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Chapter 1

Cosmic Voids

The matter distribution at the large scale in the Universe resembles a cosmic web. In this web,
voids - the underdense regions - represent an essential feature. To begin with, they are the
most voluminous components of the cosmic web, occupying between 70% - 95% of the total
volume (van de Weygaert and Platen 2011; Cautun, van de Weygaert, Jones, and Frenk 2014;
P. Ganeshaiah Veena et al. 2019; Hellwing, Cautun, et al. 2021). They span sizes between 20-50
h−1 Mpc and behave as an organising element at the large scale (van de Weygaert 1991; Sheth
and van de Weygaert 2004; Aragon-Calvo and Szalay 2013).

Furthermore, voids provide important clues regarding cosmological scenarios and their pa-
rameters. Such clues may be found in the velocity outflows (Dekel and Rees 1994) and the
redshift space distorsions (Ryden and Melott 1996). The geometry and substructure of voids is
dependent on cosmology, including dark energy (Park and Lee 2007; Platen, van de Weygaert,
and Jones 2008; Bos et al. 2012; Lavaux and Wandelt 2012; Pollina et al. 2016; Verza et al. 2019).
More recently, voids have also been used to constrain the neutrino mass (Villaescusa-Navarro
et al. 2013; Massara et al. 2015; Schuster et al. 2019; Bayer et al. 2021; Kreisch et al. 2021).

In this work, we focus on the fact that voids offer a pristine and ideal environment in which
the formation and evolution of dark matter halos and, subsequently, galaxies can be investigated
(Hahn et al. 2007; Kreckel, Platen, Aragón-Calvo, et al. 2012; Ricciardelli et al. 2014; Metuki,
Libeskind, and Hoffman 2016; Ganeshaiah Veena et al. 2018; Habouzit et al. 2020; Hellwing,
Cautun, et al. 2021).

In this first chapter, we begin by stating the objective of the thesis followed by a short
historical summary of void observations and simulations. Next, we focus on the formation and
evolution of voids and their dynamics. Subsequently, we will show how voids interact with one
another and with neighbouring structures, leading to a void hierarchy. Finally, we show what are
the known effects of the void environment on the development of dark matter halos and galaxies.

1.1 Thesis objective

The main goal of this thesis is to investigate the environmental effects that voids have - through
their underdense interiors - on the properties of dark matter halos. Concretely, we wish to first
describe the void environment - size, shape, density and velocity profiles - and then to identify
halos within voids. Once we have our sample of void halos, we wish to compare their properties
(i.e abundance, halo mass function, spin and shape) with the properties of the overall halo
population. We also investigate how these properties vary as a function of distance from the
void boundaries. The differences that appear between the general halo population and the void
halos should be linked with the properties of the void environment.
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Jad Alexandru Mansour 1.2. Observations and numerical simulations

Figure 1.1: Galaxy distribution in the velocity-declination space. Circled area marks the Bootes
void. Figure from (Kirshner et al. 1987).

To achieve this, we make use of a GADGET-2 simulation on which we apply the Watershed
Void Finder algorithm in order to identify voids. For the identification of halos in the particle
distribution, we use the ROCKSTAR Halo Finder algorithm while for the concrete identification
of void halos, we make use of the convex hull.

1.2 Observations and numerical simulations

Gaps present in the galaxy distribution have been observed ever since the first galaxy surveys
were developed (Chincarini and Rood 1975; Gregory and Thompson 1978; Einasto, Joeveer, and
Saar 1980). Most notably is the discovery (Kirshner et al. 1981; Kirshner et al. 1987) of the
Bootes void: a large, nearly empty region spanning a radius of ≈ 60 Mpc (Fig. 1.1). Following
this discovery, the CfA (de Lapparent, Geller, and Huchra 1986) is the first survey to hint at
the imposing presence that voids have at the large scale structure. Almost 20 years later, the
redshift maps provided by the 2dFGRS and SDSS surveys have cemented the idea that voids
are a fundamental and prominent component of the cosmic web (Colless et al. 2003; Hoyle and
Vogeley 2004; Tegmark et al. 2004). An example map by the SDSS can be seen in Fig. 1.2.
Voids of various sizes and shapes are visibly populating the galaxy distribution. At the time of
this writing, the DESI survey (DESI Collaboration et al. 2016) has released their results which
are expected to drastically increase the number of voids detected.

An indirect way in which voids have been identified is through observations of the peculiar
velocity field in the large scale structure (Faber and Burstein 1988; Dekel 1994; Branchini et al.
1999). This field is a manifestation of matter being pushed from the underdense regions within
voids towards the filaments and clusters situated at the voids boundaries. Remarkably, Tully
et al. 2014 showed that the Local Void, an underdense region covering at least 23 Mpc, has a
significant push on the Local Group. Concretely, they found that the void is responsible for
≈ 41% of the group’s peculiar velocity with respect to the CMB (see Fig. 1.31).

The next step in investigating voids is keeping an account of their number and characteristics
1http://irfu.cea.fr/laniakea
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Figure 1.2: SDSS galaxy distribution map. Each point in the image corresponds to a galaxy.
The dark areas between the galaxies represent voids. Image courtesy: M. Blanton and SDSS.
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Jad Alexandru Mansour 1.3. Formation and Evolution

Figure 1.3: Velocity outflow in the Local Universe. The origin point of the three colored vectors
indicate the location of our galaxy. Figure from (Tully et al. 2014).

through catalogues. Such a catalogue was compiled by Pan et al. 2012 who used the SDSS DR7 in
order to study the distribution and properties of cosmic voids in the local Universe. P. M. Sutter
et al. 2012 have also used a galaxy sample from the SDSS DR7. They applied the Watershed
transform in order to identify voids which were subsequently compiled in a void catalogue. The
largest, most up to date catalogue was developed by Nadathur 2016 and included a number of
8956 voids. The authors used the ZOBOV algorithm (Neyrinck 2008) to identify the voids in
the galaxy distribution.

Numerical simulations also managed to recreate the existence of voids in the cosmic web.
For example, Regos and Geller 1991 used PM N-body simulations to study spherical top hat
perturbations of different sizes. They found that voids collide with one another, leading to
large scale velocity flows. van de Weygaert and van Kampen 1993 studied the development of
underdensities in different power spectra scenarios. They focused on the structure and dynamics
of voids, being the first to hint at the existence of a void hierarchy. The study of Sheth and
van de Weygaert 2004 has extended the excursion set formalism and applied it to voids in order
to study this hierarchy. Finally, as a consequence of the increase in computational resources,
the possibility of investigating the substructure within voids became a reality (Goldberg and
Vogeley 2004; Colberg, Sheth, et al. 2005; Aragon-Calvo and Szalay 2013; Wojtak, Powell, and
Abel 2016; Kreisch et al. 2021).

1.3 Formation and Evolution

We have seen that voids represent a real and vital component of the cosmic web: they were
observed in the galaxy distribution and recreated in numerical simulations. In this section, we
will explain the basic models that account for their properties.

The key element in understanding the characteristics of voids is that they originate from
underdensities present in the primordial density field. Having lower densities than the average,
they will experience a repulsive gravity effect. In other words, because the surrounding regions
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1.4. Void Dynamics Jad Alexandru Mansour

have a higher density they will attract more matter. As a consequence, voids will undergo
super-Hubble flow expansion (i.e they will expand faster than the Universe). The effect of this
expansion is to push the existing neighbouring matter (clusters, filaments and walls) towards
the boundary of the voids. The evacuation of matter will leave the void more empty as time
progresses. In the case of an ideal, isolated void the density value will reach δ = -1. In Fig. 1.4,
one can see how a simulated void in ΛCDM scenario shows these characteristics.

The first theoretical models that tried to explain the formation of voids assumed that they
evolve either from isolated, spherical (Hoffman and Shaham 1982) or ellipsoidal (Icke 1984)
underdensities. In reality, voids can not be treated as isolated systems since their expansion
causes them to merge with their neighbours or to interract with the surrounding structure.

Despite of this, some basic characteristics can be inferred from the simple model of an isolated,
spherical void. For example, in the left panel of Fig. 1.5, we see the density profile evolution of a
tophat void. One can notice the characteristics previously mentioned: the void expands causing
the ridge to move at larger radii; at the same time, matter is being evacuated which causes the
density to decrease, leaving the void more empty.

The formation of a ridge around the expanding void is also an important aspect. This points
to a gradient in expansion: the inner layers close to the void boundary expand faster than the
outer layers (repulsive gravity is stronger in the interior of the void than on the outside). As
a consequence, the event of shellcrossing occurs: at some point during the evolution, the inner
layers overtake the outer layers.

Bertschinger 1985a has proved that once voids reach the stage of shellcrossing, they will
experience self-similar expansion. Once this happens, the rate of expansion decreases with respect
to the linear expansion experienced in the earlier stages. Furthermore, Blumenthal et al. 1992
showed that in a matter dominated universe, shellcrossing occurs when a density depression
reaches a lineary extrapolated density value of δsc = −2.81. At this time, a spherical void will
have expanded by a value of 1.72 (corresponding to a nonlinear density value of δ ≈ −0.8).

1.4 Void Dynamics

We mentioned previously that voids act as an organising element in the cosmic web. This role
is manifested through the outflow of matter from the void’s interior (recall Fig. 1.3).

The dynamics of voids is strongly dependent on the external tidal field generated by neigh-
bouring structures. In addition, voids are limited to a density δ = −1, which limits their
gravitational influence. To analyse this aspect in a quantitative manner, we start by looking at
the predictions made by the linear perturbation theory.

In this framework, the outflow velocity inside a void increases linearly with the distance from
the void center. The linear increase occurs due to the void expansion which makes them become
super-Hubble bubbles. This is given by:

vlin = −1

3
H0f(Ω0)r∆(r) (1.1)

where f(Ω0) ≈ Ωγ
0 is the velocity function (Peebles 1980) . ∆(r) is the density contrast

within radius r and is given by:

∆(r) =
3

r3

∫ r

0
r′2δ(r′)dr′ (1.2)
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Figure 1.4: Simulated void in ΛCDM scenario across 6 time steps. Starting from the top left
towards bottom right, the 6 times steps are: a=0.05, 0.15, 0.35, 0.55, 0.75 and 1. The void
expands slowly and pushes the matter content towards its boundary. Figure from Platen 2009.
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1.5. Tidal field influence on voids Jad Alexandru Mansour

Figure 1.5: Left : Density profile evolution of a tophat void. The time steps show how the density
evolves into a "bucket-shape" profile. Right : Same situation, except the spherical void evolves
from an angular averaged underdensity embedded in a CDM Gaussian random field. In both
cases, the initial density deficit is ∆ = - 10 and the initial radius is R0 = 5 h−1 Mpc. Both voids
show the process of expansion and evacuation of matter from the center and its accumulation
towards the boundary, where it forms steep ridges. Figure from Sheth and van de Weygaert 2004

A further step in understanding the void dynamics is to look at how the velocity behaves in
the non-linear regime. This is where the spherical outflow model comes into play. In this model,
each shell of a spherically symmetric density perturbation is treated as an individual Friedmann
universe. Then, the peculiar velocity is given by (Schechter 1980) :

vsph = H0r

[
3

2

sinh Φr(sinh Φr − Φr)

(cosh Φr − 1)2
− 1

]
(1.3)

where Φr is the development angle. van de Weygaert and van Kampen 1993 showed how the
radial velocity profile inside a simulated void deviates from the linear and spherical models (left
panel of Fig. 1.6). They found that the radial velocity increases linearly from the center up to a
distance of ≈ 10 Mpc and reaches a maximum at about ≈ 18 Mpc. The predicted linear radial
velocity vlin deviates by about 20−25%. By comparison, the spherical model vsph approximates
well the radial velocity profile up to a distance of 10 Mpc. Further out, the radial velocity starts
deviating from the spherical model. This is explained by the increase in density (right panel of
Fig. 1.6) which causes disturbances in the velocity field. The corresponding density profile is
mostly flat below 15 Mpc, being in agreement with the linear increase of the radial velocity vr.

In Chapter 6 we will make use of Eq. 1.1 and 1.2 in order to see how the voids in our work
deviate from the predictions made by the linear theory. We will also compare the stacked density
profiles for a sample of our voids with the average underdensity ∆(r).

1.5 Tidal field influence on voids

An important factor in the evolution and dynamics of voids is the effect of the tidal field generated
by surrounding structure. The primary characteristics of voids that are affected are their shapes,
mutual allignment and expansion.
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Jad Alexandru Mansour 1.5. Tidal field influence on voids

Figure 1.6: Left: Velocity profiles for a void in λCDM. The solid line shows the radial velocity
of the void. A comparison is made with the radial velocity inferred from the linear theory vlin
(dotted line) and with the spherical model vsph (dashed line). Right : The corresponding radial
density profile together with the average underdensity within a radius r, ∆(r) (Eq. 1.2). Figure
from (van de Weygaert and van Kampen 1993).

To understand how the tidal field plays its role in the void evolution, we discuss the homo-
geneous underdense ellipsoidal model (Icke 1984). The main assumption of this model is that
voids can be represented by a triaxially symmetric ellipsoid with a uniform interior density. If
external tidal shear is present then the gravitational acceleration induced is given by:

d2Rm
dt2

= −4πGρu(t)

[
1 + δ

3
+

1

2
(αm −

2

3
δ)

]
Rm − τmRm + ΛRm (1.4)

where Rm is the scale factor corresponding to one of the ellipsoid’s axes, τm reflects the
influence of the tidal field shear tensor and Λ is the cosmological constant. The factors αm are
the coefficients of the ellipsoid given by:

αm = R1(t)R3(t)R3(t)

∫ ∞
0

dλ

(R2
m(t) + λ)

∏3
n=1(R2

n(t) + λ)1/2
(1.5)

We know that voids can never achieve densities δ > 1. However, the tidal shear influence,
τm, does not have any upper llimits. As such, tidal shears will deform the void, making it more
anisotropic. Strong tidal shears may even lead to the collapse of voids, feature discussed more
in the void hierarchy section.

Void shapes and dark energy
Isolated aspherical underdensities will tend to become more spherical over time (Icke 1984).

This happens because the gravitational acceleration is stronger across the shorter axis of the
ellipsoid. As a consequence, the anisotropies inside voids will diminish (van de Weygaert and
van Kampen 1993).

However, voids will never reach perfect sphericity. Platen, van de Weygaert, and Jones 2008
showed that voids in a ΛCDM simulation are quite prolate, with the axes ratios of the ellipsoid
being c:b:a ≈ 0.5:0.7:1 (see also our results in Chapter 4). We have already seen that the major
factor responsible for this is the tidal influence. A second reason proposed by the authors is that
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1.6. Void hierarchy Jad Alexandru Mansour

as voids expand, they will encounter other structures in the cosmic web which will prohibit them
to reach perfect sphericity.

