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Abstract: Computer simulations have become a great aid in designing and testing new prosthesis
before deployment in the real world. Being able to simulate for the human walking gait has shown
time and cost saving to prosthesis development. With the creativity and dynamic environments of
simulations, a multitude of environments can be tested upon. This paper focuses on determining
whether a currently existing Proximal Policy Optimiser with Imitation Learning is able to be
generalised to a variety of human locomotion beyond just walking. The environments tested on
are: fast paced walking, ascending and descending a ramp, and ascending and descending stairs.
Two musculoskeletal models are used; one healthy, and one transfemoral amputee. Both models
are subjected to the environments. The forces exerted, joint angle, and rewards earned of the
transfemoral amputee are compared to the healthy model to validate the research. Both models
are able to make progress in the environments, exhibiting greater that 50% likeliness on the
training data. It is suggested that generalising the Proximal Policy Optimiser for more advanced
scenarios is indeed possible.

1 Introduction

Biomechanics and artificial intelligence have seen a
huge leap in progress with improving movement for
humans with impaired or missing limbs (Bartlett,
2006). Computer simulations of assisted gaits with
prosthesis (Ong et al., 2019) are entering the do-
main of cheap and efficient solutions for determin-
ing the capabilities of prostheses before real-world
deployment.

Learning to walk is the first step to greater mo-
bility, but humans live a dynamic life. Losing a limb
greatly impacts future abilities to move, but with
the help of a prosthesis it can be re-learned to pass
obstacles such as stairs (Koganezawa et al., 1987)
and to walk on inclines (Nickel, 2014). The addition
of a prosthesis is shown to improve the capabilities
of amputees over stairs and sloped environments.
Creating these prosthesis for advanced human gaits
in reality is a continuous back-and-forth process be-
tween amputee and researcher. Adding the element
of simulation allows the prosthesis to be tested with
in a simulated environment before being physically
constructed, saving on time and money (Lambrecht
et al., 2011).

Research on unilateral transtibial amputee sub-
jects have built a substantial ground work on pro-
gressing the design of prosthesis. Simulations have
been used as starting points for the development
and the control of active transtibial prosthesis
(LaPrè and Sup, 2011; LaPrè et al., 2014). Whole
lower-limb modelling and dynamics have become
more feasible with the increase in software power
and material technology. Humans with a transfer-
moral (above knee) amputation have been getting
traction with new and novel designs (Ege and Ku-
cuk, 2019), benefiting from the quicker and cheaper
testing phases before deployment. Going from the-
ory to simulating the human gait of a transfemoral
amputee with a prosthesis is advantageous before
physical testing (Azimi et al., 2019).

With the state of modern technology and ad-
vanced algorithms, methods of Deep Reinforcement
Learning (DRL) have shown fruitful in simulating
a variety of physics-based human movements (Peng
et al., 2018). The current state of DRL uses models
which are simplified versions of the human body.
They do not consider the set of muscles required to
produce the flexion or extension torque at a joint.
This research will make use of those muscle to con-
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tribute a more biologically accurate representation
of human locomotion. This study builds upon our
previous work (De Vree and Carloni, 2021). Carry-
ing on from the DRL and Proximal Policy Optimi-
sation (PPO) with Imitation Learning algorithms,
advanced environments will be tested in this paper
to determine how generalised the algorithms are.

It is not possible to predict all environments that
a human would walk about in. The advanced envi-
ronments that this research explores are:

• Fast paced walking.

• ascent of a ramp.

• ascent of stairs.

Each environment will make use of two muscu-
loskeletal models. The first musculoskeletal model
is based on the model by Kidziński et al. (2018).
Their model is a representation of human anatomy
from the hip down, and it is used as the healthy
model for this research. The model has 18 muscles
controlling 10 degrees of freedom (DOF). The sec-
ond model is an edited version of the first model.
This model is edited in such a way to accurately
represent the deficiencies present in a human with
a transfemoral amputation. This transfemoral am-
putee model has 19 muscles controlling 14 de-
grees of freedom. The model use 15 muscles of the
model’s original 18 muscles. The complete change
to the muscles is: 3 removed from the right leg, and
2 added to each side of the hip. The addition of
the 4 hip muscles add 1 DOF each. The models
will be loaded in the simulation software OpenSim.
OpenSim helps with the the study of musculoskele-
tal phsyics and biology (Delp et al., 2007).

