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Abstract: 
A Gene Regulatory Network (GRN) is a network of genes regulating each other, mostly through 
transcription factors. Expression Quantitative Trait Loci (eQTLs) also affect expression of genes. 
Recently, a type of interaction was identified where the Cis-eQTLs of a gene affected the binding 
affinity of a transcription factor. The aim of this project was to design algorithms which would 
identify more of those interactions using genotype data and gene expression data, so that a GRN 
may be reconstructed from those interactions. The results of the algorithms were not replicated in 
experimental data, indicating the need for further development. 
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Introduction 
Since the discovery of gene inheritance by Mendel1,2, there has been research into how exactly alleles 
affect various traits3. After 2006, Genome Wide Association Studies (GWAS) became prevalent, entire 
genomes were sequenced revealing countless alleles associated with diseases4. This also revealed that 
most inherited diseases are complex diseases and do not follow mendelian patterns of inheritance. The 
disease associated alleles only slightly increase or decrease the risk for one or more complex diseases3.  

Disease associated alleles are most often Single-Nucleotide Polymorphisms (SNPs) found in noncoding 
regions of the genome, and therefore most likely affect the level of gene expression instead of gene 
function5. Most of these SNPs are expression Quantitative Trait Loci (eQTLs) which are loci that explain a 
fraction of the genetic variance of a gene expression phenotype.  
In literature, eQTLs are typically divided in Cis-eQTLs, which are in close proximity to the gene they 
regulate, and Trans eQTLs which are further away or even on a different chromosome. Trans-eQTLs 
regulate genes indirectly i.e., through a transcription factor, this means they are often also Cis-eQTLs for 
another gene. Standard eQTL analysis involves a direct association test between markers of genetic 
variation and gene expression levels and is typically measured in a large group of individuals. Most 
notably, no knowledge about regulating regions is required for the GWAS based identification of new 
eQTLs5. 

Interestingly, most traits and the expression of most genes are influenced by many causal SNPs with 
small effect sizes3,6. Most of these causal SNPs are spread across the genome and are not located near 
genes with disease related functions. These observations lend to the hypothesis of the “omnigenic” 
model3, which states that all Gene Regulatory Networks (GRNs)7 are highly interconnected with each 
other. The Cis-eQTL of one Transcription Factor (TF) gene can also be the Trans-eQTL of another gene 
interacting with the TF. In the “omnigenic” model, these interacting genes can be located anywhere in 
the genome and can have functions seemingly unrelated to that of the TF gene. According to model 
GRNs should contain “core genes”, nodes in the GRNs which are central parts in the regulation process 
according to this model. These node would either regulate a lot of other genes, be regulated by a lot of 
other genes, or both3,8. Nodes completely upstream in the gene regulatory network, and thus not 
subject to external regulation, should also exist within GRNs. These upstream nodes would be good 
places to start untangling the gene regulatory network, and eQTLs could be used to determine 
interactions between genes8. 
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Figure 1: Overview of concepts and research project. Top, The main concept behind the research project; using interactions where the effect of 
the transcription factor is modulated by a Cis-eQTL SNP9, to reconstruct Gene Regulatory Networks (GRNs). Right hand side of the picture is 
adapted from Vandereyken et al., 201810. Bottom, Approach of the research project; generating interaction models for the interactions a TF 
gene has with the Cis-eQTL SNP of a genes, and selecting the best model. For that model use CHiP-seq data to generate peak plots and perform 
a chi test. Expression of TF gene is predicted using only Cis-eQTL SNPs. 

Zhernakova et al. 20179 identified Cis-eQTL SNPs using a hypothesis free strategy. Some of these Cis-
eQTL SNPs modulate the binding of a TF is to the interacting gene11,12, thus there the interaction 
between the SNP and the TF is what controls the expression of the interacting gene. If all these 
interactions between the genes/nodes in the GRN are identified and quantified, then a GRN could be 
reconstructed as series of equations. This network of equations could be used to make accurate 
predictions; e.g., how the GRN would respond to medication, or how disruption in the network can lead 
to pathology.  

The aim of this project was to develop new algorithm to identify Cis-eQTL modulated interactions 
between two genes through predicting the expression of those genes. Interactions between two genes 
are modeled using genotype data of Cis-eQTL SNPs and gene expression data. The expression of the TF 
gene being predicted based on the Cis-eQTL SNPs alone, the expression of the interacting gene is 
predicted based on the predicted expression of the TF gene. These models are then evaluated to 
determine if such an interaction is likely to occur in vivo. As far as I know currently no algorithms exist 
which predict interactions between genes using only Cis-eQTLs.   
Algorithms for identifying Cis-eQTLs were developed to aid in achieving the aim of the project. These 
algorithms use the residuals of each previously identified Cis-eQTL SNP for the identification of the next 
Cis-eQTL SNP. The idea was to correct this way for Linkage Disequilibrium (LD)13 between multiple Cis-
eQTLs. A pipeline from the eQTLgen consortium14,15 was used for validation of the results of the Cis-eQTL 
identification algorithms. 
 
None of the top potential interactions were replicated in CHiP-seq data16,17 and any predictions using 
identified Cis-eQTLs showed a high probability that any association was due to chance. This indicates 
that the algorithms need to be developed further or that the used data needs further preprocessing to 
correct for nongenetic differences between the samples.  

Materials and methods 
See supplementary files for scripts themselves. Scripts are also available on GitHub: 
https://github.com/molgenis/GeneticsPrivateScripts/tree/master/umcg-bkarnebeek  

Cohort descriptions 
In this project a total of six cohorts were used, these are collectively called the BIOS cohorts because all 
of the six cohorts are part of the BIOS cosortium14. The cohorts are described below.  

CODAM 
As described by Zhernakova et al. 20179, the Cohort on Diabetes and Atherosclerosis Maastricht 
(CODAM)9,14,18 consists of: “[..] a selection of 547 subjects from a larger population-based cohort. 
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Inclusion of subjects into CODAM was based on a moderately increased risk of developing 
cardiometabolic diseases such as type 2 diabetes and/or cardiovascular disease. Subjects were included 
if they were of European descent, over 40 years of age and additionally met at least one of the following 
criteria: increased body mass index (BMI; >25), a positive family history of type 2 diabetes, a history of 
gestational diabetes and/or glycosuria, or use of antihypertensive medication.” 

LLD 
The LifeLines-DEEP (LLD)9,14,19 cohort is a subcohort of the LifeLines20 cohort with 1,500 participants for 
which additional molecular data is available. As explained by Zhernakova et al. 20179: “LifeLines is a 
multidisciplinary prospective population-based cohort study examining the health and health-related 
behaviors of 167,729 individuals living in the northern parts of the Netherlands using a unique three-
generation design. It employs a broad range of investigative procedures assessing the biomedical, 
sociodemographic, behavioral, physical and psychological factors contributing to health and disease in 
the general population, with a special focus on multi-morbidity and complex genetics.” 

LLS 
As stated by Zhernakova et al. 20179, the Leiden Longevity Study (LLS)9,14,21 aims to: “[..]identify genetic 
factors influencing longevity and examine their interaction with the environment to develop 
interventions by which to increase health at older ages. To this end, long-lived siblings of European 
descent were recruited together with their offspring and their offspring's partners, on the condition that 
at least two long-lived siblings were alive at the time of ascertainment. For men, the age criterion was 89 
years or older; for women, the age criterion was 91 years or older. These criteria led to the 
ascertainment of 944 long-lived siblings from 421 families, together with 1,671 of their offspring and 744 
partners.” 

RS 
The Rotterdam Study (RS)9,14,22 is a single-center, prospective population-based cohort study conducted 
in Rotterdam, the Netherlands. As explained by Zhernakova et al. 20179: “The cohort has data on 14,926 
subjects (both male and female) aged 45 years or older. The main objective is the investigation of the 
prevalence and incidence of chronic diseases as well as the prevalence and incidence of risk factors for 
those diseases. This is to improve prevention and treatment of these diseases in the elderly.” 