Besides the effect of the tidal field and of the surrounding structure, the void shapes are also
affected by the presence of dark energy. Numerous studies have been dedicated to the study
of voids as cosmic probes, that would help us gain a better understanding of dark energy. For
example, Park and Lee 2007 were the first to derive an analytical model of the voids ellipticity
distribution, which was showed to be dependent on the cosmological parameters. As a follow
up, Bos et al. 2012 studied the void ellipticity using various N-body simulations in different dark
energy scenarios. They confirmed the sensitivity of the voids shapes in dark matter simulation.
However, they signalised that this sensitivity may not be easily detected in voids present in the
galaxy distribution. Furthermore, Verza et al. 2019 confirmed the dependence of voids on dark
energy using simulated halo catalogues.

An important contribution was brought by Lavaux and Wandelt 2012 who used the shape
of voids from redshift surveys in order to study the expansion of the Universe. To do this, the
authors used the fact that the shape of voids can be averaged out as being spherical. Then, the
stretched shape that voids show in redshift surveys is a consequence of the Hubble expansion
which, in turn, is dependent on cosmic parameters (dark energy in particular).

1.6 Void hierarchy

We have seen that the basic characteristics of voids can be inferred from the simple models of
an isolated, spherical (or ellipsoidal) void. However, in reality voids are not isolated and the
interaction with their peers and the surrounding structure can lead to a more complex evolution.
This interaction leads to a hierarchical evolution of voids whose main aspects are revealed in the
voids substructure. The development of voids has been treated by Sheth and van de Weygaert
2004 in the context of the gravitational instability scenario. They proposed that two distinct
processes lie at the root of the hierarchical evolution: void merging and void collapse.

In the first process, small voids embedded in a large underdense region will expand and
merge together. As they do, the matter in between them will get squeezed in thin walls (or
filaments). Eventually, the structure formed within the expanding voids will be evacuated along
the boundary of the resultant void (top panel of Fig. 1.7).

In the second process, small voids embedded in collapsing overdense regions will be squeezed
out of existence (bottom panel of Fig. 1.7). As the figure shows, the voids usually are situated at
the boundary of the overdensity which will slowly collapse and cause their disappearance. This
process is usually coupled with the effect of surrounding tidal field. Furthermore, the process is
responsible for the cutoff of voids at smaller sizes (by contrast, the halo population is dominated
by small objects).

In order to model the hierarchical build up of voids, Sheth and van de Weygaert 2004 extended
the excursion set formalism (Press and Schechter 1974; Bond et al. 1991) into a two-barrier
excursion set. In this formalism, the two barriers are associated with the critical density values
necessary for the void collapse and merging processes. We know that in a matter dominated
Universe, an overdensity collapses when the critical value of δo,c = 1.69 is reached. Similarly, a
void forms when the density threshold of shellcrossing δv,c = -2.81 is obtained.

Similar to how the original excursion set formalism takes care of the cloud-in-cloud problem,
the two-barrier excursion set resolves the void-in-void problem: small voids embedded in larger
voids will merge into a larger structure and thus, should no longer be considered.

One can also encounter the situation in which voids are present in larger overdensities: the
void-in-cloud issue. These are the voids that will cease to exist due to the collapsing overdensity,
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Jad Alexandru Mansour 1.6. Void hierarchy

Figure 1.7: The two processes governing the void evolution: void merging (top panels) and void
collapse (bottom panels). Top: Three different time steps (a = 0.1, 0.3, 0.5) illustrating the
merging of smaller voids into a large void with a diameter of ≈ 25 h−1 Mpc. Bottom: Same time
steps, this time the collapse and disappearance of three voids due to the surrounding matter
infall is shown. Figure from Sheth and van de Weygaert 2004.
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1.7. Environmental influence of voids on dark matter halos and galaxiesJad Alexandru Mansour

so they too should no longer be taken into account. The case of a cloud-in-void is not an issue
because overdensities within voids will not be torn apart by the void’s expansion.

1.7 Environmental influence of voids on dark matter halos and
galaxies

Perhaps the most evident link between environment and evolution has been brought forward by
the morphology-density relation (Oemler 1974; Dressler 1980). This relation suggests that the
number of elliptical and lenticular galaxies increases in denser regions. By contrast, irregular and
late-type galaxies tend to populate more the lower density regions. The difference is explained
by processes, such as quenching, tidal stripping or ram pressure (Gunn and Gott 1972) that are
present in denser regions and which would decrease the gas content in galaxies. The efficiency of
these processes in environments such as voids is decreased which causes a more abundant number
of late-type galaxies to be found there.

The low density setting of voids makes them ideal environments for the study of dark matter
halo and, subsequently, galaxy formation. This is reflected in slow merger history and delayed
evolution of galaxies that is not encountered in high density regions. In addition, the void
galaxies provide a test of the ΛCDMmodel which predicts that underdense regions should contain
numerous dark matter halos with lower masses than the average (Peebles 2001). These halos
should be observed in surveys as low luminosity galaxies populating the voids. Instead, the
absence of such observations creates a conundrum. Numerous studies have been dedicated to
observing and determining properties of void galaxies (Grogin and Geller 1999; Grogin and
Geller 2000; Kreckel, Platen, Aragón-Calvo, et al. 2012; Ricciardelli et al. 2014; Beygu et al.
2017; Pandey, Saha, and Pradhan 2021). The main characteristics found are that void galaxies
are late-type disk galaxies with a high star formation rate. They are rich in gas, present low
luminosities and appear bluer than the rest. All these properties are a consequence of the slow
evolution that galaxies experience in voids.

Cosmological simulations have similarly shown that the properties of dark matter halos do
not depend only on mass of the halo but rather depend on the environment as well. For example,
Hahn et al. 2007 used GADGET-2 simulations in order to study how the characteristics of halos,
such as formation redshift, spin and shape, vary with environment. In this case, the cosmic web
was separated in clusters, filaments, sheets and voids based on the eigenvalues of the tidal field
tensor. The authors found that halos with the highest masses in filaments spin faster than halos
with the same masses in clusters. Furthermore, the halos located in voids have been found to
have the lowest median spin values. They also report that the median sphericity (for a particular
mass interval) decreases from denser environments, such as clusters and filaments, up to voids.
A correlation between the halo formation time with environment and mass has also been found.
For a certain mass regime, halos in clusters were more developed than halos in voids, who formed
more recently.

A series of studies (Ganeshaiah Veena et al. 2018; P. Ganeshaiah Veena et al. 2019) which
focused on the alignment of halos with respect to the filaments have also found environmental
dependencies. The analysis was based on the Planck-Millenium simulation (Baugh et al. 2019)
and the environment identification was performed using the NEXUS algorithm (Aragón-Calvo
et al. 2007; Cautun, van de Weygaert, and Jones 2013). One of their findings indicates that the
halo mass function is dependent on the environment: halos with the largest masses are located
in clusters while the less massive halos in voids. Similarly with the result of Hahn et al. 2007,
the authors found a small variation of the halo shapes with the cosmic web environment. They
report that halos located in voids and nodes are more flattened than halos in walls and filaments.
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In addition, they also report that halos in filaments and walls have the largest spin followed by
the halos in voids and nodes.

Confirmation of the environmental dependence proceeds up to the present date, with the
study of Hellwing, Cautun, et al. 2021. They use the Copernicus Complexio suite of N-body sim-
ulations (Hellwing, Frenk, et al. 2016) and characterise the web environment using the NEXUS+
algorithm (Cautun, van de Weygaert, and Jones 2013). For the first time, the authors study
halos spanning six order of magnitude in mass and have managed to confirm previous results.
This includes that large mass halos are present in filaments while the lower mass ones reside in
voids. Interestingly, at the lower end of the mass function, they found that the fraction of halos
in voids, walls and filaments is almost equal to ≈ 1

3 for each environment. The spin parameter
manifests environmental differences only for more massive halos. The void sample indicated a
reduced spin in comparison with the universal mean. Furthermore, halos living in less dense
mediums appear to be more prolate.

On the basis of these studies, it is reasonable to assume that the location of halos in the
cosmic web will impact their development and properties. As noted by Hellwing, Cautun, et al.
2021, the way in which this dependence is assessed will rely on the web finders used. Ideally,
one would want to compare how the halo properties vary in various environments taking into
account the algorithm used to trace the various components of the cosmic web. In the end,
this will provide a much more physically motivated scenario of evolution of galaxies and could
establish a better link between observations and predictions made by theory.

We have seen so far why voids are essential in our understanding of the cosmic web, how they
form and evolve and what effect do they have on halos and galaxy formation. In the next chapter,
we will provide the current understanding of how structure in the Universe developed into the
astounding cosmic web that we observe today. In Chapter 3 we describe the tools used to achieve
our goal: we start with the identification of voids using the watershed transform, a mathematical
operation implemented in the Watershed Void Finder. Then, we present the principles of N-
body simulations and focus on the GADGET-2 code and its gravitational algorithms. We follow
with the DTFE algorithm, a method which uses tesselation in order to obtain the underlying
density field from a particle distribution. Finally, in the last section of Chapter 3 we present the
identification of halos in the dark matter particle distribution using the ROCKSTAR algorithm.
Furthermore, we concretely discuss how the convex hull algorithm can be used to identify halos
within voids. In Chapter 4 we present our results regarding the void environment. Here we
talk about the sizes, shapes, matter content and kinematics of voids. Chapter 5 deals with
properties of the void halo population: abundance, mass function, spin and shape and how these
properties relate with the void environment. Finally, we end this work with Chapter 6 in which
we summarise the goal and the findings behind this work. We add some possible ideas and
improvements that can extend our understanding on the void halos.
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Chapter 2

Cosmology and formation of the Large
Scale Structure

2.1 The concordance model: ΛCDM

The Cosmological Principle is one of the main pillars in Cosmology. This principle states that
at large scales (≈ 100 Mpc), the Universe is homogeneous and isotropic. The discovery (Penzias
and Wilson 1965) of an unpolarized, isotropic microwave radiation (later coined the Cosmic
Microwave Background) has provided essential evidence in supporting this concept.

Furthermore, Hubble 1929 measured distances to galaxies and found that galaxies located
further away were receiding faster. This is now known as the Hubble’s law and is mathematically
defined as:

vH = H0r (2.1)

where vH is the velocity of a galaxy, r is the distance andH0 is the Hubble constant. Coupling
the Hubble’s law with the Cosmological Principle, we can state that we live in a Universe that
undergoes homogeneous and isotropic expansion.

In order to quantify the expansion, a new coordinate system has to be introduced - the
comoving coordinates x. These coordinates are associated with an observer that follows along
the expansion. As such, the distance to a galaxy can now be written as

r = a(t)x (2.2)

where a(t) is the scale factor, dependent on time. At the present moment (t = t0), the scale
factor is equal to one.

Differentiating Eq. 2.2 with respect to time will give

vH =
˙a(t)

a(t)
r (2.3)

Comparing with Eq. 2.1, we can identify H0 =
˙a(t)

a(t) . Note that in deriving this result, we
assumed that galaxies do not posses any peculiar velocities (that is, their motion does not deviate
from the Universe’s expansion: ẋ = 0).
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In order to understand how the Unviverse evolved and how structure emerged, one has to
understand gravity - the dominant force at the large scale. In physics, gravity is described by
the Einstein’s field equations:

Gµν =
8πG

c4
Tµν (2.4)

where Gµν is the Einstein’s tensor which quantifies the curvature of spacetime. The stress-
energy tensor Tµν describes the density and flux of energy. Essentially, Eq. 2.4 conveys that the
source of spacetime curvature (left hand side) is matter (right hand side). Conversely, it implies
that the movement of matter is dictated by the spacetime curvature.

In general, the stress-energy tensor is a complex quantity to compute. However, a simple
solution does exist for the Einstein’s equations if one assumes a scenario in which our expanding
Universe is filled with a homogeneous and isotropic gas. Such a gas would be described by only
its energy density ρ and pressure P. Furthermore, to describe the curvature of spacetime, the
metric is given by:

ds2 = −c2dt2 + a(t)2
[
dr2 + Sk(r)

2dΩ2
]

(2.5)

where

Sk(r
2) =


R0 sin( r

R0
) , k = +1

r , k = 0

R0 sinh( r
R0

) , k = −1

(2.6)

The parameter k gives the curvature of the Universe while the radius of curvature is given by
R0. If k = +1, the curvature is positive while if k = -1 we are dealing with a negatively curved
Universe. A flat Universe corresponds to k = 0.

Besides the curvature, another ingredient necessary in describing the Universe’s geometry is
the time evolution of the scale factor a(t). If we continue with our model of the gaseous Universe,
this evolution is described by the Friedmann equations:

(
ȧ

a

)2

=
8πG

3c2
ρ(t)− kc2

R2
0

1

a(t)2
(2.7)

The solution to this equation requires knowledge about the time evolution of the density ρ.
If we assume a flat Universe (k = 0), from the Friedmann equation we can obtain the critical

density ρc:

ρc =
3c2H(t)2

8πG
(2.8)

With it, we can define the density parameter:

Ω(t) =
ρ(t)

ρc
(2.9)
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2.2. Emergence of the Large Scale Structure Jad Alexandru Mansour

This parameter indicates the fraction of the density in the Universe at a time t with respect
to the critical density. We know that the Universe is composed of multiple components: matter
(baryons and dark matter), radiation and dark energy. With this in mind, we can express Ω as
the sum of the density parameters corresponding to these components: Ω = Ωb+Ωdm+Ωr+ΩΛ.
These parameters, together with the Hubble constant, form what is known as the concordance
model in Cosmology - the ΛCDM model. Table 2.1 shows the most recent values which have
been obtained by the Planck mission (Planck Collaboration et al. 2020). It is clear that we live in
a Universe dominated by dark energy, with dark matter being the second dominant component.

Ωb 0.0486 ±0.0010
Ωdm 0.2589 ±0.0057
Ωr ≈ 10−5

ΩΛ 0.6911 ±0.0062
H0 67.74 ±0.46kms−1Mpc−1

Table 2.1: Parameters of the model extracted from Planck Collaboration et al. 2020.

2.2 Emergence of the Large Scale Structure

If we look around us, we certainly do not notice the homogeneity and isotropy advertised by the
Cosmological Principle. After all, humans, planets, stars and galaxies are pretty well defined
structures. We have to conclude then, that the Cosmological Principle only applies to the very
large scales of hundreds of megaparsescs. So how did all the structure came to be?

In Cosmology, the large scale structure refers to objects that are bigger than galaxies (e.g
clusters and superclusters of galaxies). These structures formed as a consequence of density
perturbations present in the early Universe.

In order to quantitatively understand the growth of large structure (process known as gravi-
tational instability), we define the density perturbation at a position r and at a time t as:

δ(r, t) =
ρ(r, t)− ρ̄(t)

ρ̄(t)
(2.10)

where ρ(r, t) is the density value at position r and at a time t while ρ̄(t) is the average density
in the Universe at the same time t. An overdense region will have δ(r, t) > 0 while an underdense
region will have δ(r, t) < 0. Notice that there is a lower limit: when ρ(r, t) = 0 then δ(r, t) =
-1. No upper limit exists - the density perturbation can have any positive value. Thus, we can
see that overdense regions will gravitationally attract more matter over time. When a critical
density is reached, the overdense region will stop expanding with the Universe and proceed to
collapse. This will lead to the formation of dark matter halos. On the other hand, underdense
regions (voids) will expand, pushing the existing matter outwards.