This research is carried out in two tasks. The
first task is creating the environments in OpenSim
that the models will be subjected to. In this task,
the data from the freely available online repository
CMU Graphics Lab (Carnegie Mellon university,
n.d.) is used to craft the environments. In the sec-
ond task, the healthy model and the transfemoral
amputee model are subjected to the environment.
Analysing the rate of learning and angle gaits of
the musculoskeletal models of the simulations will
determine the effectiveness of the PPO. Only the
data for the healthy model will be reported in this
research, see Section 3.5 for more detail.

The research question addressed by this paper is:

Is the current Proximal Policy Optimiser
generalisible to new environments?

The paper is structured as follows. Section 2 will
describe the methodology used to answer the ques-
tion. The algorithms will be broken down and ex-
plained in this section. Section 3 will go through
the experimental setup to carry out the simula-
tions. The software, models, meshes/geometry, and
environments will be described in detail here. Then
Section 4 will show the results gathered from the
experiment. The results will be analysed, presented
and discussed. Lastly, section 5 will conclude this
paper. Future thoughts and overall notes will be
discussed in this section.

2 Method

The Deep Reinforcement Learning network in this
paper is a Multi-layer Perceptron (MLP). This will
be the core neural network that will have the input
nodes, weights, hidden layers, and output nodes.
The input for the MLP is the current state of the
musculoskeletal model within the environment. The
output is a vector containing the activation for each
muscle within the musculoskeletal model.

Through out the experiment, the Proximal Pol-
icy Optimisation (PPO) learning algorithm is used.
The PPO has been shown to work for simple walk-
ing exercises. Editing the way the PPO learns could
make the simulation better adapt to a more general
or advanced human walking behaviours. Changes
would be made with regards to how much weight a
reward is given with respect the task.

2.1 Multi-layer Perceptron

The MLP used is a feed forward neural network.
The structure is shown in Figure 2.1. It has 4 dis-
tinct layers: input (214 or 218 nodes), 2x hidden
(312 nodes), and output (18 or 19 nodes). The
MLP’s activation function is the tanh-nonlinear ac-
tivation function as shown in Equation 2.1.

y(vi) = tanh

(
b+

n∑
i=1

xiwi

)
(2.1)

The weight of the connection between two nodes
is w, the activation of the previous node is x, the
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Figure 2.1: The DRL alogrithm used in the ex-
periment. The state space feeds into the input
layer with either 214 or 218 nodes, shown on the
right. The output layer is the action space with
either 18 or 19 nodes.

bias is b, and n is the number of nodes in the pre-
vious layer. The sum is for each node i that is con-
nected to the current node. This calculates the out-
put y of the node vi. The weights of the multi-layer
perceptron are optimised by the PPO.

Each layer in the MLP is fully connected, and
the connections are feed forward only. The input
for the MLP is the current state of the environ-
ment. The list of everything that is measured in the
environment is: joint angles, muscles fibre lengths,
muscle velocities, tendon forces, positions, veloci-
ties and accelerations of joint angles and body seg-
ments. This yields in input space of 214 variables
for the healthy subject model, and 218 variables
for the tranfemoral amputee model. The output of
the MLP is a vector. The healthy model has a vec-
tor of length 18, whereas the transfemoral amputee
model has a vector length of 19. The vector repre-
sents the activation of each muscle present in the
model. The input values of the MLP are continuous
values of the input space. The output is binary, ei-
ther 1 or 0. The output is interpreted with the given
mechanism inside in OpenSim called the brain, this
activates the muscles.

