0 0 12 6 15 9 5 5 2 0 1 7 12]

[0 1 0 0 0 13 14 9 10 8 3 7 5 8 15 8]

[0 0 1 0 0 3 0 14 4 8 2 1 13 14 6 8]

[0 0 0 1 0 13 9 12 2 7 5 0 8 7 7 1]

[0 0 0 0 1 12 8 11 15 15 1 2 15 2 8 6]

V_-2: [16, 4] Linear Code over GF(17)

Generator matrix:

[1 0 0 2 0 4 7 5 13 2 15 2 16 15 4 14]

[0 1 0 6 0 6 0 13 5 16 16 7 2 16 6 14]

[0 0 1 3 0 8 10 16 10 12 0 1 3 1 10 11]

[0 0 0 0 1 12 8 11 15 15 1 2 15 2 8 6]

V_-3: [16, 3, 13] Linear Code over GF(17)

Generator matrix:

[1 0 0 2 14 2 0 6 2 8 12 13 5 9 14 13]

[0 1 0 6 16 11 9 2 7 1 15 5 4 14 15 8]

[0 0 1 3 10 9 5 7 7 9 10 4 0 4 5 3]

U_-3: [16, 3, 13] Linear Code over GF(17)

Generator matrix:

[1 0 0 13 15 3 0 11 13 16 6 10 16 13 16 7]

[0 1 0 13 13 14 5 5 1 12 11 10 2 8 13 1]

[0 0 1 9 7 1 13 2 4 7 1 15 0 14 6 10]

72