Further on, to analyse the statistical properties of the density field, we expand δ(r, t) in terms
of its Fourier components:

δ(r) =
V

(2π)3

∫
δke
−ik·rd3k (2.11)

where V is the comoving volume that expands with the Universe and the Fourier components
δk are obtained by:
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δk =
1

V

∫
δ(r)eik·rd3r (2.12)

This procedure emphasises the contribution of density perturbations with various wavenum-
bers k to the overall density field.

Inflationary scenarios predict that the primordial density field is Gaussian in nature. The
main reason supporting this is that density perturbations are believed to originate from infla-
tionary quantum noise which posses a Gaussian character. As a result, the value of the density
perturbations at a position r is randomly selected from a Gaussian probability distribution:

p(δ) =
1√

2πσδ
e
− δ2

2σ2
δ (2.13)

In order to compute the variance σ2
δ , we first introduce the Power Spectrum. This quantity is

obtained by squaring the amplitude of the Fourier components (Eq. 2.12) and taking its average:

P (k) = 〈|δk|2〉 (2.14)

Then, the variance of the Gaussian distribution is obtained by:

σ2
δ =

V

(2π)3

∫
P (k)d3k (2.15)

This shows that the statistics of the Gaussian density field is completely determined by the
power spectrum P(k), cementing its importance in Cosmology. Usually, the power spectrum
predicted by inflation is expected to take a power law form:

P (k) ∝ kn (2.16)

where the spectral index n indicates the power of different wavemodes to the density field.
Inflation predicts a spectral index of n = 1 (also known as the Harrison-Zel’dovich spectrum).
Such a power spectrum presents a scale-free potential perturbation and assures a hierarchical
evolution of structure (that is, the small scale perturbations have a higher amplitude than those
at large scales).

2.3 Linear Perturbation Theory

Now that we have seen that the structure we observe originates from density perturbations, we
want to investigate how these fluctuations evolve over time. In the linear stage of evolution
(when the fluctuations are very small, δ << 1), the growth of perturbations can be described
using the linear perturbation theory. We first specify the perturbation quantities that will help
describe this evolution:
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2.3. Linear Perturbation Theory Jad Alexandru Mansour

δ(x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
Density perturbation (2.17)

v = a(t)ẋ Peculiar velocity (2.18)

φ(x, t) = Φ(r, t)− 1

2
aäx2 Potential perturbation (2.19)

g(x, t) = −∇φ
a

Peculiar gravity (2.20)

Eq. 2.17 is the perturbation to the density field encountered before. Eq. 2.18 is the peculiar
velocity and can be obtained from differentiating Eq. 2.2 with respect to time. It essentially
describes how the total velocity u of a galaxy deviates from the Hubble’s flow (v = u(r, t) - vH
(r, t)). Eq. 2.19 specifies perturbations in the gravitational potential field and can be linked to
the density perturbation via the Poisson’s equation. Eq. 2.20 is the peculiar acceleration and
is defined in terms of the potential perturbation. This equation reflects the surplus acceleration
with respect to the background Universe.

Now that the perturbation quantities were defined, we can further assume that the matter
and radiation in the Universe form a continuous fluid. Such an assumption is valid only when
considering megaparsec scales. At these scales, the discreetness of galaxies, stars and planets can
be neglected. It follows then that the cosmic fluid can be described by the three fluid equations:

∂ρ

∂t
+∇r · ρu = 0 Continuity equation (2.21)

∂u
∂t

+ (u · ∇r)u = −1

ρ
∇rP −∇rΦ Euler equation (2.22)

∇2
rΦ = 4πG

(
ρ(r, t) +

3P

c2

)
Poisson equation (2.23)

Eq. 2.21 describes the mass conservation of a fluid element. Eq. 2.22 indicates that the
acceleration of fluid elements is caused by the existence of pressure gradients and gravitational
forces. Finally, Eq. 2.23 shows that the source of the gravitational potential is the energy density
of matter. The pressure term P that appears corresponds to the radiation and dark energy.

In order to see how the perturbations grow with time (with respect to the expanding back-
ground Universe) we must convert the fluid equations from physical coordinates to comoving
coordinates. A second step requires to replace the physical quantities, ρ,u,Φ with the pertur-
bation quantities, δ,v, φ. Since the structure formation occurs in the matter dominated epoch,
we will neglect the pressure and energy density terms of radiation. The perturbations in energy
density due the dark energy component will not develop. The reason being that dark energy has
negative pressure which will produce a uniform, unperturbed medium. As such, we are left with
matter perturbations only. The linearized fluid equations will then take the form:

∂δ

∂t
+

1

a
∇x · v = 0 (2.24)

∂v
∂t

+
ȧ

a
v = −1

a
∇φ (2.25)

∇2φ = 4πGa2ρuδ (2.26)

If we take the divergence of Eq. 2.25 and combine it with the linearized continuity equation
(Eq. 2.24), we obtain the following expression:
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∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=

3

2
Ω0H

2
0

1

a3
δ (2.27)

where in a matter dominated Universe Ω0 = 8πGρ0
3H2

0
. This is a second order, partial differential

equation whose solutions describe the growth of density perturbations. The general solution to
this equation can be written as:

δ(x, t) = D1(t)∆1(x) +D2(t)∆(x) (2.28)

where D1(t) and D2(t) are the density growth factors, showing how the perturbation evolves
with time. The ∆1(x) and ∆2(x) are the spatial configuration of the matter distribution.

Now that the general solution has been obtained, we can consider a matter dominated Uni-
verse (Ω0 = 1). In such a case, the density growth factors are:

D1(t) ∝ t2/3 (2.29)

D2(t) ∝ t−1 (2.30)

where D1(t) is the growing mode solution while D2(t) is the decaying mode solution. At
the current epoch, we can discard D2(t) since it slowly decreases with time. As such, we finally
see that in a matter dominted Universe, the density perturbations grow according to: δ(x, t) ∝
D(t) ∝ t2/3.

Another important result inferred from the linear perturbation theory is the relation between
peculiar velocity and peculiar gravity. In order to obtain this, we extract the density perturbation
from the linear Poisson equation (Eq. 2.26) and replace it in the linear continuity equation (Eq.
2.24), such that:

∇ · v = −a∇ · ∂
∂t

(
∇φ

4πGa2ρc

)
(2.31)

Using the definition of peculiar gravity (Eq. 2.20) and knowing that g grows as g(t) ∝ D
a2

(see van de Weygaert1 for a full derivation) we obtain:

v =
Hf

4πGρc
g (2.32)

where f is the dimensionless linear velocity growth factor defined as

f =
1

D

dD

dt
(2.33)

whose value was computed by Peebles 1980 for a matter dominated Universe to be f ∝ Ω0.6
m .

Eq. 2.32 is one of the most fundamental results in the linear perturbation theory because it
shows that the peculiar velocity v is proportional to the peculiar gravitational field g, generated
by the density perturbations.

1https://www.astro.rug.nl/ weygaert/tim1publication/lss2009/lss2009.linperturb.pdf
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We can summarize the results of the linear perturbation as follows: given an initial Gaussian
random field, density perturbations will develop due to quantum noise. These perturbations
will generate fluctuations, g, in the gravitational field. Subsequently, according to Eq. 2.32, the
peculiar gravity field will generate a peculiar velocity component. As a consequence, matter will
be displaced from the underdense regions towards the overdense ones. When an overdense region
reaches a critical density, it will turn around from the Hubble flow and it will begin to collapse.
This process will lead to the formation of dark matter halos, the subject of the next section.

A final remark to note is that when the density perturbations have grown large enough
(δ ≈ 1), linear perturbation theory can no longer be applied. This is because in the linear
regime, the wavemodes of the perturbations evolve independently. By contrast, in the non-linear
stage of evolution the different wavemodes of perturbations begin to couple to each other and
can not be analytically described.

2.4 Dark matter halos

Dark matter is the dominant matter component in the Universe. It provides gravitational po-
tential wells in which baryons can fall into and form galaxies. In this section we will discuss the
formation mechanism of dark matter halos and present some inherent properties.

In order to see how an object emerges from the initial density field, consider a spherical
overdensity composed of thin mass shells. The radius r of an individual shell of mass M evolves
according to:

1

2

(
dr

dt

)2

− GM

r
= E (2.34)

where E is the specific energy of the shell. For the object to collapse, we require that E < 0.
Then the solution to this equation can be written as:

r = A(1− cos θ); t = B(θ − sin θ) (2.35)

where A and B are constants determined from the initial conditions. These equations show
that the mass shell undergoes three stages of evolution. Initially, the shell expands from r =
0 at t = 0 (corresponding to a θ = 0). At a time t = B π (when θ = π), the shell will reach
a maximum value rmax (also known as the turn-around radius). Finally, at t = 2π, the shell
collapses back to r = 0.

In a matter dominated Universe, it was found that a spherical overdensity δ will reach a
maximum radius when δ = δl(ta) ≈ 1.06. The same overdensity will collapse when δ = δc(tcol) ≈
1.686. In reality, however, a collisionless system such as this one is unable to dissipate energy. As
a consequence, the gravitational potential energy is converted into kinetic energy of the particles
that made up the mass shells. As time evolves, the sphere will eventually relax (or virialize) to
a system supported by random motions.

Now that we established the critical density value necessary for collapse, we need to assign
masses to the collapsed regions. To do so, we make use of the Press-Schechter formalism (Press
and Schechter 1974) which states the following: given a density field δs smoothed with a filter
W(x, R) of radius R and mass M ∝ ρ̄R3, the probability that δs > δc is equivalent to the
fraction of mass elements that are within halos that have masses larger than M. Assuming an
initial density field, the probability that δs > δc is given by:
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P (> δc(t)) =
1

2
erfc

[
δc(t)√
2σ(M)

]
(2.36)

where the mass variance σ(M)2 is given by:

σ2(M) =
1

2π

∫ ∞
0

P (k)W̃ 2(kR)k2dk (2.37)

Here P(k) is the power spectrum of the density fluctuations and W̃ (kR) is the Fourier
transform of the filter. When σ(M) → ∞, the probability P(>δc(t)) → 1

2 , which generates a
problem because it suggests that only half of the Universe’s mass is part of collapsed objects
of a given mass M. This is a consequence of the linear perturbation theory which states that
only overdense regions are capable of forming collapse objects. To solve this issue, Press and
Schechter multiplied Eq. 2.36 by an arbitrary factor of two and defined F(> M) = 2 P(> δc(t)).
This results into a number density of collapsed objects that have masses between M and M +
dM of:

n(M, t)dM =
ρ̄

M

∂F (> M)

∂M
dM =

√
2

π

ρ̄

M2

δc(t)

σ(M)
exp

(
− δ2

c (t)

2σ2(M)

) ∣∣∣∣d lnσ(M)

d lnM

∣∣∣∣ dM (2.38)

Eq. 2.38 is known as the Press-Schechter mass function and provides an understanding of
how structure in the non-linear regime can evolve in a hierarchical way.

An alternative derivation of the halo mass function that does not suffer from the "fudge"
factor was developed by (Bond et al. 1991) and is known as the excursion set formalism. In
summary, this method infers the halo mass function from the Markovian random walk trajectories
of a mass element with a corresponding overdensity δs as a function of a variable S = σ2(M).
An illustration of this formalism can be seen in Fig. 2.1. Consider that the density field has
been smoothed with a filter at a mass scale S1 = σ2(M1). The PS formalism then states that the
fraction of trajectories that have passed the barrier δs > δc at S1 will be equal to the fraction of
mass elements in collapsed objects that have M > M1. Taking a look at the mass element with
trajectory B, we will see that at S1 it will not be part of a collapsed object with M > M1 since
δs < δc. However, on the interval S2 < S < S3, the same mass element has δs > δc which implies
that it will be part of a collapsed object with M > M3. But M3 > M1! This is implies that
the PS is not consistent. One can correct this by realising that trajectory B’ is as equally likely
as trajectory B. This stems from the consequence of the trajectories being Markovian random
walks. As such, the mass fraction in halos with M > M1 is given by twice the trajectories that
passes through the barrier at S1.

2.4.1 Internal properties of Dark Matter Halos

Having established how dark matter halos form, we proceed to discuss some of their internal
properties. We will only mention those properties relevant for out study. For a more throughout
description see (Mo, van den Bosch, and White 2010).

Halo shapes
In our description of the gravitational collapse, we assumed that the overdensities are spher-

ical. In reality, the collapse of an overdensity is affected by the tidal field of the surrounding
structure. As a consequence, the collapse will be aspherical in nature and will produce flatten,
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Figure 2.1: Illustration of the excursion set formalism. Figure shows the random walk trajectories
of mass elements in the (S, δs) space. The horizontal dashed line indicates the critical density
for spherical collapse δc. Trajectory B’ is the reflection of B with respect to the δc line and is
equally likely to occur since the random walks are Markovian in nature. Figure taken from (Mo,
van den Bosch, and White 2010).

ellipsoidal halos. The shapes of the halo ellipsoids are thus described by ratios between the
lengths of their axes:

s =
c

a
, (2.39)

q =
b

a
, (2.40)

p =
c

b
. (2.41)

Numerical simulations showed that in general halos are triaxial ellipsoids which tend to be
more prolate than oblate with 0.5 < s < 0.75 and that halos with lower masses are more spherical.
(Warren et al. 1992; Cole and Lacey 1996; Kasun and Evrard 2005; Bailin and Steinmetz 2005).
A more recent study (Ganeshaiah Veena et al. 2018) finds more spherical halos, with b

a > 0.9
and c

a > 0.8.
Halo Angular Momentum
A second fundamental property of dark matter halos is angular momentum (or spin). The

way in which halos acquire this property has been first proposed by Hoyle 1951 and later explored
by Peebles 1969; Heavens and Peacock 1988 and is known as Tidal Torque Theory. Essentially,
this theory states that in the linear regime proto-galaxies spin due to the interaction with the
surrounding tidal field caused by the neighboring structures. N-body simulations performed by
G. Efstathiou and Jones 1979 further confirmed that asymmetrical collapsing bodies end up with
angular momentum.

To quantify the halo spin, Peebles 1969 has introduced the dimensionless parameter λ:

λ =
J |E|

1
2

GM
5
2

(2.42)

where J is the angular momentum, E is the energy and M is the mass of the halo. Low values
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of λ correspond to halos that are supported by velocity dispersions while high values suggest
rotational support.