2.2 The PPO policy

The PPO algorithm is derived by OpenAI (Schul-
man et al., 2017). The goal of the PPO is to train
and optimise the weights within the network. The
algorithm for how the policies get updated can been
seen in Algorithm 2.1.

Algorithm 2.1 PPO overview

Require: maxSteps >>> 1, 000, 000
t⇐ 0
ε⇐ 0.2
pn, po ⇐ policy()
while TRUE do
if t > maxSteps then

break
end if
po ⇐ pn
rtθ ⇐ pn/po
Â1...Âtθ ⇐ compute advantage estimates
pn ⇐ Lclip(rtθ, Â1...Ât, ε)
t⇐ t+ 1

end while
return pn

The algorithm uses the current and previous pol-
icy to update to a new policy. This will iterate for a
predetermined amount of time. The probability ra-
tio between the old and the new policy is calculated
as:.

rt(θ) =
πθ(αt|st)
πθold(αt|st)

(2.2)

The actions at timestep t is αt, and the obser-
vations at timestep t is st. The old and new policy
are represented by πθ and πθold respectively.

The function Lclip() is what governs a pol-
icy. It ensure that policy updates cannot be too
large. This clips the probability ratio and adds a
Kullback-Leiber divergence term. This can be seen
in Equation 2.3.

LCLIP (θ) =

Êt[min(rt(θ)Ât, clip(rt(θ),1− ε, 1 + ε)Ât)]
(2.3)

The policy parameter is θ, Êt is the empirical
expectation over timesteps, rt denotes the ratio of
the probability under the new and old policy at
time t, the estimate advantage is Ât at time t, and
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the hyperparameter is ε which is set to 0.2. Having
the term, clip(rt(θ), 1−ε, 1+ε)Ât, in the policy will
negate the incentive for the rate rt to move outside
of the clip-bound [1− ε, 1 + ε] set by ε.

2.3 Reward function

The action generated by the model results in it
gaining a reward, this reward is mapped from a
function. The reward can be either positive or neg-
ative relative to the actions the model just took.
If the model does a favourable action, it gains a
positive reward. If the model does an unfavourable
action, it gains a negative reward (a penalty). The
goal of the model is to receive the most rewards
possible. Since the reward function gives the model
a reward, it has a heavy impact on the model’s be-
haviour. The actions that the reward function uses
to decide how much reward the model earns are
designed with respect to the task at hand.

Starting from the basis of a reward function for
walking, as seen in Equation 2.4, the four main el-
ements can be reused. The 4 elements the reward
functions is reliant on are: distance covered, devia-
tion to desired velocity, muscle cost, and time spent
alive.

J(π) =
∑
t

(rdistance−pvelocity−pcosts)+
∑
t

(ralive)

(2.4)
The total reward J(π) is calculate at each time

step t. The reward based on distance is rdistance,
this is the distance that the model’s pelvis trav-
elled since the last timestep. A larger distance gives
a larger reward. A penalty for deviating too far
from the desired velocity of 1.25 m/s is given to the
model, this is represented as pvelocity . A penalty is
also given for the amount of energy that the model
is using, denoted by pcosts. Lastly, the reward for
the amount of timesteps spent alive is given, this is
ralive. The model is considered alive as long the
pelvis is 0.7 meters above ground level. The re-
ward function calculates the reward that the mus-
culoskeletal model earns for carrying out its action
at every timestep t. This reward function is for-
mulated in a way that earning the highest positive
number is the goal of the model.

Faster paced walking increases the reward for ev-
ery time the model travels the same distance in

a shorter amount of time. The ramp environment
would require a reward for when the model trav-
els in the vertical direction alongside horizontally.
The stairs environment would also have to balance
the reward for vertical to horizontal movement, but
with more emphasis on the vertical movement.

