
Star Removal in Astronomical Images

Bachelor’s Project Computing Science

Sander Zeeman, s3808777, s.zeeman@student.rug.nl
First supervisor: dr. M.H.F. Wilkinson
Second supervisor: Caroline Haigh MSc

August 31, 2021

Acknowledgements

I would first like to extend my gratitude to everyone who played a part in the completion of this
project.
First, this thesis would not have been possible without the excellent guidance of my supervisor:
dr. Michael Wilkinson. Our weekly meetings greatly helped me in understanding the theory
that was required for the development of this project. Additionally, many great suggestions were
made during these meetings, which I greatly appreciate.
Next, I would like to thank Caroline Haigh for acting as my second supervisor in this project.
Finally, I want to extend my gratitude to my family and friends, who supported me in my efforts
to make this project reach a successful conclusion.

Abstract:
As increasingly many images get taken of outer space, astronomers are facing great

difficulties when trying to identify any significant objects in these images. Contrast
stretching is used to highlight these objects. However, stars are very bright point sources,
which nearly nullifies the effectiveness of contrast stretching. In this thesis, we explored
the idea of building a star removal software to solve this issue. We applied state of
the art object detectors to identify all objects in an image, then attempted to filter all
stars from this set of objects by thresholding on numerous attributes of an object. We
determined that our software, while not ready to be adopted in the standard image
processing pipeline used by astronomers, in combination with some manual adjustments,
will allow for contrast stretching to have improved results. Additionally, the software we
developed can be used as a framework, which future research could build upon.

Contents

1 Introduction 5

2 Related Work 6
2.1 Contrast stretching . 6
2.2 The MaxTree data structure . 7
2.3 MTObjects . 7
2.4 Image inpainting techniques . 8

2.4.1 Linear interpolation . 8
2.4.2 Navier-Stokes based . 9

2.5 Starnet++ . 9

3 Implementation 10
3.1 Design choices . 10
3.2 Used dataset . 11
3.3 Reading and writing images . 11
3.4 Pre-processing . 11
3.5 Building a MaxTree . 13
3.6 Star Detection . 13

3.6.1 Determining the relevant indices . 13
3.6.2 Significance testing . 13
3.6.3 General object detection . 14
3.6.4 Star filtering . 14

3.7 Removing stars . 14
3.8 Post-processing . 15

3.8.1 Hierarchical inpainting . 15
3.8.2 Linear interpolation . 15
3.8.3 Navier-Stokes based . 15

4 Results 15
4.1 No inpainting . 17
4.2 Hierarchy-based inpainting . 17
4.3 Linear interpolation . 18
4.4 Navier-Stokes based inpainting . 18

5 Discussion 19
5.1 Star Removal . 19
5.2 Inpainting methods . 19

5.2.1 No inpainting . 19
5.2.2 Hierarchy-based inpainting . 19
5.2.3 Linear interpolation . 20
5.2.4 Navier-Stokes based inpainting . 20

5.3 The effect of contrast stretching . 20
5.4 Comparing to Starnet++ . 21

6 Conclusion 21

7 Future Work 22

Bibliography 23

Appendix A Full sized images 25

Appendix B Full sized noisy images 28

1 Introduction

In the past decades, great advancements have
been made in the field of astronomical imag-
ing. While many barriers have been overcome,
many issues still remain to this day. Before de-
scribing one of the main issues in detail, let us
first take a step back and display how much the
field of astronomy has grown since the creation
of the very first telescope.

The following quote is from an article that
is part of the Library of Congress (2014).

“The first telescopes were created in the
Netherlands in 1608. Spectacle makers Hans
Lippershey & Zacharias Janssen and Jacob
Metius independently created telescopes at this
time. These telescopes were created for uses
on Earth itself, rather than for observing outer
space. These initial telescope were capable of
magnifying objects three times.”

It shows the beginnings of the instruments
that astronomers use on a daily basis. Today,
telescopes are capable of taking high quality
pictures of outer space in bulk. This means
astronomers work with large databases full of
these images.

Astronomers are always working to make
new discoveries regarding our universe. After
all, discovering a new galaxy, star or nebula
could lead us to even greater discoveries sur-
rounding our universe. However, this is where
astronomers run into an issue. Nebulae or
galaxies might be difficult to spot, as they
have a relatively low surface brightness. This
issue could be solved by stretching the con-
trast of the image. As described by Sahidan
et al. (2008): “Contrast stretching (often called
normalization) is a simple image enhancement
technique that attempts to improve the con-
trast in an image by ‘stretching’ the range of
intensity values it contains to span a desired
range of values, the full range of pixel values
that the image type concerned allows.” This
would make our celestial objects with low sur-
face brightness much more clear.

However, there is an issue with this solution.
Stars have a much higher surface brightness
than nebulae or galaxies. Because there are a
lot of stars in outer space, it is extremely likely
that any astronomical image will contain mul-
tiple bright stars. This will cause the dynamic

range of our image to become very large. To
demonstrate this issue, a histogram of all pixel
values from Figure 3.1 can be seen in Figure
1.1.

Figure 1.1: A histogram of all pixel values
in Figure 3.1.

Apart from the constant background value
of ±0.1 that could be removed, linear con-
trast stretching would not improve the image
as much as we had hoped. After all, there
are many pixel values close to 1.0. This large
dynamic range, caused by mostly stars, will
nearly nullify the improvement that contrast
stretching could bring. This is demonstrated in
Figure 1.2, where logarithmic contrast stretch-
ing was performed on the original image in
Figure 3.1. The concept of logarithmic con-
trast stretching will be explained in detail in
Section 2.1.

The main reason that stars are so harmful
to logarithmic contrast stretching, is that this
method aims to make the faint objects more
noticeable, while keeping the bright sections of
the image from taking over. However, stars are
not captured as exact point in the image. Stars
will be become more dim around the edges and
merge into the background. The point spread
function (PSF) describes this effect. This has

Figure 1.2: Figure 3.1, after performing log-
arithmic contrast stretching.

5

as a result that these dim sections around each
star will also be stretched in the result image.
This means the edges of the star will become
far more noticeable, which will cause stars to
grow.

This is the problem we will be solving
throughout this thesis. We hypothesise that
removing the stars from an image will make
contrast stretching noticeably more effective.
As such, we will be providing an answer to the
following research question:

How can we improve the current state
of available “star removal” software?

In order to answer this question, we will
have to answer multiple sub-questions, related
to the steps we will be taking.

• How do connected morphological image
processing techniques compare to the ex-
isting tools, which use machine learn-
ing, in terms of effectiveness, speed and
adaptability?

• Which image inpainting methods are
best suited for astronomical images?

In this thesis, a solution to the formerly
described issue will be proposed. Existing ob-
ject detection algorithms will be rewritten in
C++ and extended with the ability to filter
the stars from all detected objects. These stars
will then be removed from our image. Finally,
the missing areas will be filled in by a variety
of image inpainting algorithms. These results
will be showcased, after which a recommenda-
tion will be made, based on which algorithm
produced the optimal results.

Let us start by introducing the works that
this research has built upon. In section 2, we
will go through the concepts that we applied
in this thesis. Next, we will discuss our im-
plementation of the star removal software in
section 3. After this, we will display our results
in section 4. In section 5, we will discuss the
results we obtained, as well as compare our
solution to existing solutions. Additionally, we
will mention any shortcomings of the software
we developed. We can conclude our thesis by
forming a single, compact conclusion in sec-
tion 6 and describing any possible future work
on this topic in section 7. Finally, this thesis
will be concluded by our bibliography.