A more practical way, often used in the literature, is the Bullock spin parameter (Bullock
et al. 2001). This parameter is preferred due to its advantage when dealing with a subvolume of
a viriliazed sphere and is defined as:

λ =
J√

2MVR
(2.43)

where J is the angular momentum within a sphere of radius R containing mass M and V is
the circular velocity of the halo at distance R. The halo spin obeys a log normal distribution
with an average between λ̄ ≈ 0.04− 0.05 (Heavens and Peacock 1988; Cole and Lacey 1996)

Halo density profile
The density profile of a halo describes its interior mass distribution. The simplest model used

to approximate a virialized halo profile is the isothermal sphere:

ρ(r) ∝ r−2, r ≤ rh (2.44)

Here, rh (also known as the virial radius) represents the radius within which the mean density
is:

ρh = ∆hρ̄ = ∆hρcritΩm (2.45)

where ρ̄ is the average density in the Universe and ρcrit is the critical density. Then, the
profile can be written as:

ρ(r) =
V 2
h

4πGr2
, rh =

√
200

∆hΩm

Vh
10H(t)

, Vh =

√
GMh

rh
(2.46)

where Vh is the circular velocity at rh and Mh is the mass of the halo. The mean overdensity
is considered to be equal to ∆h = ∆vir = 200 according to the virial theorem.

However, obtaining a density profile based on the spherical collapse model will produce an
inaccurate representation. Deviations may appear due to several factors such as: 1) equilibrium
state may not be reached in the outer region of the halo, 2) importance of non-radial motion and
3) the hierarchical formation of a halo may cause the model to fail.

However, numerical simulations of structure formation have managed to offer better approx-
imations. Especially, the study of Navarro, Frenk, and White 1996 found that halo density
profiles are well described by (what is now known as) a Navarro, Frenk White (NFW) profile:

ρ(r) = ρcrit
δchar

( rrs )(1 + r
rs

)
(2.47)

where rs is the scale radius, δchar is the characteristic overdensity. It has been showed that
the NFW profile represents a good approximation for the equilibrium density profiles of halos
regardless of the mass and cosmological model used.
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2.5 Cosmic Web

We mentioned in Chapter 1 that the matter distribution in the Universe resembles a cosmic web.
This is apparent in both observations and N-body simulations. For example, Fig. 2.2 shows the
galaxy distribution obtained through the 2 degree field galaxy survey (2dF) (Colless et al. 2003).
At first glance, one can see that the galaxies are not randomly distributed in the Universe but
are grouped into clusters and filaments. Between these components lie the voids which stand
out as the empty regions on which galaxies lie on. Similarly, Fig. 2.3 2 shows a slice through the
Illustris simulation focusing on a massive galaxy cluster.

In Section 2.3 we have used linear perturbation theory to investigate how structure emerges
out of the minute density fluctuations. We also noted that when δ ≈ 1 structure will grow non-
linearly. As such, we no longer be able to assume that density perturbations of different modes
are acting independently. To give an example, one may deal with a collapsing peak. When such
a region starts collapsing under its own gravity, the corresponding density modes will begin to
grow. This occurs due to the interaction with the neighbouring structure at different scales.
Another example may include overdense small regions embedded in larger overdense structures.
In this case, the smaller regions will enter non-linearity and collapse faster.

An extremely useful way to describe the non-linear evolution (and to understand the appear-
ance of the cosmic web) has been developed by Zel’Dovich 1970 and is known as the Zel’Dovich
approximation. Essentially, this approach uses Lagrangian perturbation theory and follows the
displacement of a mass element from an initial Lagrangian position q to a final Eulearian location
x(q, t):

x(q, t) = q +D(t)Ψ(q) (2.48)

where D(t) is the linear growth factor and Ψ(q) is the displacement vector which depends on
the gravitational potential field: Ψ(q) ∝ ∇φ.

Furthermore, we can infer the evolution of density on the basis of mass conservation between
the Lagrangian and Eulearian coordinates:

ρ(x, t)dx = ρu(t)dq (2.49)

where ρ(x, t) is the density at position x in Eulerian space while ρu(t) is the average density
at the Lagrangian position q. It follows then that the density perturbation is given by:

1 + δ(x, t) =
ρ(x, t)
ρu(t)

=

∣∣∣∣∣∣∣∣∂x∂q
∣∣∣∣∣∣∣∣−1

(2.50)

where ||...|| is the Jacobian determinant. Further on, using Eq. 2.48, we can write the
Jacobian more explicitly as:

∣∣∣∣∣∣∣∣∂x∂q
∣∣∣∣∣∣∣∣−1

= ||δmn − a(t)ψmn||−1 =
1

[1− a(t)λ1][1− a(t)λ2][1− a(t)λ3]
(2.51)

where ψmn is the deformation tensor and λ1, λ2 and λ3 are its eigenvalues. These eigenvalues
are essential because they provide clues onto the formation of the cosmic web components.

2https://www.illustris-project.org/media/
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Figure 2.2: The web-like pattern of the galaxy distribution in the Universe. The redshift values
shown here were obtained through spectral observations of the 2dF survey. A total number of
221,414 reliable galaxy spectra have been obtained.

Figure 2.3: Projection through the Illustris simulation volume at present time. Image shows the
dark matter density overlaid with the gas velocity. Image courtesy: Illustris Collaboration
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Concretely, they represent the deformation axes of the ellipsoid density perturbation. If one of
the eigenvalues is positive than the ellipsoid will collapse along that direction. Based on this,
the cosmic web components are identified as follows:

i) Clusters: λ1 ≈ λ2 ≈ λ3 > 0
ii) Filaments: λ1 ≈λ2 > 0
iii) Walls: λ1 > 0
iv) Voids: λ1, λ2, λ3 < 0.
The Zel’dovich approximation is an accurate description of the non-linear evolution up to the

point of shell-crossing. At this point, a mass element will ignore gravitational attraction from its
neighbours and will end up crossing through them. To correct for this, the adhesion model has
been developed. At its core, this model introduces a viscosity term which takes into account the
self-gravity of matter. Thus, shells of matter will be able to slow down as they approach each
other.

So far, we have explored the theory behind the formation and evolution of the large scale
structure. In the next chapter, we present the methods used in this work to explore the impact
of the void environment on halos.
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Chapter 3

Methodology

In this chapter we describe the tools used to analyse the effect that voids have on the properties
of dark matter halos. In Section 3.1 we present the Watershed Void Finder algorithm which we
used to identify voids in the GADGET-2 simulation. We follow with a description of GADGET-
2, the N-body simulation used, and the governing principles and algorithms in Section 3.2. The
last two sections will deal with simulation processing. In Section 3.3 we describe the Delaunay
Tesselation Field Estimator (DTFE), a method used to obtain the density field from the particle
distribution while in Section 3.4 we describe the ROCKSTAR Halo Finder, an algorithm used
to identify halos. We also describe explicitly how we identified halos within the watershed voids
using the convex hull algorithm.

3.1 Void identification: the Watershed Void Finder

We have seen that the spherical model predicts how a void looks like: an expanding spherical
underdense region with a high density ridge. However, when it comes to identify voids in numer-
ical simulations or observations, matters become more complex. This stems from the fact that,
at the moment, there is no clear, agreed upon definition of voids. One can ask, then, how are
voids identified ?

In this work, we used the Watershed Void Finder (WVF) (Platen, van de Weygaert, and
Jones 2007) algorithm to identify the underdense regions in the GADGET-2 simulation. We
choose the WVF because it offers several advantages in comparison with other void finders.
First of all, the algorithm inputs as parameters only the filtering radii. No additional values
have to be introduced. Furthermore, the algorithm recovers the geometry of the voids, despite
their irregular shapes, since it is working directly on the topology of the field.

At the core of the WVF lies the watershed transform, a technique which stems from the field
of mathematical morphology used in the segmentation of images. The watershed transform can
be understood using a geophysical analogy. One can imagine a landscape (Fig 3.1) that is slowly
being flooded by water. Initially, each basin (which represents a minimum point in the landscape
surface) is punctured and it slowly starts to be filled in. The water level will increase until all the
basins will meet at the ridges (these correspond to a maximum point). The last panel illustrates
the segmented landscape - the ridges represent the boundaries that separate the flooded basins.

Using this analogy, we can see how the watershed transform translates in the context of the
cosmic web. The basins in the density field are identified with underdense regions (voids) while
the ridges separating them correspond to overdense regions (walls and filaments). In Fig. 3.2 we
show the voids identified in this work by the WVF. One can notice how the irregular geometry
and the variety of sizes and shapes of voids is maintained. The zoom-in panel shows the 3D
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Figure 3.1: Plots illustrating the principle of the Watershed Transform by making use of a
geophysical landscape with basins and ridges. From left to right, the landscape is slowly flooded
with water until the whole landscape is submerged. The right image shows the final product
of the segmentation procedure: flooded basins separated by ridges. Figure from Platen, van de
Weygaert, and Jones 2007.

perspective of the cross-section of a ≈ 36 Mpc void from the left panel. The irregularities on the
surface illustrate the ability of the WVF to preserve the topological shape of the void. The void
shapes and sizes will be discussed in more detail in Chapter 4.

We enumerate now the primary steps used in the WVF to identify voids:
1. Once the density field of a given point distribution has been obtained, the WVF samples

the field on a grid and smooths it using natural neighbour (NN) interpolation and median
filtering. Contour densities of the image are then obtained via a uniform partitioning of the
cumulative density distribution.

2. Minimum points in the smoothed density field are identified as the pixels that are sur-
rounded by higher density values.

3. The flooding procedure begins at a minimum point. Once the density contour reaches a
certain level, the pixels surrounding the minimum with a value below the density threshold of
that contour are added as an element of the overall void region.

4. The segmentation of the image occurs when a pixel reaches a value common for two distinct
basins. All the pixels with this particular value will form the boundary between the underdense
regions. This process continues until all the landscape is segmented into void patches.

Besides its application in N-body simulations, the WVF is also an instrumental tool in
identifying voids in redshift surveys. One of the aims of the work written by Platen, van de
Weygaert, Jones, et al. 2011 was to investigate the topology of the SDSS galaxy distribution on
the basis of the void population, identified by the WVF. The segmentation obtained through
the watershed transform applied on a mock galaxy sample is compared with the segmentation
applied on the magnitude-limited survey (Fig. 3.3). The authors report a good agreement
between the two void segmentations at distances up to R ≈ 200h−1 Mpc. At larger distances,
the low resolution of the survey will result into small void segments from the mock sample to be
embedded in larger magnitude-limited segments.

Furthermore, the WVF has also been proven useful in the identification of void galaxies.
This makes it an ideal tool for the current work since we are interested in the identification
of void halos. For example, a pilot study (Kreckel, Platen, M. A. Aragón-Calvo, et al. 2011)
geometrically identified 60 galaxies in the SDSS survey. These galaxies are located in local voids
(identified by the WVF) at distances less than 100 Mpc. Out of these, 15 are imaged in H1 (see
Fig. 3.4). A follow up of this study (Kreckel, Platen, Aragón-Calvo, et al. 2012) increased this
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Figure 3.2: Voids identified by the Watershed Void Finder. The zoom-in shows a 3D perspective
of one of the voids.

number up to 55 void galaxies. As it was discussed in Chapter 1.7. all these galaxies showed
significant different properties than galaxies located in the field.

An important development of the Watershed Void Finder has been brought by Matthijs 2003.
In his thesis, the author extended the original WVF into a Multiscale Watershed Void Finder
(MWVF). The improvement lies in the use of filters with progressively smaller radii that will
preserve the hierarchical buildup of the void population (Fig. 3.5).

The WVF is not the sole algorithm based on the watershed transform. In fact, at the present
moment, this operation represents the main method used in efficient void finding algorithms .
For example, ZOBOV (Neyrinck 2008) also makes use of the watershed transform in identifying
depressions in the density field. The main difference between the WVF and ZOBOV is that the
later is based on the Voronoi tesselation procedure to estimate densities while the former uses
DTFE for the density reconstruction (for a detailed description of the DTFE see Section 3.3).
Another difference lies in the fact that ZOBOV uses a statistical criterion based on the minimum
density to decide on the significance of watershed basins while the WVF has a geometric filtering
algorithm. The reader interested in comparing the efficiency of various void finding algorithms
can visit the work of Colberg, Pearce, et al. 2008. An extension of the ZOBOV algorithm, known
as VIDE, has been developed by Sutter, Lavaux, Hamaus, et al. 2015. The modifications consist
in increased speed and ability to work on different observational survey geometries in the context
of the watershed framework.

In this section, we discussed the Watershed Void Finder, the algorithm used in this work to
identify voids in the density field. We described the watershed transform, the main operation used
to efficiently identify voids, improvements of the WVF and alternative void finding algorithms
developed in the literature. In the next section, we focus on N-body simulations. Specifically,
we discuss the GADGET-2 simulation and detail its gravitational algorithm.
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Figure 3.3: Top: Comparison between the WVF segmentation boundaries of the SDSS mock
sample (in red) and the ones of the magnitude sample (in black). The segment colours shows
the topological errors. Orange corresponds to false mergers while red corresponds to false splits.
Bottom: Two panels show zoom-ins of mismatch between the two WVF segmentations. Figure
from Platen, van de Weygaert, Jones, et al. 2011.
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Figure 3.4: Density map and galaxies redshift survey region of SDSS from which galaxies for
the Void Galaxy Survey were selected. The slice has a thickness of 4h−1 Mpc. The dark red
corresponds to low void densities while the colour beige corresponds to average cosmic density.
The black dots represent SDSS galaxies. The white diamonds show the initial sample of voids
galaxies while the blue ones show the void galaxies from the full Void Galaxy Survey. Green
diamonds correspond to a control sample.

Figure 3.5: The MWVF procedure. Voids at progressively smaller filter radii Rf are added to
the void population based on an emptiness criterion. Figure from Matthijs 2003.
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3.2 Cosmological N-body simulations

The structure in the cosmic web formed as a consequence of gravitational amplification of small
density perturbations. The growth of fluctuations is accompanied by other physical processes
such as: gas dynamics, radiative transfer and photoionization. The equations governing these
processes are non-linear in nature and require numerical simulations in order to accurately de-
scribe them.

The first N-body simulation was performed by Holmberg 1941 and it involved the study of
the tidal deformation of two galaxies resulting from their gravitational interaction. In order to
simulate the effect of gravity, the stars which build up the galaxies were represented as 37 light
bulbs. Since their measured flux obeys the inverse square law, it was considered to be a good
approximation of the gravitational force.

However, it would take more than 30 years until Press and Schechter 1974 performed the
first cosmological simulation. The results of the 1000 bodies indicated, for the first time, the
hierarchical clustering of matter at the large scale. Ever since, N-body simulations have the main
use in testing cosmological models (such as the ΛCDM) and investigating how the formation of
structure, from the linear stages in the early Universe up to the late non-linear stages, took
place. A review of the techniques used to study the formation of the large scale structure has
been written by Efstathiou et al. 1985.

In the following subsections, we will discuss the main principles of N-body simulations. Con-
cretely, we will focus on the GADGET-2 simulation (Springel 2005) and describe its gravitational
algorithms.

