
Evaluating Deep Reinforcement Learning Algorithms for

Physics-Based Musculoskeletal Transfemoral Model with a

Prosthetic Leg Performing Ground-Level Walking
Bachelor’s Project Thesis

Shikha Surana, s3701816, s.surana@student.rug.nl,

Supervisor: Prof. Dr. R. (Raffaella) Carloni & M.Sc. Vishal Raveendranathan

Abstract: This paper compares deep rein-
forcement learning algorithms for a physics-
based musculoskeletal osseointegrated trans-
femoral model with a prosthetic leg performing
ground-level walking. The algorithms compared
are: Proximal Policy Optimization (PPO) with
Imitation Learning, and PPO with Covariance
Matrix Adaptation (CMA) and Imitation Learn-
ing. The imitation dataset is a public dataset con-
sisting of the joint kinematics of a healthy subject
walking in a straight line on flat terrain. Unfor-
tunately, both DRL algorithms were unsuccessful
in generating a healthy gait, however, this paper
does evaluate them based on: cumulative reward,
similarity of kinematics to imitation data, and
muscle/actuator usage. Compared to PPO+IL,
PPO-CMA+IL received a 78.5% larger mean cu-
mulative reward, 64.7% larger mean duration of
an episode, and a decrease of 12.7% in muscle and
actuator usage. In contrast, both algorithms per-
formed similar in terms of the proximity between
model’s joint kinematics and the imitation data.
Future research will refine the reward function
and reduce the erraticness of actuator forces.

I. Introduction

Deep reinforcement learning (DRL) successfully han-
dles high-dimensional state spaces (deep learning) while
maximizing utility based on past experiences (reinforce-
ment learning) to solve problems for continuous state and
action spaces. DRL has been widely used to simulate a
human-like walking gait in a variety of models, such as
a self-balancing exoskeleton model [1], a neuromuscular
model [2], and physics-based biped characters [3, 4, 5].

The aim of this study is to simulate a physics-based
musculoskeletal transfemoral (above-knee) amputated
model with an osseointegrated prosthetic lower limb to
perform ground-level walking [6]. Proximal Policy Op-
timization (PPO) is a current state-of-the-art DRL al-
gorithm introduced to the field of robotic locomotive
tasks [7]. Previous research has illustrated impressive
performance using PPO [8] and PPO with Imitation
Learning [2, 9] to simulate a human-like gait in mod-

els similar to the one used in this research. These stud-
ies provide both inspiration and justification of using
PPO with Imitation learning with the proposed osseoin-
tegrated transfemoral model to optimize its kinematics
and muscle activations, and simulate its forward dynam-
ics on flat terrain. Furthermore, given the limited re-
search on PPO with bipedal locomotion and its proposed
limitations [10], this paper compares the PPO with Imi-
tation Learning algorithm with one of its variations. The
algorithms to be compared are: (1) PPO with Imitation
Learning (PPO+IL) [2, 9], and (2) PPO with Covari-
ance Matrix Adaptation (PPO-CMA) [10] and Imitation
Learning (PPO-CMA+IL). Imitation Learning for the
algorithms is implemented via an extensive and public
dataset provided by Camargo et al. [11] which includes
27 able-bodied subjects performing various locomotion
activities ranging from walking to ascending/descending
stairs. The dataset used in this research involves subject
AB027 walking forwards in a straight line on a flat ter-
rain.

The implementation of the DRL algorithms and the
computer simulations of the transfemoral model is re-
alized through OpenSim which is an open-source soft-
ware system [12]. The musculoskeletal model consists
of 15 muscles and 2 actuators controlling 14 degrees of
freedom. The sound leg has 11 muscles, and the ampu-
tated leg has 4 muscles with an actuator each at the
knee and ankle joint. This study adds to the current
field of research by making the following three contri-
butions. First, this study compares the PPO+IL algo-
rithm with the PPO-CMA+IL algorithm. This involves
modifying the PPO-CMA implementation to include im-
itation learning, the functionality of the model and the
OpenSim framework. Second, this study brings forth a
novel osseointegrated transfemoral amputee model with
a prosthesis to the analysis of gait patterns in OpenSim,
as well as, evaluates the muscle and actuator activations
during ground-level walking. Lastly, this study utilizes
the normal-walking motion capture dataset [11] to train
the model and comments upon the efficacy of using this
particular motion dataset as an imitation dataset.

The novelty in this research lies within the modified
PPO-CMA+IL architecture shown in Figure 1 where the
osseointegrated transfemoral model is the agent and the
algorithm works as follows. The agent receives the activa-

1

tion values for the muscles and actuators (i.e. the action)
from the policy mean and variance networks and enacts
it in the simulation resulting in a new observed state.
This state contains the measurements of the agent’s mus-
cles and joints which is scaled and input to the neural
networks for the next action. In contrast to the original
PPO-CMA algorithm, the reward used to train the net-
works is composed of two terms; the advantage estimates
and the imitation term. The advantage estimate repre-
sents the relative value of the actions in the policy and
the imitation term represents the proximity of the agent’s
behaviour to the imitation dataset. The imitation term
is the novel addition, and the approach of combining it
with PPO-CMA is inspired by de Vree and Carloni [9].

Figure 1: The proposed PPO-CMA with Imitation
Learning architecture to simulate the forward dynam-
ics of the transfemoral model with a prosthesis.

To summarize, this paper has two main objectives.
First, use the two DRL algorithms, PPO+IL and PPO-
CMA+IL, to control the muscles and actuators of the
transfemoral model to achieve a gait pattern with for-
ward dynamics comparable to healthy subjects. Sec-
ond, compare the two DRL algorithms based on training
time, cumulative reward and the proximity between the
model’s gait and a healthy gait.

The rest of the paper is structured in the following
way. Section II presents the theoretical background on
DRL and its role in bipedal locomotion, as well as, intro-
duces motivation behind implementing and comparing
the PPO and PPO-CMA algorithms. Section III intro-
duces the methodology of this research by explaining the
structure of the deep neural networks and the role of
imitation learning in training the model to perform a
healthy gait pattern. Section IV describes the implemen-
tation of the model in OpenSim and the processing of
the imitation dataset. Section V examines the empirical
results, and finally, the concluding remarks of this study
are formulated in Section VI.

II. Theoretical Background

This Section describes the use of OpenSim and states
the motivation behind using DRL to simulate the forward
dynamics of the osseointegrated transfemoral model with
a prosthesis. Furthermore, the PPO and PPO-CMA algo-
rithms are introduced and the justification behind using
these state-of-the-art algorithms is presented.

A. OpenSim

OpenSim is an open-source software system that pro-
vides the platform to develop human-like musculoskeletal
structures and analyse its dynamic simulations of a wide
range of motions [12]. This study uses OpenSim to visu-
alize the osseointegrated transfemoral model’s behaviour
when given both the imitation dataset or actions from
the DRL algorithms, and to process the imitation dataset
which is further explained in Subsection IV.B.

The motivation behind using OpenSim is explained
by previous studies utilizing this application to study
and/or simulate bipedal locomotion. Shachykov, Shuliak
and Henaff used OpenSim to generate the forward dy-
namics simulations of their neuro-musculoskeletal model
to simulate both a healthy gait and an interrupted walk-
ing pattern with a sudden stop [13]. Furthermore, de
Vree and Carloni developed a healthy and a transfemoral
amputee OpenSim model and simulated its forward dy-
namics to generate a healthy gait using a DRL algo-
rithm [9]. Moreover, Becker, Emmanuel, and Jean-Mare
used OpenSim to simulate the forward dynamics of a
musculoskeletal model of a horse forelimb to estimate
the joint loading [14]. Lastly, Luengas-C, Camargo, and
Garzón used OpenSim to analyse the possible instabil-
ity effects of dynamic alignment during a transtibial am-
putee model’s gait in the sagittal plane [15].

