
Visualizing Self-Admitted

Technical Debt in a

Web-Based Application

Bachelor's Project

26 August 2021

Student: M. van Ittersum

Daily supervisor: Y. Li

Primary supervisor: prof. dr. ir. P. Avgeriou

Secondary supervisor: dr. M.A.M. Soliman

Abstract

During software development, problems can come up that would take too long to solve
for maintainers at that point of time. Situations like these could take too long to be resolved.
Code maintainers can choose to take a quick solution, with a trade-off being that it would
take time and effort in the future to properly resolve the problem. Here, we call the time
and effort required to rework these solutions Technical Debt (TD). In the cases that the
maintainer is aware of creating TD, a comment is left behind on the location of the TD
in the source code, or an issue is created in the project’s issue tracker. We call this Self-
Admitted Technical Debt (SATD).

In this study, the objective was to create a web-based application that visualizes the
SATD in a project, combining the SATD identified in source code comments and in issue
trackers. We approached this objective by splitting this process into three parts: extracting
SATD in source code comments, extracting SATD in issues and then combining the data
in a dashboard. We used two classification methods described in previous studies. To
evaluate our system, we asked a group of developers to use this system and to give a score
on the visualization of SATD in comments and issues apart and combined, focusing on the
accuracy that the system has in detecting SATD, awareness the system creates of the SATD
in a project and the effectiveness the system has on the developers’ actions that are taken
in the future. We found that the system performs best in creating more awareness and
combining the data from both issues and comments.

1

Contents
1 Introduction 3

1.1 Self-Admitted Technical Debt . 3
1.2 Classification . 3
1.3 Objective . 4
1.4 Study Summary . 4

2 Related work 5
2.1 Working with SATD in code . 5
2.2 Working with SATD in issues . 6
2.3 Visualization . 7

3 Case Study Design 8
3.1 Gathering data . 8
3.2 Visualization methods . 8
3.3 Effectiveness . 9

4 Implementation 10
4.1 Service infrastructure . 10

4.1.1 Back-end service . 10
4.1.2 Front-end service . 11
4.1.3 Classifier service . 11
4.1.4 Virtualization . 11

4.2 Data structures . 11
4.2.1 File snapshots . 11

4.3 Processes . 12
4.3.1 Scanning Git repositories . 12
4.3.2 Scanning JIRA projects . 13
4.3.3 Classifying data . 14
4.3.4 Visualization of SATD comments . 15
4.3.5 Visualization of SATD issues . 15

5 Results 16
5.1 RQ1: What data is required for visualizing SATD? 16
5.2 RQ2: How can we visualize the collected SATD data? 16
5.3 RQ3: How effective is the visualization system in assisting developers? 16

6 Discussion 18
6.1 Implementation discussion . 18
6.2 Survey results discussion . 19

7 Threats to Validity 19
7.1 Threat to Reliability . 19
7.2 Threat to Internal Validity . 19
7.3 Threat to Construct Validity . 19

8 Conclusion and Future Work 20

References 21

Appendix A Survey results 23

Appendix B Application screenshots 24

2

1 Introduction
Software development is a process that consists of writing, testing, documenting and maintaining
software. Looking at the process from a more global scope, the process can be considered a
constant problem analysis and solving cycle. This cycle of finding problems, analysing them
and trying to come up with a solution can be very time and energy consuming and greatly
depends on the available knowledge of the ones involved. Often during this process in shortage
of time, developers look for a more simple, short-term solution, much like a shortcut [1]. As for
that moment, the problem seems solved and the developers can move on to a different pressing
issue. However, in the long-term, the choices made at that moment can have consequences and
require more time and effort to be solved properly. In software development, this is referred to
as Technical Debt (TD).

We can identify Technical Debt by deriving the definition from the term’s name. When we
look at debt, whether the debt is financial, technical or even social, we look at a situation in
which action is owed from one to another. With TD this is much the same. If we look at the
above mentioned explanation, we see a situation in which the developer has to later on put
in effort to find a long-term solution to the issue. The term TD however is broader than just
choosing shortcuts during the software development cycle, as it affects every stage of the cycle.
Can show up without the need of code changes, as it can be caused by external parties, such as
system upgrades [7].

Staying aware and keeping track of TD and code quality is a good method to increase the
overall quality of the software development cycle and the end product [11]. As many automated
tools1 nowadays more and more keep track of the quality of the code by judging the structure
and comparing against common bugs [15], developers often have to explain code to improve
readability. Commenting code leads to readers having much less to figure out by themselves, thus
increases readability and understanding of the code [2], [3]. As readability and understanding
improves, a sense of code quality is formed.

1.1 Self-Admitted Technical Debt
While leaving comments in the code to explain code and improve quality is one application, one
can also leave comments to admit that the code in that section is considered TD. Here, we refer
to this as Self-Admitted Technical Debt (SATD). These comments are left when developers find
their current solution not optimal and suggest to come back later [10]. Comments as these give
information about what is missing or what needs to be done to resolve this technical debt issue.

Another accepted method of self-admitting that the solution is considered TD, is to leave
an entry in the issue tracker of the project [12]. Issue trackers are used to keep track of issues
and features that need to be resolved [19]. Development teams use these trackers to coordinate
development. Leaving an SATD issue refers back to the location of the code where TD exists.
These issues can be planned for resolution by development teams later on.