2 Related Work

Before we can discuss our implementation, we
have to introduce the related research that this
thesis is based on. Let us start by describing
contrast stretching, as mentioned in Section 1.
Afterwards, we will discuss the related work
in the order in which it will be brought up in
the implementation section, starting with the
MaxTree.

2.1 Contrast stretching

Before defining contrast stretching and explain-
ing why it is as useful as it is, we must first
define contrast itself. We will be defining this
concept similarly to Anand (2017):

”Contrast is the difference in pixel values of
two different objects at the same wavelength.
It can be defined as the ratio of maximum
intensity to the minimum intensity over an
image.

C =
Lmax
Lmin

where C is the contrast, Lmax is the maximum
intensity value present in an image and Lmin
is the minimum intensity value present in an
image.”

Astronomical images often don’t use the
full range of pixel values. Instead, many pixel
values surround some pixel value, with the
outliers being very close to 0 or 1, this can also
be noticed in Figure 1.1.

To combat this, contrast stretching is of-
ten used to redistribute the pixel values to
make use of the full range. This could be
done linearly, however, astronomers are more
interested in non-linear stretches. Specifically,
logarithmic contrast stretching is often used.

The benefit of logarithmic contrast stretch-
ing is that it increases the contrast between
darker and brighter sections of an image. This
allows astronomers to more easily separate ob-
jects from the background. The lower bright-
ness values are given a greater relative contrast
than the brighter values, this allows the darker
features of the images to be easily separated
from the rest of the image, while bright val-
ues are made less apparent, while still being
recognisable (Anand, 2017).

6

As was described in the introduction, loga-
rithmic contrast stretching will cause stars to
grow, by stretching the faint edges of a star.
This tends to do more harm than good, as can
be seen in Figure 1.2. Because of this effect,
we hypothesise that the absence of stars would
cause contrast stretching to have more effec-
tive results. This is why we are interested in
removing the stars from astronomical images.

2.2 The MaxTree data structure

To introduce the MaxTree data structure, we
must first define “connected components”.
Connected components are sets of pixels with
the exact same pixel values, where all pixels
are connected through either 4-pixel or 8-pixel
connectivity. Let us now define the MaxTree,
similarly to Salembier et al. (1998).

A MaxTree consists of a set of nodes. Each
node represents a connected component, with
links between parent and child nodes. Consider
the example given in Figure 2.1.

Figure 2.1: MaxTree representations. (Fig-
ure retrieved from Salembier et al. (1998))

Three layers of pixel values are represented
in this figure, represented by the digit after the
letter. All objects on the same layer will consist
of the same pixel values. Below the example
image, we see how the MaxTree is built, let us
focus on the section labelled “Final Tree”.

As one can see, there is only one object on
layer 0, namely the background, node A. From
here, we notice two separated objects, node
G2 and a combination of the remaining nodes.
Node G2 is on layer 2, so we can skip past
the layer 1 node on this branch, this node will

remain empty and can be ignored. (Note that
this differentiates the MaxTree from the simi-
lar data structure: “Component tree” (Jones,
1999), which does not ignore these nodes.) We
will then create a child node for object G2.
On the remaining object, we perform the same
operations. We notice that layer 1 is the lowest
layer inside this object, so we consider this the
root of this “sub-tree”. Nodes C2 and E2 are
the only objects on a higher layer, so objects
B1, D1 and F1 are combined into the root
node. Finally, separate child nodes are created
for objects C2 and E2. Adding this “sub-tree”
as a child to the main tree will then leave
us with the structure labelled “Final Tree” in
Figure 2.1.

If we were to represent an image as a Max-
Tree, we would gain knowledge on the con-
nectivity of pixels inside the image. As one
can imagine, this knowledge greatly assists us
when attempting to detect objects in an image.

Next, let us discuss MTObjects 1, which
implemented a MaxTree as part of an object
detector for astronomical images.

2.3 MTObjects

MTObjects, the MaxTree-based faint object
detector, has been updated and improved many
times throughout its lifetime. We will discuss
the implementation by Caroline Haigh, which
was based on the work done by Teeninga et al.
(2015).

Our extension to this program will be de-
scribed in full detail, from start to finish, in
Section 3. This will include the algorithms im-
plemented in the existing codebase. Therefore,
we will choose not to extensively discuss these
algorithms here.

Instead, let us consider this code a black-
box for now and look at its input and resulting
outputs, while discussing why this program
would assist us in reaching our goal.

Consider Figure 2.2. The image on the top
is the original, where the colours have been in-
verted to increase visibility of the astronomical
objects. MTObjects has performed an object
detection, then marked all pixels belonging to
an object a different colour. The result can
be seen on the bottom of Figure 2.2. One can

1https://github.com/CarolineHaigh/mtobjects

7

https://github.com/CarolineHaigh/mtobjects

Figure 2.2: MTObjects applied on an astro-
nomical image. (Retrieved from Teeninga
et al. (2015))

immediately tell that many tiny, faint objects
are being detected by this program.

If we could identify a method of separat-
ing the stars from all other objects that were
detected by this program, this would benefit
us greatly in the pursuit of a star removal al-
gorithm. As described by Haigh et al. (2021):
“MTObjects achieves the highest scores on all
tests for all four quality measures, whilst SEx-
tractor obtains the highest speeds.”. From this,
we can tell MTObjects has sacrificed some ex-
ecution speed, in favour of a higher accuracy,
which reassures us that this program will be
suitable for our project.

2.4 Image inpainting techniques

We have now discussed the main research that
we will be building upon in this thesis. How-
ever, we have not yet mentioned any techniques
that will be useful to our project after we have
removed the stars.

When we have successfully removed a sec-
tion of an image, we want to restore this section
to the best of our ability. In order to do this,
we need to know what the space behind the
star looked like. This is an impossible task
with the information we are given. Therefore,

our best option is estimation.
Specifically, image inpainting algorithms.

Inpainting algorithms come in all shapes and
sizes. Some are extremely fast, yet also im-
precise. While others take a long time to run,
but return very accurate results. We will be
discussing two algorithms. One of which is
a well known simple technique. The other is
more advanced and shows great potential for
noise-heavy images. Let us discuss them, one
by one.

2.4.1 Linear interpolation

Interpolation is quite a simple technique. We
choose to apply linear interpolation, as this
should be an extremely fast operation. Be-
cause of this, it should give us a good compar-
ison for the advanced method we will discuss
afterwards.

Linear interpolation assumes the pixel val-
ues, between two known pixels, will follow a
linear trend. An example can be seen in Figure
2.3

Figure 2.3: Linear interpolation (Retrieved
from https://x-engineer.org/undergradua

te-engineering/advanced-mathematics/nu

merical-methods/linear-interpolation-a

nd-extrapolation-with-calculator)

Here, A at (x1, y1) and B at (x2, y2) are
two points with a known value. Following
linear interpolation, the value at x should be
y.