B. Deep Reinforcement Learning

Deep reinforcement learning modifies the reinforce-
ment learning approach by outsourcing the decision-
making responsibility to one or more neural network(s)
which is better equipped to handle high-dimensional in-
put states. As a result, DRL has been widely used in
bipedal locomotion tasks where the observed state space
is relatively large and the computation benefits proposed
by DRL can be achieved. The motivation behind using
DRL to simulate a healthy gait in the transfemoral am-
putee model with a prosthesis is justified through previ-
ous research which are described below.

This study builds upon the research conducted by de
Vree and Carloni who used DRL to train both a healthy
and transfemoral amputee model to perform ground-
level walking where the model’s gait resembles that of
a healthy subject [9]. The results showed that DRL suc-
cessfully simulated the forward dynamics of both mod-

2

els to perform normal walking with a stable and rel-
atively healthy gait. Hence, using the DRL approach
to simulate a healthy gait with the prosthesis model is
a promising method as the activity performed by this
study’s model is also normal walking and the differ-
ences between the two models are relatively minimal.
This study specifically adds to this previous research
by further evaluating the PPO+IL algorithm by com-
paring it with PPO-CMA+IL. Furthermore, Dong et al.
proposed a DRL-based training framework for their self-
balancing exoskeleton which is a robot that aids para-
plegic patients to walk. The training algorithm is cen-
tred around policy gradient descent and the experimen-
tal results demonstrate an adequate control policy for
the exoskeleton. Lastly, various studies have successfully
used DRL in combination with imitation learning to train
physics-based characters in performing a wide range of
motions [3, 4, 5]. All these studies demonstrate the suc-
cess DRL coupled with imitation learning has achieved
in the field of bipedal locomotion.

B.2. Proximal Policy Optimisation

The PPO algorithm was developed by Schulman et
al. in an effort to combine the benefits of the trust-
region policy optimisation (TRPO) algorithm with an
algorithm that is simple to implement, easy to tune and
has better sample complexity [7]. PPO is a policy gra-
dient method which means the PPO function indicates
how to update the current policy of the agent so that
it converges to the optimal policy. PPO is also an on-
policy method which entails the agent interacts with its
environment to create experiences that it can learn from.
Since these experiences are discarded after each iteration,
on-policy algorithms, such as TRPO, tend to be sample
inefficient. Hence, to tackle both the sample inefficiency
issue and the complexity behind the TRPO algorithm,
Schulman et al. developed PPO. In general, the PPO al-
gorithm alternates between sampling experiences for the
current policy and optimizing the objective function us-
ing the older experiences resulting in greater stability,
reliability and sampling efficiency. The following para-
graphs provide justification for using this specific learn-
ing algorithm.

As previously stated, this study takes inspiration from
the work of de Vree and Leanne who brought forward the
notion of utilizing PPO with imitation learning to anal-
yse gait patterns of healthy subjects [9]. Furthermore,
Anand et al. also implemented the PPO algorithm with
imitation learning to train their neuromuscular model to
perform human walking behaviour. This study’s results
showed a close resemblance between the model’s gait and
a healthy gait at walking speeds ranging from 0.6 m/s to
1.2 m/s [2]. In a different study conducted by Melo and
Máximo [8], a novel model-free DRL framework based
on PPO with no prior knowledge was proposed to create

a new running policy that surpasses the state-of-the-art
velocity recorded by [16] in the RoboCup 3D Soccer envi-
ronment. Their results demonstrates that their proposed
method exceeds the top forward speed by 50.3%, relative
to the best results achieved by [16], and they report on
PPO’s sample efficiency as their model was able to learn
the motions in only a few hours. However, one significant
drawback stated in this research is PPO’s high sensitivity
to hyper-parameters which leads to distinct policies.

Moreover, Xie et al. work with a realistic model of
a biped robot, called Cassie, and use a DRL frame-
work to train the controllers for bipedal locomotion in
a model-free manner in which the optimisation of the
policy is handled by PPO. Their results demonstrate
that a DRL-based approach which includes PPO as the
optimizer is able to effectively train controllers on real
biped model. Lastly, PPO is chosen as one of the learn-
ing algorithms because the creators of PPO [7] com-
pared it against various policy gradient methods that
are considered to be effective for continuous problems,
such as TRPO, cross-entropy method (CEM), vanilla
policy gradient with adaptive stepsize, advantage actor
critic (A2C) [17], and A2C with trust region [18]. The
algorithms were compared within several different Mu-
JoCo environments and the results illustrated that PPO
outperformed the five remaining methods in almost all
continuous control environments. Furthermore, PPO was
also tested on Roboschool environments where a 3D hu-
manoid is trained on high-dimensional control problems,
such as running, steering, and rising up from the ground,
and the results show that PPO allowed the humanoid to
successfully learn and accomplish these tasks.

B.2. PPO with Covariance Matrix Adaptation

Hämäläinen et al. proposed the PPO-CMA algorithm
in response to PPO’s exploration variance shrinking pre-
maturely which leads to slower progress [10]. Inspired by
the CMA evolutionary strategy (CMA-ES), PPO-CMA
dynamically expands and contracts its exploration vari-
ance to achieve faster progress and is less prone to re-
maining stuck in local optima. Hämäläinen et al. com-
pared their PPO-CMA algorithm with PPO in various
Roboschool continuous control environments and con-
cluded that PPO-CMA achieved better results and was
less sensitive to hyper-parameter tuning. Given that their
study proposed several advantages of using PPO-CMA
over PPO, this paper utilizes this algorithm to also train
the osseointegrated transfemoral model with a prosthetic
limb and further examines whether these advantages ap-
ply in this specific bipedal locomotion task. Moreover,
since PPO-CMA has not been used to simulate the for-
ward dynamics of a musculoskeletal model with a pros-
thesis, this study investigates whether PPO-CMA+IL
can train the model to walk.

Before discussing the methods inspired by CMA-ES

3

and deployed by PPO-CMA, the relation between CMA-
ES and robot locomotion is addressed. The CMA-ES
algorithm aims to find the optimal solution by repeat-
edly updating a covariance matrix and optimizing the
objective function. CMA-ES has frequently been used in
robotic applications [19], specifically, it is widely used to
optimize policy based controllers for simulating a walk-
ing motion [20, 21]. Furthermore, Geijtenbeek, van de
Panne, and van der Stappen used CMA-ES to simulate
a natural walking gait in 3D bipedal characters by op-
timizing an objective function that penalized errors in
the character’s speed, head orientation and velocity, and
effort [22].

The PPO-CMA algorithm avoids premature conver-
gence and achieves stability by incorporating three tech-
niques from CMA-ES. The first CMA technique ensures
stability by fitting the sampling distribution only to pos-
itive weighted samples, i.e. samples below the median
fitness are set to 0 and have no effect. Similarly, PPO-
CMA’s loss function uses only the positive advantage
estimates to train the policy networks. Note, the loss
function used by PPO-CMA is not the clipped surro-
gate loss function but rather a standard policy gradient
loss function which is explained further in Section III. To
avoid losing information when discarding negative advan-
tages, Hämäläinen et al. proposed a mirroring technique
to convert the negative advantages to positive advantages
which are then also used to train the policy networks.

The second technique is called Rank-µ update which
aims to elongate the exploration distribution by first
updating the variance policy network and only then
the mean policy network. PPO-CMA incorporates this
method by using two neural networks (unlike PPO) and
follows the same updating procedure.

Finally, the third technique approximates the evolu-
tion path heuristic where states with consistently increas-
ing mean fitness values are determined and increased ex-
ploration in the same direction is performed. PPO-CMA
implements this method by storing data from several pre-
vious iterations and training the variance network with
this history of training data instead of only the previous
iteration’s data. As a result, this method is more sample
efficient than various other on-policy algorithms.

III. Methods

This paper compares the DRL algorithms PPO+IL
and PPO-CMA+IL to train the transfemoral amputee
model with a prosthetic limb to walk on flat terrain. This
section outlines the components used in the DRL algo-
rithms.