1.2 Classification
When talking about TD, we can refer to many types of issues that can come up. For example, a
feature can be missing; a function can be badly written; a test’s coverage should be expanded; or
documentation should be added. Researches have identified many types of TD, each with their
own indications [8].

1Tools such as SonarQube and Code Climate.

3

https://www.sonarqube.org/
https://codeclimate.com/

1.3 Objective
This study’s objective is to create a system that can show developers insights into their work
about SATD. We want to make developers aware of their own indicated TD, forgotten in time
or hidden in complexes.

We divide this objective into three research questions. The first and second research question
are about implementing data collection and creating a visualization system. Here, we focus on
what data to extract and show. The third question is about the effectiveness of our implemen-
tation. Here, we test our system against open source projects and ask volunteers about their
opinion.

1.4 Study Summary
For achieving our objective, we created a web-based application that is easily deployable using
Docker, separating some processes into their own containers and services. This application tracks
Git repositories and JIRA projects and indexes the required data into its own database. For the
source code, we extract the source code comments. We classify the textual data as either SATD
or non-SATD. Finally, we present the user with the statistics of the SATD in their projects.

To find out the effectiveness of this application, we surveyed a group of 6 developers. In
the survey, we focused on three points, the accuracy that the system has in detecting SATD,
awareness the system creates of the SATD in a project and the effectiveness the system has on
the developers’ actions that are taken in the future. We also asked about the effectiveness of only
visualizing SATD in the source code, SATD in the issue trackers and a combined visualization
system. We found that developers agreed that the application increased the awareness the most,
with a combined system being the most effective.

4

Project Comment
Eclipse // TODO this is such a hack it is silly
Chromium // Unsafe; should error
ArgoUML // FIXME: This is such a gross hack...
Apache /* Ugly, but what else? */

Table 1: Example of comments indicating SATD (by Potdar et al. [9])

2 Related work
In this study, we extend on work in three main subjects in a practical way. The first two subjects
are about the types of SATD and how to collect. The last subject is about visualizing SATD.
Therefor, in this section, we divide up the work into those three subjects.

2.1 Working with SATD in code
In an exploratory study by Potdar et al. [9], they researched four different open source projects
on the appearance and removal of SATD. Here, they used the source code of these open source
projects to extract the code comments. They show a simple pipe-lined process to extract and
identify these comments. In this study, they also show an example of comments that indicate
SATD, as shown in table 1. Furthermore, Potdar and Shihab showed in their study that on a
file level, the extracted comments were classified in a range between 2.4% and 31.0% as SATD.

Shown in a study by Maldonado et al. [10], five main types of TD out of the list described by
Alves et al. [8] were found in source code comments. These types are Design debt, Requirement
debt, Defect debt and Documentation debt. In this study, five open source software projects are
analysed on source code comments. The comments that are considered SATD are classified on
the five different types of SATD. After classifying the source code comments, the study showed
that the distribution of the types of SATD in all five projects were similar. Here, the majority
of the analysed comments that were classified as SATD were of the type Design debt, having a
range of 42% to 85% of the SATD-identified comments. The type Requirement debt generally
came second, with in only one case slightly overtaking Design debt and in the majority of the
cases having a significant lower percentage than the largest type. This type had a range of 5% to
45%. The remaining three types had in all projects a significant lower percentage, being below
10%.

5

An extension on detection of SATD in source code comments was done in a study by Maldon-
ado et al. [14] by introducing Natural Language Processing (NLP) into the classification process.
First, comments are manually classified as Design debt, Requirement debt or simply not SATD.
For the two types, some examples are shown.

“TODO: - This method is too complex, lets break it up” - [from ArgoUml]

“//TODO no methods yet for getClassname” - [from Apache Ant]

Maldonado et al. show that the first comment is an example of Design debt, as it clearly
refers to the current design of the code. The second comment is an example of Requirement
debt, as the comment refers to missing code. After manually classifying comments, they use the
comments as a training dataset for a Stanford Classifier. Applying the classifier on 10 open source
projects, they found that certain keywords were very effective in classifying the types of debt.
For example, they found that ‘hack’ and ‘workaround’ refers to Design debt, while keywords as
‘todo’ and ‘needed’ refer more to Requirement debt.

Our work will extend on these studies by using four of the five types of TD used by Maldonado
et al. [10] to classify source code comments, skipping Defect debt and adding Test debt [8]. Here,
we implement the NLP classification method described by Maldonado et al. [14] in all five TD
types.

2.2 Working with SATD in issues
In a study by Bellomo et al. [12], TD detection is extended towards issue trackers, presenting
a method for classifying issues in types of TD. They conducted the study on four projects, two
open source and two unidentified government IT projects. They manually classified issues as
TD, using certain conditions of the state of the issue.

Automation of the process is described by Dai et al. [13]. Here, they described TD types
similar to the types used in detecting SATD in source code comments. Six types were used,
adding UI Debt and Architecture debt (excluding Documentation debt and Test debt). The
automation was done very similar to the process described by Maldonado et al. [14], using the
Naive Bayes classifier to learn and predict TD.