Linear interpolation follows Equation 2.1:

y = y1

(
1− x− x1

x2 − x1

)
+y2

(
1− x2 − x

x2 − x1

)
(2.1)

As one can tell, we simply assign weights to
the values at points A and B. Specifically,

8

https://x-engineer.org/undergraduate-engineering/advanced-mathematics/numerical-methods/linear-interpolation-and-extrapolation-with-calculator
https://x-engineer.org/undergraduate-engineering/advanced-mathematics/numerical-methods/linear-interpolation-and-extrapolation-with-calculator
https://x-engineer.org/undergraduate-engineering/advanced-mathematics/numerical-methods/linear-interpolation-and-extrapolation-with-calculator
https://x-engineer.org/undergraduate-engineering/advanced-mathematics/numerical-methods/linear-interpolation-and-extrapolation-with-calculator

the weight of point A will be determined by
1− x−x1

x2−x1 , which is the distance on the x-axis
from P to B, scaled down to a value in [0, 1].
Similarly, the weight of point B will be deter-
mined by 1− x2−x

x2−x1 , which is the distance on
the x-axis from A to P , also scaled down to a
value in [0, 1].

2.4.2 Navier-Stokes based

Finally, let us discuss the inpainting method by
Bertalmio et al. (2001), based on the Navier-
Stokes equations. The Navier-Stokes equations
govern incompressible Newtonian fluids. Be-
cause of this, we suspect that an inpainting
method based on these equations should lead
to a fluid transition between known pixel val-
ues and inpainted values.

As an example, see Figure 2.4, where four
images have been filled with words in an at-
tempt to showcase Navier-Stokes inpainting.

Figure 2.4: Four images where the lettering
is removed by the NS inpainting algorithm.
(Retrieved from Bertalmio et al. (2001))

As one can tell, the algorithm did an im-
pressive job at reconstructing these images.
This reassures us that this inpainting method
will be a good choice of advanced inpainting
algorithm.

The exact mathematics behind this algo-
rithm are far beyond the scope of this thesis.
However, we will describe the algorithm, fol-
lowing the OpenCV page2, to give a clear idea
of the parameters that the algorithm requires
and how the algorithm reconstructs an image.

The algorithm accepts an image, in the
form of a Mat3 object of floats, a mask, in the
form of a Mat object of booleans, an empty
Mat object, which will be filled with the out-
put and an integer radius, which describes the
radius of the disk which is used to set up a
stream function, as described by Bertalmio
et al. (2001).

By combining the descriptions in Bertalmio
et al. (2001) and the OpenCV documentation
page, we can explain the algorithm as follows:

The Navier-Stokes algorithm utilises par-
tial differential equations. It first travels along
the edges of an area that has yet to be in-
painted. Here, methods from fluid dynam-
ics are used to match gradient vectors at the
boundaries of this region. Additionally, the
isophotes are continued. Isophotes are de-
fined as follows, by Patrikalakis et al. (2009):
”Isophotes are curves of constant light inten-
sity on a surface”. Once they are obtained,
the removed pixels are filled in to minimise the
variance in that area.

2.5 Starnet++

Now that we have discussed the research that
we will be basing our research on, we can in-
troduce Starnet++4.

Starnet++ is an application, developed by
Nikita Misiura. This application applies deep
neural networks to remove stars from an astro-
nomical image. We will not dive into the exact
workings of this application in this thesis, as
this would require us to give detailed explana-
tions of neural networks, which is beyond the

2https://docs.opencv.org/4.5.2/df/d3d/tutoria

l py inpainting.html
3https://docs.opencv.org/4.5.2/d3/d63/classcv

1 1Mat.html
4https://github.com/nekitmm/starnet

9

https://docs.opencv.org/4.5.2/df/d3d/tutorial_py_inpainting.html
https://docs.opencv.org/4.5.2/df/d3d/tutorial_py_inpainting.html
https://docs.opencv.org/4.5.2/d3/d63/classcv_1_1Mat.html
https://docs.opencv.org/4.5.2/d3/d63/classcv_1_1Mat.html
https://github.com/nekitmm/starnet

scope of this thesis. However, readers with a
background in deep learning are recommended
to view the GitHub page in the footnotes, as
the application is documented well, with refer-
ences to other interesting papers.

Let us view the results Starnet++ achieves.
As Starnet++ does not allow for the reading
of 32 bit FITS images, we will be using a
different image to the one we will use to test
our application. The image that was used can
be viewed in Figure 2.5.

Figure 2.5: The input image for Starnet++.
(Retrieved from the Starnet++ documenta-
tion)

The associated output image can be seen
in Figure 2.5.

Figure 2.6: The output (starless) image for
Starnet++. (Retrieved from the Starnet++
documentation)

It is clear that these results are quite im-
pressive. However, there are a few downsides
to a deep learning approach such as this.

First, we are restricted to 16 bits per chan-
nel TIF images. This means we must first
stretch our 32 bits per channel images, which

would result in a noticeable loss of detail.
Additionally, the execution time is quite

high and will continue to grow quickly, as the
size of the image increases. For example, on our
local machine, Starnet++ ran for 103 seconds,
for an 1048x712 image, which leads to a size of
approximately 0.75 megapixels (MP). One can
imagine how long the execution time would be
for an astronomical image such as the one in
Figure 3.1, which is approximately 28 times
larger.

These execution times are based on a ma-
chine with the following processor:
Intel© Celeron© CPU B800 @ 1.50GHz × 2

We believe our implementation could im-
prove on these two downsides. Let us now
move into discussing our implementation. Af-
terwards, in Section 5, we will compare our
application to Starnet++.

3 Implementation

The detection and subsequent removal of stars
in an image can be reduced to the following
five steps:

• Pre-processing

• Building a MaxTree

• Detecting objects

• Filtering stars

• Post-processing

3.1 Design choices

As was described in the introduction, one of
the issues with the existing tools that are ca-
pable of detecting and removing stars, is that
they take a long time to run. To combat this,
I choose to write all of the code for this project
in C++. C++ is known for being one of
the fastest available languages (Tamimi, 2020).
While C++ does not have as many built-in
functionalities and easily accessible libraries as
Python, I believe this is a sacrifice that would
benefit the final product.

The final product can be found on Github 5

5https://github.com/Sander-Zeeman/StarRemoval

10

https://github.com/Sander-Zeeman/StarRemoval

3.2 Used dataset

A collection of images was made available by
the first supervisor. This collection contains six
FITS images, one JPG image and one TIFF
image. Each of these images have a size of
approximately 20 MP.

In figure 3.1, an example of one of these
images can be seen. This images has the fol-
lowing dimensions: 5621x3718. This leads us
to an image size of nearly 21 MP.

3.3 Reading and writing images

Currently, we only allow for greyscale FITS
images to be processed. A simple future addi-
tion would be to allow for other file formats
and/or multiple channels per image. Due to
time constraints, this will not be considered in
this thesis.

CFITSIO 6 is a library, developed by
NASA, that allows the processing of FITS files.
This library is responsible for reading the data
from a FITS file and transforming it into an
array of floats. In addition to this array, we
will also store the width, height and total size
of the image.

Additionally, this library will be used to
write our processed image to a FITS file, as to
remain consistent.

3.4 Pre-processing

Astronomical images tend to contain a lot of
background noise. Because of this, it is impor-
tant to perform pre-processing on the input
images.

Closely following the algorithm described
by (Teeninga et al., 2013), while referencing
the MTObjects repository, I have implemented
a function that will search the image for flat
tiles.