3.2.1 Governing principles

The main principle governing the cosmological simulations assumes that dark matter is dis-
cretized using particles which sample the phase space. Concretely, a particle moves in the
gravitational field produced by all the other particles and evolves in time according to Newton’s
laws written in comoving coordinates (Eq. 3.1, 3.2 and 3.3). The first two equations must be
integrated for each particle in the simulation, which will lead to a number of 6N differential
equations. Note that the structure formation is primarily dictated by gravity so no additional
effects such as hydrodynamics of the baryonic gas or radiative effects are to be considered.

dx
dt

=
v
a

(3.1)

dv
dt

+Hv = g (3.2)

∇ · g = −4πGa[ρ(x, t)− ¯ρ(t)] (3.3)

In order to research the large structure (and substructure) in more detail, one has to increase
the resolution of the N-body simulation. This requires a greater number of particles that will
produce long running times of integration. As a consequence, the need for efficient algorithms
(such as PM, P 3M and Tree PM) came by. Such algorithms could compute the gravitational
force between the particles more easily.

3.2.2 GADGET-2

The GADGET simulation (Springel, Yoshida, and White 2001; Springel 2005; V. Springel et al.
2008; Springel, Pakmor, et al. 2021) is a TreeSPH cosmological simulation code used to study
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Figure 3.6: Cosmic structure formation in the Millenium simulation, a customised version of the
GADGET code. Credits to (Springel, Yoshida, and White 2001; Springel, White, Jenkins, et al.
2005).

the structure formation processes in the Universe (Fig. 3.6). GADGET permits simulations with
both a colisionless component (dark matter or stars in galaxies) and of an ideal gas (baryonic,
mostly hydrogen and helium).

In this work, we use the second instalment of the simulation, GADGET-2 (Springel 2005).
This code uses a TreePM algorithm in order to compute the gravitational forces. The short-
range forces are calculated using the Tree method while the long-range forces are established
using Fourier techniques. By contrast, the gas dynamics are computed using smoothed particle
hydrodynamics (SPH). As the focus of this work was on dark matter simulations of the large
scale structure, the SPH method will not be detailed further. In the following section, details on
the TreePM algorithm and other features of the code will be discussed.

3.2.3 Gravitational algorithms

The Tree algorithm
Computing the gravitational forces at the large scale presents issues due to its long range

nature. As mentioned before, investigating a large number of particles will result into a N2

number of calculations which produces slow times of integration.
One way to combat this problem is to group distant particles together and calculate their

hierarchical multipole expansion (this is known as a tree algorithm). The idea is that we do not
need to compute the individual gravitational force for particles located at large distances. As
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such, the Tree algorithm decomposes the gravitational field depending on the accuracy of the
multipole expansion computation.

Quantitatively, this can be done by continuously subdividing the simulation space in which
the particles reside into daughter nodes with side lengths half of the original cube until each cube
contains at least one particle - the leaves of the tree (Fig 3.7). The forces are then calculated by
"walking" the tree. From the trunk node, a decision is made based on the following question: is
the multipole expansion a good enough approximation of the gravitational force? If the answer
is positive, the multipole expansion is used and the "walk" on that particular node ends. If the
answer is negative, the node at the branch opens up and the daughter nodes are considered. This
type of tree algorithm is known as the Barnes-Hut oct-tree (Barnes and Hut 1986). The advantage
of this technique is that instead of needing N-1 force terms per particle, the gravitational force
on a single particle will require only logN interactions.

In order to compute the gravitational force, consider the potential at a position r of a particle
j of mass m in a particle distribution where N is the number of particles:

Φ(r) = −G
N∑
j=1

mj

r− xj
(3.4)

We can expand

1

r− xj
=

1

y + s− xj
=

1

|y|
− y · (s− xj)

|y|3
+

1

2

yT [3(s− xi)((s− xi)T − I(s− xi)2]

|y|5
+ ... (3.5)

where y = r− s and the dipole term vanishes due to the summation over all the particles in
the group. The multipole moments can be computed for each node of the tree resulting into a
gravitational potential expression

Φ(r) = −G
[
M

|y|
+

1

2

yTQy
|y|5

]
(3.6)

where M is the monopole moment and Q is the quadrupole tensor. As such, computing the
gravitational force on a particle will not require to compute N single particle forces but instead
the order of the calculation will be of logN multipoles.

The particle mesh (PM)
Another method used to compute the gravitational potential is the particle mesh (PM) tech-

nique. This algorithm is computed on a computational grid and it determines for each particle in
the distribution the density at each grid point based on the neighbouring particles. The gravita-
tional potential can then be obtained by solving the Poisson’s equation. This equation is solved
in real space by considering a convolution of the density field ρ(x’) with a Green’s function g(x)
∝ 1

k2
:

Φ(x) =

∫
g(x− x’)ρ(x’)dx’ (3.7)

According to Parseval’s theorem, the Fourier transform is unitary which implies that in
Fourier space, the convolution between the Green’s function and the density field becomes a
simple product:
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Figure 3.7: Illustration of the Tree algorithm. The space is continuously subdivided until each
cell contains at least one. particle. Figure from Springel, Yoshida, and White 2001.

Φ̂(k) = ĝ(k) · ρ̂(k) (3.8)

The potential is then obtained by performing a fast Fourier transformation again into real
space. Working in Fourier space thus makes the PM technique very fast, reducing the number
of calculations to the order of NlogN. However, despite the PM’s advantages of simplicity and
speed, the resolution is limited to the mesh size.

The TreePM
The GADGET-2 algorithm uses the treePM method which combines the advantages of the

previous two techniques. The idea of treePM is to split the potential, in Fourier space, into a
long range and a short range component and compute them individually using the PM and tree
algorithms respectively:

Φk = Φlong
k + Φshort

k (3.9)

Φlong
k = Φk exp(−k2r2

s)− > PM (3.10)

Φshort
k = Φk[1− exp (−k2r2

s)]− > tree (3.11)

where exponential factors are used to suppress the long and short range potential below some
scale rs. In other words, in the case of the Φlong

k computed by PM, if rs is chosen larger than the
mesh scale, then the force anisotropies will be suppressed. Similarly, rs has the role to suppress
the force for large distances in the potential Φshort

k computed via the Tree algorithm.
The advantage of combining both methods arises from the way algorithms compensate for

one another. The Tree algorithm becomes slow when dealing with mass distributions that have
a low density contrast. By comparison, in the PM algorithm, the efficiency in computing the
gravitational field decreases at small scales and thus makes it inadequate in high spatial resolution
simulations.

3.2.4 Simulation parameters

The simulation parameters used in this work are listed in Table 3.1. These parameters are
inferred from the Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) (Jarosik et al.
2011) temperature and polarization observations.
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Number of particles 5123

Boxsize 300 Mpc
Redshift 0

Energy density matter Ω0 0.272
Energy density dark energy ΩΛ 0.728

Hubble parameter H 70.4 km s−1 Mpc−1

Table 3.1: Values for the simulation parameters used in this work

3.3 Simulation processing: DTFE

In order to obtain the density field of the particle distribution, the Delaunay Tessellation Field
Estimator (DTFE) (W. E. Schaap and van de Weygaert 2000, Cautun and van de Weygaert
2011) has been used. The DTFE is an algorithm used to reconstruct the underlying density field
from a sample of discrete data points. There are several advantages for using this algorithm
which include its ability to retain the anisotropy of the particle distribution and to preserve
the hierarchical structure of the mass distribution. Furthermore, it does not suffer from the
disadvantage of depending on any pre-specified filtering which would dilute these properties.

The first step in obtaining a continuous field is the Voronoi tessellation. This technique
represents the generalization in multidimensional space of partitioning into bins a one dimensional
space. In this case, the space is divided into disjunct convex polyhedral cells (Fig. 3.8). Physical
discontinuities at the boundaries of the polyhedra can appear due to this discretization. To
eliminate them, one has to linearly interpolate the sampling points (Delaunay tessellation). This
tessellation is realised by splitting the space into triangles (or tetrahedra in 3-dimensions) with
the property that no vertex lies inside the circumscribe circle (or sphere). From the figure, one
can notice that the Voronoi and Delaunay tessellations are closely linked: the centre of each
circumcircle in the Delaunay tetrahedron is a vertex of a Voronoi cell and the vertices of the
Delaunay cells are the centers in the Voronoi tessellation cells.

In order to obtain the density estimate of a particle distribution, one has to divide by the
normalized volume of the contiguous Voronoy cell, V (Wi), as to assure mass conservation:

ρ(xi) =
m(1 +N)

V (Wi)
(3.12)

where N represents the number of particles located at positions x1, x2, ..., xN that defines
the contiguous Voronoi cell while m is the equal mass of the particles.

After computing density estimates at the vertices of a Delaunay tetrahedron, one can obtain
the volume-covering density field by linearly interpolating:

ρ(x) = ρ(x0) +∇ρ(x0) · (x− x0) (3.13)

where ∇ρ(x0) is the estimated constant density field gradient within the tetrahedron.
A slice of the density field in the simulation can be seen in Fig. 3.9. We can visually

identify the voids, as the dark patches in the slice, and the clusters and filaments located at their
boundaries. Notice how the multiscale character of the particle distribution has been preserved.
This can be easily seen when looking inside voids where the substructure is present. This consists
out of small, tenous filaments which delimit other smaller subvoids. The hierarchical character is
visible in filaments as well. Large, thick filaments branch themselves into smaller, thinner ones.
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Figure 3.8: Left: Voronoi cells for a 2-dimensional point distribution. Shaded region corresponds
to the point located below the center. Right: Delaunay tessellation for the same distribution.
The shades region indicates the "contiguous Voronoi cell" of the same center point. Figure from
W. E. Schaap 2007

Figure 3.9: A slice through the density field in the GADGET-2 simulation used in this work.
The zoom-ins show a visually identified cluster (top), a filaments (middle) and a void (bottom).

39



3.3. Simulation processing: DTFE Jad Alexandru Mansour

In a similar fashion, the DTFE method allows the calculation of cosmic velocity fields which,
in turn, can be used to obtain the velocity divergence (see our results in Chapter 6), shear and
vorticities.

To obtain the velocity field from a discrete set of points, the DTFE linearly interpolates the
velocity of the particles in the distribution (Bernardeau and van de Weygaert 1996; Romano-Dıaz
and van de Weygaert 2007; van de Weygaert and Schaap 2009). Once the Delaunay tetrahedra
have been defined as interpolation intervals, the components of the gradient velocity tensor ∂vi

∂xj
are determined. These will be calculated from the values of the velocity field at each location r0,
r1, r2 and r3 that defines the vertices:

∆vxn =
∂vx
∂x

∆xn +
∂vx
∂y

∆yn +
∂vx
∂z

∆zn (3.14)

∆vyn =
∂vy
∂x

∆xn +
∂vy
∂y

∆yn +
∂vy
∂z

∆zn (3.15)

∆vzn =
∂vz
∂x

∆xn +
∂vz
∂y

∆yn +
∂vz
∂z

∆zn (3.16)

where ∆xn = xn − x0, ∆yn = yn − y0 and ∆zn = zn − x0 for n = 1,2,3. Similarly, ∆vxn =
vxn − vx0, ∆vyn = vyn − vy0 and ∆vzn = vzn − vz0.

Further on, the velocity gradient components are given by

∂vx
∂x
∂vx
∂y
∂vx
∂z

 = A−1

∆vx1

∆vx2

∆vx3

 (3.17)


∂vy
∂x
∂vy
∂y
∂vy
∂z

 = A−1

∆vy1

∆vy2

∆vy3

 (3.18)

∂vz
∂x
∂vz
∂y
∂vz
∂z

 = A−1

∆vz1
∆vz2
∆vz3

 (3.19)

(3.20)

where A−1 is the inverse of the matrix

A =

∆x1 ∆y1 ∆z1

∆x2 ∆y2 ∆z2

∆x3 ∆y3 ∆z3

 (3.21)

Knowing the values of ∂vi
∂xj

we can evaluate the velocity divergence θ, shear σij and vorticity
ωij :

θ =
1

H
(∇ · v) (3.22)

σij =
1

2
(
∂vi
∂xj

+
∂vj
∂xi

)− 1

3
(∇ · vδij) (3.23)

ωij =
1

2
(
∂vi
∂xj
− ∂vj
∂xi

) (3.24)

40



Jad Alexandru Mansour 3.4. Simulation processing: Halo identification

Figure 3.10: The velocity interpolation procedure obtained via the DTFE. The top left hand panel
shows the particle positions of the velocity field while the top right panel shows the corresponding
Delaunay triangulation. The middle panels show the velocity gradient determined for each
triangle and the 3D representation. The velocity amplitude is represented through the height of
each point. The bottom lefft panel shows the estimation of the DTFE velocity field at the grid
points. The bottom right panel shows the final result of the interpolation procedure. Figure
from Romano-Dıaz and van de Weygaert 2007.

An illustration of the Delaunay tesselation procedure used to infer the velocity field can be
seen in Fig. 3.10. In Chapter 4.4 we will show the velocity fields and the stream of matter in
our simulation.

In this section we presented the DTFE algorithm used to obtain the underlying density field
in the particle distribution. Once this is obtained, the WVF can be used in order to identify
the voids. In the next section, we focus on identifying halos in the simulation. We discuss the
ROCKSTAR halo algorithm and the convex hull method used to specifically locate void halos.

3.4 Simulation processing: Halo identification

As we have seen in Chapter 2.4, halos are gravitationally bound clumps of dark matter that
have virialized over time (Fig. 3.11). They are born from the collapse of overdensities in the
primordial field and are essential in the formation of galaxies since they supply the gravitational
potential wells in which baryons can fall into. The lack of electromagnetic interaction makes the
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Figure 3.11: A zoom sequence onto the most massive halo in the dark matter distribution of the
Millenium-II Simulation. The top left, largest image is a 15 h−1 Mpc thick slice through the
100 h−1 Mpc volume. The halo shown has a mass of Mh = 8.2 × 1014 h−1Modot. Figure from
Boylan-Kolchin et al. 2009

study of dark matter possible only through gravity. To obtain properties of the halos, such as
masses, shapes, angular momenta or merging histories; post-processsing N-body simulations is
needed. This requires developing algorithms that are capable of identifying halos in dark matter
simulations.

3.4.1 Halo Finders

Previous halo finders that have been developed in the literature can be classified as bottom-up
or top down finders.

Bottom-up Halo Finders

The main type of halo finder is the Friends-of-Friends (FOF) algorithm. This algorithm groups
particles together provided they are located at a certain distance (linking length) from one
another. Usually, this length is chosen as a fraction of the mean interparticle distance. The
most efficient FOF algorithms used in the present are SUBFIND (Springel, White, Tormen,
et al. 2001) and ROCKSTAR (Behroozi, Wechsler, and Wu 2013) which will be detailed in the
next section. Extensions of this type of algorithm include phase-space finders such as 6DFOF
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(Diemand, Kuhlen, and Madau 2006) and Hierarchical Structure Finder (Maciejewski et al.
2009).