It is advantageous to manipulate the reward
function to better benefit the new environments
due to the way a reward is determined when going
from basic walking to more advanced environments.
The environment for fast paced walking has a de-
sired velocity higher than 1.25 m/s but not exceed-
ing 2 m/s. The penalty for the velocity is adapted to
this new environment. The environments for tack-
ling the obstacles now has the model travelling in
the vertical direction as well as horizontal direction.
The reward for distance travelled is split into the
x-axis and y-axis. The new environments are also
more demanding and challenging. The penalty for
the amount of energy used is reduced significantly.
The reward for staying alive remains the same. The
new reward function is shown in Equation 2.5.

J(π) =
∑
t

(rdx + rdy − 0.8 ∗ pvelocity − 0.6 ∗ pcosts)

+
∑
t

(ralive)

(2.5)

The reward for the distance covered is changed in
the new reward function. The previous rdistance is
spilt into to terms; rdx and rdy for both the horizon-
tal and vertical distance respectively. The velocity
penalty pvelocity is now weighted by a factor of 0.8,
reducing the punishment to deviate from 1.25 m/s.
The penalty for energy cost pcosts is now weighted
by a factor of 0.6. This allows the musculoskeletal
model to exert more energy to pass the advanced
environments without being punished.

3 Experiment

Two distinct musculoskeletal models will be used
as our human biological analogy, each model repre-
sents the human’s muscles from the hip down. The
first model is the healthy model. This model is an
accurate representation of the human muscles, with
both legs a mirror of each other. The second model
is the transfemoral amputee model. This model will
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have muscles removed in only the right leg, simu-
lating a transfemoral amputation.

There will be a total of 5 advanced environments
that each model will be subjected to in this ex-
periment. The environments are related to 5 ac-
tivities of daily living: fast paced walking, ramp
ascent, ramp descent, stairs ascent, and stairs de-
scent. Each environment is setup that only the feet
contact and exert force on the obstacle and with
nothing else.

3.1 Models and software

The healthy and the transfemoral amputee model
are used to carry out the experiment. The healthy
model will be used as a baseline, whereas the trans-
fermoral amputee model will be compared to it to
determine the similarities or differences in perfor-
mance. Further information on the parameters of
the contact forces are in Table A.1.

3.1.1 OpenSim

The open source software OpenSim 3.0 was used to
create, edit, and visualise the models and environ-
ment. OpenSim makes use of XML to represent its
models, compromising of the sections mentioned in
Table 3.1.

Section Description
BodySet* Body geometry
ConstraintSet List of constraints
ForceSet* Acting forces
MarkerSet List or markers
ContactGeometrySet* Contact geometry
ControllerSet Auxiliary controllers
ComponentSet Group geometry
ProbeSet Auxiliary probes

Table 3.1: The sections represented within the
.osim file. Sections in italic and with a star have
been edited for this experiment. The other sec-
tions have be left to their default state.

3.1.2 Healthy model

The healthy musculoskeletal model used
in the experiment is based of the model:
gait14dof22musc pros (Kidziński et al., 2018).
The model has been edited to be used for this

Figure 3.1: Left: the legs for the healthy model.
Right: legs for the transfemoral amputee model.
Right leg missing the hamstring, but has the
addition of 2 muscles around the hip.

experiment, the final musculoskeletal model has
a total of 18 muscles (9 per leg), which control
14 degrees of freedom. The edits made to the
original model is copying the left leg geometry
onto the right leg, and adjusting the contact points
respectively. The legs of this model can be see in
the left of Figure 3.1.

3.1.3 Transfemoral amputee model

The transfemoral amputee model is an edited ver-
sion of the healthy model, where certain muscles
have been removed. The removed muscles from the
right leg are the three biartcular muscles: gastroc-
nemius, hamstring, and rectus femoris. However,
to ensure the stability of this model, 2 muscles
are added; the hip adductors and abductors. This
model has 19 muscles which control 16 degrees of
freedom. The legs of this model can be seen on the
right of Figure 3.1.