Let the width and height of a flat tile be a
power of 2, as this allows us to quickly find a
suitable size for the given image. The starting
size will be 26 = 64. I check whether any
flat tiles exist with a technique that will be
discussed shortly. If any exist, we double the
width and height of our tile and once again
check whether any flat tiles exist. This process
continues until no more flat tiles can be found,

6https://heasarc.gsfc.nasa.gov/fitsio/

or the maximum size is reached, which is set
to 27 = 128. If no flat tiles were found in
the first check, the operation is reversed. This
means the size is then divided by 2 until either
no more flat tiles are found, or the minimum
size is reached, which is set to 24 = 16. The
last checked size for which at least one flat
tile existed is then returned. This results in
the largest size for which at least one flat tile
exists, let us call this size n.

We can now divide our image into tiles of
size n×n and determine whether they are flat
tiles. We decide whether a tile is a flat tile
based on the following criteria:

• The tile does not exceed the image
boundaries

• The sum of all pixels in the tile are
greater than 10−6

• The tile is considered a normal
distribution by the D’Agostino K-squared
test

• The means of the top and bottom half
and left and right half are considered
equal by a T-test

Checking whether the tile exceeds image
boundaries is trivial, we simply check whether
the bottom right pixel exceeds either the height
or the width of the image. There is no need to
check the top left, as we start here and only
move right and down. The boundaries are
checked as to simplify the process of determin-
ing the flatness of tiles. Any tiles that exceed
the boundaries are ignored. This may lead to
slight inaccuracies, however, these are barely
noticable.

The sum of pixels is equally as trivial. We
work with greyscale images, so we simply sum
the values of all pixels in the tile. If this sum
does not exceed 10−6, this tile is fully black and
likely a result of faulty measurements, rather
than actual data.

For the next two sections, we have to in-
troduce the reject rates that were used. If the
resulting p value of either test is lower than
the corresponding reject rate, we have to reject
our null hypothesis: “The values in this tile fol-
low a normal distribution”. This would imply
that the current tile is not flat. Closely follow-
ing MTObjects, we set the rejection rates as

11

https://heasarc.gsfc.nasa.gov/fitsio/

Figure 3.1: The image we will be testing on in our thesis

follows:

reject rate1 = 1−
√

0.95

reject rate2 = 1− 4
√

0.95

Next, we perform a more interesting oper-
ation. We check whether the tile follows a nor-
mal distribution. The D’Agostino K-Squared
test (D’Agostino et al., 1990) uses the skew-
ness and the kurtosis of the distribution of a
tile to determine whether it can be considered
a normal distribution.

We extract the p-value of this operation by
setting up a χ2 distribution with 2 degrees
of freedom. From here, the p-value is the
probability that a score higher or equal to
our score would occur in a normal distribution.
We then check the resulting p-value against
reject rate1. If the p-value is greater, we can
accept out null hypothesis, other wise, we will
have to reject it.

If the data in this tile does not follow a
normal distribution, it is very likely that this
tile contains more than just background noise.
Therefore, we can skip this tile if this is the
case.

Finally, we wish to compare the mean of
the left and right halves of the image, as well
as the mean of the top and bottom halves of
the image. If there is a statistically signifi-
cant difference between the two means, this
tile is likely not merely background noise and
we can conclude this is not a flat tile. We
use a T-test to decide whether the two means
have a statistically significant difference. We
extract the p-value of this operation by set-
ting up a students t distribution with n ∗n− 2
degrees of freedom. From here, the p-value
is the probability that a score would end up
as far or further into either tail side of the
distribution. Once again, we check the result-
ing p-value against reject rate2 and accept or
reject accordingly.

After finding these areas, the mean, vari-
ance and gain will be calculated. The mean
will be subtracted from the entire image, as
to remove a large amount of background noise.
The variance and gain are stored for later use
in our significance test. Because the amount
that is subtracted from the image is based on
the average background value, this method will
work on all images where we are able to find

12

flat tiles.

3.5 Building a MaxTree

After pre-processing the data, we are now
ready to start building a MaxTree. Follow-
ing (Wilkinson, 2011). We will start by finding
the least bright pixel in our image, which is a
trivial exercise.

We will insert this pixel into a heap. From
here, we will enter a loop until the heap is
empty. We first add the pixels above, below
and to the sides of the pixel in the top of the
heap, to the heap, given that these pixels have
not entered the heap before. If any of these
pixels have a higher value than the one at the
top of the heap, we move up as many layers
as needed, as to always remain on the highest
known level. If any adjacent pixels have the
same value, we merge them into a single node.

By the end of this loop, it is possible that
the largest pixel in the heap is now on a lower
layer than where we started. In this case, we
descend to the lower layer, so we can continue
our loop.

By the end of our loop, we link any loose
nodes to the node below it, this will lead to a
fully connected array of nodes.

3.6 Star Detection

We have now built a MaxTree structure, how-
ever, we can not infer a lot from this structure
alone. We need to filter these nodes, such that
we are left with only the nodes that represent
stars. First, we will implement faint object de-
tection, as described in (Teeninga et al., 2015).
Afterwards, we will have a list of objects, which
we will filter on attributes that are specific to
star-like structures.

3.6.1 Determining the relevant indices

Currently, we have as many nodes as there are
pixels in our image. It is easy to see that this
is far more than we will actually need. As was
stated in section 3.5, nodes are often merged
into a single node.

However, these merged nodes are still pre-
sent in the structure. Each node points to
its parent, which is either the node it was
merged with, or the main node of the layer

below. Therefore, we can get rid of a lot of
nodes by only keeping level roots and the nodes
whose parent has a different pixel value from
themselves.

Additionally, common sense tells us the
least bright node in the image will never be an
object, therefore the root of the structure is
also ignored.

All remaining nodes are sorted from least
bright to brightest, using a heapsort, and re-
versing it afterwards. We sort the data this
way, as we already had access to a heap that
can handle data of the Pixel class.

3.6.2 Significance testing

After reducing the size of our list of nodes by a
large amount, we want to filter the nodes that
are not significant. In order to do this, we run
the significance test as described by (Teeninga
et al., 2013). Our implementation is directly
based on the implementation included in MTO-
bjects.

This significance test is based on the ”power”
of a peak components. The power of a compo-
nent P is described by the following equation:
(Teeninga et al. (2013))

power(P) =
∑
x∈P

(f(x)− f(parent(P)))2

where function f returns the grey level of a
pixel x.

Whether a peak component is caused by
noise or by a significant object, is decided by
the number of degrees of freedom of the χ2

distribution of f2(x)
σ2
B

for x in P . If the distri-

bution has 1 degree of freedom, P is likely due
to noise. Otherwise, the number of degrees of
freedom describes the significance level of this
node. This significance level is later used in
the object detection. Please see the original
paper by (Teeninga et al., 2013) for further
detail.

After each node that we classify as signif-
icant, we update its main branches for later
use in the object detection. What this means
is that, when the closest ancestor of a node
already has a significant descendent, the area
of this descendent is compared to the area of
the current node. The node with the larger

13

area will then be the the node in the main
branch of the ancestor. If the ancestor does
not yet have a significant descendent, we insert
the current node into its main branch.

3.6.3 General object detection

Now that we have decided which nodes are
significant, we must find whether any nodes
form a single object together. This is easily
done by checking the parent of each node.

If the parent of the node is also a significant
node, we know the current node is a part of
the larger parent structure. Therefore, we can
mark any significant node whose parent is not
significant, as an object.

Additionally, we must account for nested
objects, as one can imagine the scenario in
which a star covers another celestial object that
would be deemed significant. These object are
caught by the main branches we introduced
in the previous section, where we discussed
significance testing (section 3.6.2). If the main
branch of the parent of this node does not point
to this node, we know this object is nested on
the object below. Therefore, we know this is a
separate object and set it as such.