Work by Li et al. [18] takes the amount of TD types up to eight. In their study, they examined
500 issues out of 2 open source Apache projects, Hadoop and Camel. These issues contained 152
SATD items. They showed that an issue can have more than one SATD type linked, with one
case being classified with four types.

We follow up on these works by implementing the automated issue classification system and
combining it together with the source code extractor.

6

2.3 Visualization
Some simple methods showing TD are described by Power [6]. In their study, they give a couple
of options. The first option is to show the amount of capacity of a team it takes up to tackle
TD. Anther method is to track the amount of TD over time, indicating whether code quality
is being neglected over the course of a couple of releases. They state that keeping track of the
amount of TD in a team can be essential in managing the team’s capacity efficiently and helping
the stakeholders understand. In our study, we extend on the method of showing TD over time
and showing what kind of TD is present in a project at a time.

Bohnet et al. [4] proposes a method of visualizing software statistics using 3D maps. The
source code files are organized by modular hierarchy, setting the 2D location. The third dimension
is used to show certain information about a file, such as lines of code or McCabe complexity.
They studied two large, industrially developed systems: JBoss and Blender. In their case study,
they show that a visualization method as this can effectively show hotspots with lower quality
code. Our visualization system makes use of a form of the software map, replacing the 3D aspect
with colors.

7

3 Case Study Design
In this case study the primary objective is to find an effective way visualize SATD in a web-based
system. When analysing the objective, we came up with three research questions.

3.1 Gathering data
Before being able to visualize SATD, we first need to extract and process data. Therefore, we
proposed the first research question:

RQ1: What data is required for visualizing SATD?

Motivation

We state this question to go more in depth towards analysing and finding good visualization
methods, by first analysing what data we actually want to use. Having to process big JIRA issue
repositories and Git source code repositories, we want to come up with a method that efficiently
extracts the right data out of there. We do this to prevent unnecessary storage and CPU usage.

Approach

To answer this question, we first look at what kind of data is available and what can we extract
out of this data.

For analysing the source code comments, we looked at the processes described in the studies
described in section 2.1. Here, the studies show the main process of extracting source code
comments and applying classification. As we are analysing the state of a Git repository, we
looked further into storing revisions of files and linking source code comments to commits to find
out at what point they appeared and at what point they were removed.

For analysing issues in a JIRA issue tracker, we first retrieve the comments stored on a JIRA
server. After that, we use a similar way as shown by the study by Dai et al. [13], classifying
issues automatically. We also keep track of when issues are added and resolved.

3.2 Visualization methods
Once we know what data we are using, we can look further at what how we would like to visualize
the data. We research the possibilities and state the following question:

RQ2: How can we visualize the collected SATD data?

Motivation

Here we analyse the different kinds of visualization of SATD, so we can look at what can be
seen as effective and useful. We know that showing SATD in an insightful way can improve a
team’s capacity planning and help business side [6]. Thus, finding a good combination of SATD
visualization methods helps out towards the main objective.

Approach

We answer this question by an developmental approach, building up the system based on the data
we extracted. Our main approach towards visualizing is to show the location of the comments
indicating SATD, the amount of different types of SATD and the amount of SATD over time.

8

3.3 Effectiveness
After we find different methods of visualizing SATD, we want to test the effectiveness of each
method.

RQ3: How effective is the visualization system in assisting developers?

Motivation

This question is to evaluate the answer of RQ2 using real world observations. We want to evaluate
the results to to test whether the visualization system is useful for developers. This is what we
want as our main objective.

Approach

A qualitative and quantitative survey was used as the approach, asking the participants to give a
score, but also elaborate more with open questions. For this survey, a small group of developers
were able to volunteer. This consisted out of a team of four people and two external source.
Before answering the survey, we first had an online video conference in which we demonstrated
the system. We showed some the system working on open source software data, explaining
the available data. Afterwards, the participants imported their own work into the system. We
discussed the data after it was processed and then proceeded to the survey.

In our survey, we focused on three types of questions. The first type of questions are about
the accuracy of the data. We asked the participants to give a score to the accuracy of the system
and how much they agreed with the types of SATD that were classified.

The second questions were about the awareness created by the system. We asked this to see
if the participants showed an increase of awareness of the state of their work, in particular the
amount of SATD in their work. The questions also asked the participants to give a score, but
now asking to score their own increased/decreased awareness.

The last questions were about the effectiveness of the system on the participants. With this,
we mean the system triggered a response in the participants to change their priorities into solving
problems visualized by the system.

9

4 Implementation
zIn our Case Study Design, we found three main processes in visualizing SATD: Collecting data,
classifying and visualization. Furthermore, we divided up the first process, collecting data, into
two processes that combine their data. The first part consists of reading a Git repository and
filtering out source code comments. The second part is to connect to a JIRA server and read
out the issues from the project.

4.1 Service infrastructure
To implement this system, we first looked at how we want to have our infrastructure. Being
a web-based application, we looked at some simple web server infrastructures, as we did not
want to make this application more complex that necessary. Here, we took the base as a simple
combination of a database and a web server.