NTR 
The Netherlands Twin Register (NTR)14,23 is a national register in which twins, multiples and their 
parents, siblings, spouses and other family members participate. A stated in the 2019 report on the 
register: “Since the early 1980s, the NTR has enrolled around 120,000 twins and a roughly equal number 
of their relatives. The majority of twin families have participated in survey studies, and subsamples took 
part in biomaterial collection (e.g.  DNA) and dedicated projects, for example, for neuropsychological, 
biomarker and behavioral traits. The recruitment into the NTR is all inclusive without any restrictions on 
enrollment. These resources — the longitudinal phenotyping, the extended pedigree structures and the 
multigeneration genotyping — allow for future twin-family research that will contribute to gene 
discovery, causality modeling, and studies of genetic and cultural inheritance.”.  By using twin pairs as 
the probands recruitment initially included parents, but later on also siblings, spouses and children of 
the twins. According to the report this has resulted in:  “[..] a database with roughly equal proportions of 
participants who are and who are not twins. Over the years, a total of 280,569 participants were 
registered at the NTR, 231,088 of whom are still contactable. The total group of participants includes 
255,785 members of twin families and 24,784 participants contributing as a teacher of a child registered 
at the NTR.” 
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PAN 
The Prospective ALS Study Netherlands (PAN)14,24 is a prospective study for patients suffering from 
amyotrophic lateral sclerosis (ALS). As stated in Võsa et al. 201814: “Since 2006, PAN aims to include all 
Dutch patients with ALS and similar phenotypes to correlate potential lifestyle, genetic and 
environmental risk factors with the onset and prognosis of ALS. To date, 3,400 patients have been 
included, and genotypes and expression data have been generated for a subset of these patients.” 

The number of samples per cohort used in this study can be found in Figure S1. Gene expression and 
SNP genotype data from the blood samples of the subjects in the cohorts were used. The information of 
the cohorts was combined into one .vcf25 file per chromosome.  

Handling of VCF files 
The genotype data from different cohorts were extracted as VCF files. All VCF25 files were read using the 
cyvcf2 package26 of the Python programming language. The genotype data of the SNPs is loaded as 
following: the data of samples for that SNP is selected and recoded to single number; 0 if the sample is 
homozygote for the major allele of that SNP, 1 if the samples is heterozygote for that SNP and 2 if the 
sample is homozygote for the minor allele of that SNP. This creates a Pandas DataFrame27 with the 
samples as the index and the SNPs as the columns.  

Preparation of general files 
The original gene expression matrix had the expression code of the samples as the columns and the 
ENSG/Ensembl28 code of the genes as the rows. This matrix was loaded as a Pandas DataFrame27 and a 
genotype to expression coupling file was used to alter the names of the columns to the genotype code 
of the samples. The matrix was then transposed to put the samples as the index and the genes as the 
columns. This matrix was stored as both a .txt text file and a pickle file29, called gene_expression.txt/.pkl. 
Prior to usage in calculations the samples present in the gene expression matrix were compared to 
those in the VCF file; any samples which are not present in both files were discarded before calculations 
were initiated.  

The annotation file called annotation_meta_all_2018-01-31.txt was read and converted to a pickle file 
called gene_mappings.pkl. The start and stop positions in this annotation file were the same as in 
ProbeAnnotation_STARv2.3.0e_Ensembl71.txt. Both annotation files originated from the BIOS 
consortium14. 

toRegressOut.log.gz contains data of an earlier experiment of the BIOS consortium9,14, it also contains 
information about all Cis-eQTL SNPs which were conditionally determined to be independent. The Cis-
eQTL SNPs determined to be independent were extracted and stored per gene in a dictionary which was 
stored in a file called ind_snps.pkl  

Graphs generation 
Different types of plots were generated to enable evaluation of results. The different types of plots each 
enable the evaluation of a different type of results, or a different aspect of the results.  

The interaction plots are graphs visualizing the interactions between the protein of a gene and the SNP 
of the interacting gene. Interaction plots are plots of the same type as figures 2B and 4B of Zhernakova 
et al. 20179. The samples were split along their genotype for the SNP modulating the interaction 
between TF gene and interacting gene. The linear regression models were generated per set of samples 
in the following form:  

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑔𝑒𝑛𝑒 =  𝑏0 +  𝑏1 ∗ 𝑇𝐹 𝑔𝑒𝑛𝑒 
The plots are named as following {code of SNP}_{ENSG of interacting gene}_{ENSG of TF gene}.png. 
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The predicted vs measured plots are graphs plotting the measured expression of a gene against the 
expression of that same predicted by a model. The predicted vs measured plots were generated to test 
the accuracy of the model. The predicted vs measured plots are named as {ENSG of gene}.png. 

The comparison plots are graphs plotting the predict and measured values of a TF gene and a gene it 
interacts with. Comparison plots are similar to the interaction plots, and are produced to check if the 
predictions have pattern similar to that of the measurements. A linear regression model was generated 
for both measured and predicted sets in the following form:  

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑔𝑒𝑛𝑒 =  𝑏0 +  𝑏1 ∗ 𝑇𝐹 𝑔𝑒𝑛𝑒 

The plots are named as following {code of SNP}_{ENSG of TF gene}_{ENSG of interacting 
gene}_comparison.png. 

The graphs plotting peaks of DNA binding by TFs detected in vivo (peak graphs in short), were generated 
to enable checking if identified potential interactions actually exist in vivo. These plots are of the same 
type as figure 4C of Zhernakova et al. 20179. The plots were stored as {experiment code}_{replicate 
code}_chr{chromosome of SNP}_{start position of SNP}_{stop position of SNP}_B/BB.png (B is when a 
.Bed file is used for the generation of the plot, BB when a .bigBed file is used). 

Identification of significant Cis-eQTL SNPs 
One method for identifying significant Cis-eQTL SNPs(analysis.py) utilizes series of single linear 
regressions. This method works as following: the .vcf25 file for the chromosome on which the gene of 
interest is located is opened using the VCF_reader function of cyvcf226 and a section of the chromosome 
encompassing from 250 kb before the start of the gene until 250 kb after the end of the gene is 
selected. All SNPs with a Minor Allele Frequency (MAF) lower than 0.05 are dropped; any SNPs which 
have a missing value for any of the samples are also dropped. Both the range of the selection and the 
MAF cutoff can be adjusted if required. For each of these SNPs a linear regression model is generated 
(using scipy.stats.linregress) in the form of:  

𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  𝑏0 +  𝑏1 ∗  𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑜𝑓 𝑆𝑁𝑃 

The models are sorted in descending order by their p-value. The model with the lowest p-value is 
selected and used to predict the values of the gene of interest, following that the residuals between the 
prediction and the actual expression are calculated. Using these residuals new linear regression models 
are generated for each of the selected SNPs, and these will again be used to predict the expression and 
to calculate the residuals of the residuals. This process will continue until no more models can be 
generated with a p-value below the set threshold. All the SNPs selected up until that point are 
considered significant.  

 
Figure 2: overview of the workflow of identifying Cis-eQTL SNP utilizing series of single linear regression models. 
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Another method was attempted which generated a single multivariate linear regression model instead. 
The SNPs were selected in the same manner as with the series of single linear regression models. For 
each of the SNPs for each of these SNPs a linear regression model is generated (using 
scipy.stats.linregress) in the form of: 

𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  𝑏0 +  𝑏1 ∗  𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑜𝑓 𝑆𝑁𝑃 
 and the models are sorted in descending order by their p-value. The SNP of the model with the lowest 
p-value is selected and added to a list of components SNPs. The list is then used to generate a 
multivariate linear regression model using sklearn.linear_model.LinearRegression by using the 
genotypes of the SNPs in the components list as the x-values and the expression of the gene of interest 
as the y-values. This model is then used to predict the expression of the gene of interest and the 
residuals between this prediction and the actual expression is calculated. Using these residuals new 
linear regression models are generated for each of the selected SNPs, of these the SNP with the lowest 
p-value will be selected again and will be added to the list of component SNPs. The updated list is used 
to generate a new model and the residuals between the prediction of the new model and the measured 
expression and the cycle is repeated. This cycle will continue until no more SNPs with a p-value below 
the set threshold. All the SNPs that are part of the components list are considered significant. 