Top-down Halo Finders

In the second category lies spherical overdensity (SO) finders. These algorithms identify density
maxima in the particle distribution and collect particles around that peak in increasing spheres
until their total mass falls below a certain density threshold. The most used top-down algorithm
is the Amiga Halo Finder (AHF) (Knollmann and Knebe 2009). Some other examples include
the ASHF (Planelles and Quilis 2010) and the Bound Density Maxima (Klypin et al. 1999).

Limitations

Limitations of the halo-finders that use only three dimensions usually involve the inability to
correctly identify major mergers and halos that reside too close to their parent halo. The common
reason has to do with the insufficient density contrast that would allow one to separate close-by
halos. Despite the fact that this problem can be solved by investigating the 6D phase space,
limitations can also arise in this case as well. This time, the problem is related to the lack of a
position-velocity metric. More details on more halo finders codes and their efficiency in retrieving
properties of mock halos can be found in Knebe et al. 2011.

3.4.2 Rockstar Halo Finder

The ROCKSTAR (Robust Overdensity Calculation using K-space Topologically Adaptive Refine-
ment) Halo Finder, developed by Behroozi, Wechsler, and Wu 2013, is an adaptive phase-space
temporal halo-finder, able to preserve the particle-halo and halo-subhalo identities at various
time steps. Moreover, the algorithm can easily adapt to the high-resolution simulations due to
its efficiency and parallelization. The algorithm steps are summarized here (see also Fig. 3.12
for a visual representation of the steps).

1. Rockstar identifies overdense regions in the simulation via 3D FOF and splits the task
among multiple processors for analysis. In the original 3D FOF, if a particle has reached a certain
number of "friends" (neighbours) within the linking length, then the neighbour finding process
is terminated. By contrast, the Rockstar algorithm searches for neighbours located inside twice
the linking length and, if these neighbours correspond to other FOF groups, the two groups are
merged. This technique is used in order to speed up the process of neighbour-finding.

2. In phase space, a hierarchy of FOF subgroups are constructed by reducing the 6D linking
length. This means that for two particles p1 and p2, the 6D metric is given by

d(p1, p2) =

(
|x1 − x2|2

σ2
x

+
|v1 − v2|2

σ2
v

) 1
2

(3.25)

where σx and σv are the position and velocity dispersion of the particles in a particular FOF
group. A linking length is then chosen such that a fraction f = 0.7 of the group particles are
linked with at least another particle in subgroups. This operation is repeated for each subgroup
such that deeper and deeper levels of substructure are sampled.

3. Starting from the bottom level of the hierarchy, a halo seed is generated at each local
phase-space maxima, in each identified subgroup. The algorithm will then assign particles to
the seed halo as it advances upwards on the hierarchical group scale. This will end when all the
particles in the original FOF group will be collected.
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Figure 3.12: Steps that the Rockstar algorithm takes in the halo analysis. Figure from Behroozi,
Wechsler, and Wu 2013.
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Two cases must be now distinguished here. In the case of a parent group that has no other
subgroups, all the particles present will be associated with the same seed halo. However, if the
parent group contains multiple subgroups then the particles will be associated with the seed
halos of those subgroups based on the shortest distance in phase-space. The phase-space metric
will be based on halo properties such that the distance between a particle p and a halo h

d(h, p) =

(
|xh − xp|2

r2
vir

+
|vh − vp|2

σ2
v

) 1
2

(3.26)

where rvir is the virial radius of the seed halo and σv is the velocity dispersion of the particle.
4. If previous time steps are availabe, relations between halos/subhalos are computed.
5. Unbound particles from halos are eliminated and halo properties such as mass, shape or

spin are computed. The unbinding method involves the computation of the particle potential
via a Barnes-Hut tree algorithm.

A visual representation of the algorithm’s ability to identify halos can be seen in Fig. 3.13.
The image shows how particles are assigned to halos in a major merger event (example taken
from the Bolshoi simulation at z = 0). A closer inspection shows that the larger halo contains
another, smaller, merger. This event can be more clearly be seen in the velocity space in the
bottom right panel.

3.4.3 Identifying halos in voids: the convex hull algorithm

We have seen that voids are anistropic structures, with complex boundaries that are difficult to
pinpoint. In order to locate halos within voids, we have to find a suitable algorithm that would
be able to correctly identify these boundaries. We turn to the convex hull algorithm (Barber,
Dobkin, and Huhdanpaa 1996). To summarize, given a set of points in 3D, the convex hull
finds the smallest polyhedron that encloses these points such that each point lies either on the
boundary or inside the polyhedron. As an analogy, one can imagine a random distribution of
sticks placed perpendicular on a table. A rubber band stretched around the outermost sticks
represents the convex hull. Then, the void halo identification proceeds as follows:

i. Identify the positions of halos within spheres of increasing radii, centered on the void’s
center.

ii. Since voids are not perfectly spherical, the localising spheres will overflow the void at
some particular radius (i.e will contain regions that are outside the void). As a consequence,
halos that are not part of the void will be collected.

iii. Compute the convex hull of the void and keep only the halos that are inside the hull.
Fig. 3.14 illustrates the final step of the procedure. The density field at a particular slice is

shown together with a cross-section of a void (yellow region). The yellow points represent the
halo centers and tend to be found mostly in regions of high density (e.g filaments and clusters).
The white line that surrounds the void represents the boundary of the convex hull (which we
will refer to it from now on as simply the void boundary). The red dots are the halos that were
identified inside the hull. In Fig. 3.15, we show a 3D perspective of the identified halos in an
arbitrary void. The convex hull of the void is shown as a transparent polyhedra while the yellow
spheres indicate the positions of the halo centers. Notice how most halos tend to be located at
the void boundary. The center being mostly devoid of them.

Once the halos have been identified inside voids, we can investigate how various properties
(number, mass, spin, shape) vary as a function of radial distance from the void’s boundary (see
Chapter 5 for results). This distance is computed in the following way
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Figure 3.13: Halos in a major merger event in the Bolshoi simulation recovered by Rockstar.
Top panel shows the particle distribution associated with the halos. The left panel in the second
row shows the host halo particle distribution while the right one shows the subhalo particle
distribution. It can be noticed that there are actually three halos involved in the major merger,
two of them being very close together. The bottom panel shows this close merger in position
and, more clearly distinguishable, in velocity space. Figure from Behroozi, Wechsler, and Wu
2013.

46



Jad Alexandru Mansour 3.4. Simulation processing: Halo identification

Figure 3.14: Cross-section of the density slice superposed over a void (yellow region) identified
by the watershed algorithm. The white line surrounding the void represents the convex hull
boundary. The yellow points indicate the halo center positions at that slice while the red points
represent the halos identified inside the void.
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Figure 3.15: 3D perspective of identified halos in an arbitrary watershed void. The yellow spheres
(not to scale) indicate the positions of the the halo centers. The translucent polyhedra represents
the convex hull of the void.
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D = min||rh − {rb}|| (3.27)

where || is the vector magnitude, rh represents the position vector of a halo center, {rb}
represents the set containing the position vectors of all boundary points and D is the minimum
distance between the halo center and the boundary points.

In this chapter we have seen the different tools employed to study the effect of the void
environment on dark matter halos. In the next chapter, we present our results on the void
population in the GADGET-2 simulation. We characterise the voids by their abundance, sizes,
shapes and profiles.
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Chapter 4

Void population

In this chapter we analyse the properties of the void population identified by the Watershed
Void Finder in the GADGET-2 simulation. We first visually inspect the population and assess
its abundance. We then define the center of a void, which will be useful in assessing the void
profiles and shapes. Afterwards, we investigate the sizes and shapes of voids using the convex
hull algorithm and compare those with the standard approaches. Subsequently, we present the
radial density and velocity profiles and compare them with the predictions made by the linear
theory. We use these results to characterise the void environment in which dark matter halos
develop.

4.1 Void abundance

In order to characterise the void environment, we need to assess the statistical properties of
voids through a representative sample. Using the WVF algorithm, we found a number of ≈
3600 voids in the GADGET-2 simulation. Figure 4.1 shows a cross section of the density field
(left panel), together with the corresponding watershed voids (middle panel). The colours are
used to differentiate between voids; they do not correspond to any inherent physical property.
Immediately one can notice the variety of sizes and shapes that the voids have. For a 3D
representation of voids see top panel of Figure. 4.2 where we show three neighbouring voids.
Each volume element has been represented by a sphere for better visualisation.

Looking back at Fig. 4.1 and focusing on the edges of the 2D slice of the central panel, one
can notice a discontinuity of the watershed basins that continues on the opposite side: the voids
appear split in two (see also bottom panel of Figure. 4.2 for the 3D perspective). This is an effect
that results from the periodic boundary conditions of the simulation. Out of the total number of
voids, 1000 (27%) are periodic voids. These voids may affect the results regarding shape, density
and kinematics. As a consequence, they must be taken into account when analysing the various
properties of voids. This can be done by translating the void coordinates towards the middle of
the simulation. There, one can compute the desired properties.

Matthijs 2003 showed how the void abundance evolves with time. Using the self-developed
multiscale filtering procedure, the author showed that voids reach a maximum at a ≈ = 0.8.
At lower values, the abundance increases exponentially from a = 0 while at higher values, the
number of voids decreases. This decrease has been associated with void collapse or merging
processes. For a = 1, the number of voids appears to coincide with our current findings of N ≈
3600.
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Figure 4.1: Left: Density slice in the simulation volume. Middle: corresponding voids identi-
fied with the WVF. The colours are used to differentiate the voids from one another. Right:
superposition of the previous two images.

Figure 4.2: Top: A group of three neighbouring watershed voids in the GADGET-2 simulation.
Bottom: A periodic watershed void in the GADGET-2 simulation. Due to the periodic boundary
conditions of the box, the void appears split in two at the boundaries.
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4.2 Void center

Identifying the center of a void is important for investigating various void properties and corre-
lations. We have seen already that voids present a variety of irregular shapes (see also Section
4.4 in this chapter for our results). Due to this, identifying the center of a void may become
an ambiguous task. The standard method used (Lavaux and Wandelt 2012; Sutter, Lavaux,
Wandelt, et al. 2012) is to compute the volume weighted barycenter defined as:

rbc =

∑Np
i=1 riVi∑Np
i=1 Vi

(4.1)

where ri is the position of the i-th particle, Vi is the volume of the Voronoi cell and Np is the
number of particles composing the void.

As noted by Nadathur and Hotchkiss 2015, the position ri of a cell may in reality be imprecise.
A factor responsible for this is the great number of void cells which reside in the overdense
boundaries. This will cause the identified void center (Eq. 4.1) to be located far from the point
of minimum density, which would represent a better choice as the center according to the authors.

In this work, we use an equivalent definition to that of Eq. 4.1 which is the density weighted
center of mass defined as:

rcm =

∑N
i=1 riδi
N

(4.2)

where rcm = {xcm, ycm, zcm} are the coordinates of the center of mass, ri = {x, y, z} are the
coordinates of the voxels forming the void and δi is the density value at location ri. The sum
runs over N voxels. In principle, these definitions are similar and should not produce different
results.

In the later sections of this chapter we will use the center of mass as the origin of the void
in computing the sizes, shapes and void profiles. In section 4.6 we will also discuss the dynamic
center of a void, which will be useful in computing the velocity profiles.

4.3 Voids sizes

A primary characteristic in defining the environment is the size of voids. As a first approximation,
the size of a void can be quantified by its spherical equivalent radius R. This is defined as the
radius of a sphere that has the volume equal to the volume of the void. We consider the volume
of a void V to be defined as:

V =
Nvv

Nvs
× Vs =

Nvv

5123
× 3003Mpc3 (4.3)

where Nvv is the number of voxels contained in a void, Ntv is the total number of voxels
in the simulation and Vs is the volume of the simulation box. Then, the equivalent radius R is
given by

R =

(
3

4π
V

)1/3

(4.4)
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Figure 4.3: Left : Probability density of the equivalent void radii. The solid line indicates the
average. Right : Cumulative distribution function of equivalent void radii.

Fig. 4.3 shows the equivalent radii of the voids in the current simulation. The void population
spans an interval in radius between approximately 5 and 22.5 Mpc with an average radius of
11.45 Mpc.

We have seen previously that due to the tidal field generated by the surrounding structure,
voids end up with irregular shapes and they can deviate substantially from what it is considered
an ideal sphere. As such, we use the convex hull algorithm in order to approximate the lumpy
boundaries of the voids. The size of a void can, thus, also be analyzed by computing the radial
distance between the center and its boundary. Fig. 4.4 shows the distribution of the boundary-
to-center distances of the voids. The first thing to notice is that the distribution spans a larger
interval (5-35 Mpc) than the equivalent radius distribution. The average distance is 16.76 Mpc.
We will refer to this value as the characteristic size of a void, rch.

The differences between the two distributions can be accounted by the fact that the convex
hull algorithm better approximates the anisotropic shapes of voids while the equivalent radii
method computes the radius of a void assuming that the void is spherical.

P. M. Sutter et al. 2012 has compiled a public void catalog using SDSS DR7 main sample
(out to z = 0.2) and the luminous red galaxy (out to z = 0.44) sample. They computed the
equivalent radii of their void population and found that it spans an interval between 5 to 135
h−1 Mpc. The wide interval in radii is explained as a consequence of various effects such as the
bias of the brighter galaxies producing larger voids or possible shot noise enhancing void regions.
Pan et al. 2012 also studied the distribution of voids using the SDSS DR7 using the VoidFinder
algorithm. They found that voids have equivalent radii between 10 and 22 Mpc. In this case,
the lack of voids smaller than 10 Mpc can be explained by the absence of a low-redshift sample.
Nadathur 2016 has compiled a void catalogue using the Baryon Oscillation Spectroscopic Survey
and found that the equivalent radii of their void population peaks at ≈ 35h−1Mpc. This value
is confirmed by the more recent study of Kreisch et al. 2021, who applied the void finder VIDE
on the QUIJOTE simulation and compiled the largest catalogue at the moment, containing over
a billion voids.

We interpret the present results on the void sizes based on the studies mentioned. Thus, we
attribute the differences in size mainly due to the tracer particles used. In this work, we identify
voids based on the dark matter particle distribution. The particles trace out the voids much
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Figure 4.4: Left : Probability distribution function of the distances between the void boundaries
and their centers. The black dashed / solid lines indicate the median / average boundary-to-
center distances respectively. Right : Cumulative distribution function of the boundary-to-center
distance.

accurately than galaxies (in observations: P. M. Sutter et al. 2012; Pan et al. 2012; Nadathur
2016) or simulations: Kreisch et al. 2021). The reason being that galaxies and halos represent
a much sparser population of objects which will lead to voids with larger sizes. Particularly,
in the case of Kreisch et al. 2021, the simulation resolution is another reason for the difference
observed. Concretely, they report that the lack of small voids in their sample is due to the low
resolution at small scales.