As visualization was important, we wanted to split up the back-end and front-end. This
also has the benefit that, when designing the service correctly, we would have an improved user
experience. To combine these together into one web service, we use the NGINX as a reverse
proxy2. NGINX lets us to direct user traffic to the right service, based on the request.

After deciding on our main web infrastructure, we also added a service for analysing comments
and issues. This service uses a machine learning model to classify these items as SATD. We
decided to split this off of the back-end service, as that allows us to use an entirely different
language and environment.

Figure 1: The service infrastructure

The complete infrastructure that we decided on is displayed on figure 1. Everything in the
dotted line is encapsulated and not able to talk to the outside world, only the NGINX container
is. We also decided on using a PostgreSQL database server3, taking advantage of their advanced
data types and recursive queries.

4.1.1 Back-end service

As the web has become more and more popular over the years, the availability of different
kinds of web servers has become enormous, each with their pros and cons. When choosing the
programming language and type of web server, we had some requirements. The technology
should be mature enough, should be able to handle large data sets and we should be familiar
with the technology in some way to speed up development.

2As explained by NGINX: What Is a Reverse Proxy Server?
3For more information, see: https://www.postgresql.org/

10

https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://www.postgresql.org/

Here, we decided that the Spring Boot framework4, using the Java programming language,
was a solid candidate, as we were very familiar with the framework and it is considered quite
mature. Moreover, the framework takes care of handling database connections and allows for
some multi-threaded processing.

Next to that, the module is also responsible for scanning Git repositories for comments and
JIRA boards for issues, and storing the collected data into the database (as explained in section
4.3.1 and section 4.3.2).

4.1.2 Front-end service

Our front-end module is responsible for presenting the user with an interface that the user can
interact with. It connects back to the back-end module by sending HTTP requests to the back-
end module. The module is built with React library and uses the Next.JS framework. We chose
this combination for two reasons: familiarity and there are a considered amount of open source
libraries available for this configuration that help with visualizing data.

4.1.3 Classifier service

Our analyser/classifier module [21] is built in Python 3 and uses Google’s Tensorflow library. This
module’s responsibility is to read the database for issues and comments that are not classified.
After retrieving each comment and issue one by one, it tries to predict the type of SATD against
a pre-learned model. If the data is considered SATD, it will gather the keywords that would
likely have caused the classification. After that, it would store the prediction back into the
database. This module contains a simple Flask-server, allowing the back-end module to easily
communicate with this module.

4.1.4 Virtualization

Finally, deploying this application as a whole, we virtualize every module in containers. For this,
we use Docker. Docker allows us to separate every service into their own container and makes
more efficient usage of the system’s resources [16]. Combining this with Docker Compose5 we
can quickly develop and deploy the application.

4.2 Data structures
When working with larger projects, containing megabytes of files and thousands of commits, we
were required to come up with efficiently picking, storing and loading data. Here, we used some
data structures that we need to elaborate on.

4.2.1 File snapshots

A snapshot is the state of the file structure at the point of time of a commit. Storing all files
for each commit is going to be very storage consuming and slow (shown on figure 2). Thus, we
divide up snapshots into two types for data storage efficiency. The first is a key snapshot. This
snapshot contains references to every file present at that point. The second type is a partial
snapshot. This type contains a reference to a previous snapshot (parental snapshot), using that
as a base. Then the snapshot contains references to files added and removed after the parental
snapshot. This method as shown on figure 3 is based on video compression algorithms.

4For more information, see: https://spring.io/
5A tool that lets you configure multiple Docker containers together.

11

https://spring.io/

Figure 2: Data structure when storing snapshots entirely

Figure 3: Data structure when storing snapshots using key and partial snapshots

4.3 Processes
As stated before, we have three main processes. In figure 4 a flowchart of these processes is
shown, going from Git commit data and issues to visualized SATD statistics.

Figure 4: Flowchart of the system

4.3.1 Scanning Git repositories

This process takes advantage of the JGit project for storing the files and their revisions. This
project is Java implementation of the Git version control system [20]. For extracting comments
out of the source code files, we use ANTLR (ANother Tool for Language Recognition). Using
ANTLR, we wrote simple grammars based on types of comments that we could encounter.

12

Step 1 We store information of the repository provided by the user in the database. When
storing that data, we retrieve the ID of the entry that we inserted in the database. Using this
ID, we create a directory and use JGit to clone the repository into that directory.

Step 2 We now retrieve the available branches from the locally stored repository. The user
selects which branch they would like to track. The local repository checks out the branch and
we collect the information of the commits in that branch.

Step 3 After the commit data is stored, the user has the option of selecting the commits for
creating a snapshot (explained in section 4.2.1). After this step, we end up with a data structure
looking as shown in figure 5.

Figure 5: Data structure of a Git repository

Step 4 After all files and their revisions are stored, we extract the comments out of source
code files. Here, we look at the file’s extension and choose one or more ANTLR grammar to
extract the comments.

Step 5 Having the comments extracted, we look for duplicates. Here we use the hash code
property of the Java-object. We compare the hash code of the content of the found comments to
hash codes stored in the database and other found comments. If we find duplicates, we only store
one instance of the comment, but multiple instances linking the file and the comment together.