3.1.4 Muscles

To be able to perform the tasks of climbing stairs
the maximum isometric force for all muscles of both
models were increased by 80%. The muscles for the
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walking and the ramp task remained at their de-
fault values.

3.2 Environment

Using OpenSim alongside MeshLab 2020.07,
SketchUp 2017, and Blender 2.83, the geometry
mesh files were created and saved as .obj files. The
meshes are triangular meshes, with the normals
of the vertices and faces calculated by OpenSim.
Theses meshes where imported into the BodySet

section and the ContactGeometry section of the
model. So that the mesh file for the contact ge-
ometry works, a strict rule is set, it is required to
be a non-manifold and watertight mesh. A total of
4 unique meshes are made to be imported into a
model, they are: ramp, stairs, heel, toe. The heel
and toes meshes are reused in all environments.
Each mesh was designed with regards to keeping
the amount of vertices and faces to a minimum,
as too many would have increased computational
power.

3.2.1 Obstacle Meshes

Both musculoskeletal models are subjected to an
environment. An environment is made up of 2 com-
ponents: the musculoskeletal model, and an obsta-
cle. The obstacles in each environment is built on
a base that is 2 meters wide. Having the base be
2 meters wide gives adequate space to the left and
right of the model. All environments start on a flat
level surface. All 6 unique environments can be seen
in Figure 3.2. An example environment is shown in
Figure 3.3.

Figure 3.2 shows the starting position of each of
the 6 individual testing environments. All muscu-
loskeltal models are facing, and walking, in the pos-
itive X-direction. The left and right of the model is
negative and positive Z-direction respectively. The
up and down motion of the model is the positive
and negative Y -direction respectively. The refer-
ence for the centre of the musculoskeltal model is
its pelvis. The pelvis is placed at (0, Y, 0), where Y
changes between [0.94m, 1.44m, 1.94m] depending
on the obstacle.

A more detailed view of the ramp and stairs can
be seen in Figure 3.4 and Figure 3.5 respectively.
These views show a perspective of only the obsta-
cle section of the mesh. The surfaces are smooth,

and joined at the edges with no gaps or holes. Each
mesh has no overlapping faces, or duplicate ver-
tices.

The ramp obstacle has a run of 3.25 meters and
a rise of 0.45 meters. The gradient of the slope is
7.883 degrees with a length of 3.28 meters.

The set of stairs has 3 steps to it. A single step
has a height of 0.20 meters and a depth of 0.25
meters. The total increase in height is 0.60 meter.

3.2.2 Foot meshes

The foot contact geometry is composed of 3 spher-
ical meshes, 1 heel and 2 toes. The heel mesh is a
sphere with a diameter of 50 millimetres, whereas
a toe is a sphere with a diameter of 25 millime-
tres. The left and right feet are shown in Figure
3.6. This figure shows the placement of the contact
mesh with respect to the bones within the foot.
It is important to note that it is the geometry of
the contact mesh which exerts a force, and not the
bones themselves.

The coordinates for the foot geometry are mirror
reflections of each other. For a foot, the coordinates
(x, y, z) are: heel at (3, 2, 0) relative to the body
piece calcn, toe 1 at (0.02 -0.005 -0.026) relative
to the body piece toes, and toe 2 at (0.02 -0.005
0.026) relative to the body piece toes.

Each of the 4 meshes from Table 3.2 are imported
into the ContactGeometry section of their .osim
file. Each specific task has it own file dedicated to
it, resulting in 10 individual musculoskeletal model
files. The meshes for the ascent environments are
identical to their descent counterparts. In those en-
vironments where the task is to go down the obsta-
cle, the skeleton has been translated in the y-axis
proportional to the height of the obstacle, and the
obstacle has been rotated by 180 degrees with re-
spect to its centre. Each environment is loaded and
tested separately. In each of the eight environments
which contain an obstacle, the skeleton has 2 meters
of flat-level surface before reaching the obstacle.

The 4 unique meshes and their detailed level of
granularity are shown in Table 3.2. The ramp mesh,
stair mesh, toe mesh, and heel mesh are triangular-
hollow meshes, and only have exterior faces.