We relate now our results to the theoretical predictions from the literature. The 2-barrier
excursion set formalism, developed by Sheth and van de Weygaert 2004, has predicted a universal
void size distribution. This distribution is sensible to the ratio between the collapse barrier and
the void barrier, δcδv . This shows that the probability of voids being crushed by overdensities (recall
the void-in-cloud phenomena from Chapter 1.6) increases as the collapse barrier decreases. As
a consequence, the size distribution will suffer a cut-off of small voids due to the void collapse
processes. By contrast, the population of large voids is not affected by this and only depends
upon δv. The analytical size estimation found in the 2-barrier formalism is given by:

rv
h−1Mpc

≈ 1.7× 8

32/3+n

(
σ8

0.9

2.7

|δv|
)

)
(4.5)

where rv is the size of a void, σ8 is the rms fluctuation on scales of 8 h−1 Mpc in the power
spectrum while n is the power spectrum index. For an initial power spectrum P (k) ∝ kn with n
= -1.5, σ8 = 0.9 and δv = -2.81, the authors found that the typical void radius is ≈ 3 h−1 Mpc.
This is almost an order of magnitude lower than what the present study found. This discrepancy
may appear due to the way the definition of a void in a theoretical framework differs from the
one in a practical scenario. As noted by Nadathur and Hotchkiss 2015, in the model of Sheth
and van de Weygaert 2004, a void represents a non-linear underdense region that has reached
shell-crossing. However, in N-body simulations (or redshift survey data) algorithms are used
to identify underdense regions in the field. These algorithms do not refer to the shell crossing
criterion, which is the main assumption that enters the definition of a void in the theoretical
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model. Ideally, one would have to find a way to relate the model predictions with practical
results. One solution proposed by Nadathur and Hotchkiss 2015 would be to assume that shell-
crossing and void formation develop at smaller density values δv than those predicted by the
spherical model. By allowing this value to vary, one can permit the inclusion of larger voids via
an exponential cut-off. However, further research into the issue is required in order to develop a
better agreement.

4.4 Voids shapes

One method to analyse the shapes of voids is to fit them with an ellipsoid. In order to do this,
the shape tensor Sij must be computed:

Sij = −
∑
k

xkixkj (4.6)

Sii = −
∑
k

x2
k − x2

ki (4.7)

where xk is the position of the k-th volume element of a void with respect to the void center
of mass (that is xk = rk - rcm).

The semiaxes of the ellipsoid can be obtained by solving for the eigenvalues of the shape
tensor Sij . The eigenvalues must satisfy the condition a > b > c. The lengths of the semiaxes of
the ellipsoid are thus given by:

a2 =
5

2N
(b+ c− a) (4.8)

b2 =
5

2N
(a+ c− b) (4.9)

c2 =
5

2N
(a+ b− c) (4.10)

where N represents the total number of volume elements comprising the void.
Once the axes have been obtained, the shape of the void ellipsoid can be quantified by

computing the ratios b
a and c

a . Three cases must be distinguished here. First, if the two ratios
are equal to one then we have a sphere: b

a = c
a = 1. If the major axis is longer than the

intermediate and minor ones, c ≈ b < a , than the ellipsoid is prolate. Finally, if the minor axis
is smaller than the other two, c < b ≈ a, we have an oblate ellipsoid.

A plot of the void shapes and the ellipticity distribution for the current void population can
be seen in Fig. 4.5. The left panel shows that there are more prolate voids than oblate ones.
The average values found for the axes ratios are b

a ≈ 0.73 and c
a ≈ 0.56. The right panel shows

the ellipticity (ε = 1 - c
a) probability distribution. The voids appear to have a slightly skewed

distribution at ε > 0.4. In Fig. 4.6, we also show two examples of voids, a more spherical void
with axes ratios of b

a = 0.94 and c
a = 0.91 and an aspherical one with b

a = 0.37 and c
a = 0.28. It

is clear that these objects deviate quite substantially from ideal geometrical bodies.
Platen, van de Weygaert, and Jones 2008 found that the ellipticity distribution to be skewed

at a value higher than ε > 0.5. Furthermore, they found the average values of the axes ratios to
be b

a ≈ 0.7 and c
a ≈ 0.49. Similarly, Shandarin et al. 2006 found average values of b

a ≈ 0.65 and
c
a ≈ 0.45 respectively. Our results are in good agreement with the previous findings.
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Figure 4.5: Shape characteristics of the void population. Left : scatter plot of the axes ratio of
the void ellipsoids b

a and c
a . The density distribution contour has been superposed in black in

order to better visualise the shape tendency. Right : Ellipticity distribution of the void ellipsoids.

Figure 4.6: Examples of voids in the GADGET-2 simulation. Left : A spherical void, with
semiaxes ratios of ba = 0.96 and c

a = 0.92. Right : An elongated void with b
a = 0.42 and c

a = 0.23.
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Figure 4.7: Left : Form Factor as a function of equivalent radius for small (blue) voids and big
(red) voids computed using the ellipsoid approximation. Right : Probability distributions of the
form factor for the two subpopulations.

We can further analyse the shapes by splitting the void population in half based on the
equivalent radius. Thus, we will have a group of small voids (R < 11.17 Mpc) and one of large
voids (R > 11.17 Mpc). Keep in mind that this split is arbitrarily made and thus, not motivated
by any physical means. The rationale behind it is to investigate the existence of a trend in
the void shapes. Once we have done this, we proceed by computing the Form Factor (van de
Weygaert 1991), defined as:

F = 36π
V 2

A3
(4.11)

where V and A represent the volume and area of the void. A Form Factor equal to one
corresponds to a sphere. As an approximation, we can assume V and A to be the volume and
area of the void ellipsoid and compute them using the ellipsoid axes previously found. Thus, the
volume and area of an ellipsoid are defined to be:

V =
4π

3
abc (4.12)

A = 4π

(
(ab)1.6 + (ac)1.6 + (bc)1.6

3

) 1
1.6

(4.13)

Fig. 4.7 shows the form factor as a function of equivalent radius. No major differences can
be seen for these two groups.

The Form Factor can be recomputed using the area and the volume of the convex hull. Using
the boundary-to-center distance, we can again search for a dependence of shape on size ( Fig.
4.8). The first thing to notice is that the mean Form Factor has a lower value for both the small
and large voids. Furthermore, the large voids appear to have a slightly bigger (but noticeable)
Form Factor than the small voids which implies that they have a more spherical shape.

The tendency towards sphericity is in agreement with the evolution of spherical and isolated
underdensities (Bertschinger 1985b; van de Weygaert and van Kampen 1993). In reality, voids
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Figure 4.8: Left : Form Factor as a function of boundary-to-center distance for small (blue)
voids and large (red) voids, computed using the Convex Hull algorithm. Right : Probability
distributions of the form factor for the two subpopulations.

are not perfectly spherical due to the presence of tidal fields generated by surrounding filaments
and clusters which distort their shapes.

4.5 Density profiles

We now focus on the interior matter content of voids by studying their density profiles. The
radial density profiles of voids have been obtained by averaging the density values at various
radii of concentric shells. The center of the shells is taken to be the center of mass of a void (i.e
Eq. 4.2).

Furthermore, we compute the average density contrast ∆(r) (Eq. 1.2) within radius r:

∆(r) =
3

r3

r∑
0

r′2δ(r′)dr′ (4.14)

where δ(r′) is the radial density profile previously discussed. This is useful in determining
how the radial density deviates from a spherically symmetric distribution.

Fig. 4.9 shows the average δ(r) and ∆(r) for a sample 850 voids. The x axis has been
normalized to the characteristic void size rnorm = r

rch
. The interior of voids (rnorm < 0.5 ) is

underdense (δ < 0), indicating the absence of matter close to its center. As the radius increases
(rnorm > 0.5), the density slope increases exponentially, indicating that the matter has been
pushed towards the boundary where the network of filaments, clusters and walls reside.

The average radial density profile δ(r) follows closely the density contrast ∆(r) in the interior
of voids. At approximately 1 rnorm, a sudden bump appears in profile followed by an exponential
increase at a radius of rnorm ≈ 1.75

This result is in agreement with the density evolution of a tophat void (Sheth and van de
Weygaert 2004). The bump that appears at a radius rnorm ≈ 1 can be understood by recalling
that this is the average radius of a void. This implies that at this location, we will encounter
(on the average) the high density boundaries. Voids larger than the characteristic size will show
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Figure 4.9: Average radial density profile (full line) and density contrast of a sample of voids (N
= 850). The radius of the shells have been normalized to the characteristic void size rnorm ≈
16.76 Mpc.
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even higher density boundaries, as it can be seen in exponential increase past rnorm = 1.50. The
deviation from an ideal exponential can also be an indication of the substructure present within
voids (van de Weygaert and van Kampen 1993).

The radial profile represents a first approximation based on the rather spherical shape of
voids, although as it was shown in Fig. 4.6, they can deviate substantially from a sphere. A
useful method that takes into account the shape of the void has been developed by (Cautun,
Cai, and Frenk 2016). In this study, the authors describe the density profile relative to the
boundary. They rescale the profiles by the boundary thickness and show that the average profile
is independent of the void size.

4.6 Dynamics

Besides the density profiles, understanding the dynamics within voids is also crucial in under-
standing the void environment.

We present our results on the dynamics of voids in Fig 4.10. The top left panel shows a
slice of the density field in which the usual components of the cosmic web can be seen: clusters,
filaments and voids. The top right panel shows the corresponding velocity field. The magnitude
of the field ranges up to ≈ 1300 km/s (yellow) down to ≈ 10 km/s (dark blue). The regions
with a large velocity magnitude correspond to regions of high density . On the other hand, low
velocity values correspond to underdense regions. The stream plot indicates the flow of matter.
One can notice that the stream arrows originate in a low density regions and they point towards
high density ones. This is an indication of the void’s expansion, causing the outflow of matter
from within the voids into the surrounding filaments. The bottom panels show the corresponding
voids that have been identified with the watershed algorithm.

We would like now to find the location of a dynamical center within voids which we will use
to compute our radial velocity profiles. We search for the expansion point which corresponds to
the point that has the highest velocity divergence. We expect to find this point at the origin of
the streamlines in our plots. To compute the velocity divergence field in our simulation, we make
use of the DTFE algorithm (recall Chapter 3.3). The top panels of Fig. 4.11 show cross-sections
of the velocity divergence field in the simulation. The yellow region represents a watershed void.
Interestingly, we find that the minimum velocity magnitude (blue point) is located at the origin
of the outflow stream and not the maximum divergence (red point).

We can better visualise this phenomena by looking at a 3D plot of the void (Fig. 4.13). Both
points appear to be located at the void’s boundary. The minimum velocity is located at the
origin of the velocity stream.

This can be an indication that this void is part of a larger underdensity (or overdensity),
hinting at the void hierarchy. Aragon-Calvo and Szalay 2013 has studied the void hierarchy in
the velocity field of voids in an N-body simulation. They showed how the velocity field breaks
into smaller expanding subdomains, corresponding to smaller voids. This may explain why the
void shown here is not an expansion center.

Once we have established the minimum velocity point as a reference, we compute the radial
velocity profiles of voids in a similar manner to the radial density profiles. We can further
compare the velocity profiles of the voids with the predictions made by the linear theory. In this
model, the average radial peculiar velocity vlin(r) is equal to

vlin = −1

3
H0f(Ω0)r∆(r) (4.15)
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Figure 4.10: Dynamics of voids illustrated. Top left: Slice of density field in the simulation. Top
right: corresponding velocity field. The white arrows indicate the flow of matter . Bottom left:
corresponding voids identified by the watershed. Bottom right: same as bottom left, the stream
of matter has been superposed over the voids to indicate their outflowing nature.
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Figure 4.11: Cross sections of the velocity divergence. The green / blue areas represent regions
with positive / negative velocity divergence respectively. A watershed void (yellow area) is
being shown together with the minimum velocity magnitude value (blue point) and maximum
divergence (red point).

Figure 4.12: Zoom in on the void cross-sections.
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Figure 4.13: Three dimensional velocity stream flow of the watershed void from Fig. 4.6. The
blue-red color gradient of the arrows indicate the regions of low/high velocity. The red sphere
corresponds to the location of the maximum divergence. The blue sphere indicates the position
of the minimum velocity magnitude.
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Figure 4.14: Average radial (full line) and linear (dashed line) velocity profiles with respect to
the velocity at the center of mass for a sample of voids (N = 850). The radius of the shells have
been normalized to the characteristic void size rnorm ≈ 16.76 Mpc.

where f(Ω0) ≈ Ωγ
0 is the velocity function with γ = 0.55 for the ΛCDM model (Peebles 1980)

and ∆(r) is the average density perturbation at a radius r (Eq. 1.2). Fig. 4.14 shows the average
radial and linear velocity profiles for a sample of 850 voids. The radial profile increases linearly
up to a distance of rnorm = 1, in agreement with the nearly flat δ(r). Beyond this distance, the
growth deviates from linearity and achieves a maximum value of 60 km/s after which it starts
declining. The linear velocity profile increases much more abruptly and it peaks with a value of
≈ 100 km/s, at a shorter distance from the void center. The mismatch between the two profiles
may again suggest the presence of the void hierarchy. However, further studies on this issue are
required.

Once we have characterised the void environment, in the next chapter we proceed by dis-
cussing the effect that voids have on the properties of dark mater halos.
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Chapter 5

Void Halos

In this chapter we investigate the properties of halos identified in the watershed voids. We start
by presenting the overall halo population and its abundance. We present the halo mass function,
spin and shape parameters and relate these properties to the void’s intrinsic characteristics.

5.1 Halo population

The total number of halos identified in the GADGET-2 simulation is 1.185 ×105 halos. Our
halos have virial masses between 1011.8M� < M200c < 1015M� and a number of particles per
halo that satisfies Npart > 50. Fig. 5.1 shows the overall halo population in GADGET-2. Notice
how the halos trace the familiar cosmic web components: filaments, nodes and voids. Looking
at the right zoom-in panel, one can notice that the halos are located mostly in filaments and
clusters. This is to be expected since these are the denser regions which would facilitate the
formation of halos in greater number.

The number of halos identified in voids is ≈ 8.8 × 104 (75% of the total number of halos in
the simulation). Fig. 5.2 shows the number of halos as a function of distance from the void’s
boundary and of distance from the void’s center. Consider the distance from the boundary first,
rbd, and notice that the majority of halos are located in the boundary’s vicinity. As the distance
increases, the number experiences an exponential drop. The reason being that we are sampling
regions deeper inside voids, where the density decreases exponentially. Looking at the distance
from the center, rct, reveals that this is just the mirror image of the distance from the boundary.
This time, smaller values of r correspond to distances closer to the center. The intersection of
the two distributions occurs close to the characteristic void size radius (dashed line).

The large percentage of void halos found is due to the Watershed algorithm which identifies
the boundaries of voids as high density regions (recall the flooded geological landscape from
Chapter 4 in which the basins were separated by ridges). The fraction of halos residing in
voids has been found to be 10-11% (Cautun, van de Weygaert, Jones, and Frenk 2014 + private
communication). We found a number of 9466 (10.66%) halos residing in voids at a distance
from the boundary equal to the characteristic void size (i.e rbd > r = rch). In what follows, we
consider these halos to be the representative sample of void halos.