4.3.2 Scanning JIRA projects

Scanning a JIRA project requires interfacing with the JIRA server’s REST API. This API is
documented and have open source clients available. For this project, we use the Jira REST Java
Client (JRJC).

Step 1 The user is asked to fill in the URL to the JIRA server. If required, the user can provide
login information.

13

Step 2 After connecting successfully to the JIRA server, we provide the user with the available
projects. The user can select one here.

Step 3 The user is tasked with selecting the range of issues that they would like to analyse.

Step 4 We collect the information of the issues and its revisions. This information is provided
by the JIRA API.

4.3.3 Classifying data

As mentioned in the section 4.1.3, we use a different environment, completely encapsulated from
the other processes to classify texts [21]. The process is shown in figure 6. In this process, we
constantly ask the database if there are any process-able data entries left and run that data
against our models. The resulted information is stored back into the database.

Figure 6: The process of classifying items

14

4.3.4 Visualization of SATD comments

We use four methods to visualize SATD in source code comments in a Git repository.

SATD types pie chart We show how much of each SATD type is present at a certain commit.

SATD over time We show a graph with the amount of SATD over time.

SATD heatmap We use a sunburst graph to show using colors where the most SATD is
located in a project.

File browser We show the SATD data in a file browser, showing for each file and directory
how much SATD is present.

Keywords For each SATD comment, we show what keywords have caused the classification.

4.3.5 Visualization of SATD issues

Types of SATD We show a pie chart visualizing the accumulated types of SATD found in
the project.

SATD per issue status We show a pia chart visualizing the total accumulated SATD per
status of the issue. Usually, statusses consist of an issue being open, in progress, closed/resolved.

SATD per issue type We show a pie chart visualizing the total accumulated SATD per issue
type. Usually, the issue types consist of bugs, improvement, user stories and more.

15

5 Results
In this section, we briefly go over the results of RQ1 and RQ2, which are the results of the
implementation. After that, we go over the results of RQ3, which consists of the results of the
survey.

5.1 RQ1: What data is required for visualizing SATD?
For this question, we primarily focused on the classification methods available described in pre-
vious studies [14], [21].

For visualizing SATD out of the source code, we track Git repositories. We require one or more
branches to be selected, which will be tracked for commits. We index the files of these commits in
snapshots (explained in section 4.2.1). Comments are extracted from these snapshots and linked
back to each file revision that contains the comments. Finally, we classify the comment as either
SATD, giving it one of the types and extracting the keywords indicating SATD, or classifying
the comment as non-SATD. This data can be accumulated, showing amounts of SATD at one
time and amounts of SATD over time.

For visualizing SATD out of issue trackers, we track JIRA projects. In this process, we
extract all existing issues and store the summary and description. These text fields are classified
as SATD with the same method as the we use in classifying source code comments. However,
we do use a different model for both classification methods.

5.2 RQ2: How can we visualize the collected SATD data?
In our study, we focused on three main visualization methods. These are: showing SATD over
time, showing the amount of SATD per type at a time and showing the location of SATD. For
the SATD over time, we used a line graph, calculating the SATD for 15 different points in a given
time interval. For SATD per type, we used pie charts. We showed amounts per SATD type,
comment type, issue type and issue status. Finally, for showing the location of the SATD in the
source code, we created a file browser that shows per file and directory the amount of SATD. In
addition to that, we show a heat map of SATD using a sunburst graph.

5.3 RQ3: How effective is the visualization system in assisting devel-
opers?

For the last research question, we look at the results of the survey given over 6 developers. We
evaluate these answers by dividing the questions over the three main focus points of the survey.
We also look at how the 2 processes scored individually and combined. This gives us insights into
how the processes scored apart from each other and insights whether these processes combined
improve the effectiveness. In figure 7 the average scores on each focus point are graphed. The
quantitative results of the survey are available in appendix A.

Evaluating the results of the accuracy focus point, we see that the visualization of SATD
in source code comments has a score of 4.25 out of 5. Discussing the accuracy of the SATD
visualization, the participants noticed that only a minor cases of inaccurate classification of the
comments, observing the classifier being mislead by certain keywords. In the visualization of
JIRA issues, the participants gave an average score of 4 out of 5. Here, the participants noticed
that classifying the summary and the description of the issue gave in minor cases different results.
They noticed that once again, certain keywords were causing the classifier into being mislead.
The combined accuracy scored 4.33 out of 5 points. The participants considered overall accuracy
quite accurate good, with the system effectively being able to pick out SATD in their projects.

16

Figure 7: The average scores of the survey results

Moving over towards the awareness of SATD created by the system, the participants quickly
indicated that they found points of interest in their work that were forgotten about in the source
code comments. The score of the visualization system of SATD in comments here scored on
average a 4.55 out of 5. The participants noted that visualizing the SATD over time was not
as helpful when only using this system for a short time, but said that if they were able to track
the state of their work in a longer time span, they hypothesized that the information would be
useful in planning the team’s capacity. The score of the awareness by visualizing SATD in issues
was lower, scoring an average of 3.33. Here the participants argued that issues already have their
own classification system (in JIRA you can assign a type to an issue) and issues were much more
sorted and organized. The overall awareness scored the highest, with 4.61 out of 5 points.