A. Deep Neural Networks

A policy maps states with actions and in DRL al-
gorithms is represented by deep neural networks. This
study uses a multi-layer perceptron, a feed-forward ar-
tificial neural network (ANN), for both algorithms. The
ANN used in PPO consists of 4 layers; an input layer
with 102 neurons, two hidden layers each with 312 neu-
rons, and an output layer with 17 neurons. The out-
put y of each neuron vi is calculated via the tanh ac-
tivation function with the following equation: y(vi) =
tanh(b +

∑n
i=1 xiwi). Here, b is the bias, n is the num-

ber of neurons in the previous layer, x is the input to
the neuron, and w is the weight between the current and
previous neuron.

In contrast to PPO, PPO-CMA utilizes two ANNs,
i.e., a policy mean network and a policy variance net-
work. However, both ANNs include the same 4 layers:
an input layer with 102 neurons, two hidden layers each
with 128 neurons, and an output layer with 17 neurons.
This network uses the Leaky ReLU activation function
(lrelu) which solves the dying ReLU problem by gener-
ating small negative outputs when the input is below 0.
The Leaky ReLU activation function is defined as follows:
y(vi) = lrelu(b +

∑n
i=1 xiwi). In addition to the policy

networks, this algorithm also makes use of a critic net-
work which is also composed of a feed-forward ANN. The
critic network consists of 4 layers: an input layer with 89
neurons (dimension of the state vector + 1), two hidden
layers each with 128 neurons, and an output layer with
1 neuron. Plus, this network also uses the Leaky ReLU
activation function. Lastly, Adaptive Moment Estima-
tion (Adam) was selected as the optimization algorithm
responsible for reducing the loss function for all three
ANNs and its ’learning rate’ hyper-parameter was tuned
at 0.0005 (for all three networks).

The input to both neural networks is a continuous
variable that represents the state of the agent and the
optimal values taken from the imitation dataset. Note,
the imitation dataset is used to both train the model
to perform a healthy gait and validate the model’s
gait after training. The state variable includes the po-
sitions/rotations and linear/rotational velocities of the
joints’ and actuators’ angles as well as measurements
of other body segments of the transfemoral prosthesis
model, and the pelvis, hip, knee and ankle positions from
the imitation dataset at time-step t+1. The imitation
data at time-step t+1 is fed to the network because the
output is the action to be performed at time-step t+1
as well, and thus the network can use the information
about optimal values to compute the optimal action vec-
tor. Please refer to Table I which specifically states the
different elements constituted in the observation vector
that is input to the policy networks.

The output of the PPO-CMA neural networks is mod-
elled by a Gaussian policy as the action space is contin-

4

uous, whereas, PPO’s policy network is modelled by a
multicategorical probability distribution which results in
a discrete actions space (i.e. the action vector is binary).
It can be argued that due to the differences in the output
(i.e. continuous vs. discrete action space), the compari-
son of the two algorithms may be considered insignifi-
cant. However, given that Hämäläinen et al. have com-
pared the two algorithms, this research builds upon that
study and verifies whether the proposed advantages of
PPO-CMA over PPO can be observed when training the
musculoskeletal model to perform normal walking. The
ANNs of both DRL algorithms output an action vector
that contains the activation values between [0,1] for the
15 muscles and [-1,1] for the 2 actuators. These ranges
represent the minimal and maximal values of activation
for the muscles and actuators, respectively. The neural
network computes the output activation vector from the
input state vector by calculating the values of the nodes
in each consecutive layer via the activation functions,
weights between the linked nodes, and the biases. This
paper aims to optimize the weights of the deep neural
networks in such a manner that for each given state be-
ing input to the network, the optimal action is output
which results in the agent performing a healthy walking
gait.

Table I: The elements present in the model’s state
vector.

Model Property
of

elements
Pelvis pitch, roll, yaw and velocities 3+6
Joint positions and velocities (hip
adduction & abduction, knee & ankle)
for both legs

8+8

Ground reaction forces for both legs 3+3
Force, length and velocity of each
of the 15 muscles

15+15+15

Force, speed, control, actuation,
power and stress for both actuators

6+6

Imitation dataset values at timestep
t+1 of pelvis, hip (add. & abd.), knee
and ankle angles

6+4+4

Total size of the state vector 102

B. The Learning Algorithms

Several learning algorithms are used to train the neural
network to achieve the desirable state-action behaviours
that results in the model enacting a healthy gait. The fol-
lowing subsections describe how the weights of the neural
networks are optimized to obtain the desired output.

1) Imitation Learning: One of the terms used to
train the neural network is the imitation learning term
which is realized through a reward function. The reward
function computes the utility of performing an action in a

given state and thus, this reward value informs the agent
of the relative value of its action. After every action, the
only information the agent is provided with is the reward
which ranges from [−∞,∞], and the agent’s behaviour
is tuned to maximize the cumulative reward.

In this paper, the reward function is created to reward
the model when its actions produce a healthy gait and
penalize all other scenarios. This is achieved by compar-
ing the agent’s pose and orientation with the desired pose
and orientation that is recorded in the imitation dataset.
This includes the measurements of the following body
segments:

• Joint position of the pelvis in the x, y and z direc-
tion.

• Joint angle of the pelvis list, tilt and rotation, and
left/right hip flexion and adduction, knee and ankle.

• Joint angular velocity of left/right hip flexion and
adduction, knee and ankle.

Hence, for the agent to produce a healthy gait that is
comparable to that in the imitation dataset, the more
similar the agent’s state is to the imitation data, the
higher rewards it receives.

The reward function utilized in this study is shown in
Equation 1 which consists of 2 elements; reward based
on the agent’s pose, reward based on the proximity of
the agent’s joint positions and angles to the imitation
dataset.

Rewardt =

rewardpose,t ∗ wp + rewardimitation,t ∗ wi
(1)

The reward function is represented by Rewardt where
t is the time-step. The reward that is based on pose is
shown by rewardpose,t which computes the proximity be-
tween the x, y, z position of the agent’s pelvis and the
desired pelvis pose at time-step t. Specifically, the root-
mean-square error (RMSE) is computed between the cur-
rent and desired pelvis pose denoted as penaltypose,t and
the pose reward is computed via the following equation:
rewardpose,t = exp(−8 ∗ penaltypose,t).

The imitation reward is represented by
rewardimitation,t which is calculated by determin-
ing the proximity between the agent’s joint angles’
positions and velocities and the desired angles’ positions
and velocities. This includes the joint angles of the
pelvis list, tilt and rotation, and left/right hip flexion
and adduction, knee and ankle, as well as, the Joint
angular velocities of left/right hip flexion and adduction,
knee and ankle. The RMSE between the aforementioned
measurements of the agent’s joints and the desired
angles and velocities is computed. This results in a
penalty term for the joint angle penaltyangle,t and a
penalty term for the angular velocities penaltyvel,t.
Finally, the imitation reward is computed as follows:

5

rewardimitation,t = exp(−2 ∗ penaltyangle,t) ∗ 0.75 +
exp(−0.1 ∗ penaltyvel,t) ∗ 0.25.

During the experimentation phase, it was observed
that the model’s hips, knees, and ankles were not prop-
erly bending, and since, the reward function has a great
influence on the agent’s behaviour, the imitation reward
was modified in the following manner by taking inspira-
tion from [23]. If the model’s left/right hip flexion and
adduction, knee and ankle angles were between the inter-
val of [ω−25 deg, ω+ 25 deg] where ω is the desired joint
angle, the imitation reward is increased by 20%, other-
wise, the reward remains the same. Lastly, the position
and the imitation reward’s weight on the goal reward is
determined by wp and wi respectively, which are hyper-
parameters between [0,1] and needs to be tuned for each
DRL algorithm.

The desired joint positions, angles, and velocities used
in both of the reward terms is provided by the imitation
dataset in [11]. Since the rewards are computed at a spe-
cific time-step t and the imitation data is time-stamped,
the desired joint positions, angles, and velocities used in
the reward computation are taken at the relevant time-
step from the dataset. As stated, the closer the agent’s
state is to the desired state in the imitation dataset, the
smaller the penalty which results in a larger reward. As
a result, the agent is encouraged to imitate the dataset
and generate a normal walking gait.