 
Figure 3: overview of the workflow of identifying Cis-eQTL SNP using a multivariate linear regression model. 

For both methods predicted vs measured plots were generated. In case of the first method the 
predicted expression of all the different models was summed to get the total prediction, in case of the 
second the single multivariate linear regression model was used for the prediction. Interaction plots 
were also generated in case of both methods using the predictions being used for the TF gene and the 
measured values for the interacting gene. The model or list of models both methods generated were 
saved as well as both a .txt text file and a .pkl/pickle file.   

Run of the eQTLgen pipeline 
The eQTLgen pipeline14,15 was used to have fully developed algorithm to compare the Cis-eQTL 
identification algorithm with. The pipeline ran a conditional Cis-eQTL analysis, both MetaQTL and 
Iterative modes were attempted. Exact settings are described in figure S2. 

Generation of models from SNPs determined by external methods 
SNPs identified by external methods were used to generate multivariate linear regression model. This 
refers to either the Cis-eQTL SNPs identified using the eQTLgen pipeline or the Cis-eQTL SNPs 
determined to be independent in a previous study9,14. The SNPs from the file were extracted and the 
genotype information was retrieved from the VCF25 file of the chromosome on which the SNPs were 
located and were used as the x-values to generate a multivariate linear regression model using 
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sklearn.linear_model.LinearRegression with the expression of the corresponding gene as the y-values. In 
most cases this method was used the results were saved as both a .pkl and .txt file 

Two-step predictions 
A two-step prediction means that the predicted values of the TF gene are used to predict the values of 
the interacting gene. The predictions for the interacting gene are made by interaction models which 
have the following formula:  

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  
𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡/𝑏0 +  𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑆𝑁𝑃 ∗ 𝑏1 +  𝑇𝐹 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ∗ 𝑏2 

+  𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑆𝑁𝑃 ∗ 𝑇𝐹 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ∗ 𝑏3 
Both measured and predicted values of the TF gene can be used for the initialization of the multivariate 
linear regression model. The model is created using sklearn.linear_model.LinearRegression with the 
expression of the interacting gene as the y-values and genotype interacting SNP, expression of TF gene 
and genotype interacting SNP*expression of TF gene as the x-values. The p-values of this model are 
named as following: the p-value of b0 is called the intercept p-value, that of b1 is called the SNP p-value, 
that of b2 the gene p-value and that of b3 the interaction p-value. In most cases this method was used 
the model was saved as both a .pkl and .txt file.  

Identification of best predicted genes 
In order to determine which genes were best capable of being predicted by their Cis-eQTLs alone, a 
multivariate linear regression model was generated for all of the genes for which expression has been 
measured in the BIOS data. The models were generated using the genotypes of Cis-eQTL SNPs of a 
certain gene determined to be independent in earlier experiment9,14 (extracted from ind_snps.pkl and 
VCF25 files) and the expression of that gene. The Pearson Rank correlation/r-value between the 
predicted and the measured values of the genes were calculated and the genes were sorted in 
ascending order by their r-value. The models of the top 20 best ranked genes were saved and had 
predicted vs measured plots generated for them.  

Identification of interactions  
All potential Gene Cis-eQTL SNP pairs that would be tested for, were contained in 2019-12-11-Cis-
eQTLsFDR0.05-ProbeLevel-CohortInfoRemoved-BonferroniAdded.txt.gz from the eQTLgen consortium14, 
file was downloaded from https://eqtlgen.org/Cis-eQTLs.html on Tue 23-03-2021. For each gene, the 
SNP with the highest p-value was selected and the rest was discarded. The gene Cis-eQTL SNP 
combination were split per chromosome on which they were located, and the information was stored as 
both Cis-eQTLs*.txt and Cis-eQTLs*.pkl where * is the number of the chromosome.  

Two methods were used to search for gene Cis-eQTL SNP pairs the TF gene can interact with. Both 
methods would discard any SNPs which did not have all three genotypes (major-major, major-minor and 
minor-minor) 

Method 1: First the samples were split along their genotype for the Cis-eQTL SNP of the gene SNP pair 
and an independent t-test30 is performed between each of the three groups to test if a different 
genotype for a certain SNP gave differences in expression for the corresponding gene of the gene Cis-
eQTL SNP pair. This generated three t-values t-01(between homozygote major and heterozygote), t-
02(between homozygote major and homozygote minor) and t-12(between heterozygote and 
homozygote minor). The sum of these three t-values is called the combined t-value. Gene Cis-eQTL SNP 
pairs were sorted in descending order by their combined t-values and the top 50 were selected. For 
these 50 pairs the p-value was calculated for the linear regression model:  

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  𝑏0 +  𝑏1 ∗ 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑇𝐹 𝑔𝑒𝑛𝑒 
The 50 pairs were sorted in ascending order by that p-value and the top 10 of those were selected. For 
these top 10, the two step prediction models were generated using predicted values of the TF gene, 
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these models were saved. In addition, interaction, predicted vs measured and comparison plots were 
generated.  

Method 2: For all gene Cis-eQTL SNP pairs, two step prediction models were generated and the pairs 
were sorted by the interaction p-values of that model in ascending order and the top 10 models were 
selected. For these top 10, the two step prediction models were generated using predicted values of the 
TF gene, these models were saved. In addition; interaction, predicted vs measured and comparison plots 
were generated.  

 
Figure 4: overview of the workflow of method 2 for identification of potential interactions between a TF gene and an interacting gene. 
Workflow is shown for the run process for a single chromosome, The algorithm performs runs for chromosome 1 to 22.  

The workflow of the process as a whole works as following (script used: system_analysisA.py for method 
1 or system_anaslysisB.py for method 2): 

1. The file settings.txt is read, this file contains the settings used to run the script. The file 
settings.txt contains the following parameters (full path required):  
expression_file (the file containing the gene_expression, generated earlier under name 
gene_expression.pkl) 
mappings_file (the pickle file of the annotation file, generated earlier under name 
gene_mappings.pkl) 
independent_snps_file (the file containing the Cis-eQTL SNPs determined to be independent, 
generated earlier under name ind_snp.pkl) 
vcf_directory (the directory with subdirectories containing the .vcf files with the genotype 
information about the SNPs on that chromosome) 
SNP_selection_directory (the directory containing Cis-eQTLs*.pkl which contains all potential 
Gene Cis-eQTL SNP pairs on chromosome * to be tested for) 
gene_to_test (the ENSG code of the gene of interest) 
gene_overlap_range (the number of bp beyond the start and stop positions of the gene of 
interest which is the range wherein SNPs are considered to overlap with the gene of interest) 
display_counting (if set to true the iterations of loop will be printed to the screen, which enables 
it to be check if the run has frozen) 
check_data_dir (name of directory to check for files with CHiP-seq data, example folder is 
included) 
check_plim (maximum interaction p-values allowed before an interaction model is no longer 
considered to have predicted an interaction) 
check_xrange (The range surrounding a SNP in bp which needs to be checked if CHiP-seq peaks 
are present in that area) 
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chi2_bar (the alpha value for the chi^2 contingency test). 
The expression file and gene mappings file are immediately read as is the file called 
ENSG_dict.txt which contains the name of a gene per ENSG code.  

2. The chromosome and start and stop positions of the gene of interest as well are determined 
using the annotation file, and are used to determine which SNPs overlap with the gene of 
interest and these SNPs are stored within a list. With the default settings, all SNPs within 1 Mb 
of the start and stop positions of the gene of interest are considered to be overlapping. 

3. It is then checked if a file containing the genotype information of the SNPs determined to be 
independent Cis-eQTLs for the gene of interest exists. If this file does not exist it will use the 
ind_snps.pkl file and the .vcf file of the chromosome on which the gene of interest is located to 
generate this file.  