The final questions focused on the effectiveness of the system towards developers. The par-
ticipants gave an average score of 2.58 out of 5 when looking at the comments and only 1.66 out
of 5 for the issues. Overall, this section scored the lowest, with a combined average of 2.5. The
participants mostly argued that the SATD visualized was already in their work for a longer time,
thus having not a high priority of rethinking the code. They also stated that their issue tracker
was sorted by priority, having to focus their team’s capacity on higher priority issues first.

If we look at the combined scores of these focus points, we see that both visualization systems
combined score higher than that the systems score apart from each other, with an average of
3.81 compared to 3.80 and 3.00 for the comments and issues visualization system respectively.

17

6 Discussion
In this section we discuss the implementation and the evaluation of the system by going back
over the results, giving some implications for researchers and developers and making some rec-
ommendations for improvements that could be made.

6.1 Implementation discussion
The implementation of the visualization system focused on three things: visualizing SATD in
comments, visualizing SATD in issues and combining that data. We used three kinds of visual-
ization here, showing where SATD was located, what kind of SATD is present and how much
SATD changed over time.

The system produces very similar statistics of SATD in a project as previous studies have.
When extracting source code comments and classifying these, we get very similar percentages of
accumulated items per type of SATD as in the study by Maldonado et al. [10]. When working
with issue trackers, we did find more SATD in issues than that the study by Li et al. [18]. We
believe that our method of classifying issues is less accurate, as it only uses the summary and
description in the classification process.

Our approach does not tackle measuring the TD in a project, as we only classify an item
as a type of SATD. TD can be measured in different kinds of risk that the existence of the TD
can have in a project [5]. Using this property of TD, we can prioritize certain items over others,
indicating developers to focus more on what is important. When testing the system on open
source projects, we found many items that have existed in the project for long time spans, in
some instances over 10 years. While still admitting TD, developers would likely focus on more
important instances.

Another feature that the system is still lacking, is that the data of an issue tracker and the
source code is never combined. The data of both sources could be combined into visualizing
the total amount of SATD over time, as well as showing the total amount of items per type of
SATD. For researchers, this could create evidence of there being correlation between data found
in the source code and the data found in the issue trackers. For developers, this could improve
the awareness of SATD overall in projects.

For future studies, the effects of pull requests could also be taken into account. A process could
be ran on extracting source code comments in the changes that the pull request would provide,
showing an increase or decrease in SATD per pull request. A pull request based workflow links
pull requests back to issues that the pull request is intended to resolve [17]. An example here
could be that a requirement debt could only be partially resolved in a pull request, implementing a
feature not in its entirety. A decrease of debt could be noted, but with still one active requirement
debt item.

18

6.2 Survey results discussion
In our survey over 6 software developers, we found that the system can help developers becoming
more aware of the state of their work. The primary findings of the survey results are that
the combined data seems more effective in helping developers, giving an overall higher score.
Participants did seem to be more aware of SATD in their work when using the system, but did
not choose to change their priorities.

The system’s accuracy could be improved by allowing users to correct a classification. We
can send these corrections back to the classification service, training the model with the given
corrections. Future items would be classified better as the system learns more and more.

A suggested way of improving the system’s generated awareness is by creating an overview
of active SATD items. These items could have a life span property, showing the user that the
item has either been recently added, or has lived on for a long time.

7 Threats to Validity

7.1 Threat to Reliability
For the system, we used a model that was pre-trained on a set of source code comments and issues.
In some cases, the classifier failed to properly predict the type of SATD. This was caused by the
system being mislead by certain keywords. To minimize this threat, we suggest to implement
manual correction. This should train this model to produce better results in the system.

7.2 Threat to Internal Validity
The survey was don over a small group of six developers, with four coming out of the same team.
The small amount of participants forms a threat as it may not represent the opinion of most
developers. The four developers in the same team looked at the same data and gave similar
answers.

7.3 Threat to Construct Validity
The survey consisted of questions about accuracy, awareness and effectiveness. These points were
used towards proving the effectiveness of the system, as these points seemed most important when
dealing with TD. It is unknown if these points accurately prove the effectiveness of the system
over a longer time period.

19

8 Conclusion and Future Work
The main objective of this project was to effectively visualize SATD to developers. Briefly
summarizing, we found that the system did perform well for developers, helping the developers
in the process of maintaining code.

For SATD in source code comments, participants in the survey gave an average score of 3.80
out of 5 points, with giving a high score to creating awareness. The system provided insights
into what kind of SATD is present, where it was located and how much SATD changes over
time. We saw that developers, before using the system, did not know or had forgotten certain
comments that indicated SATD. By visualizing, this became more obvious and developers were
able to keep track of these comments.

For SATD in issues, the average given score was lower, with only 3.00 out of 5 points. Here,
we conclude that only tracking issues and their state does not seem that useful. This can be
mostly explained by that issue trackers, JIRA and similar trackers, have already built in a manual
issue classification system, as well as add-ons for time management.

The combined data provided developers a good method of viewing the state of their projects.
We saw improvement over all three focus points, while averaging the two focus points resulted
in lower scores. Developers were able to lay connections with certain items and group items
together. Thus, we can conclude that the system does provide an effective method in visualizing
SATD.