3.6.4 Star filtering

Now, we have identified all objects within our
image. Let us move into differentiating stars
from other objects. First, we will remember
the attributes of a star, that made us want to
remove them in the first place. Stars are bright
point sources, which means the highest pixel
value in a star is likely to be high. Additionally,
stars are quite small, and there are many of
them. Given these attributes, brightness and
area, we can tell we need a measure of how
dense an object is. A natural solution is the
following:

Let us define the highest pixel value in an
object as p, the pixel value of the lowest layer
as b and the area of the object as a. A test
which determines whether an object is a star
could have the format described in Formula
3.1

p− b
a

> C (3.1)

Where C is some constant that would differ
from image to image.

It is possible for this test to miss some
larger stars, so let us also threshold the objects,
such that any object with a highest pixel value
greater than M would also be classified as a
star, as described by Formula 3.2.

p > M (3.2)

Finally, this addition is likely to include
some larger objects with high peak values as
well, so we will conclude by setting a maximum
area A, which will have to be adjusted for a
new image, as in Formula 3.3

a < A (3.3)

This leaves us with the system for star
detection that is described in Equation 3.4.(p− b

a
> C ∨ p > M

)
∧ a < A (3.4)

The A, C andM parameters will have to be
tuned for a specific image in the current state
of the application. Potential improvements to
this method will be discussed in Section 7.

At this time, for the example image, given
in Figure 3.1, the chosen parameters are:

A = 2000

C = 0.3 ∗ 10−4

M = 0.8

Now, we can mark all objects according to
the result of this test. If the object is a star,
all pixels that are a part of the object will be
marked with the index of the root node of the
star, if the object is not a star, all related pixels
are marked with a negative value, such that we
know to ignore it. This marking process will
happen in a separate array, the ’mask’, which
we will use during Section 3.8.

3.7 Removing stars

After marking all nodes that specify stars, we
want to return from our MaxTree interpreta-
tion of the data, to the image interpretation.
Therefore, we create a mask of our original
image. Every pixel that is not in any way a
part of a star, is given a negative value, which
tells us we can safely ignore this pixel when
we get to removing the stars. Every pixel that
is a part of a star, will be given the index

14

of the main node of this star. It would have
been sufficient to use a boolean mask, where
we only set the pixels that are part of a star
to true. However, the decision to include this
additional information was made to simplify
future additions to this program, which might
need to tell which pixels belong to separate
stars.

From here, it would be easy to simply set
all pixels that are part of a star to 0. However,
while this would achieve our goal of removing
stars from an image, it is not very pleasant to
look at, as well as removing a large amount
of context from the image. Because we know
exactly where stars were located, we are able
to resolve this issue through post-processing.

3.8 Post-processing

In the Related Work section (section 2.4), we
introduced multiple image inpainting
techniques. Next, we will discuss the tech-
niques and how they integrate in our project.

3.8.1 Hierarchical inpainting

As mentioned before, the MaxTree data struc-
ture allows us to know the pixel value of the
layers below an object. So a quick improve-
ment to setting all star pixels to 0, would be to
set them to the value of the lowest layer of the
star instead. Because every pixel that should
be inpainted is marked with the index of the
significant node of this object, we can access
the main node of the object from any pixel.
Therefore, we can easily access the value of the
lowest layer of this object from any pixel. Fi-
nally, we must remember that it is possible for
stars to be nested in larger stars, in this case,
we must take the lowest layer of the lowest star
instead.

3.8.2 Linear interpolation

In order to perform linear interpolation, we
require to know a pixel value, which has not
been removed, on all sides of each removed
pixels, as well as the distance to it. Through
our mask, we can find the pixels that have not
been removed quite easily. If we were to hit
the boundaries of the image, we simply take
the distance as the distance to the edge, while
taking 0 as our value, otherwise, we take the

value that this pixel had in our original image.
We interpolate a value for both the row and
column, as to make the result less dependant
on which axis contains more information, then
take the average of these as our new value.

3.8.3 Navier-Stokes based

As for the Navier-Stokes based inpainting me-
thod, we noticed the OpenCV7 library, con-
tained an implementation8 of this algorithm.

After supplying this algorithm with the
image, the mask and a radius, it returned an
inpainted image. We selected a radius of 5, as
this should give the algorithm a clear idea of
the area surrounding a star.

Let us now move on to highlighting the
results of our research.

4 Results

We have to note a few things before getting
into our results.

First, while the images were originally, as
one would expect, mainly black, with objects
being white. We chose to invert the colours
of the images, as black objects on a white
background are easier to notice that white
objects on a black background.

As can be seen in Figure 4.1, the full-sized
images can get quite small in a two-column
format, therefore, full sized copies will be in-
cluded in Appendix A.

Figure 4.1: The original image. (See also
the uninverted, unstretched image in Figure
3.1)

7https://opencv.org/
8https://docs.opencv.org/4.5.2/d7/d8b/group p

hoto inpaint.html

15

https://opencv.org/
https://docs.opencv.org/4.5.2/d7/d8b/group__photo__inpaint.html
https://docs.opencv.org/4.5.2/d7/d8b/group__photo__inpaint.html

Additionally, showing the results by only
removing the stars from our original image
does not do the results justice. In Section 3.4,
we described how the background noise was
removed from our images. Instead of showing
the original image, we will use the image with
its background noise removed, as this makes
the results easier to interpret. Additionally,
the inpainting can have some strange effects on
the noisy images, as the pieces of background
that remain after background removal are often
considered stars. This has interesting effects
when trying to rebuild a noisy image from the
MaxTree of a noiseless image. These results
are not representative of the effectiveness of
our application, yet the results will be added
to give an idea of the described issue. These
full noisy images will be included in Appendix
B.

In Figure 4.2, the full image, where the
background has been removed, can be seen.

Figure 4.2: The example image with its
background noise removed and the zoomed
area marked.

As one can imagine, the full effects of in-
painting can hardly be seen in an image of this
size. Therefore, we will also be including an
800x800 cutout of a specific section of each
image. The zoomed area has been marked in
Figure 4.2 with a red box. The zoomed version
of Figure 4.2 can be seen in Figure 4.3

You will find that, while the results are
all given in this section, they will not yet be
analyzed. We will save this process for the
discussion in Section 5.

Note that contrast stretching was manually
performed on these images where possible, for
the sake of the reader. After all, images with
all pixel values being in the range [0, 0.1] can

Figure 4.3: The zoomed section of Figure
4.2.

be quite difficult to analyze.
Finally, let us mention the average exe-

cution times of each section, besides the post-
processing methods. (These will be discussed n
the respective sections) Note the star detection
is split into multiple subsections. Additionally,
some input preparation happens in between
sections, hence the higher total time than the
sum of all sections.

As a final remark, these execution times
are based on a machine with the following
processor:
Intel© Celeron© CPU B800 @ 1.50GHz × 2

• Reading an image: 0.22s

• Pre-processing: 1.58s

• Building the MaxTree: 11.98s

• Star detection: 19.67s

– Finding relevant indices: 10.36s

– Finding significant nodes: 4.30s

– Finding objects: 1.70s

– Finding stars: 1.93s

– Marking IDs: 1.38s

• Writing an image: 0.19s

• Writing a zoomed image: 0.01s

• Total: 35.21s

16

4.1 No inpainting

Let us start with the easiest post-processing
method: No post-processing at all. The pixels
that represent part of a star will have their
pixel value set to 0. The resulting image can
be seen in Figure 4.4.