2) PPO with Imitation Learning: Drawing in-
spiration from [2, 9], this paper uses PPO with imi-
tation learning to simulate the forward dynamics for
the osseointegrated transfemoral amputee model with a
prosthetic limb to generate a healthy gait. Before dis-
cussing how imitation learning enhances PPO to simu-
late a human-like gait, the inner workings of the PPO
algorithm is first presented.

The PPO algorithm involves a clipped objective func-
tion that forms a pessimistic estimate of the current pol-
icy’s performance to ensure that the new policy is suffi-
ciently close to the old policy. This method of constrain-
ing the size of policy updates leads to stability in reaching
the optimal policy. Equation 2 below defines the clipped
surrogate objective function used by PPO to determine
the new policy.

LCLIP (θ) =

Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

] (2)

In Equation 2, the expectation operator, Êt, indicates
the empirical average over a final batch of samples, and
the advantage function, Ât, denotes an estimate of the
relative value of a selected action which is computed by
subtracting the actual reward received during training
by the baseline estimate. Furthermore, rt(θ) represents
the probability ratio between the new policy, πθ(at|st),
and the old policy, πθold(at|st). Here. π is the policy, θ

and θold are the new and old parameters, and at and
st are the action and state vectors and time-step t. By
using the old policy to evaluate the new policy, PPO uses
older experiences to shape the new policy which results
in better sample efficiency. Notice that r(θold) = 1 (i.e.
dividing the old policy by itself), hence, the aim of this
function is to penalize policy changes that push rt(θ)
farther from 1 and the following paragraph describes this
is achieved.

As stated, the objective function takes a pessimistic
estimate which is carried out by the min operator that
takes in two arguments; the normal policy gradient ob-
jective, and the clipped version of the objective which
is responsible for constraining the policy update. The
clip operator clips the probability ratio, rt(θ), by confin-
ing the new policy between the interval [1− ε, 1 + ε]. If
the advantage estimate is positive (i.e. new policy yields
higher rewards than old policy), the probability ratio is
clipped at 1+ε and if the advantage estimate is negative,
the probability ratio is clipped at 1− ε.

This paper combines the PPO algorithm with imita-
tion learning to decrease training time and increase per-
formance [9]. As a result, the policy network is trained by
the advantage estimates and the rewards obtained by the
agent (computed via Equation 1). The reward function
specifies two hyper-parameters: weight of the position
reward wp and imitation reward wi. Several trials with
varying imitation and position reward weights were exe-
cuted to determine the optimal hyper-parameter values
and it was observed that the position reward weighted
at 40% and the imitation reward weighted at 60% (i.e.
wp = 0.4, wi = 0.6) yielded the best performance. Note,
performance is defined in terms of cumulative reward re-
ceived by the agent and similarity between the model’s
gait and a healthy gait (observed by the author). Table
II summarizes the hyper-parameters and training details,
originated from [9], used in the PPO algorithm. In this
table, δ denotes the upper bound for the size of the pol-
icy update, and γ is the discount factor (0 ≤ γ ≤ 1)
that determines the degree to which the agent considers
future rewards.

3) PPO-CMA with Imitation Learning: The
PPO-CMA+IL algorithm this paper proposes is an ad-
dition to the original PPO-CMA algorithm [10] and is
the main contribution of this paper. By combining PPO-
CMA with imitation learning, the agent should arrive at
the global optima in a time-efficient manner while also
producing human-like gait patterns.

Given the model’s action space is continuous, PPO-
CMA utilizes a Gaussian policy that outputs a state-
dependent mean µθ(s) and covariance Cθ(s) for sampling
the actions. Therefore, this algorithm makes use of two
policy networks; policy mean network and policy covari-
ance network. The covariance network is responsible for
the exploitation-exploration balance as it allows the ex-

6

Table II: The hyper-parameters and training details
used in the PPO algorithm.

Parameter Value Parameter Value

Iterations X Parameter Noise Yes

Episodes X
PPO Clip
Parameter ε

0.2

Steps X Batch Size 512
Policy
Network(s)

1
PPO Optimiz.
per Epoch

4

Activation
Function

tanh
PPO Entropy
Coefficient

0.01

No, of Hidden
Layers

2 PPO δ 0.9

Size of Hidden
Layers

312 PPO γ 0.999

ploration variance to dynamically expand and contract
which leads to faster progress compared to PPO. The
policy parameters of the two neural networks are up-
dated via the loss function denoted in Equation 3 which
uses a diagonal covariance matrix defined by a vector
cθ(s) = diag(Cθ(s)).

Lθ =
1

M

i=1∑
M

Aπ(si, ai)
∑
j

[(ai,j − µj;θ(si))2

cj;θ(si)

+0.5 log cj;θ(si)
] (3)

In Equation 3, M is the minibatch size, i indexes over
the minibatch, and j indexes over the action variables.
Moreover, Aπ(si, ai) represents the advantage function
which indicates the value of selecting action ai in state
si. Typically, the advantage function is multiplied with
the log of the policy (i.e. log πθ(ai|si)). However, since
the Gaussian policy outputs both the state-dependent
mean µθ(s) and covariance cθ(s), the log of the policy is

rewritten as
∑
j

[
(ai,j−µj;θ(si))2

cj;θ(si)
+ 0.5 log cj;θ(si)

]
. In ad-

dition to PPO-CMA using a different loss function, there
are three significant differences between PPO and PPO-
CMA which are explained in detail in Subsection B.3.
Briefly, these differences are; (1) only positive advantages
and mirrored negative advantages are used to train the
policy networks, (2) first the covariance network is up-
dated and only then the mean network, and (3) the evo-
lution path heuristic is estimated by utilizing data from
several previous iterations.

This paper proposes to combine the PPO-CMA algo-
rithm with imitation learning to encourage the model to
perform a healthy gait pattern. Similarly to PPO+IL,
this proposed algorithm also trains its neural networks
with both the advantage estimates and the rewards re-
ceived by the agent. After tuning the hyper-parameters
in the reward function (position reward wp & imitation

reward wi), the optimal reward weights were observed
to be 40% for the position reward and 60% for the im-
itation reward (i.e. wp = 0.4, wi = 0.6). Table III sum-
marizes the hyper-parameters and training details used
in the PPO-CMA algorithm. Note, GAE λ stands for
generalised advantage estimate λ.

Table III: The hyper-parameters and training details
used in the PPO-CMA algorithm.

Parameter Value Parameter Value

Iterations X
PPO Clip
Parameter ε

0.2

Episodes X Batch Size 512

Steps X
History Buffer
Size

12

Policy
Network(s)

2
No. of Hidden
Layers

2

Critic
Network(s)

1
Size of Hidden
Layers

128

Activation
Function

Leaky
ReLU

GAE λ 0.95

Adam
Learning Rate

0.0005 PPO γ 0.99

Lastly, this Methods section is concluded by briefly
presenting the general procedure of both of the DRL
algorithms. During the agent’s training phase, it expe-
riences countless iterations and each iteration includes
several episodes. Each episode consists of numerous time-
steps and at each time-step of 0.005 seconds, the agent
performs an action. An episode is terminated when the
agent’s action results in a falling motion which is deter-
mined by a pelvis height of smaller than 0.6m. After a
number of episodes are completed in the iteration, the it-
eration is finished and the neural network can be trained
with both the advantage estimates and the rewards the
agent received during the past iteration. In the case of
PPO-CMA, the negative advantage estimates are con-
verted to positive ones, the policy variance network is
first trained using both the current iteration’s and the
history buffer’s data, and then, the policy mean network
is trained using only the current data. After optimizing
the neural network(s), the next iteration is started and
the aforementioned process is repeated.

IV. Implementation

This section describes the implementation of the two
DRL algorithms on the OpenSim musculoskeletal model,
namely the osseointegrated prosthesis model. Further-
more, the imitation dataset’s processing procedure and
role in the validation of the model’s gait is outlined.