As shown in the Discussion, many improvements could be made to the system. These im-
provements focus on increasing the amount of data and the effectiveness of the data on developers.
We would also like study the results of using a visualized system over a longer time span and a
bigger group of participants. The state of projects could be measured over time, keeping track
of the amount of SATD, the amount of issues resolved and the size of the different releases.

20

References
[1] M. Fowler, TechnicalDebt, Oct. 2003. [Online]. Available: https://www.martinfowler.

com/bliki/TechnicalDebt.html (visited on 08/12/2021).
[2] D. Spinellis, Code quality: the open source perspective, 1st. Addison-Wesley, Apr. 2006,

p. 608, isbn: 978-0321166074.
[3] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/*icomment: Bugs or bad comments?*/,”

ACM SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 145–158, Oct. 2007. doi:
10.1145/1323293.1294276. [Online]. Available: https://dl.acm.org/doi/abs/10.
1145/1323293.1294276.

[4] J. Bohnet and J. Döllner, “Monitoring code quality and development activity by software
maps,” in Proceedings - International Conference on Software Engineering, 2011, pp. 9–16,
isbn: 9781450305860. doi: 10.1145/1985362.1985365.

[5] C. Seaman and Y. Guo, “Measuring and Monitoring Technical Debt,” Advances in Com-
puters, vol. 82, pp. 25–46, Jan. 2011, issn: 0065-2458. doi: 10.1016/B978-0-12-385512-
1.00002-5.

[6] K. Power, “Understanding the impact of technical debt on the capacity and velocity of
teams and organizations: Viewing team and organization capacity as a portfolio of real
options,” in 2013 4th International Workshop on Managing Technical Debt, MTD 2013 -
Proceedings, 2013, pp. 28–31, isbn: 9781467364430. doi: 10.1109/MTD.2013.6608675.

[7] E. Wolff and S. Johann, Managing Technical Debt, May 2013. [Online]. Available: https:
//www.infoq.com/articles/managing-technical-debt/.

[8] N. S. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spínola, “Towards an
ontology of terms on technical debt,” Proceedings - 2014 6th IEEE International Workshop
on Managing Technical Debt, MTD 2014, pp. 1–7, Dec. 2014. doi: 10.1109/MTD.2014.9.

[9] A. Potdar and E. Shihab, “An exploratory study on self-admitted technical debt,” Pro-
ceedings - 30th International Conference on Software Maintenance and Evolution, ICSME
2014, pp. 91–100, 2014. doi: 10.1109/ICSME.2014.31.

[10] E. D. S. Maldonado and E. Shihab, “Detecting and quantifying different types of self-
admitted technical Debt,” 2015 IEEE 7th International Workshop on Managing Technical
Debt, MTD 2015 - Proceedings, pp. 9–15, 2015. doi: 10.1109/MTD.2015.7332619.

[11] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software
Engineering,” Dagstuhl Reports, vol. 6, no. 4, pp. 110–138, 2016, issn: 2192-5283. doi:
10.4230/DAGREP.6.4.110.

[12] S. Bellomo, R. L. Nord, I. Ozkaya, and M. Popeck, “Got technical debt? Surfacing elusive
technical debt in issue trackers,” Proceedings - 13th Working Conference on Mining Soft-
ware Repositories, MSR 2016, pp. 327–338, May 2016. doi: 10.1145/2901739.2901754.

[13] K. Dai and P. Kruchten, “Detecting technical debt through issue trackers,” in CEUR Work-
shop Proceedings, vol. 2017, 2017, pp. 59–65.

[14] S. Maldonado, E. Shihab, and N. Tsantalis, “Using Natural Language Processing to Au-
tomatically Detect Self-Admitted Technical Debt,” IEEE Transactions on Software Engi-
neering, vol. 43, no. 11, pp. 1044–1062, 2017.

[15] C. Vassallo, A. Bacchelli, F. Palomba, and H. C. Gall, “Continuous code quality: Are
we (really) doing that?” ASE 2018 - Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pp. 790–795, Sep. 2018. doi: 10.1145/
3238147.3240729.

21

https://www.martinfowler.com/bliki/TechnicalDebt.html
https://www.martinfowler.com/bliki/TechnicalDebt.html
https://doi.org/10.1145/1323293.1294276
https://dl.acm.org/doi/abs/10.1145/1323293.1294276
https://dl.acm.org/doi/abs/10.1145/1323293.1294276
https://doi.org/10.1145/1985362.1985365
https://doi.org/10.1016/B978-0-12-385512-1.00002-5
https://doi.org/10.1016/B978-0-12-385512-1.00002-5
https://doi.org/10.1109/MTD.2013.6608675
https://www.infoq.com/articles/managing-technical-debt/
https://www.infoq.com/articles/managing-technical-debt/
https://doi.org/10.1109/MTD.2014.9
https://doi.org/10.1109/ICSME.2014.31
https://doi.org/10.1109/MTD.2015.7332619
https://doi.org/10.4230/DAGREP.6.4.110
https://doi.org/10.1145/2901739.2901754
https://doi.org/10.1145/3238147.3240729
https://doi.org/10.1145/3238147.3240729

[16] S. Yegulalp, “Why you should use Docker and containers | InfoWorld,” InfoWorld, Oct.
2018. [Online]. Available: https://www.infoworld.com/article/3310941/why-you-
should-use-docker-and-containers.html.