To ensure that the meshes are able to contact
with one another, the switch from the Hunt Cross-
ley Force to Elastic Foundation Force was made
(Hast et al., 2019). The parameters for the Elastic
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Figure 3.2: From left to right: healthy, transfemoral, healthy stairs ascend, transfemoral stairs
ascend, healthy ramp ascend, transfemoral ramp ascend. The obstacles are rendered in white.
The contact meshes are render in blue wire-frame.

Figure 3.3: The environment of the stairs ascent
experiment showing starting position as well as
obstacle. The musculoskeletal model’s starting
postion is based on the starting position of the
training data.

Foundation Force were taken from research which
investigated foot-ground contact (DeMers et al.,
2017). The exact values can be found in Table A.1.

3.3 Training data

For the basic task (fast walking), the data for
1.75 m/s was taken from our previous research
(De Vree and Carloni, 2021). The training data
for the advanced task (stairs and ramp) are ob-
tained from the Graphics Lab - Motion Capture Li-
brary (Carnegie Mellon university, n.d.), provided
in c3d motion capture format. The subject num-
ber 74 with trial 19 was used for stairs and subject
number 14 with trail 22 was used for ramp.

The c3d files contained tracking balls to deter-

Figure 3.4: A close up of the ramp.

Figure 3.5: A close up of the stairs.

mine the location of the the subject in 3D space, as
shown in Figure A.1. Each tracker has a label des-
ignated to it to represent its location on the body,
only the trackers on the hips and legs were used to
calculate the training data. The necessary trackers
were exported to a trc tracking file with the use of
Mokka software. Those tracking balls were mirrored
on the healthy musculoskeletal model in the Open-
Sim software to be able to run inverse kinematics.
The inverse kinematics resulted in the needed for-
mat for the OpenSim learning environment. The
root-mean-squared-error of the inverse kinematics
has a max value 0.05 for all trackers. The velocity
of the joint at time t was then calculated using the
the formula

vi(t) =
pi(t)− pi(t− 1)

t

7



Figure 3.6: A view from below of the positioning
of the contact geometry respective to the foot
bones. Green: The heel and the toe mesh for the
left foot. Red: The heel and the toe mesh for the
right foot White: foot bones.

Mesh Vertices Faces
ramp 24 36
stairs 48 72
heel 107 210
toe 107 210

Table 3.2: The 4 meshes and their respective
vertices and faces.

where i is the joint, pi(x) is the position of the
joint at time x, and t is time. The velocities of the
joint i at the start and end of the training data are
vi(1) and vi(n − 1) respectively, with n being the
total amount of samples in the training data.

3.4 Hardware

To be able to run this experiment, different medi-
ums of hardware are used. The most prominent is
the Microsoft Azure: Cloud Computing Services. A
total of three servers were allocated on Azure, each
of them are the NC6 Data Science Virtual Machine
for Linux (Ubuntu 18.04) with 6 cores and 56 gi-
gabytes of ram. Other personal hardware was used
as well, 4 systems running Ubuntu 18.04. System
1 has an Intel core i5 3570K and 8 gigabytes of
ram, and system 2 has an Intel core i7 8700K with
16 gigabytes of ram, system 3 has an AMD Ryzen
3800x with 32 gigabytes of ram, and system 4 has

an AMD Ryzen 5950x with 64 gigabytes of ram.
The python version is Python 3.6.10, the ten-

sorflow version (non-gpu) is tensorflow 1.15. The
program makes use of mpi4py to be able to run on
4 cores. The approximate time to run a single itera-
tion on the Azure servers is 356 seconds, on system
1 it is 250 seconds, and on system 2 it is 170 sec-
onds, system 3 it is 112 seconds, and system 4 it is
95 seconds.