4. The genotype data of the independent SNPs of the gene of interest is used to generate a 
multivariate linear regression model with the genotypes of the SNPs as the x-values and the 
expression of the gene of interest as the y-values. The model is saved as both model*.txt and 
model*.pkl where * is the ENSG code of the gene. In addition, a predicted vs measured plot is 
generated for the model. 

5. A loop is performed for chromosomes 1 to 22.  
a. A directory is made for that chromosome if it does not already exist. 
b. From the SNP selection directory, the file Cis-eQTLs*.pkl is loaded where * is the 

number of the chromosome.  
c. Then it is checked if the files snp_cat_chr*.pkl (containing genotype information for 

SNPs on chromosome *) and alleles_chr*.pkl (containing the names of the alleles for the 
SNPs on chromosome *) exist. If they do not exist then the .vcf file of chromosome * will 
be used to generate the files for the SNPs stored in Cis-eQTLs*.pkl. if the files do exist 
make sure they have information for all the SNPs mentioned in Cis-eQTLs*.pkl or the 
program will crash further down the line. 

d. If the chromosome is the same as the one containing the gene of interest any SNPs 
which are considered to overlap with the gene of interest are dropped.  

e. For all remaining Gene Cis-eQTL SNP pairs either method 1 or 2 is performed to see if 
the gene of interest interacts with them. The model with the smallest interaction p-
value is copied to the main directory of the chromosome as chr*_itop_model{ENSG 
code of interacting gene}.txt where * is the number of the chromosome. 

6. The top models for all chromosome are evaluated and the one with the smallest interaction p-
value is copied to the main directory of the gene of interest. 

7. A summary file and an extended summary file are generated containing information about all 
the models that were saved.  

a. The summary files contain in the columns from left to right: rank/nr, name of gene of 
interest, chromosome of Gene Cis-eQTL SNP pair, ENSG of gene of Gene Cis-eQTL SNP 
pair, name of gene of Gene Cis-eQTL SNP pair, SNP of Gene Cis-eQTL SNP pair, 
interaction p-value.  

b. The extended summary files contain in the columns from left to right: rank/nr, ENSG of 
gene of interest, name of gene of interest, chromosome of gene of interest, 
chromosome of Gene Cis-eQTL SNP pair, ENSG of gene of Gene Cis-eQTL SNP pair, name 
of gene of Gene Cis-eQTL SNP pair, SNP of Gene Cis-eQTL SNP pair, intercept p-values, 
SNP p-values , gene p-values, interaction p-values. 

This can be done for multiple genes simultaneously by using the several scripts: 



13 
 

1. prep_runs.py which reads a file containing information of several genes, the columns in this file 
from left to right should be: rank/nr of how well they are predicted by Cis-eQTLs alone, ENSG 
code of gene, name of gene. This information is used to make a copy of the template folder for 
each of the genes. The template folder should contain the script used for the analysis (either 
system_analysisA.py or B.py), systems_analysisB.sh which is used to load the run as a SLURM 
job to the queue, ENSG_dict.txt and settings.txt. settings.txt has gene_to_test altered to the 
ENSG of the gene of interest of that folder. It is advisory but not required to add one folder for 
each chromosome to the template folder which contains the snp_cat_chr*.pkl (containing 
genotype information for SNPs on chromosome *) and alleles_chr*.pkl (containing the names of 
the alleles for the SNPs on chromosome *) files, by doing this it improves the running time by at 
least 2 hours because step 5C is skipped. In addition, a file called run_all.sh is created in the 
directory that contains the prep_runs script, this script will load the runs of all the genes to the 
SLURM queue.  

2. make_overview.py which make a directory called overview and generates several files in that 
directory: overview and extended overview, summary and extended summary, overlap 
information and the top model of each gene saved as {gene name}_chr*_itop_model{ENSG code 
of interacting gene}.txt where * is the number of the chromosome of the interacting gene. The 
overview and overview extended files only contain information about the best interaction for 
each gene of interest, while the summary and summary extended files contain information 
about the top 10 interactions of each gene of interest. The overlap information file contains 
information about whether or not there is overlap between the SNP and the gene of interest.  

a. The overview file contains in the columns from left to right: name of gene of interest, 
name of gene of Gene Cis-eQTL SNP pair, SNP of Gene Cis-eQTL SNP pair, interaction p-
value.  

b. The summary file contains in the columns from left to right: rank/nr, name of gene of 
interest, chromosome of Gene Cis-eQTL SNP pair, ENSG of gene of Gene Cis-eQTL SNP 
pair, name of gene of Gene Cis-eQTL SNP pair, SNP of Gene Cis-eQTL SNP pair, 
interaction p-value. 

c. Both the extended overview and the extended summary file contain in the columns 
from left to right: rank/nr, ENSG of gene of interest, name of gene of interest, 
chromosome of gene of interest, chromosome of Gene Cis-eQTL SNP pair, ENSG of gene 
of Gene Cis-eQTL SNP pair, name of gene of Gene Cis-eQTL SNP pair, SNP of Gene Cis-
eQTL SNP pair, intercept p-values, SNP p-values , gene p-values, interaction p-values 

d. The overlap information file contains in the columns from left to right: rank/nr, ENSG of 
gene of interest, name of gene of interest, chromosome of gene of interest, start and 
stop position of gene of interest, chromosome of Gene Cis-eQTL SNP pair, ENSG of gene 
of Gene Cis-eQTL SNP pair, name of gene of Gene Cis-eQTL SNP pair, SNP of Gene Cis-
eQTL SNP pair, start and stop position of SNP, does overlap exist under run settings 
criteria. 

3. find_snps_locs.py which determines the coordinates of the SNPs of the top interactions of each 
gene and stores it as both snp_locs.txt and .bed. If the overview directory exists, the files will be 
stored there, if not they will be stored in same directory as the script itself. snp_locs.txt contains 
in the columns from left to right: name of gene of interest, SNP of Gene Cis-eQTL SNP pair, 
location of SNP on chromosomes, coordinates of SNP in chr*:start_pos-end_pos format. 

Check of identified interactions 
To check whether or not the identified potential interactions exist in vivo, the IDR thresholded peaks 
and conservative IDR thresholded peaks data from as many as possible CHiP-seq experiments of the 
gene of interest were collected from the ENCODE database17. This data was stored .bed31 or .bigbed31 
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files, the files were stored in a folder called ENCODE_IDR. The structure of the ENCODE_IDR folder was 
as following: (gene of interest)<(experiment)<(replicate of experiment) (Also see figure S3). The folder 
can be changed from ENCODE_IDR to any other in the settings file, as long as folder structure and file 
types are ok.  

The script ENCODE_check.py reads all the .bed and .bigbed files and collect the data about the peaks 
within. The .bigbed files were read using a module called pyBigWig32. All peaks within 100 kb (range can 
be adjusted) of the SNP of the identified potential interactions were selected and put into a Pandas 
DataFrame27. This DataFrame was used to generate a peaks graph. In case of the .bed files the files were 
load directly into a DataFrame and afterwards selected all the peaks within 100 kb of the of the SNP of 
the identified potential interactions, which were then used to generate the peaks graphs. If there were 
no peaks within 100 kb of the SNP then no graph would be generated. The graphs were saved in the 
main folder of the corresponding gene of interest within the ENCODE_IDR folder. snp_locs.txt and 
snp_locs.bed were used to determine the coordinates of a SNP, the .bed file has columns for 
chromosome, start position and stop position. It is important that these coordinates are of the same 
build as the experiments on the ENCODE database17. If the builds are different, the data was converted 
with the online Assembly converter 
(https://www.ensembl.org/Homo_sapiens/Tools/AssemblyConverter). The annotation files in this 
experiment made use of build GRCh37, while the experiments on the ENCODE database were of build 
GRCh38. Conversions were performed on Friday 23-03-2021. 