[17] M. Ortu, M. Marchesi, and R. Tonelli, “Empirical analysis of affect of merged issues
on GitHub,” in Proceedings - 2019 IEEE/ACM 4th International Workshop on Emotion
Awareness in Software Engineering, SEmotion 2019, Institute of Electrical and Electronics
Engineers Inc., May 2019, pp. 46–48, isbn: 9781728122809. doi: 10.1109/SEmotion.2019.
00017.

[18] Y. Li, M. Soliman, and P. Avgeriou, “Identification and Remediation of Self-Admitted
Technical Debt in Issue Trackers,” Proceedings - 46th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2020, pp. 495–503, 2020. doi: 10.1109/
SEAA51224.2020.00083. arXiv: 2007.01568.

[19] Red Hat, Getting started with an issue tracker, 2020. [Online]. Available: https://www.
redhat.com/en/resources/getting-started-with-an-issue-tracker-FAQ (visited
on 08/18/2021).

[20] Eclipse Foundation, JGit | The Eclipse Foundation, 2021. [Online]. Available: https://
www.eclipse.org/jgit/ (visited on 08/13/2021).

[21] Y. Li, M. Soliman, and P. Avgeriou, “Identifying self-admitted technical debt in issue
tracking systems using machine learning,” unpublished, 2021.

22

https://www.infoworld.com/article/3310941/why-you-should-use-docker-and-containers.html
https://www.infoworld.com/article/3310941/why-you-should-use-docker-and-containers.html
https://doi.org/10.1109/SEmotion.2019.00017
https://doi.org/10.1109/SEmotion.2019.00017
https://doi.org/10.1109/SEAA51224.2020.00083
https://doi.org/10.1109/SEAA51224.2020.00083
https://arxiv.org/abs/2007.01568
https://www.redhat.com/en/resources/getting-started-with-an-issue-tracker-FAQ
https://www.redhat.com/en/resources/getting-started-with-an-issue-tracker-FAQ
https://www.eclipse.org/jgit/
https://www.eclipse.org/jgit/

A Survey results

Question 1 2 3 4 5Mean
Overall
Considering the overall results, how accurate was the detected SATD? 0 0 1 4 1 4
..., did you agree with the different types of SATD found? 0 0 0 2 4 4.67
..., did you (re)discover new SATD? 0 0 0 2 4 4.67
..., did you gain insights into the current state the project? 0 0 0 1 5 4.83
..., did you gain useful insights into the state of the project over time? 0 0 1 2 3 4.33
..., did you find high priority issues in your project? 1 4 0 1 0 2.17
..., did you or are you going to take (new) actions based on the results? 0 2 3 1 0 2.83
SATD in comments
Considering the results in the comment analyser, how accurate was the detected SATD? 0 0 1 4 1 4
..., did you agree with the different types of SATD found? 0 0 0 3 3 4.5
..., did you (re)discover new SATD? 0 0 0 2 4 4.67
..., did you gain insights into the current state the project? 0 0 0 1 5 4.83
..., did you gain useful insights into the state of the project over time? 0 0 1 3 2 4.17
..., did you find high priority issues in your project? 2 3 0 1 0 2
..., did you or are you going to take (new) actions based on the results? 0 1 3 2 0 3.17
SATD in issues
Considering the results in the issue analyser, how accurate was the detected SATD? 0 0 0 1 5 4.83
..., did you agree with the different types of SATD found? 0 1 3 2 0 3.17
..., did you (re)discover new SATD? 0 1 2 3 0 3.33
..., did you gain insights into the current state the project? 0 0 3 2 1 3.67
..., did you gain useful insights into the state of the project over time? 0 0 6 0 0 3
..., did you find high priority issues in your project? 1 3 2 0 0 2.17
..., did you or are you going to take (new) actions based on the results? 5 1 0 0 0 1.17

23

B Application screenshots

Figure 8: The dashboard for a Git repository

Figure 9: The file browser

24

Figure 10: The heatmap of SATD

Figure 11: A comment being identified as SATD

25

Figure 12: The dashboard for a JIRA project

Figure 13: The list of issues for a JIRA project

26

	Introduction
	Self-Admitted Technical Debt
	Classification
	Objective
	Study Summary

	Related work
	Working with SATD in code
	Working with SATD in issues
	Visualization

	Case Study Design
	Gathering data
	Visualization methods
	Effectiveness

	Implementation
	Service infrastructure
	Back-end service
	Front-end service
	Classifier service
	Virtualization

	Data structures
	File snapshots

	Processes
	Scanning Git repositories
	Scanning JIRA projects
	Classifying data
	Visualization of SATD comments
	Visualization of SATD issues

	Results
	RQ1: What data is required for visualizing SATD?
	RQ2: How can we visualize the collected SATD data?
	RQ3: How effective is the visualization system in assisting developers?

	Discussion
	Implementation discussion
	Survey results discussion

	Threats to Validity
	Threat to Reliability
	Threat to Internal Validity
	Threat to Construct Validity

	Conclusion and Future Work
	References
	Appendix Survey results
	Appendix Application screenshots