Data can be collected from the simulation af-
ter each iteration. The rate at which the data is
sampled during the experiment is every 5 itera-
tions. The trained model is saved using tensorflow-
checkpoint. The angles of the joints can be ex-
tracted from the trained model in degrees. The
training reward per timestep is also recorded, it as
the mean of the reward. The length of each training
period is recorded as well.

3.5 Transfemoral model training

The OpenSim environment is fully established for
the transfemoral model. The model loads into the
OpenSim environment error free as well make con-
tact with the geometry and activate its muscles.
The training data has been setup and is ready to
be used. However, due to unexplained behaviour
those models were not run during the experiment,
and hence their results are omitted.

4 Results and Analysis

The reward per timestep for each environment were
plotted. The angle, in radians, of the joints of inter-
est (knee and ankle) during a simulation’s run-time
were plotted.

4.1 Healthy stairs ascend

The reward obtained by the healthy musculoskele-
tal model climbing up the stairs is presented in
Figure 4.1. Only the healthy stairs and ramp en-
vironments are discussed in this paper to show the
ability of the PPO.

The reward increases rapidly for the first 19383
timesteps, then it levels out until 55951 where it
then again increases rapidly until approximately
76099, from here onward the learning is continuous
and slow. The rapid increases in reward represent

8



when the model has learned to correctly climb 1
step. Since steps are non-linear motions, this jumps
in reward represent this well.

In the end, the model was able to climb stairs for
300 simulation-timesteps, and maxed out at 215 re-
ward. The model was able to achieve 215/300 =
71.6% of its total reward, this suggest that the
model’s gait is 71.6% accurate to the training data.

Looking at the angles of the ankle in Figure 4.2
we can see the symmetry in the gaits, as well as
how well the measured angles follow the real world
data.

The ankles show some symmetry between them,
but the right ankle seems to deflect far more that
the left. The knees show very consistent symmetry
throughout the gait cycle. Neither knee is experi-
encing large deflections. Both the knees and the an-
kles follow the real world data closely throughout
the simulation.

The fibre forces are shown in Figure 4.3. The
forces for the the bicep femoris are erratic but show
some continuous cycles for both legs. The bicep fer-
moris averages 613 N on the left and 654 N on the
right. The vasti muscles show clearly that it is ei-
ther the left or the right vasti which is exerting
force at any given time, not both. The vasti aver-
ages 2773 N for the left and 2472 N for the right.
There are times where the vasti is not exerting a
force and this is when the foot is lifted from the
ground.

The ground reaction forces are shown in Figure
4.4. The each foot is in contact with the ground 2
times and is lifted 2 times. The most force is exerted
on the Y-direction, then the X-direction, and lastly

Figure 4.1: The rewards gained during the learn-
ing process of the healthy stairs ascent environ-
ment

Figure 4.2: The angles of the ankles and knees
during stairs ascent. blue = measured, orange
= real life data

Figure 4.3: The fibre forces during stairs ascent
of the bicep femoris and vasti muscle. The black
line indicates the average.

the Z-direction which is rarely exerting any force.
The Y-component of the force peaks at the very
beginning and end of the contact. It maxes out at
a force of -1602 N on the left and -1387 N on the
right. It has an average of -334 N on the left and
-347 N of the right.

4.2 Healthy ramp ascend

The reward obtained by the healthy musculoskele-
tal model walking up the ramp is presented in Fig-
ure 4.5.

The reward increases rapidly for the first 13,000
timesteps then the increase becomes linear. The ini-
tial gain is due to the model leanrning to stand and
take the first step. Since the environment is con-
tinuous after this initial step, the learning exhibits
continuous learning. The further the model walks

9



Figure 4.4: The ground reaction forces during
stairs ascent for all contacts points for both feet.

up the ramp, the more reward it achieves. The final
4000 timesteps shows the greatest flucation, this is
due to it being the most recently learned behaviour
and it takes time to reach the end of the ramp re-
sulting in the final moments being iterated over less
often.