Figure 4.4: The image with its stars re-
moved.

As before, the zoomed section can be seen
in Figure 4.5

Figure 4.5: The zoomed section of Figure
4.4.

This process runs in linear time, as we ac-
cess every pixel once. This lead to an execution
time of 0.08s.

4.2 Hierarchy-based inpainting

Next, let us discuss the results with the first
post-processing method that we discussed. (see

Section 3.8.1) The result from setting all pixels
that represent a star, to the value of the lowest
layer of the star, leads us the figure we display
in Figure 4.6.

Figure 4.6: The image, inpainted through
its hierarchical structure.

Once again, the zoomed section of this im-
age can be seen in Figure 4.7.

Figure 4.7: The zoomed section of Figure
4.6.

This process also runs in linear time, as we
access most pixels once, only accessing pixels
again when a star is nested in another star.
Additionally, we must read an extra value from
memory for each pixel, instead of setting each
pixel to a constant. This leads to an execution
time of 0.19s.

17

4.3 Linear interpolation

Let us move on to the first post-processing
techniques which uses surrounding pixel values
to fill in the removed sections. (see Section
3.8.2) Applying linear interpolation to estimate
the missing pixel values produces the image
shown in Figure 4.8.

Figure 4.8: The image, inpainted through
linear interpolation.

Once more, the zoomed section of this im-
age can be seen in Figure 4.9.

Figure 4.9: The zoomed section of Figure
4.8.

In a worst-case scenario, interpolation takes

O((w + h) ∗ n) (4.1)

where w is the width, h is the height and n is
the size of the image. This is still considered
linear time. This lead to an execution time of
0.79s.

4.4 Navier-Stokes based inpainting

Next, we will showcase the results of our final
inpainting method. The Navier-Stokes based
inpainting method was described in Section
3.8.3.

Unfortunately, we found that the Navier-
Stokes inpainting method could not be com-
pleted in a reasonable amount of time. Details
of this will be discussed in the Section 5.

We found this method could run in rea-
sonable time on the smaller subsection of the
image that we have been displaying in former
sections. These results can be seen in Figure
4.10.

Figure 4.10: Navier-Stokes inpainting ap-
plied on a subsection of our image.

This subsection of the image is 800x800
in size. The execution time of this inpainting
method was 35.16s. From this, we can make
an estimate of the execution time of the full
5621x3718 image. We make an estimate, as
the program was unable to finish execution in
a reasonable amount of time due to the large
image size. This will become clear from the
estimated execution time.

We know a 800x800 section led to an execu-
tion time of approximately 35 seconds. As this
algorithm aims to fill in the stars, using only
the closely surrounding pixels, we can estimate
a minimum execution time by assuming the
execution time will increase linearly, as filled

18

in stars will generally not be revisited.

5621 ∗ 3718

800 ∗ 800
≈ 33

Therefore, the minimum execution time on the
full image would be atleast 33 times larger
than the execution time we noted from the
800x800 subsection. This leads us to a mini-
mum execution time of 35 ∗ 33 = 1155 seconds,
or 19 minutes and 15 seconds. Note that this
estimate is based on the assumption that the
execution time grows linearly based on image
size alone, this means the actual execution
time may be even larger.

Now, we have shown all the relevant results
that we obtained. In the upcoming section,
these results will be discussed and a compari-
son with Starnet++ (as described in Section
2.5) will be made.

5 Discussion

Before discussing the inpainting, let us discuss
the effectiveness of our star removal.

5.1 Star Removal

In Figures 4.4 and 4.5, we see the images that
results from removing all detected stars. By
comparing these figures to Figures 4.2 and
4.3, one can clearly tell that a portion of stars
have been detected and subsequently removed.
However, it becomes very clear that not all
stars are being detected. This is especially
clear in the zoomed in figure.

A large number of stars remained because
the parameters were not properly tuned to this
image. Similarly, one could argue our choice
of compactness measure (Formula 3.4) is sub-
optimal.

From this, we must conclude that our star
removal algorithm does not yet do what we
intended. The algorithm can be improved upon
by means of different attribute filters, such that
few to no stars remain after filtering.

Next, let us discuss the results of the in-
painting methods we explored.

5.2 Inpainting methods

In general, the inpainting section of this project
can be considered a success. As will be de-
scribed in detail in the upcoming subsections,

we have shown that image inpainting is an ef-
fective way of removing any marks left behind
by star removal. However, for this to become
as effective as possible, the star removal itself
must be improved upon.

For every method, we will discuss multiple
factors. Namely, the effectiveness of the in-
painting algorithm in covering up the removal,
the scalability to larger images and any re-
markable downsides.

5.2.1 No inpainting

First, we explored what would happen if we
were to not perform any post-processing what-
soever. The results of this experiment are
visible in Figures 4.4 and 4.5.

One can imagine that these results would
not be a good fit, when our goal was to hide
the holes created by the removal.

While these results will naturally not be a
contender for the optimal inpainting method,
they were very useful in estimating the quality
of our star removal, as we did in Section 5.1.

As this will not be a contender for optimal
inpainting method, there is no need to discuss
its scalability or quality. Both should become
clear from realising the exact operation that
was performed.

5.2.2 Hierarchy-based inpainting

In this inpainting method, we attempted to use
the MaxTree structure to discover the lowest
pixel value that is still part of the star. We
hypothesised that this method would result in
lighter grey areas appearing where stars used
to be. These results can be viewed in Figures
4.6 and 4.7.

We can tell that the obtained results match
our expectations. This method lead to images
that seem more natural than the ”holes” that
appear when merely removing stars. However,
the flat areas are noticeable, especially when
considering the zoomed image in Figure 4.7.

This process was very efficient, running
in linear time, though it has not hidden the
inpainting as well as we would like.

We explored this method as a baseline for
our inpainting algorithms. Our inpainting algo-
rithms should improve on the results obtained
through this hierarchy-based approach. Let

19

us now discuss the results of our first actual
inpainting algorithm.

5.2.3 Linear interpolation

The first inpainting algorithm, from which we
expected good results, applies linear interpo-
lation to estimate the pixel values of all pix-
els that were removed by the star removal.
Linear interpolation is often used to estimate
a smooth transition between two know data
points. There exists no way of knowing what
was actually behind the stars, given only the
image data. Because of this, the best we can
do is estimate how the pixels should be filled
in, according to the surrounding known data
points. The results of applying linear interpo-
lation to our image can be viewed in Figures
4.8 and 4.9.

This algorithm behaves as we would expect.
Removed areas are filled in with with values
similar to the surrounding pixels. While objec-
tive bad inpainting results do exist, good in-
painting can be very subjective when a ground
truth does not exist. We believe the linear
interpolation is a good middle ground between
inpainting quality and execution speed. The
results look “whole” and the removed sections
slightly blend into the surrounding area, unlike
the previously discussed inpainting methods.
Additionally, in the smaller removed sections,
the fact that inpainting occurred is barely no-
ticeable. While this fact is noticeable in the
larger removed sections, we believe these re-
sults are acceptable.

Finally, the execution time is not an issue
for this method, as linear interpolation runs in
linear time.

5.2.4 Navier-Stokes based inpainting

As for our final experiment, we explored the
possibility of applying a Navier-Stokes based
inpainting method to fill up the artifacts that
were created by the star removal process. As
this method is based on fluid dynamics, we
hypothesised that this method would perform
especially well in a noisy environment, as we
should notice quite a fluid transition from low
to high pixel values. The result can be viewed
in Figure 4.10.