To perform a more statistical check of the results produced by system_anaslysisB.py find_all_locs.py and 
ENCODE_chi2_test.py were used in sequence. 
find_all_locs.py first checks if the directory CHiP-seq_comparison exist and if does not this directory will 
be created. Following that for all genes the all_models.pkl file is copied to the CHiP-seq_comparison 
directory as {TF gene}_all_models.pkl. Finally, if all_snp_locs.pkl does not exists it will be generated by 
collecting the locations info about all SNPs in the SNP_selection_directory in a similar manner as 
find_snp_locs.py and stores it in all_snp_locs.txt and .pkl. in addition, a .bed file for the same SNPs will 
be generated called all_snp_locs.bed.  
ENCODE_chi2_test.py performs a χ2 contingency test for the all the genes for which a {TF 
gene}_all_models.pkl exists in the CHiP-seq_comparison directory. First it is checked if all_snp_locs.pkl 
or all_snp_locs.txt exist in the CHiP-seq_comparison directory, it is also checked if all_snp_locs_new.bed 
or all_snp_locs.bed exist in the CHiP-seq_comparison directory. If none of these files exist, the 
calculations cannot occur. A file called defective_incomplete_missing.txt is created and opened, any 
errors concerning files, SNPs etc. will be written in this file. Afterwards the {TF gene}_all_models.pkl files 
are opened in sequence, and all models with an interaction p-value smaller than 10**-6 will be 
considered as having a predicted interaction. For all files in ENCODE_IDR  the TF gene will be checked for 
all SNPs to see if there are any peaks within 10 kb of the SNP. A contingency matrix (Figure 2) is made 
and a chi2 contingency test is performed on that matrix. The information of each file/replicate is 
collected and gathered and put into a table in a file called {TF gene}_chi2-test for each gene. The 
threshold p-value for the test, the threshold for the interaction p-values and the range to check for a 
binding peak can be adjusted in the settings file.  
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Figure 5: Workflow of the χ2 contingency test. On the right-hand end of the figure is an example of the contingency matrix used for the χ2 
contingency test; numbers may vary from replicate to replicate. The index of the matrix indicates whether or not the SNP has a CHiP-seq 
binding peak with 10 kb range, the columns indicated whether or not the SNP was part of an interaction models which was considered to be 
part of a predicted interaction.  

Results 
All algorithms developed in this project were fully based on Python programming language29.  
Initially algorithms for identifying Cis-eQTLs were developed in order to gain a better understanding of 
the concepts. The identified Cis-eQTL SNPs would be used to predict the expression of the TF genes to 
validate the results. Cis-eQTL SNP identification would also be performed using the eQTLgen pipeline. 
Following that the interaction identification algorithm was developed, which predicts the expression of 
TF genes based on their Cis-eQTL SNPs. The algorithm then models the modulation of the interaction 
between the TF and a Cis-eQTL SNP of an interacting gene. The models are evaluated and used to 
determine if the interaction is likely to occur in vivo. CHiP-seq data is used to confirm whether or not 
these interactions actually do occur in vivo.  

Predictions of gene expression using identified Cis-eQTL SNPs have low accuracy 
The methods for identifying Cis-eQTLs are based on using the residuals of the previously identified Cis-
eQTLs to identify new Cis-eQTLs. An effect on gene expression can be falsely attributed to a SNP as a 
result of a strong LD between that SNP and a Cis-eQTL SNP with an actual effect. By identifying the eQTL 
with which the false effect SNPs are in LD, the false effects can be removed by calculating the residuals 
between the identified Cis-eQTL and the expression. This is because the SNPs in LD with the Cis-eQTL 
would have virtually identical effects on expression and the residuals miss the effect of the identified 
Cis-eQTLs. Therefore the effects of SNPs in LD with the Cis-eQTL would be absent in the residuals as 
well. Algorithms based on this approach are covered here.  
The identified Cis-eQTL SNPs would be used to predict the expression of the TF genes to validate the 
results. The concept being; the more accurate the prediction the higher the probability the right Cis-
eQTL SNPs were identified. 

First series of single linear regressions were performed (figure 6B, figure S4) using for each of the BIOS 
samples the gene expression of either STX3 or SREBF2 and the genotype data. The Cis-eQTL SNP and 
model with the lowest p-value is saved and added to a list. Once no more SNPs have p-values lower than 
the threshold, all saved models are used together to calculate the expression of the TF gene. Runs were 
performed with the p-value set at 0.001 and 0.05. The interaction plots show that with the p-value 
threshold set to 0.05 STX3 has resemblance to the reproduction figure counterpart (figure 6A), but this 
is not the case for SREBF2. With the p-value threshold set to 0.001, the resemblance with the 
reproduction figures decreases for STX3 but this remains mostly the same for SREBF2. In addition, the 
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number of Cis-eQTL SNPs identified decreases from 9 to 4 for STX3; and from 4 to 3 for SREBF2. For both 
the genes, the p-values were rather high (0.1-0.8) and at both threshold values. This indicates  that any 
correlation between the TF gene and the interacting gene has a high probability to be the result of 
random noise. In addition, the predictions for both STX3 and SREBF2 covered a much smaller range of 
values than the measurements for both p-value thresholds. 
The predicted vs measured plots (figure S5) generally show poor correlation between the prediction and 
the measurements at both p-value thresholds, with the prediction covering a much smaller range of 
values than the measurements. The Pearson r-values of the correlations are typically ~0.1, which is not 
considered a strong correlation33,34. This further confirms the poor quality of the predictions.  

 
Figure 6: Interaction plots of the results of the Cis-eQTL identification algorithms. The figures on the left show the modulation of the interaction 
of STX3 with NOD2 by rs1981760 (same as figure 2B of Zhernakova et al.20179), the one on the right shows the modulation of the interaction of 
NOD2 with FADS2 by rs968567 (same as figure 4B of Zhernakova et al.20179). The expression of the TF gene (either STX3 or SREBF2) is on the x-
axis while that of the interacting gene (either NOD2 or FADS2) is on the y-axis, red dot indicates the sample is homozygous for the major allele, 
blue indicates heterozygosity, and green indicates the sample is homozygous for the minor allele. In the legend of each plot are the names of 
the genotypes along with the p-values35 (the probability that the association between x and y is due to chance) of the regression line for the 
genotype set of samples. A, interaction plots functioning as reproductions of figures 2B and 4B of Zhernakova et al.20179 using data from all six 
BIOS cohorts. B,  interaction plots of the predictions of STX3 and SREBF2 made using the cis-eQTLs identified using the series of single linear 
regressions. C, interaction plots of the predictions of STX3 and SREBF2 made by the multivariate linear regression models which use the SNPs 
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identified by the pipeline of the eQTLgen consortium. D, interaction plots of the predictions of STX3 and SREBF2 made by the multivariate linear 
regression models made by the multivariate Cis-eQTL identification algorithm. 

To get Cis-eQTL SNPs which give a more accurate prediction, the pipeline of the eQTLgen consortium 
was used. The pipeline was used for a conditional Cis-eQTL analysis in the iterative form to identify 
SNPs. The genotype data of the BIOS samples for the identified SNPs was used in combination with gene 
expression data to initialize one multivariate linear regression model for each TF gene. The interaction 
plots (figure 6C, figure S6) of these models showed poorer resemblance with the reproduction figures 
than either of the figures for the series of linear regressions. The p-values are in the same order of 
magnitude as the series of linear regressions while the correlations between measured and predicted 
become lower. Thus, the performance of the eQTLgen pipeline was not an improvement over the series 
of linear regressions algorithm.  