This model was able to make it to the top of
the ramp after 210 simulation-timesteps, achieving
a max reward of 120. This gives it an accuracy of
120/210 = 57.1% of its total reward. The simu-
lation was able to mimic the real life data to an
accuracy of 57.1%.

Looking at the angles of the ankle, Figure 4.6,
we can see the symmetry in the gaits for the knees
but not so much for the ankles.

The ankles shows greater deflection for the left
leg than it does for the right leg. Both ankles seem
to show periodic repetition every 75 timesteps. The
knees shows similar repeating patterns every 75
timesteps. However, the left knee is rotating less
than the right knee. This suggests that the right
leg was used more excessively in this trial than the
left leg.

Figure 4.5: The rewards gained during the learn-
ing process of the healthy ramp ascent environ-
ment

Figure 4.6: The angles of the ankles and knees
during ramp ascent. blue = measured, orange =
real life data

The fibre forces are shown in Figure 4.7. The
bicep femoris shows 3 distinct cycles which last 75
timesteps. The forces during this time are erratic.
The bicep femoris averages 886 N on the left and
939 N on the right. The vasti has peaks which are
consistent with the gait cycles. The vasti averages
1312 N on the left and 1334 N on the right. The
foot is lifted when the vasti is exerting 0 force.

The ground reaction forces are shown in Figure
4.8. The each foot is in contact with the ground
4 times and is lifted 3 times. The largest force is
exerted in the Y-direction, then in the X-direction,
and finally the weakest force is experienced in the
Z-direction. The Y-component of the force peaks
often and is not smooth, it maxes out at a force of
-2668 N on the left and - 2469 N on the right. It
has an average of -299 N on the left and -262 N of
the right.
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Figure 4.7: The fibre forces during ramp ascent
of the bicep femoris and vasti muscle. The black
line indicates the average.

5 Conclusions

What the results show is that the PPO algorithm
is able to learn to cope with the advanced environ-
ments of ascending stairs and ramps.

The rewards obtained show that it is possi-
ble for the PPO to achieve a reasonable reward
which results in approximate human-like locomo-
tion. However, these rewards are only obtained af-
ter a vastly greater training period. The results
from Leanne (De Vree and Carloni, 2021) shows
adequate rewards obtained after 50,000 epochs,
whereas the rewards obtained in this research ap-
pear after roughly 150,000 epochs which is 3x more
training. This increase in training time does not
linearly translate to an increase in computational
time, training for stairs and ramps takes a min-
imum of 148 hours compared to the previous 8
hours.

The angles of the knees and ankles for the mus-
culoskelatal models do show angles which relate to
human-like walking. This shows promising applica-
tions of PPO for future artificial intelligent research
methods in the field of human locomotion.

The computational cost of the running so many
simultaneous simulations resulted in only ascending
of the obstacles. Exploring the environments of de-
scend the obstacles is essentially built into this pa-
pers research but avoided due to time constraints.

Overall, an understanding of the application of
new contact forces, building of meshes, the alter-
ations of a reward function, and musculoskeletal
inverse-kinematics from training data shown in this

Figure 4.8: The ground reaction forces during
ramp ascent for all contacts points for both feet.

paper has built a solid foundation for more research
into prosthetic development.
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A Appendix

Parameter Value
R

ig
h
t

le
g

appliesForce true
geometry [stair c, ramp c] r heel r toe1 r toe2
dissipation 5
stiffness 50000000
static friction 0.9
dynamic friction 0.9
viscous friction 0.9
transition velocicty 0.1

L
ef

t
le

g

appliesForce true
geometry [stair c, ramp c] l heel l toe1 l toe2
dissipation 5
stiffness 50000000
static friction 0.9
dynamic friction 0.9
viscous friction 0.9
transition velocicty 0.1

Table A.1: The values of the Elastic Foundation Force respective of the right foor. The geometry
value can be chosen from either stairs c or ramp c. The left foot is analogous to the right foot,
just ”l ” rather than ”r ”

13



Figure A.1: The position of the trackers on the human body.
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