We notice that the result looks quite nice,

as we predicted. However, the difference be-
tween linear interpolation and Navier-Stokes
based inpainting is not immediately clear. The
results of these two methods look quite similar,
which goes to show that linear interpolation
would be an acceptable choice for inpainting
algorithm.

However, as was mentioned in Section 4.4,
the execution time of this method is its down-
fall. While this method is very effective at
filling in any artifacts in an image, it is quite
a computationally expensive algorithm. The
algorithm was applied on a 0.64MP subsec-
tion of our image. This lead to an execution
time of approximately 35 seconds. Naturally,
the algorithm never finished on the full 21MP
image. Because of this, the Navier-Stokes in-
painting method cannot be considered for a
final product.

5.3 The effect of contrast stretching

After discussing the effects of the various in-
painting techniques that were applied in this
thesis, we should discuss the how the star re-
moval and inpainting affected the effectiveness
of contrast stretching.

We decided to compare the original image
to the image that was inpainted through lin-
ear interpolation, as this method was deemed
the optimal method from the few methods we
tested. These images can be found in Figures
5.1 and 5.2 respectively.

On both of these images, logarithmic con-
trast stretching, as described in Section 2.1,
was applied.

Figure 5.1: The “pre-removal” image after
applying contrast stretching.

20

Figure 5.2: The “post-removal” image after
applying contrast stretching.

As described in Section 2.1, the goal of log-
arithmic contrast stretching is to enhance the
contrast between the bright and dark sections
of the images. We can tell that the pixel val-
ues in Figure 5.1 tend to blend together; the
distinction between nebulae, stars and back-
ground is not very clear. On the other hand, in
Figure 5.2, even the faint sections of the neb-
ulae are clearly visible, while the background
is nearly fully white. Our original intent with
this research was to decrease the brightness of
the brightest parts of the image, as to allow for
more effective contrast stretching. From these
results, one can tell that the effectiveness of
contrast stretching has indeed improved after
applying our star removal process.

Next, let us move into our final point of
discussion. How did we do in comparison to
the state of the art star removal tool?

5.4 Comparing to Starnet++

Let us remind ourselves of the input and the
result that were discussed in this thesis of both
our application and starnet++. The input
image and the resulting image from starnet++
can be found in Figures 2.5 and 2.6 respectively.
Similarly, our input and resulting image can
be found in Figures 4.1 and 4.8 respectively.

It becomes immediately clear that Starnet++
does not suffer the quality issues that our appli-
cation raised, as discussed in Section 5.1. All
stars were detected and removed accurately by
Starnet++, while our application left a large
number of stars untouched, as well as falsely
identifying multiple background fragments as
stars.

On the other hand, our application does
not suffer from the disadvantages of Starnet++
either, as listed in Section 2.5. We are not lim-
ited to 16 bits per channel images, instead, we
allow for full 32 bits per channel to be pro-
cessed. Furthermore, our code requires min-
imal changes in order to support 64 bits per
channel images. Additionally, as mentioned in
Section 2.5, Starnet++ runs for 103 seconds to
process an image of size 1048x712. In contrast,
our application processes an image that is 28
times larger, in approximately a third of the
time. From this, we conclude that our applica-
tion is far more scalable to larger image sizes
than existing deep learning models.

Therefore, it should be possible to create
a tool that is able to compete with existing
star removal software, if the star detection is
improved by using other attribute filters.

6 Conclusion

The goal of this thesis was to explore the ef-
fectiveness of applying MaxTree-based object
detectors to identify and remove stars from as-
tronomical images. Additionally, we explored
multiple types of image inpainting to fill in
the “holes” that appear as a result of the star
removal.

From our results, we can tell that star detec-
tion through MaxTree-based object detection
has great potential. In its current state, larger
stars and dim stars may be missed. However,
even though our implementation is not ready
to be applied in image processing pipelines,
the effect of contest stretching has greatly im-
proved as a result of our application.

We gained a lot of insight into the effective-
ness of inpainting algorithms from our experi-
ments. As one could expect, inpainting based
on the MaxTree structure leaves some notice-
able flat areas in the image. Furthermore, ad-
vanced methods such as the Navier-Stokes algo-
rithm are not feasible for astronomical images,
due to their astronomically large dimensions.
These dimensions would require any algorithms
to execute in (close to) linear time. Unfortu-
nately, most advanced inpainting algorithms
are not capable of adhering to this restriction.
However, the image that resulted from apply-
ing interpolation had surprisingly similar re-

21

sults to the resulting image after applying the
Navier-Stokes based method. Because of this,
we believe advanced methods may not be nec-
essary to produce acceptable, or even good
results. Additionally, this method leaves areas
that are slightly less flat compared to the re-
sults of the hierarchical inpainting. The flat
areas are still noticeable, however, the linear
interpolation is an improvement over hierarchi-
cal inpainting, as it considers all surrounding
pixel values, rather than only the lowest value.
Therefore, from the four explored methods, we
would recommend linear interpolation.

In Figures 5.1 and 5.2, we can see the mas-
sive difference in how contrast stretching af-
fects our image. It is clear that contrast stretch-
ing has indeed become more effective after star
removal, which tells us this hypothesis was
correct.

Finally, an important goal of this thesis
was to compare our application to Starnet++,
a deep learning based star removal tool.

Starnet++ is more thorough in the detec-
tion of stars than our application. However,
our application has avoided the disadvantages
that Starnet++ brought. Namely, our applica-
tion allows for 32 bits per channel images (and
is easily extendable to 64 bits per channel im-
ages), whereas Starnet++ requires images to
be stretched to 16 bits per channel. Addition-
ally, our application executes much faster than
Starnet++. While Starnet++ runs for 103 sec-
onds to process an image of size 1048x712, our
application is capable of processing an image
of size 5621x3718 in just 35 seconds.

We believe that star removal through con-
nected morphological image processing has
great promise to surpass deep learning meth-
ods. Unlike deep learning methods, connected
morphological image processing easily scales
to large images. Considering astronomical im-
ages can become larger than a terapixel, deep
learning does not seem suitable for use in a
professional image processing pipeline, how-
ever, the methods described in this thesis do
seem suitable.

Finally, we will outline the ways in which
the current state of the software could be im-
proved.

7 Future Work

The future work on this project can be divided
into two categories: “Improving the existing
methods” and “New additions that would ben-
efit this project”.

First, we will list the points of improvement
in the current state of our research.

• Our implementation of the MaxTree is
not yet optimal. Parallel algorithms ex-
ist, which could significantly speed up
the entire program, as flooding the Max-
Tree is currently is nearly a third of the
total execution time.

• The formula in Equation 3.4 is likely sub-
optimal and requires the tuning of three
separate parameters. State of the art
compactness measures could be explored
in future research.

• Ground truth images may be artificially
created, this would allow us to quantify
the results of our inpainting algorithms,
which would allow us to make a definite
recommendation.

• Finally, other inpainting algorithms may
be explored. Consider, for example, qua-
dratic or cubic interpolation, or even a
machine learning method.

Next, we will list any additions that would
benefit the project, that we can think of.

• Implementing FreeImage9 support for
the reading of images from multiple file-
types, such as PNG, TIFF or JPG, into
an array of floats. The rest of the applica-
tion does not depend on the filetype, so
the star removal would work as it should.