7

A. OpenSim Model

The musculoskeletal model developed in OpenSim in-
cludes various hill-type muscles which connect to joints
to produce different forces and motions [24]. Through
the OpenSim software, one can study the model’s joint
kinematics, and the muscle-tendon’s forces and joints’
moments [9]. By utilizing the environment developed by
Kidziński et al. for the 2017 NIPS Competition [23], the
DRL algorithms can be implemented on the OpenSim
models as the environment serves as a bridge between
the OpenSim software and the Python programming lan-
guage (www.python.org).

Figure 2: Shows the 15 muscles and 2 actuators pos-
sessed by the osseointegrated transfemoral prosthesis
model. The uniarticular muscles are labelled in green,
biarticular muscles in red, hip adduction and abduc-
tion in blue, and actuators in blue.

The physics-based osseointegrated transfemoral am-
putee musculoskeletal model with a prosthetic limb is de-
veloped by Raveendranathan [6]. As stated, this model
contains 15 muscles and 2 actuators which can be vi-
sualized through Figure 2 which shows the uniarticu-
lar muscles labelled in green, biarticular muscles in red,
hip adduction and abduction in blue, and actuators in
blue. Furthermore, Table Table IV defines the action per-
formed by each muscle and actuator as well as states the
leg it resides in. These 15 muscles and 2 actuators con-
trol 14 degrees of freedom (DOF): 6 DOF at the pelvis
(pelvis tilt, list, rotation, x, y, and z), 4 DOF at the hip
joints (hip adduction and abduction for both legs), and
4 DOF at both knee and ankle joints.

The 15 muscles presented in the musculoskeletal model
are simulated biological muscles which are based on a
non-linear first-order dynamic Hill-type muscle model
which relates muscle excitation to activation [25]. Even
though the Hill-type muscle model does not realistically
represent the human muscle architecture, it does quite
precisely simulate the gross biomechanical behaviour of
a muscle-tendon unit in a computationally inexpensive
manner [26]. The Hill-type muscle model is illustrated

Muscle or
Actuator

Primary Function Leg

Biarticular
Hamstrings

Hip extension, knee
flexion

Right

Rectus Femoris
Hip flexion, knee

extension
Right

Vasti Knee extension Right
Biceps Femoris Knee flexion Right

Gastrocnemius
Knee flexion, ankle

extension
Right

Soleus Ankle extension Right
Tibialis
Anterior

Ankle extension and
flexion

Right

Hip Abductor
Away from body’s

vertical midline
Both

Hip Adductor
Towards body’s vertical

midline
Both

Iliopsoas Hip flexion Both
Gluteus

Maximus
Hip extension Both

Knee Actuator
Knee flexion and

extension
Left

Ankle Actuator
Ankle flexion and

extension
Left

Table IV: States the 15 muscles and 2 actuators
present in the osseointegrated transfemoral prosthe-
sis model as well as defines its actions and the leg(s)
its resides in.

in Figure 3 which also shows a contractile element (CE)
connected to elastic elements both in series (SE) and in
parallel (PE) (note: figure taken from [9, 25]). This Fig-
ure 3 also shows various muscle properties; the muscle
fibre length LM , the tendon slack length LT , and the
pennation angle αM , all of which determine the level of
muscle activation.

Figure 3: The Hill-type muscle model is utilized in
the musculoskeletal model to perform the musculo-
tendon contraction. This includes a contractile ele-
ment (CE) connected to elastic elements both in se-
ries (SE) and in parallel (PE) which all produce a
force on the tendon. Figure taken from [9, 25].

8

At each time-step, the neural network(s) used in the
DRL algorithms outputs a vector containing 15 muscle
excitations and 2 actuator excitations. OpenSim utilizes
the first-order dynamics equations of the Hill-type mus-
cle model to compute the muscle activations from the
muscle excitations. Finally, the model’s muscles are ac-
tuated, and its new state (i.e. torques, ground reaction
forces, and joint positions and velocities) is calculated.
Since this study uses OpenSim version 4.2, the actua-
tors are Activation Coordinate actuators. The actuators’
activation value is computed via a first-order linear acti-
vation dynamics equation where the resulting activation
value is: ȧ = u−a

τ . Here, u is the actuator excitation, a is
the activation constant set to 0.01, and τ is the activation
time constant.

B. Validation Dataset

The open-source motion capture dataset provided by
Camargo et. al [11] is used to implement the imitation
learning reward function with aim of encouraging the
model to generate healthy gait patterns. Furthermore,
this dataset is also used to validate and compare both
of the DRL algorithms as it serves as a benchmark for a
healthy gait pattern. This dataset contains human loco-
motion data from 22 able-bodied subjects taken during
different locomotion modes (i.e. stairs, ramps, and tread-
mill) and different terrain conditions (i.e. speed and in-
clination). Specifically, the following measurements were
recorded from the subjects; electromyography (EMG),
inertial measurement unit (IMU), goniometer (GON),
and joint kinematics, moments and powers which was
computed using the inverse dynamics functionality of
OpenSim.

This study utilizes the motion data from subject AB06
performing ground-level walking in a straight line, and
specifically, the imitation dataset is composed of the fol-
lowing joint-level kinematic measurements. The joint po-
sition and angle of the pelvis in the x, y, and z axis, and
the joint angle and angular velocity of the left/right hip
flexion and adduction, knee and ankle. Note, the motion
dataset provided by [11] involves subject AB06 walking
in a circuit, however, the imitation dataset used in this
study only consists of the data points where the subject
is walking in a straight line. Lastly, the subject AB06
was chosen because it had the closest resemblance to the
model’s height and weight.

Before incorporating the motion capture dataset in the
imitation learning part of the proposed DRL framework,
the data went through the followed processing steps.
First, the orientation of the data was rotated such that
the subject’s forward walking motions would be along
the OpenSim model’s x-axis. By using OpenSim’s ex-
perimental data preview tool and the subject’s marker
data, the data was rotated 270 degrees about the y-axis.
Second, the joint (i.e. hip, knee and ankle) angles were

computed via the inverse kinematic functionality present
in OpenSim. In more detail, the osim model file, marker
data, and a file containing the weights of each marker
were given as input to the inverse kinematics tool which
outputs a motion file containing the joint angles.

Third, the motion file was reconstructed into a comma-
separated values (CSV) file. This CSV file was expanded
upon by computing the velocities of the joint angles and
adding these measurements to the file. Lastly, the Open-
Sim environment used to implement the DRL algorithms
follows the convention of using radians to represent an-
gles, and thus, all angles in the CSV file were converted
from degrees to radians. The resulting imitation dataset
was validated in the following two ways. First, the degree-
based imitation dataset was converted into a motion file
and was used to simulate the forward dynamics of the
model in OpenSim which resulted in a gait pattern com-
parable to a healthy subject. Similarly, the radian-based
imitation dataset was given as input to the model in
the OpenSim environment used in the DRL framework
and the resulting gait pattern was also comparable to a
healthy gait.

V. Results & Discussion

This Section presents the results of the two DRL algo-
rithms on the osseointegrated transfemoral model with
a prosthesis. The first Subsection shows the results of
PPO+IL and the second Subsection shows the results of
PPO-CMA+IL. Both algorithms are evaluated by com-
paring the imitation data [11] with the kinematic results
of the simulation. The third Subsection compares the two
DRL algorithms and finally, the last Subsection discusses
the limitations of this research and outlines possible av-
enues for future research.

A. Performance of PPO with Imitation Learning

1) Algorithm’s Performance: Figure 4 (red lines)
shows the performance of PPO+IL on the osseointe-
grated transfemoral model with a prosthetic limb. The
left plot shows the average reward received by the model
per episode and the right plot shows the time-step length
per episode (red curves) both recorded over a period of
50,000 episodes (one simulation). It can be seen in Fig-
ure 4 that the model’s performance doesn’t improve with
increasing episodes as it consistently receives a low re-
ward and only remains for less than 1 second in each
episode before falling. This algorithm received a mean
cumulative reward of 51.790 (standard deviation (SD)
= 0.277) and a mean time-step of 0.717 seconds (SD =
0.010s), please refer to Table V. Lastly, by visualizing the
model’s performance at the end of the 50,000 episodes,
it was observed that the model tried to take a step with
its right (healthy) leg but was unable to balance on the

9

left (prosthetic) leg which ultimately led it to fall every
episode.