Inspired by the eQTLgen pipeline a Multivariate linear regression method was created which does not 
generate a set of single linear regression models, instead using all identified SNPs to generate a single 
linear regression model. This method was performed for both STX3 and SREBF2 using two different 
thresholds for p-values (0.05 and 0.001). With the p-value threshold set 0.001 the interaction plot of 
STX3 closely resembles the one generated by the series of single linear regressions, only the range 
covered by the predictions is about twice as broad. The same holds true for SREBF2; the major 
difference being that the range of the predictions is narrower instead of broader. The multivariate linear 
regression model of STX3 uses the same SNPs which were identified by the series of linear regressions. 
The model SREBF2 uses 3 SNPs in total, these three are also part of the 4 SNPs identified by the series of 
linear regressions (Supplementary data 1).  
With the p-value threshold set 0.05 the interaction plot (figure 6D, figure S4) of STX3 resembles the 
pattern of the reproduction figures rather closely, but the predictions cover a much narrower range, 
although this range is still the broadest range seen for predictions thus far. In case of SREBF2 the pattern 
does not change much in interaction to the series of linear regressions the range of the predictions also 
remains the same. The multivariate linear regression model of STX3 uses the same SNPs which were 
identified by the series of linear regressions and three SNPs identified by the new algorithm. The model 
of SREBF2 uses two of the SNPs identified the series of linear regressions and one SNP which is new 
(Supplementary data 1). For both p-value thresholds the p-values remain in the same range and slightly 
increase for the SREBF2 gene.  
The predicted vs measured plots (figure S5) mostly do not show improvement over those from the 
series of single linear regressions. The Pearson r-values all decrease by an order of 10-100, the only 
exception being SREFB2 at 0.001 threshold value which remains around ~0.1.   

Interactions between genes identified using Cis-eQTL SNPs have a low probability of occurring in vivo 
Algorithms for the identification of interactions of the same type as described Zhernakova et al. 20179 
were developed. Since the identification process of Cis-eQTLs did not work properly, Cis-eQTL SNPs 
determined to be independent in a previous study9,14, were used as the Cis-eQTLs for the models of TF 
genes. The SNPs to be tested as potential modulators of interactions were retrieved from 
https://eqtlgen.org/Cis-eQTLs.html. NF-κB was chosen as the initial TF gene as it is a Transcription Factor 
with over a 100 known targets36. The initial run with NF-κB were performed using method 1 for 
interaction identification. The lowest interaction p-value this yielded was 0.00069 (figure 7A, figure S7) 
which is higher than the p-value threshold of 5*10-8 for GWAS studies37. Thus, with no significant 
interaction p-values found using this method, method 2 was developed which only selects for 
interaction p-values. Interaction analysis for NF-κB was run using method 2 for interaction identification. 
All identified potential interactions were different from the run with the method 1. The lowest 
interaction p-value was 6.23 * 10-7 (figure 7B, figure S8) which comes closer to the p-value threshold of 
5*10-8 but is still higher than the threshold. 
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Figure 7: The top interactions with NF-κB (ENSG00000109320) identified for each chromosome. Columns are as following: Rank indicates the 
how highly the interaction was ranked out of the 22 based on the interaction p-value; interacting chrom indicates the chromosome on which 
the interacting gene is located; interacting ENSG gives the ENSG/Ensembl database code of the interacting gene; interacting gene gives the 
name of the interacting gene; interacting SNP gives the code of the Cis-eQTL SNP which modulates the interaction; and the interaction p-value 
column contains the interaction p-value. A, the top interactions for the chromosomes identified using method 1. B, the top interactions for the 
chromosomes identified using method 2. 

While methods 1 and 2 did not generate any significant interaction p-values for NF-κB, this could be the 
result of a statistical anomaly. In order to check whether this was truly the case, runs were performed 
for other genes. First this was attempted for STX3 and SREBF2 as these have the type of interaction the 
algorithm is supposed to identify. Instead of searching for potential interactions the interactions 
identified by Zhernakova et al. 20179 were put into interaction models. For the model to predict the 
expression of STX3 and SREBF2 were initialized twice once using the SNPs identified by the eQTLgen 
pipeline and once using the SNPs in toRegressOut.log.gz. These models were then used to initialize the 
interaction models which were then used to predict the expression of NOD2 and FADS2. The 
Comparison plots of both versions (figure 8) again show a smaller range of values for the predictions in 
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comparison to the measurements. The predicted vs measured plots (figure S9, S10) show the same 
small range for the TF genes (STX2 or SREBF2) but not for the interacting genes (NOD2 or FADS2). The 
interacting genes show a range of values for the predictions which rather closely resembles that of the 
measurements. The key difference being that the predicted roughly cluster in three areas while the 
measured values are more continuously distributed. This further supported by the Pearson r-values 
between the measurements and predictions, as those of the TF genes are typically in the order of ~0.06-
0.1 while those of the interacting genes are in the order of ~0.8-0.9. In general, the models made using 
the SNPs from toRegressOut.log.gz had higher r-values and are thus more accurate. None of the 
interaction models generated had interaction p-values below the threshold of 5*10-8, thus it did not 
work as intended.  

 
Figure 8: The comparison plots of the predictions of the interaction models for NOD2 and FADS2. On the x-axis is the expression of STX3 or 
SREBF2, on the y-axis is the expression of NOD2 or FADS2. Green dots indicate measured values of expression while red dots indicated 
predicted values of expression, the regression lines are drawn using the dots of the same colors and the p-values are of those regression lines. 
In the legend are p-values of the regression lines for both the measured and predicted values as well the Pearson-r value33 between the 
predicted and measured values of the samples34. A, Results when the models of STX3 and SREBF2 use SNPs identified using the eQTLgen 
pipeline. B, Results when the models of STX3 and SREBF2 use the SNPs in the toRegressOut.log.gz. 
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Figure 9: The tables giving the two sets of ten TF genes for which the interaction identification algorithms were run on large scale. Rows are as 
following: Rank best predicted indicates how high the genes were ranked based on the Pearson rank correlation between the measurements 
and the predictions by a multivariate linear regression model using the SNPs in toRegressOut.log.gz, name gives the name of the gene and 
ENSG gives the ENSG/Ensembl database code for that gene. A, the first set of 10 genes for which the interaction algorithm was run. B, the 
second set of 10 genes for which the interaction algorithm was run, this set was created by cross-referencing the list of genes considered to be 
best capable of being predicted using cis-eQTLs alone, with the list of all genes for which CHiP-seq experiment were present in the ENCODE 
Database.  

Following that it was decided to find the genes which are best capable of being predicted using only 
their Cis-eQTLs. This was done because such genes are less likely to have their expression strongly 
influenced by Transcription factors thus making enabling better predictions when using these genes as 
TF genes. multivariate linear regression models were generated for all genes in toRegressOut.log.gz 
using the SNPs in that file. The genes were ranked by their Pearson r-values of the correlation between 
measured and predicted values. For the top 10 genes (figure 9A) identification of potential interactions 
using method 2 was performed. The interaction p-values of the top interactions (figure 10A) are 
generally lower than was the case with NF-κB. All of the p-values of the top interaction are below 10-5 
and four of the top interactions (FAM118A, CUTALP, PEX6, CHURC1) have interaction p-values lower 
than the threshold of 5*10-8.  These top interactions could not be validated using experimental data as 
the ENCODE database17 had no CHiP-seq experiment with any of these genes as the target. 
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Figure 10: Two lists containing the top interactions identified for both sets of 10 TF genes, The columns are as following: Rank is the rank of the 
TF gene based on the Pearson rank correlation between the measurements and the predictions by a multivariate linear regression model using 
the SNPs in toRegressOut.log.gz; ENSG is the ENSG/Ensembl database code of the TF gene; name is the name of the TF gene; chrom of gene is 
the chromosome on which the TF gene is located; interacting chrom is the chromosome on which the interacting gene is located; interacting 
ENSG is the ENSG/Ensembl database code of the interacting gene; interacting gene gives the name of the interacting gene; interacting snp gives 
the code of the cis-eQTL SNP modulating the interaction; interaction p-value gives the interaction p-value. A, the best interactions identified for 
the first set of 10 TF gene. B, the best interactions identified for the first set of 10 TF gene. 