5.2 Halo Mass Function

A quantitative and practical approach in studying the distribution of halos is the halo mass
function (HMF). This will help us in assessing the mass contribution of the halos to the population
abundance. The HMF is defined as the comoving number density of halos per logarithmic mass
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Figure 5.1: Halo population identified by ROCKSTAR in the GADGET-2 simulation. The zoom
in shows a cross-section of the density field through the middle of the simulation box. The yellow
points show the positions of the halos centers.
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Figure 5.2: The number of halos as a function of distance from: the void boundary (blue,
triangles) / void center (orange, circles). The dashed line represents characteristic void size
radius.
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bin (that is n(M) = dn
dlogM ) and is characterized by a power-law at low-mass halos followed by

an exponential cut-off at more massive ones. Furthermore, the obtained HMF can be fitted with
a Shechter function (Schechter 1976) defined as:

φ = φ∗
(
M

M∗

)α
e−

M
M∗ (5.1)

whereM∗ is the characteristic mass, α is the faint-end slope and φ∗ is a normalization factor.
Fig. 5.3 shows the HMF for halos in the overall simulation and for halos located within

voids. The halo masses for the overall population spans an interval of three orders of magnitude
(between 1012 and 1015h−1M�). For the void halos, the HMF suffers a decrease in both the
number density and mass, covering only ≈1012−1013.3h−1M�. More than 90% of the halos have
a mass of ≈1012h−1M�. This is to be expected since the interior regions of voids are underdense
and thus, unable to produce halos with large masses.

The most relevant study of the environmental properties of halos in the cosmic web has been
performed by Cautun, van de Weygaert, Jones, and Frenk 2014. The authors studied the compo-
nents of the web through their mass, volume, density distribution and halo population using the
NEXUS algorithm. For the halos located in the void environment, they report lower masses than
our present findings, with ≈ 95 % halos having a mass lower than 1011 h−1 M�. However, large
discrepancies in regard to the massive halos appear due to the different identification methods.
These methods result into a mass range for the void halos between ≈1010 − 1013h−1M�. These
were justified by the use of the NEXUS algorithm (Aragón-Calvo et al. 2007; Cautun, van de
Weygaert, and Jones 2013) which is designed to primarily identify nodes, filaments and walls.
As a consequence, voids are identified as structures that are not nodes, filaments or walls. By
contrast, the Watershed Void Finder is specifically designed to identify voids in a given density
field.

The study by P. Ganeshaiah Veena et al. 2019 reports a void HMF covering a mass range
between (≈1010 − 1012.8h−1M�). The lack of low mass halos in our sample may be explained
by the fact that the authors use a simulation with a higher resolution. Another reason that can
explain the differences is the method used to detect voids and halos. These authors also used
the NEXUS algorithm and thus the previous explanation may still apply here.

Metuki, Libeskind, and Hoffman 2016 have also explored the relation between the halo abun-
dance and the cosmic web environment. They show that the halo abundance in voids is lower
with respect to the other cosmic web components. This difference has been attributed to the
ambient density in the respective environments.

5.3 Halo Shape and Spin

Two other important properties which characterise the halos are the shape and spin parameters.
We mentioned previously that the shape quantifies the symmetry of the halo mass distribution
and is represented by the principal axes ratios of the halo ellipsoid: b

a ,
c
a and c

b .
The shape parameters have been obtained by the Rockstar Halo Finder algorithm (Behroozi,

Wechsler, and Wu 2013). The authors computed the mass tensor for particles inside the halo
radius:

Mij =
1

N

∑
N

xixj (5.2)
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Figure 5.3: Mass function for halos in the overall simulation (grey, circle) and for halos within
voids (blue, triangles).
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Figure 5.4: Halo shapes distribution for all the halos (gray) and for halos in voids located at the
characteristic void size (blue) in the GADGET-2 simulation

where xi denotes the position of the particle along the i-th coordinate With respect to the
halo center of mass. The eigenvalues of this tensor are the squares of the ellipsoid’s axes (i.e a2,
b2, c2).

In Fig. 5.4 we show the shapes for the void halos (blue) and for the whole halo population
(grey). In both cases, the contours correspond to the probability distributions of the axes ratios.
The overall halos appear to have a rather prolate shape, with an average b

a and c
a equal to ≈

0.686 and ≈ 0.497 respectively. The void halos appears to be slightly displaced, making them
more anisotropic, with average axes ratios of b

a = 0.685 and c
a =0.493.

The two panels of Fig. 5.5 show the average axes ratios of the void halos at various distances
from the void boundary and center. The horizontal, dotted lines indicate the mean values for
the overall halo population while the vertical, dashed lines indicate the characteristic void size.
Halos located at distances between 0 and 15 Mpc from the boundary (blue, triangles) have lower
axes ratio values in comparison with the overall population, indicating that they are more flatten.
However, past the value of 15 Mpc, the axes ratios increase again. At distances larger than 20
Mpc, the errors drastically increase due to the limited number of halos near the void center.

Similarly, looking at the distribution starting from the center (orange, circles), at values of
r ≈ 0 Mpc (near the origin of the void) the mean axes ratios present a sudden spike followed by
a decrease. This is due to the low number of halos located near the center. Notice that as we
increase the radii, the average value starts increasing again until it reaches the average value of
the overall population.
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Figure 5.5: Average b
a (left) and ca (right) axes ratios as a function of distance from the void

boundary (blue, triangles) and from the void center (orange, circles). The horizontal, dotted line
shows the b

a / c
a for all halos in the simulation. The vertical, dashed line shows the characteristic

void size.

Previous studies (Warren et al. 1992; Cole and Lacey 1996; Kasun and Evrard 2005; Bailin
and Steinmetz 2005) have found that halos are triaxial ellipsoids, who assume a more prolate
shape rather than an oblate one. They are characterised by 0.5 < c

a < 0.75, in agreement with
our results. More recently, Ganeshaiah Veena et al. 2018 used a large sample of halos from the
P-Millenium simulation in order to investigate their alignment with respect to the components
of the cosmic web. Overall, they report more spherical halos, with the majority having b

a > 0.9
and c

a > 0.8. A second finding indicates that the average axes ratios for the halos in voids are
lower than for the halos located in filaments and walls. Interestingly, given the fact that void
halos have, in general, a lower mass we would have expected them to be more spherical, as it
was suggested by (Bailin and Steinmetz 2005; Kasun and Evrard 2005).

The second main property of halos is the spin. In Chapter 2 we mentioned that this property
is quantified by the Bullock parameter λ defined as:

λ =
J√

2MVR
(5.3)

where J is the angular momentum within a sphere of radius R containing mass M while V is
the circular velocity of a halo at distance R.

Essentially, λ is used to quantify the importance of angular momentum with respect to
random motions. As such, high values of λ suggests a halo which is supported by rotation while
low values indicate a halo dominated by random motions.

Fig 5.6 shows the spin as a function of the halo mass. The overall halo population is depicted
in grey while the void halos in purple. The first thing to notice is that halos with larger masses
spin more slowly (in accordance with the conservation of angular momentum). Subsequently, for
halos within voids, both the mass and the spin distributions have lower values with respect to
the overall halo population.

Fig. 5.7 shows the average spin (left panel) and mass (right panel) values as a function of the
boundary / center distances. First of, notice the same systematic, linear decreasing trend on the
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first ≈ 15 Mpc for the average spin as a function of distance from the boundary (blue, triangles).
Past this value, the distribution starts presenting various spikes, accompanied with larger and
larger errors (remember we are sampling deeper regions within the void with a sparser number
of halos). Turning to the spin distribution as a function of distance from the center (orange,
circles) we notice a similar pattern. At values closer to the origin, we have fewer halos and thus,
larger errors associated which manifests as a sudden spike. Once we go further from the center,
at larger radii, the spin starts slowly increasing until it meets the overall halo population (dotted,
horizontal line).

We stress that this effect is very subtle and only visible when we consider a large number of
halos. For example, consider the halos identified in three arbitrary voids (Fig. 5.8). The white
clouds of points represent the voids while the spheres show the positions of the halos. The color
gradient shows the spin (bluer halos have a lower spin than whiter ones). At a first glance, one
can not easily affirm that lower spin halos reside deeper inside the void. We also show the scatter
plot of the halo spins as a function of distance from the boundary in Fig. 5.9. An arbitrary
separation based on the mean spin value has been made in order to illustrate low spin and high
spin halos. The effect of the spin decrease as the distance from the boundary increases is now
visible.

A few things to note regarding the fluctuations that appear both in Fig. 5.7 and Fig. 5.5.
First off, the spikes that appear closer to the void center are accompanied by large errors. As
we mentoned, these are explained through the sparse number of halos that populate the void
interiors. Another explanation for the spikes that appear in the spin vs boundary distance
distribution may be the following: the convex hull boundary of a void is defined by a limited
number of points. If a halo is located at the true void’s boundary but there is no convex hull
boundary point located there, then the closest hull boundary point to that halo may be located
on the opposite side of the void. As such, the distance between that halo and the hull boundary
may have a much larger value than in reality. This will also result in a larger value for the
properties discussed so far.

Hahn et al. 2007 studied the evolution of dark matter halo properties in different environments
and found that, at z = 0, the lower mass void halos will spin slower than for halos at the same
masses in other environments. This has been further confirmed by Ganeshaiah Veena et al.
2018 who showed that the average spin value for void halos is λ = 0.030 while for the overall
distribution is λ = 0.035.

In order to understand why the void halos posses a lower spin than the average, we must
recall the mechanism by which halos acquire an angular momentum. We have seen in Chapter
2 that the answer lies in the Tidal Torque-Theory (TTT) (Hoyle 1951; Peebles 1969; Heavens
and Peacock 1988). The TTT stated that in the linear regime, protogalaxies acquire angular
momentum due to torques which are generated by the tidal field of the surrounding large scale
structure. As time evolves and the nonlinear regime is reached, the mass contained in halos will
extend to larger radii. This effect, coupled with the possibility of collision with other galaxies
(halo mergers) will produce an increase in the angular momentum (Robertson et al. 2006). Since
mergers are not often encountered in underdense regions, the void halos will posses a lower spin.
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Figure 5.6: Spin distribution as a function of halo mass. The overall halo population is repre-
sented in gray while halos located within voids are shown in purple.

Figure 5.7: Average spin (left) and mass (right) distributions for void halos as a function of the
distance from the void boundary (blue, triangles) and from the void center (orange, circles). The
horizontal, dotted line shows the average spin / mass values for all halos in the simulation. The
vertical, dashed line shows the characteristic void size.
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Figure 5.8: 3D perspective of halos inside voids. The void is represented by a cloud of points.
The spheres represent the center of halo while the colour gradient corresponds to the spin value.
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Figure 5.9: Scatter plot of the spin parameter as a function of distance from the boundary for
all the halos identified inside voids. The blue points correspond to spin values higher than the
average spin in the sample while the red points correspond to lower values.
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Chapter 6

Conclusions

Voids are an essential component of the cosmic web. Due to their low density interiors, they
represent an ideal environment to study the formation and evolution of dark matter halos - the
backbone of galaxy formation. In this thesis we focused on the impact that the void environment
has on halo properties.

We used the Watershed Void Finder algorithm to identify voids in the density field of a
GADGET-2 simulation. The advantage of this algorithm is that it works directly on the topology
of the field and it does not make any a priori assumptions on the geometry of voids. The only
parameter input by the user is the radius of the filter. Furthermore, we used the convex hull
algorithm in order to approximate the irregular void boundaries which, in turn, allowed us to
better investigate the voids sizes and shapes.

The next step in our analysis is the halo identification in the particle distribution. For this,
we used the Rockstar Halo Finder which has proved to be efficient in retrieving a variety of halo
properties. For the specific identification of halos within voids, we again make use of the convex
hull algorithm. This allowed us to study, for the first time, how the halo properties (such as the
spin and shape) vary with respect to the distance from the void boundaries.

The characterization of voids as an environment represents a first result of our work. We found
that voids have an average size of ≈ 17 Mpc which makes them about two times smaller than the
most recent results from N-body simulations. We attributed this to the different tracer particles
used. Further on, the shape analysis reveals that voids tend to be more prolate, deviating from
a spherical shape. Most importantly, we found that larger voids tend to be more spherical than
smaller ones, in agreement with the evolution of spherical, isolated underdensities.

The density profile analysis revealed the internal substructure of the voids: the average
interior is described by an underdense, flat profile. As one approaches the boundaries, the
density increases exponentially, revealing the presence of high concentrations of galaxy clusters
and filaments. The irregularities that appear in the void profiles are a sign of substructure and,
in turn, of the void hierarchy.

The void dynamics is also an import issue in their characterisation. The velocity divergence
and velocity profiles reveal the expanding nature of voids. They are also an indicator for the void
hierarchy with the large voids breaking down into smaller subvoids, each with their own velocity
field. Further study is required in order to fully understand the implications of these results

The main purpose of this work was to investigate the properties of the void halos and to relate
them to the void environment. To begin with, we showed that the halo abundance decreases
exponentially as a function of distance from the void boundary. This is in agreement with the
behaviour of the void density profile, which increases exponentially close to the boundary. We
select a representative sample of void halos by choosing only the halos that are situated at a
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distance from the boundary larger than the characteristic void size . As such, we found that
the fraction of halos residing within voids is about ≈ 11% of the total number of halos in the
simulation. This selection has been made in order to avoid the potential halos residing on the
high density boundary identified by the watershed algorithm. We follow with the computation
of the halo mass function. Our results indicate that the void halos are less massive, spanning a
mass interval between ≈1012 − 1013.3h−1M� and are an order of magnitude less abundant than
the overall halo population.

Finally, we analyse the shape and spin parameters. On the average, halos appear to be more
prolate, in agreement with the previous findings. We found that void halos appear to be slightly
more anisotropic with respect to the overall halos. This is also observable in the downwards
trend of the average values of the axes ratios as a function of distance from the void boundary.
This indicates that halos in voids are more flatten, contrary to the previous expectations that low
mass halos would be more spherical. Regarding the spin, we found that for the same mass, void
halos spin more slowly in comparison with the rest of the halos in the simulation. This is further
confirmed by the decrease in the average spin as a function of distance from the boundary.

Further studies of this subject should include the use of higher resolution simulations (for
example the QUIJOTE (F. Villaescusa-Navarro et al. 2020) or the Illustris simulations (Vogels-
berger et al. 2014)), which will allow to probe halos with a wider range in mass and thus allowing
the investigation of finer substructure within voids. Worth researching would also be the time
evolution of the void halo properties. Furthermore, the convex hull algorithm does not perfectly
approximates the boundaries of voids. In tracing out the void boundary, the algorithm may
include regions which are not part of the void. An improvement may be seen by using the alpha
shape method, a generalisation of the convex hull. Finally, a comparison with observational data
might assure a reality check. This might include using mock galaxies as a tracer distribution and
then comparing properties of the void galaxies with the galaxies from observations.
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