Figure 4: The learning curves of the two DRL al-
gorithms; PPO+IL and PPO-CMA+IL, over a pe-
riod of 50,000 episodes. The left plot shows the aver-
age reward received per episode, and the right plot
shows the time-step length per episode. This figure
demonstrates PPO-CMA performs better than PPO
at maximizing rewards.

Table V: The mean total reward received and the
standard deviation (SD) for the two DRL algorithms.

Reward
Time-step
(in seconds)

Algorithm Mean SD Mean SD
PPO+IL 51.790 0.277 0.717 0.010
PPO-CMA+IL 240.672 46.814 2.030 0.387

2) Kinematics: Figure 5 (red lines) shows the kine-
matics for the attempted gait of the model being trained
on PPO+IL. It compares the imitation data (grey re-
gion) with the horizontal/vertical ground reaction forces
and the left/right hip, knee, and ankle angles of the os-
seointegrated transfemoral model. The plots in Figure 5
demonstrate that the model’s joint angles do not closely
resemble the optimal angle value and do not lie within
the optimal angle interval. Furthermore, the horizontal
and vertical ground reaction forces are not comparable
to the optimal values stated in the imitation dataset.
Table VI shows the mean difference between the model’s
joint angles and the optimal angles stated in the imita-
tion dataset. It can be seen that the right knee and ankle
angles are more similar to the optimal values which sup-
port the observation that the model tries to take a step
with the healthy leg. Furthermore, given that the left
joint angles deviate from the optimal angle values, one
can hypothesize that this is the reason for the model not
being able to balance on the left leg.

B. Performance of PPO-CMA with Imitation
Learning

1) Algorithm’s Performance: Figure 4 (blue lines)
shows the performance of PPO-CMA+IL on the osseoin-
tegrated transfemoral model with a prosthetic limb. The

Figure 5: The horizontal and vertical ground reac-
tion forces and hip, knee and ankle angles of the
osseointegrated transfemoral prosthesis model using
the two DRL algorithms; PPO+IL (red line) and
PPO-CMA+IL (blue line) against the imitation data
illustrated via the grey lines (the grey area is the
mean value +/- 25 degrees which is the optimal in-
terval).

Table VI: The mean difference between the hips,
knees, and ankles angles and the imitation data an-
gles (i.e. optimal values) for the two DRL algorithms.

PPO
(in deg.)

PPO-CMA
(in deg.)

Left
(Prosthetic)

Hip 23.014 22.262
Knee 20.981 21.816
Ankle 38.174 9.319

Right
(Healthy)

Hip 22.709 6.485
Knee 14.478 26.377
Ankle 6.676 40.391

Total sum
of means

126.032 126.650

left plot shows the average reward received by the model
per episode and the right plot shows the time-step length
per episode (red curves) both recorded over a period of
50,000 episodes (one simulation). It can be seen in Fig-
ure 4 that the average reward received increases for the
first 8,000 episodes, whereafter, the average reward re-
mains relatively constant. The steep rise in rewards seen
after episode 2,000 indicates that the agent (i.e. model)
has learned a policy, i.e. specific weights within the mean

10

and covariance networks, that allows it to maximize util-
ity based on the reward function. This algorithm received
a mean cumulative reward of 240.672 (SD = 46.814) and
a mean time-step of 2.030 seconds (SD = 0.387s). Lastly,
while visualizing the model’s performance after 50,000
episodes, it was observed that the model would often take
the first step with the left leg and fall when attempting
to take the second step with its healthy leg. However, a
few times the model was able to take both the first and
second steps, and would ultimately fall while attempting
to take the third step.

2) Kinematics: Figure 5 (blue lines) shows the
kinematics for the attempted gait of the model being
trained on PPO-CMA+IL. It compares the imitation
data (grey region) with the horizontal/vertical ground
reaction forces and the left/right hip, knee, and ankle
angles of the osseointegrated transfemoral model. It can
be seen through plots in Figure 5 that the model’s joint
angles deviate from the optimal values listed in the imita-
tion dataset. Similarly, the horizontal and vertical ground
reaction forces are also not comparable to the imitation
data values. Table VI shows the mean difference between
the model’s joint angles and the optimal angles stated in
the imitation dataset. This table shows that the left an-
kle angle and right hip angle have closer proximity to the
imitation data values. A possible reason being, it was ob-
served that a left ankle and right hip angle value close to
the optimal value was instrumental in making the second
step with the right leg as it provided both a forward push
in the model’s x-axis and raised the right leg to bring it
forward.

C. Comparison of the Two Algorithms

1) Algorithm’s Performance: The two DRL algo-
rithms are compared below based on: cumulative reward,
training time, and similarity of model’s gait to a healthy
gait. Figure 4 shows the average reward and time-step
for both DRL algorithms: PPO+IL (red lines) and PPO-
CMA+IL (blue lines). It can be seen in the left plot that
while PPO-CMA+IL learns a policy based on maximiz-
ing rewards illustrated by the positive slope on the blue
line, PPO+IL does not and receives the same amount of
reward throughout the simulation illustrated by the hor-
izontal red line. Furthermore, the right plot shows that
PPO-CMA+IL is able to train the model to remain up-
right whilst trying to walk for a longer period of time
compared to PPO+IL. Table V shows the mean cumu-
lative reward received per episode by PPO-CMA+IL is
over 3-fold (i.e. 78.5%) compared to PPO+IL, and the
time-step (i.e. duration of an episode) is more than 2-
fold (i.e. 64.7%) compared to PPO-CMA+IL. Therefore,
when comparing the two algorithms based on the cumu-
lative reward received, PPO-CMA+IL performs better.
Since both algorithms were unsuccessful in simulating a
healthy gait, the algorithms cannot be compared based

on training time or similarity to a healthy gait pattern.
Hence, the following paragraph compares the two algo-
rithms based on kinematics, and muscle/actuator usage.

2) Kinematics and Muscle/Actuator Usage:
Figure 5 shows the kinematics for PPO+IL (red lines)
and PPO-CMA+IL (blue lines). In this figure, the
model’s horizontal/vertical ground reaction forces and
hip, knee, and ankle angles (both legs) are compared
with the imitation data values (grey region). It can be
seen that both algorithms’ kinematics deviate from the
imitation data which supports the observation that nei-
ther algorithm is able to simulate a healthy gait which
requires the model to generate optimal kinematics. Ta-
ble VI states the difference in means between the model’s
kinematics and the imitation data. This table shows that
the total sum of means for PPO+IL is 126.032 degrees
and for PPO-CMA+IL is 126.650.778 degrees which in-
dicates that both algorithms perform similar when con-
sidering the model’s kinematics. However, given that
PPO+IL’s mean time-step in an episode is 63.2% smaller
compared to PPO-CMA+IL and PPO+IL’s total differ-
ence in kinematics means is only 13.7% better, one can-
not conclusively state that the performance of both of
the algorithms is similar in terms of kinematics due to
the significant difference in the duration of each episode
between PPO+IL and PPO-CMA+IL.

Table VII summarizes the muscle and actuator us-
ages for both DRL algorithms. It shows the mean fi-
bre forces for the 15 muscles and 2 actuators over a
period of 50 episodes, as well as, the total sum of the
mean muscle and actuator usages. It can be seen that
PPO+IL results in the muscles and actuators usage being
12.7% larger compared to PPO-CMA+IL (22,090.694 vs.
19,288.317). Since lower levels of muscles and actuators
usage are more energy-efficient, it indicates that PPO-
CMA+IL performs better than PPO+IL. However, due
to the differences in the mean duration of an episode for
both algorithms, one again cannot accurately compare
the muscles and actuators usage for the two algorithms
without taking the time-step into consideration. Lastly,
one reason for larger fibre forces generated by PPO+IL is
that it was observed that the model often made extreme
leg movements (i.e. complete flexion/extension of the hip
and knee joints) which requires larger force compared to
the medium-level bend performed by the model trained
with PPO-CMA+IL.