In order to find genes which could be validated using experimental data, a list of all the genes for which 
the ENCODE database17 did have CHiP-seq experiment data was made. This list was cross-referenced 
with the list of best predictable genes to create a list of the genes which are best capable of being 
predicted by their Cis-eQTLs and have CHiP-seq data available in the ENCODE database. For the top 10 
genes (figure 9B) of this list identification of potential interactions using method 2 was performed. The 
interaction p-values of the top interactions (figure 10B) were in the same order of size as with the first 
set of 10 genes, and in a several case the p-values were even lower. Four of the top interactions (NFXL1, 
ATOH8, ZNF589, MYBL2) had interaction p-values lower than the threshold, just as with the first set of 
genes. To validate the top interactions peak plots were generated (figure 11, Supplementary data 5) 
using the IDR thresholded peaks and conservative IDR thresholded peaks, only the area within 100 kb of 
the SNP of the potential interaction was checked. The best peak plot generated belonged to NFXL1 
which had the peak closest to the location of the SNP of the interaction. In all other cases, the peak(s) 
were further away from the SNPs. For three of the ten genes (ATOH8, ZNF266, ZNF589) there were no 
peaks found near the SNP in any file and thus no graphs were generated for those genes. 
A test was performed to see if method 2 interaction identification increases the probability of finding 
interactions occurring in vivo. All interaction models generated for the 10 genes during interaction 
identification runs were used in combination with the IDR data from the ENCODE database to generate 
contingency matrices. These matrices were then each subjected to a χ2-contingency test. For only five of 
the ten genes (ATOH8, MYBL2, NFXL1, ZNF132, ZNF589) were any interactions considered to have been 
predicted when setting the interaction p-value threshold to 10-6. The best test outcome was for ATOH8 
(figure 12); for two replicates of an experiment was there a significant difference between SNPs for 
which an interaction was predicted and SNPs for which no interaction was predicted. There were genes 
(figure S12-S15) where a significant difference was found more often or with a greater significance than 
for ATOH8, but in all those cases the experiment from which the data originated had replicates missing 
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TF binding information about one or more chromosomes, which makes the outcome less reliable. In all 
cases where a significant difference was found, all predicted interactions had no peaks near them 
according to CHiP-seq data. This means that if these χ2-contingency tests are correct that the 
interactions identified have a lower probability to have that interaction occur in vivo as well.  

 
Figure 11: The peak graphs generated using the IDR Thresholded peaks and Conservative IDR Thresholded peaks data of CHiP-seq experiment 
on the ENCODE database. The peak graphs are bar plots with a blue line in the middle indicating the location of the Cis-eQTL SNP modulating 
the top potential interaction of a TF gene. The red bars/peaks indicate that the TF binds at that location according to CHiP-seq data. A range of 
200 kb is displayed, 100 kb on each end of the SNP. On the y-axis is the value of the TF binding. The SREBF2 graph visualizes the interaction of 
SREBF2 with FADS2 and it modulation by rs968567, it was included as a positive control as it was already determined that this interaction 
occurs in vivo9. NFXL1 graph visualizes TF binding of NFXL1 very close to a SNP, data is from experiment ENCSR746XEG replicate ENCFF513WDR 
which is IDR thresholded peak data. MYBL2 graph visualizes the TF binding of MYBL2 which is more distant from the SNP, data is from 
experiment ENCSR581KCO replicate ENCFF848JYU which is IDR thresholded peak data. More Peak graphs are in Supplementary data 5.  
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Figure 12: The results of the χ2 contingency tests for ATOH8 from the output of interaction identification with initialization using predicted 
values. The index is composed as {experiment}_{replicate}, the columns are as following: filetype indicates in what type of file the data was 
stored, a .Bed or .bigBed file; interaction peak indicates the number of interaction models for which an interaction was predicted and had a 
CHiP-seq binding peak near them; interaction no peak indicates the number of interaction models for which an interaction was predicted but 
had no CHiP-seq binding peak near them; no interaction peak indicates the number interaction model for which no interactions were predicted 
but had a CHiP-seq binding peak near them; no interaction no peak indicates the number interaction model for which no interactions were 
predicted and had no CHiP-seq binding peak near them; chi^2-statistic gives the χ2-statistic of the test; p-value gives the p-value of the test; 
significant with a probability of 95.0% indicates whether or not there is a significant difference between the models of with predicted 
interactions and those without, in regard to how often they have a CHiP-seq binding peak near their modulating SNP. A, the results for the data 
of the IDR thresholded Peaks. B, the results for the data of the Conservative IDR thresholded peaks.  

These issues may have been caused by the fact that the interaction models were initialized using the 
predicted expression for the TF genes instead of the measured expression. To see if this is indeed the 
case the interaction models for STX3-NOD2 and SREBF2-FADS2 and the runs for both sets of 10 genes 
were performed again, this time initializing the interaction models using the measured values of the TF 
genes. For the interaction models for STX3-NOD2 and SREBF2-FADS2, the comparison plots (figure 13), 
predicted vs measured plots (figure S10) and the Pearson r-values were not subject to any significant 
changes. The Interaction models however have some significant change most notably in all cases the 
interaction p-value is in the order of 10-13-10-12 which is below the threshold and thus the predictions are 
less likely to be accurate because of random noise.  
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Figure 13: The comparison plots visualizing the predictions of the interaction models for NOD2 and FADS2 initialized using the measured values 
of NOD2 and FADS2. On the x-axis is the expression of STX3 or SREBF2, on the y-axis is the expression of NOD2 or FADS2. Green dots indicate 
measured values of expression while red dots indicated predicted values of expression, the regression lines are drawn using the dots of the 
same colors and the p-values are of those regression lines. In the legend are p-values of the regression lines for both the measured and 
predicted values as well the Pearson-r value33 between the predicted and measured values of the samples34. A, Results when the models of 
STX3 and SREBF2 use SNPs identified using the eQTLgen pipeline. B, Results when the models of STX3 and SREBF2 use the SNPs in the 
toRegressOut.log.gz. 

For the first set of 10 genes, five of the top interactions (FAM118A, CUTALP, ERAP2, DDX11, CHURC1) 
are smaller than the threshold (figure S16). In addition, the top interacting gene has changed for ERAP2, 
PEX6, PSPHP1, ACCS, RPS26 and CHURC1.  
For the second set of 10 genes (figure S16), the number of top interactions above the threshold 
increased to six (NKX3-1, NFXL1, ATOH8, ZNF589, ZNF132, MYBL2), the interaction p-values in general 
also became lower. In addition, the top interacting gene has changed for ZNF266, NKX3-1, ZNF83, PAX8, 
NR2F6, ZNF132. The peak graphs for the top interactions only changed for NKX3-1, ZNF83, PAX8, NR2F6, 
ZNF132. No graphs were produced for NKX3-1, PAX8 and ZNF132. In case of NR2F6 the graphs have 
peaks which are closer to the SNP than was the case for the initialization using the predicted values 
(Supplementary data 5). ZNF83 has some graphs where the peaks are closer to the SNP, the other 
looked more or less the same.  
There were χ2-contingency tests performed for more of the genes when initialization was performed 
using the measured expression. Only for PAX8 and NR2F6 were no interactions considered to have been 
predicted when the interaction p-value threshold is set to 10-6. Here ZNF266 had the best test outcome 
(figure 14), with four replicates having a significant difference. Like before, there were genes (figure S17-
S23) where a significant difference was found more often or with a greater significance but in all those 
cases the experiment from which the data originated had replicates missing TF binding information 
about one or more chromosomes. In all cases where a significant difference was found, all predicted 
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interactions had no peaks near them according to CHiP-seq data. Thus, the interactions identified still 
have a lower probability to occur in vivo as well. 

 
Figure 14: The results of the χ2 contingency tests for ZNF266 from the output of interaction identification with initialization using measured 
values. The index is composed as {experiment}_{replicate}, the columns are as following: filetype indicates in what type of file the data was 
stored, a .Bed or .bigBed file; interaction peak indicates the number of interaction models for which an interaction was predicted and had a 
CHiP-seq binding peak near them; interaction no peak indicates the number of interaction models for which an interaction was predicted but 
had no CHiP-seq binding peak near them; no interaction peak indicates the number interaction model for which no interactions were predicted 
but had a CHiP-seq binding peak near them; no interaction no peak indicates the number interaction model for which no interactions were 
predicted and had no CHiP-seq binding peak near them; chi^2-statistic gives the χ2-statistic of the test; p-value gives the p-value of the test; 
significant with a probability of 95.0% indicates whether or not there is a significant difference between the models of with predicted 
interactions and those without, in regard to how often they have a CHiP-seq binding peak near their modulating SNP. A, the results for the data 
of the IDR thresholded Peaks. B, the results for the data of the Conservative IDR thresholded peaks. 