• The current equations used to determine
whether an object is a star (Equation
3.4), use constants that can differ greatly
from image to image. An interesting
technique that could be explored, is ap-
plying a clustering algorithm to certain
attributes of an object (area, volume,
power, brightest pixel). A centroid-based
clustering algorithm seems optimal for
this cause, as it will often classify close

9https://freeimage.sourceforge.io/

22

data points in the same way. Specifically
KMeans is promising. This would auto-
mate the tuning process mostly, which
would greatly increase user experience.

• We could further automate the star re-
moval by automatically stretching the
contrast right before saving our output
image.

• Finally, as was mentioned in the discus-
sion and conclusion, our application can
easily be extended to support 64 bits
per channel images. Additionally, as we
currently only support greyscale images,
introducing star removing on multiple
channels would be an interesting addi-
tion. I hypothesise that simply applying
our application on all channels separately
should produce some interesting results,
however, there is no evidence to support
this claim.

It is clear that there are many ways in
which the framework we built can be improved
upon. Considering that the current results
seem promising, yet not ready to be deployed
as a stand-alone application, we believe that
the use of a MaxTree, combined with statisti-
cal attribute filtering, could lead to huge im-
provements in the current state of star removal
software.

References

Anand, A. (2017). Unit 12: Image enhance-
ment and transformation. Retrieved from:
https://www.egyankosh.ac.in/bitstr

eam/123456789/39542/1/Unit-12.pdf.
Accessed: 11.08.2021.

Bertalmio, M., Bertozzi, A., and Sapiro, G.
(2001). Navier-stokes, fluid dynamics, and
image and video inpainting. In Proceedings
of the 2001 IEEE Computer Society Con-
ference on Computer Vision and Pattern
Recognition (CVPR 2001), pages 355–362.

D’Agostino, R. B., Belanger, A., and
D’Agostino Jr., R. B. (1990). A sugges-
tion for using powerful and informative tests
of normality. The American Statistician,
44(4):316–321.

Haigh, C., Chamba, N., Venhola, A., Peletier,
R., Doorenbos, L., Watkins, M., and Wilkin-
son, M. H. F. (2021). Optimising and com-
paring source-extraction tools using objec-
tive segmentation quality criteria. Astron-
omy & astrophysics, 645:A107.

Jones, R. (1999). Connected filtering and seg-
mentation using component trees. Computer
Vision and Image Understanding, 75(3):215–
228.

Library of Congress (2014). Galileo and the
telescope. Retrieved from: https://www.lo
c.gov/collections/finding-our-place-

in-the-cosmos-with-carl-sagan/arti

cles-and-essays/modeling-the-cosmo

s/galileo-and-the-telescope. Accessed:
15.06.2021.

Patrikalakis, N. M., Maekawa, T., and Cho, W.
(2009). 8.1.2.2 isophotes. Retrieved from:
https://web.mit.edu/hyperbook/Patr

ikalakis-Maekawa-Cho/node148.html.
Accessed: 15.06.2021.

Sahidan, S., Mashor, M., Wahab, A., Salleh,
Z., and Ja’afar, H. (2008). Local and global
contrast stretching for color contrast en-
hancement on ziehl-neelsen tissue section
slide images. In 4th Kuala Lumpur Interna-
tional Conference on Biomedical Engineer-
ing (BIOMED 2008), pages 583–586.

Salembier, P., Oliveras, A., and Garrido, L.
(1998). Antiextensive connected operators
for image and sequence processing. IEEE
transactions on image processing, 7(4):555–
570.

Tamimi, N. (2020). How fast is c++ compared
to python? Retrieved from: https://towa
rdsdatascience.com/how-fast-is-c-c

ompared-to-python-978f18f474c7. Ac-
cessed: 15.06.2021.

Teeninga, P., Moschini, U., Trager, S. C., and
Wilkinson, M. H. F. (2013). Bi-variate sta-
tistical attribute filtering: A tool for robust
detection of faint objects. In 11th Inter-
national Conference on Pattern Recognition
and Image Analysis: New Information Tech-
nologies (PRIA-11-2013), pages 746–749.

23

https://www.egyankosh.ac.in/bitstream/123456789/39542/1/Unit-12.pdf
https://www.egyankosh.ac.in/bitstream/123456789/39542/1/Unit-12.pdf
https://www.loc.gov/collections/finding-our-place-in-the-cosmos-with-carl-sagan/articles-and-essays/modeling-the-cosmos/galileo-and-the-telescope
https://www.loc.gov/collections/finding-our-place-in-the-cosmos-with-carl-sagan/articles-and-essays/modeling-the-cosmos/galileo-and-the-telescope
https://www.loc.gov/collections/finding-our-place-in-the-cosmos-with-carl-sagan/articles-and-essays/modeling-the-cosmos/galileo-and-the-telescope
https://www.loc.gov/collections/finding-our-place-in-the-cosmos-with-carl-sagan/articles-and-essays/modeling-the-cosmos/galileo-and-the-telescope
https://www.loc.gov/collections/finding-our-place-in-the-cosmos-with-carl-sagan/articles-and-essays/modeling-the-cosmos/galileo-and-the-telescope
https://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node148.html
https://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node148.html
https://towardsdatascience.com/how-fast-is-c-compared-to-python-978f18f474c7
https://towardsdatascience.com/how-fast-is-c-compared-to-python-978f18f474c7
https://towardsdatascience.com/how-fast-is-c-compared-to-python-978f18f474c7

Teeninga, P., Moschini, U., Trager, S. C., and
Wilkinson, M. H. F. (2015). Improved detec-
tion of feint extended astronomical objects
through statistical attribute filtering. In 12th
International Symposium on Mathematical
Morphology (ISMM 2015), pages 157–168.

Wilkinson, M. H. F. (2011). A fast component-
tree algorithm for high dynamic-range im-
ages and second generation connectivity.
In Proceedings of the 18th IEEE Inter-
national Conference on Image Processing
(ICIP 2011), pages 1021–1024.

24

A

Full sized images

Figure A.1: The inverted image with background noise removed.

Figure A.2: The image with background noise and stars removed.

26

Figure A.3: The image with background noise removed and stars filled in through the
MaxTree structure.

Figure A.4: The image with background noise removed and stars filled in through linear
interpolation.

27

B

Full sized noisy images

Figure B.1: The inverted original image.

Figure B.2: The image with its stars removed.

29

Figure B.3: The image with its stars filled in through the MaxTree structure.

Figure B.4: The image with its stars filled in through linear interpolation.

30

	Introduction
	Related Work
	Contrast stretching
	The MaxTree data structure
	MTObjects
	Image inpainting techniques
	Linear interpolation
	Navier-Stokes based

	Starnet++

	Implementation
	Design choices
	Used dataset
	Reading and writing images
	Pre-processing
	Building a MaxTree
	Star Detection
	Determining the relevant indices
	Significance testing
	General object detection
	Star filtering

	Removing stars
	Post-processing
	Hierarchical inpainting
	Linear interpolation
	Navier-Stokes based

	Results
	No inpainting
	Hierarchy-based inpainting
	Linear interpolation
	Navier-Stokes based inpainting

	Discussion
	Star Removal
	Inpainting methods
	No inpainting
	Hierarchy-based inpainting
	Linear interpolation
	Navier-Stokes based inpainting

	The effect of contrast stretching
	Comparing to Starnet++

	Conclusion
	Future Work
	Bibliography
	Appendix Full sized images
	Appendix Full sized noisy images