D. Limitations and Future Outlook

The two DRL algorithms were not successful in gener-
ating a stable and healthy gait pattern for the osseoin-
tegrated transfemoral amputee model with a prosthe-
sis. The following paragraphs discuss various avenues for
future research in terms of modification to the current
DRL algorithms and motivation for investigating differ-
ent variations of the PPO algorithm.

11

Table VII: Results for the comparison of the difference in muscle and actuator usage between the two DRL
algorithms.

PPO with Imitation
Learning

PPO-CMA with
Imitation Learning

Muscle Right Left Right Left

Mean
Fibre Force

Hip Abductor 1506.176 1872.624 1837.845 1859.178
Hip Adductor 692.237 969.779 1458.571 1442.320
Iliopsoas 1223.751 1330.222 2112.329 2212.345
Gluteus Maximus 1542.148 1493.699 492.593 562.421
Biarticular Hamstrings 1638.557 - 1154.800 -
Rectus Femoris 747.641 - 1120.522 -
Vasti 4283.897 - 939.239 -
Biceps Femoris 256.731 - 350.625 -
Gastrocnemius 831.361 - 1251.857 -
Soleus 2301.862 - 947.878 -
Tibialis Anterior 1279.616 - 1402.819 -
Knee Actuator - 120.394 - 142.976
Ankle Actuator - 116.126 - 294.519

Total sum in mean fibre forces 19,288.317 22,090.694

1) Modifications to the reward function: The re-
ward function has a significant influence on the model’s
behaviour, for example, giving additional rewards to the
model for properly bending its hip, knee, and ankle joints
resulted in a greater similarity between the model’s gait
and a healthy gait. Therefore, it is important to fur-
ther refine the reward function, specifically the imita-
tion term, in the following manner. First, the optimal
interval for bending the hip, knee, and ankle joint were
determined to be +/- 25 degrees from the optimal joint
angle value. This interval is a hyper-parameter that this
research chooses after running only a few trials due to
time constraints. Hence, this interval needs to be further
tuned as perhaps a stricter (i.e. smaller) interval may en-
courage the model to move its hips, knees, and ankles in
a manner that is more similar to the imitation dataset.

2) Input state vector to neural network(s): The
neural network(s) at time-step t receive an input com-
prise of two elements, the scaled observed state of the
agent at time-step t and the imitation data values at
time-step t+1. It can be argued that it is better to input
the imitation data at time-step t such that the imitation
values can be compared to the scaled observed state of
the agent because it is in the same time-step.

3) Increasing muscle and actuator forces: The
OpenSim model consists of 15 muscles and 2 actuators
that can produce a maximum generalised force. Through
several trials, it was observed that the prosthetic leg was
unable to carry the model’s weight due to the fewer mus-
cles it encompasses. Therefore, this study experimented
with increasing the maximum isometric force of the knee
and ankle actuators by 33.3̇% and 50.0% where the orig-
inal maximum force of both actuators was 300 N. These
changes in maximum actuators’ forces resulted in no sig-
nificant change of the model’s performance. However, fu-

ture research will investigate different values of maximum
forces on both muscles and actuators in the healthy and
prosthetic leg.

4) Erraticness of fibre forces: Comparable to the
study by de Vree and Carloni, this research also observed
an erratic pattern in the muscles actuator forces gener-
ated by both DRL algorithms during an average of 50
episodes shown in Figure 6 and Figures 7, 8, and 9 in the
Appendix. Subsequently, these forces cannot be used as
direct control inputs for the muscle-like actuators within
the control architecture of a prosthesis. Future research
will focus on reducing the erraticness of the muscles and
actuator forces, possibly through penalizing such erratic
patterns within the reward function (suggested by [9]).

Figure 6: The actuator forces averaged over 50
episodes for the DRL algorithms: PPO+IL (red lines)
and PPO-CMA+IL (blue lines).

5) Variations of PPO focused on exploration:
Given all sensible modifications to the reward function
and maximum muscle and actuator forces have resulted
in no significant improvement of the model’s perfor-
mance, future research should consider a different DRL
algorithm to simulate the model’s forward dynamics.
Specifically, different variations of the PPO algorithm
with a larger focus on exploring the model’s action space

12

should solve the issue of getting stuck in a local optimum
which was experienced by the two DRL algorithms. This
paper recommends investigating the ’PPO with Intrinsic
Exploration Module’ (IEM-PPO) algorithm proposed by
Zhang et. al which was developed by applying the ex-
ploration enhancement theory to the original PPO al-
gorithm [27]. Zhang et al. evaluated their algorithm on
various environments within the MuJoCo simulator and
compared it to PPO. Their results demonstrate that al-
though IEM-PPO requires a lengthier training time, it
achieves a larger cumulative reward, and has better sam-
ple efficiency, robustness, and stability.

VI. Conclusion

This research utilizes computer simulations in combi-
nation with deep reinforcement learning algorithms to
study and simulate the gait patterns of a physics-based
osseointegrated transfemoral musculoskeletal model with
a prosthetic limb. By evaluating two DRL algorithms in
their effectiveness to generate a healthy gait in the Open-
Sim model, this paper contributes to an expanding field
of research.

The two main objectives of this study were: (1) gener-
ate a healthy gait with the two DRL algorithms, and (2)
compare the two algorithms based on cumulative reward,
the similarity of joint kinematics to imitation data, and
muscle/actuator usage. Even though this study did not
accomplish the first objective, it does examine the per-
formance differences between the two DRL algorithms in
the context of simulating a healthy gait. Compared to
PPO+IL, PPO-CMA+IL received a 78.5% larger mean
cumulative reward, 64.7% larger mean duration of an
episode, and a decrease of 12.7% in muscle and actuator
usage. In contrast, both algorithms performed similar in
terms of the proximity between model’s joint kinematics
and the imitation data. However, given the significant
differences between the mean duration of an episode for
the two algorithms, the kinematics and muscles/actuator
usages cannot conclusively be used as performance crite-
ria.

Future work will focus on refining the reward function,
solving the erraticness of the actuator forces and inves-
tigating the optimal maximum forces for each of the 15
muscles and 2 actuators. Given all appropriate modifica-
tions made to the current DRL algorithms do not result
in the simulation of a healthy gait, different variations of
PPO with a focus on deeper exploration (e.g. IEM-PPO)
will be examined.

VII. Acknowledgements

The author would like to thank her supervisors, Raf-
faella Carloni (Professor, University of Groningen) and

Vishal Raveendranathan (Doctoral Candidate, Univer-
sity of Groningen), for their guidance and feedback dur-
ing this research. Furthermore, the author would like to
thank her peers, Aurelien J.C. Adriaensses (BSc student,
University of Groningen), Sarah de Boer (BSc student,
University of Groningen), Robin Kock (BSc student, Uni-
versity of Groningen), Ruxandra Petrescu (BSc student,
University of Groningen), and Milan van Wouden (BSc
student, University of Groningen), for the discussions on
the OpenSim model and their input with the implemen-
tation of the proposed DRL framework. Lastly, this study
was funded by the European Commission’s Horizon 2020
Programme as part of the MyLeg project under grant no.
780871.

References

[1] Yao Dong, Yong He, Xinyu Wu, Guangju Gao, and
Wei Feng. A drl-based framework for self-balancing
exoskeleton walking. In 2020 IEEE International
Conference on Real-time Computing and Robotics
(RCAR), pages 469–474. IEEE, 2020.

[2] Akhil S Anand, Guoping Zhao, Hubert Roth, and
Andre Seyfarth. A deep reinforcement learning
based approach towards generating human walk-
ing behavior with a neuromuscular model. In 2019
IEEE-RAS 19th International Conference on Hu-
manoid Robots (Humanoids), pages 537–543. IEEE,
2019.