Conclusions and discussion 
The aim was to develop a method to identify interactions between genes in order to enable 
reconstructions of GRNs. This was done by modeling the interactions between two genes in the form of 
an equation. The assumption was that the likelihood of the interaction occurring in vivo would correlate 
with the p-value of the interaction component of the model.  
Methods to identify Cis-eQTLs were developed with the intent of making it easier to correct for LD 
between Cis-eQTLs. These methods are based on using the residuals of previously identified Cis-eQTLs 
to identify new Cis-eQTLs. This is similar to the approach utilized by the eQTLgen pipeline14,15. 

The predictions made using Cis-eQTL SNPs identified by the Cis-eQTL identification algorithm display a 
smaller range of values than the measurements (figures 6, S4, S5). The predictions show high p-values 
indicating a high probability of any association between the variable being due to chance(figures 6, S4, 
S5). The Pearson rank correlation between predictions and the measurements is low(figures 6, S4, S5), 
indicating a weak correlation between the predictions and the measurements and therefore a low 
accuracy for the predictions. Taken together these results are an indication that the Cis-eQTL 
identification algorithm does not  work as it is supposed to. Possible causes for this are given below 

filetype interaction peak interaction no peak no interaction peak
no interaction no 

peak
chi^2-statistic p-value

significant with a 
probability of 95.0%

bigBed 0 1 666 14922 5.113212002 0.023744322 True

bigBed 0 1 474 15114 7.480366157 0.006237539 True

bigBed 0 1 992 14596 3.195874236 0.073824289 False

Bed 0 1 462 15126 7.693734951 0.005541284 True

Bed 0 1 661 14927 5.15739156 0.023147637 True

Bed 0 1 970 14618 3.284582206 0.069933425 False

filetype interaction peak interaction no peak no interaction peak
no interaction no 

peak
chi^2-statistic p-value

significant with a 
probability of 95.0%

bigBed 0 1 960 14628 3.326254558 0.068181977 False

Bed 0 1 940 14648 3.412271579 0.064713307 False
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along with potential solutions. Because the Cis-eQTL identification algorithm does not work as intended, 
it is recommended to use other programs for any future Cis-eQTL identification attempts. It has to be 
noted however that the predictions made using eQTLgen pipeline identified Cis-eQTL SNPs (figure 6, S6) 
do not have a higher accuracy than the other predictions. Thus, using other eQTL mapping programs 
may not necessarily identify Cis-eQTL SNPs which yield more accurate predictions when used to initialize 
a model.  

The interaction identification algorithm did not work as intended considering that the χ2-contingency 
tests (figures 12, 14, S12-S15 and S17-S23) show a decreased probability of occurring in vivo for 
identified potential interactions. In addition, the SNPs of the top interactions never show any overlap 
with binding peaks of CHiP-seq experiments (figure 11, Supplementary data 5), and sometimes there are 
no binding peaks near the SNP.  
Initializing the interaction models using measured values of the TF gene, yields smaller p-values for the 
model (figures 10, S11 and S16), thus making it less likely that the predictions made by the model are 
the result of random noise. This did not increase the probability of identified potential interactions to 
occur in vivo. 

The cause as to why both algorithms did not work as intended is unknown. It may because cell types can 
differ strongly in expression of genes, even between different blood cell types38. Different cell type 
ratios may cause strong differences in gene expression between samples as the expression is given per 
sample. This can result in expression differences being attributed to an eQTL SNP while they actually 
result from differences in cell type ratios. The reverse also holds true; eQTL effects can be masked 
because the cell type ratios of several samples are almost the same. This can also lead to problems for 
the interaction models. Therefore, the cell type ratios of the different samples should be identified and 
corrected for.  
Another possibility is that there are strong epigenetic differences between the samples themselves39. 
These epigenetic differences may cause the chromatin to locally condense in some samples, leaving one 
SNP accessible in one sample but inaccessible in the other. This could result in certain eQTL SNPs being 
falsely dismissed as not significant because the SNP is simply inaccessible in most of the samples. This 
can occur in the interaction models, and some identified interactions might not have been replicated in 
vivo simple because of differences in accessibility of the interacting SNP. To prevent this from occurring, 
ATAC-seq40 should be performed to see which SNPs are accessible in a certain individual and which are 
not.  

Some additional explanations are possible for the unsuccessfulness of the interaction identification 
algorithm. It may be possible that the levels of RNA expression are difficult to translate into protein 
levels, because of post transcriptional modifications such as splicing41. As the proteins are the 
transcription factors, this means that high RNA expression may not be a good indicator for high amount 
of a corresponding protein. This may result in the false identification of interactions when e.g., the RNA 
expression of gene is high but the concentration of the corresponding protein is actually low. For the 
samples used in the project protein levels were unavailable. It may be interesting for a future research 
project to attempt the interaction identification algorithm using protein levels instead of RNA 
expression levels. Doing so, may result in the identification of potential interactions which do have a 
higher probability of occurring in vivo. This may even explain some of the inabilities of the Cis-eQTL 
identification algorithm as some Cis-eQTLs affect the splicing of genes42 instead of the expression.   
One other aspect which could explain the problems with interaction identification is time. The response 
of the interacting gene to the TF is unlikely to be instantaneous, as transcription and translation do take 
some time. Thus it is likely there is some time lag between the expression of the TF gene and the 
expression change of the interacting gene8,43. This would also mean that the response of an interacting 
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gene in not always immediately detectable and may be missed during measurements. Which may result 
in some interactions not being predicted. Time series data can be used to prevent this from occurring.  

All above explanations presume some fault in the acquiring or preprocessing of the data, but there may 
also be a fault in the interaction identification algorithm itself. As shown in figures 12, 14, S12-S15 and 
S17-S23 having a TF gene model that can accurately predict expression, is no indicator for a small 
interaction p-value. Thus, the method performed here to find genes best capable of being predicted by 
Cis-eQTLs alone may not be that accurate. Especially considering FADS2 is number 14 best predictable 
(Supplementary data 3), while it is known that FADS2 has a transcription factor in SREBF29. A useful 
avenue of research in the future is thus to develop a better algorithm for identifying genes whose 
prediction depends as little as possible on the expression of other genes. Preferably finding genes who 
are only subject to self-regulation44, such genes would be loose ends in a gene regulatory network and 
would be a good place to start the process of reconstructing these networks. If this cannot be done, it 
would instead be wise to begin with a gene which codes for a protein which does not have any gene 
targets and work backwards from there. Start by identifying the TF genes influencing that gene.  
Another possible cause may be that the algorithm itself is too simple. Interactions were modeled as a 
single Cis-eQTL SNP interacting with a single TF gene, while in reality multiple TF genes can interact with 
multiple SNPs. Thus, the model may simply be too simple to be accurate. In addition, only a single Cis-
eQTL SNP was considered per gene. This was done due to time constraints as running this for all Cis-
eQTL SNPs would take a very long time. Even so attempting this in the future may be wise as the 
potential interactions which could be found in vivo may simply have been missed because they were not 
considered.  

Of all these possible explanations as to why the algorithms did not work as intended, the mismatch 
between RNA expression and protein levels seems like the most likely explanation to this author’s 
opinion. It has to be noted however that none of the explanations are mutually exclusive however thus 
multiple explanations may be correct. A general advise for future research is: to initialize interaction 
models using the measured values of the TF genes; to attempt more advanced filtering methods than 
were attempted than used in this project; to correct for cell type, epigenetic and time differences 
between the samples and to use protein levels instead of only RNA expression level if possible. In 
addition it may also be wise to use other programs for network reconstruction (such as ANASE45) and 
then model the reconstructed network using a modified version of the interaction identification 
algorithm described here.  
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gene the Pearson rank correlation (r-value) and R2 value between the predictions and the 
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