[3] Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin
Lee, and Jehee Lee. Learning predict-and-simulate
policies from unorganized human motion data. ACM
Transactions on Graphics (TOG), 38(6):1–11, 2019.

[4] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and
Michiel van de Panne. Deepmimic: Example-guided
deep reinforcement learning of physics-based charac-
ter skills. ACM Transactions on Graphics (TOG),
37(4):1–14, 2018.

[5] Kevin Bergamin, Simon Clavet, Daniel Holden, and
James Richard Forbes. Drecon: data-driven re-
sponsive control of physics-based characters. ACM
Transactions On Graphics (TOG), 38(6):1–11, 2019.

[6] Vishal Raveendranathan. Simplified transfemoral
amputee model for deep reinforcement learning. In-
ternal rewarch, in progress.

[7] John Schulman, Filip Wolski, Prafulla Dhari-
wal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[8] Luckeciano Carvalho Melo and Marcos Ricardo Om-
ena Albuquerque Máximo. Learning humanoid

13

robot running skills through proximal policy opti-
mization. In 2019 Latin American Robotics Sym-
posium (LARS), 2019 Brazilian Symposium on
Robotics (SBR) and 2019 Workshop on Robotics in
Education (WRE), pages 37–42. IEEE, 2019.

[9] Leanne De Vree and Raffaella Carloni. Deep rein-
forcement learning for physics-based musculoskele-
tal simulations of healthy subjects and transfemoral
prostheses’ users during normal walking. IEEE
Transactions on Neural Systems and Rehabilitation
Engineering, 2021.

[10] Perttu Hämäläinen, Amin Babadi, Xiaoxiao Ma,
and Jaakko Lehtinen. Ppo-cma: Proximal policy op-
timization with covariance matrix adaptation. In
2020 IEEE 30th International Workshop on Ma-
chine Learning for Signal Processing (MLSP), pages
1–6. IEEE, 2020.

[11] Jonathan Camargo, Aditya Ramanathan, Will
Flanagan, and Aaron Young. A comprehensive,
open-source dataset of lower limb biomechanics
in multiple conditions of stairs, ramps, and level-
ground ambulation and transitions. Journal of
Biomechanics, 119:110320, 2021.

[12] Scott L Delp, Frank C Anderson, Allison S Arnold,
Peter Loan, Ayman Habib, Chand T John, Eran
Guendelman, and Darryl G Thelen. Opensim: open-
source software to create and analyze dynamic simu-
lations of movement. IEEE transactions on biomed-
ical engineering, 54(11):1940–1950, 2007.

[13] Andrii Shachykov, Oleksandr Shuliak, and Patrick
Hénaff. Closed-loop central pattern generator con-
trol of human gaits in opensim simulator. In 2019
International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2019.

[14] Joanne Becker, Mermoz Emmanuel, and Linares
Jean-Marc. Joint loading estimation method for
horse forelimb high jerk locomotion: jumping. Jour-
nal of Bionic Engineering, 16(4):674–685, 2019.

[15] Lely Luengas-C, Esperanza Camargo, and Enrique
Garzón. The effect of dynamic prosthetic align-
ment on the transtibial gait: Analyzing with open-
sim. 2020.

[16] Miguel Abreu, Luis Paulo Reis, and Nuno Lau.
Learning to run faster in a humanoid robot soc-
cer environment through reinforcement learning. In
Robot World Cup, pages 3–15. Springer, 2019.

[17] Volodymyr Mnih, Adria Puigdomenech Badia,
Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement

learning. In International conference on machine
learning, pages 1928–1937. PMLR, 2016.

[18] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr
Mnih, Remi Munos, Koray Kavukcuoglu, and
Nando de Freitas. Sample efficient actor-critic with
experience replay. arXiv preprint arXiv:1611.01224,
2016.

[19] Nikolaus Hansen. The cma evolution strategy: a
comparing review. Towards a new evolutionary com-
putation, pages 75–102, 2006.

[20] Jack M Wang, David J Fleet, and Aaron Hertz-
mann. Optimizing walking controllers. In ACM
SIGGRAPH Asia 2009 papers, pages 1–8. 2009.

[21] Seungmoon Song and Hartmut Geyer. A neural cir-
cuitry that emphasizes spinal feedback generates di-
verse behaviours of human locomotion. The Journal
of physiology, 593(16):3493–3511, 2015.

[22] Thomas Geijtenbeek, Michiel Van De Panne, and
A Frank Van Der Stappen. Flexible muscle-based lo-
comotion for bipedal creatures. ACM Transactions
on Graphics (TOG), 32(6):1–11, 2013.

[23] Lukasz Kidziński, Sharada P Mohanty,
Carmichael F Ong, Jennifer L Hicks, Sean F
Carroll, Sergey Levine, Marcel Salathé, and Scott L
Delp. Learning to run challenge: Synthesizing physi-
ologically accurate motion using deep reinforcement
learning. In The NIPS’17 Competition: Building
Intelligent Systems, pages 101–120. Springer, 2018.

[24] Archibald Vivian Hill. The heat of shortening and
the dynamic constants of muscle. Proceedings of the
Royal Society of London. Series B-Biological Sci-
ences, 126(843):136–195, 1938.

[25] Darryl G Thelen. Adjustment of muscle mechan-
ics model parameters to simulate dynamic contrac-
tions in older adults. J. Biomech. Eng., 125(1):70–
77, 2003.

[26] Yunus Ziya Arslan, Derya Karabulut, Faruk Ortes,
and Marko B Popovic. Exoskeletons, exomuscula-
tures, exosuits: dynamic modeling and simulation.
Biomechatronics, pages 305–331, 2019.

[27] Junwei Zhang, Zhenghao Zhang, Shuai Han, and
Shuai Lü. Proximal policy optimization via en-
hanced exploration efficiency. arXiv preprint
arXiv:2011.05525, 2020.

14

Appendix

Figure 7 reports the fibre forces of the a) hip abduc-
tion, and b) hip adduction muscles of the healthy and
prosthetic leg for both algorithms and is illustrated via
the black lines. Figure 8 reports the fibre forces of the a)
gluteus maximus, and b) iliopsoas muscles of the healthy
and prosthetic leg for both algorithms and is illustrated
via the black lines. The blue and red lines indicate the
mean fibre force value over the time period. It can be
seen that the fibre forces of the model trained with PPO-
CMA+IL are closer to the mean value compared to the
fibre forces of the model trained with PPO+IL. When
comparing the fibre forces between the two algorithms,
it is observed that the fibre forces pattern between the
two deviate quite significantly. This is explained by the
also significant differences in the performance between
the PPO+IL model and PPO-CMA+IL model. More-
over, when comparing the fibre force pattern between the
healthy and prosthetic leg, it can be seen that all muscles
follow a similar pattern for both DRL algorithms.

Lastly, Figure 9 shows the fibre forces of the a) vasti,
b) soleus, c) tibialis anterior, and d) biceps femoris mus-
cles of the healthy and prosthetic leg for both DRL algo-
rithms and is illustrated via the black lines. The blue and
red lines indicate the mean fibre force value over the time
period. Similarly, this figure also shows a closer proximity
between the fibre forces of PPO-CMA+IL and the mean
fibre force value compared to the PPO+IL algorithm.

Figure 7: Fibre forces of the a) hip abduction, and b)
hip adduction muscles of the healthy and prosthetic
leg for both DRL algorithms is illustrated via the
black lines. The blue and red lines indicate the mean
fibre force value over the time period.

Figure 8: Fibre forces of the a) gluteus maximus, and
b) iliopsoas muscles of the healthy and prosthetic leg
for both DRL algorithms is illustrated via the black
lines. The blue and red lines indicate the mean fibre
force value over the time period.

Figure 9: Fibre forces of the a) vasti, b) soleus, c)
tibialis anterior, and d) biceps femoris muscles of the
healthy and prosthetic leg for both DRL algorithms
is illustrated via the black lines. The blue and red
lines indicate the mean fibre force value over the time
period.

15

