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Abstract

In the context of training neural networks, backpropagation of error with gradient de-
scent is the most widely used method. With the backpropagation algorithm, the forward
weights are reused in the feedback pass through the network. This process is not bio-
logically plausible, as it requires neurons in hidden layers to know the synaptic weights
of neurons in different layers. Recently, a new method has been suggested which shows
that the feedback weights do not have to be identical and symmetrical to the forward
weights. The weights used in the backward pass can be replaced by random feedback
weights. The network will learn how to use these feedback weights effectively, essentially
learning how to learn. In this thesis, we use on-line learning in student-teacher scenarios
to compare the effectiveness of feedback alignment with the most commonly used back-
propagation. We simulate several realizable, overrealizable and unrealizable scenarios for
both shallow and deep networks. These networks use either the sigmoidal erf activation
function or ReLU activation in the hidden neurons. Experiments show that feedback
alignment can perform at least as efficiently and accurately as backpropagation in many
scenarios. In simulations of deep over-parameterized student networks with both erf and
ReLU activation, feedback alignment seems to have a systematic advantage in terms of
earlier escape from learning plateau states where loss slows down significantly.
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Common Abbreviations

• FA: Feedback Alignment

• BP: Backpropagation

• DFA: Direct Feedback Alignment

• ReLU : Rectified Linear Unit.

• erf: Gauss error function.

• SGD: Stochastic gradient descent

• 2-layer network: A feedforward neural network with one hidden layer.

• 3-layer network: A feedforward neural network with two hidden layers.

Common Notations

• g(·) : Non-linear activation/transfer function, input and output are scalar values

• g(·) : Non-linear activation/transfer function, input and output are vectors with
an equal number of components.

• N (0, 1) : Gaussian distribution with 0 mean and 1 variance.

• ξµ : Input example vector with i.i.d. components from N (0, 1) at discrete
timestep µ.

• N : Input dimension or system size.

• εg : Generalization error, the ability of the network to correctly classify novel data.

• N − y − z network : A feedforward neural network with input dimension N , a
hidden layer with y units and z output units

• N − x− y− z network : A feedforward neural network with input dimension N , a
hidden layer with x units, a second hidden layer with y units and z output units
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1 Introduction

A neural network is a connected set of units or nodes known as neurons, loosely related
to the neurons in a biological brain. Each connection can transmit a signal to another
neuron and has a synaptic weight related to it. Training such a network simply means
adapting the weights in a useful manner, such that when new data is presented, it is
accurately responded to. Most neural networks are aggregated into several layers con-
taining a number of hidden neurons. In the realm of supervised learning techniques,
backpropagation is the most successful and commonly used technique in training deep
neural networks. Its simplicity and overall performance makes it the obvious choice for
training deep neural networks. However, this method requires that neurons must know
the synaptic weights of other neurons, which is thought to be impossible in the brain [1,
2]. This makes backpropagation a biologically implausible method, as it requires neu-
rons to send each other precise information about the synaptic weights of other hidden
neurons.

A number of alternatives to backpropagation exist, including a variant of reinforcement
learning, known as node perturbation [3]. This method applies small perturbations to
the neuron activations in each layer. It then calculates potential weights by multiplying
the normal inputs by the perturbations. However, this method also requires information
that is not local to the neuron. There are alternatives inspired by biological processes,
Boltzmann machine learning [4] and Contrastive Hebbian Learning [5], for example.
More recently, another biologically plausible method known as difference target propa-
gation (DTP) was introduced in [6], based on an older idea from [7]. Here, each layer is
trained to reconstruct the layer below using backward inverse functions. These inverse
functions are constructed using an auto-encoder at each layer. This is different from
the widely used gradient descent, as activations, not gradients, are propagated back
through the network. In this paper, a linear correction is used for the imperfectness of
the auto-encoders, leading to results that are comparable to backpropagation.

The authors of [8] introduce a new learning strategy for neural networks, called feedback
alignment (FA). In this paper, they observe that the weights used to back-propagate the
gradient need not be identical and symmetrical to the forward weights. Fixed ran-
dom feedback weights can be used instead, the network learns how to use these random
weights to achieve convergence. Essentially, the network learns how to learn, which is an
interesting albeit mystifying result. In order to use the feedback weights effectively, the
forward weights start resembling the feedback weights, which allows for weight updates
that resemble backpropagation. In other words, the forward weights align with the feed-
back weights, hence the term feedback alignment. This simpler method then uses mostly
local information, as the weights of one layer do not need to know the weights of another
layer. This training process more closely resembles the workings in a mammalian brain,
making the method more biologically plausible compared to backpropagation.

In the original paper by Lillicrap et al. [8], several different learning scenarios are shown
in which FA can match the performance of BP. A number of experiments are performed
on artificially created data and on realistic datasets, including training a neural network
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to recognize handwritten digits using the MNIST dataset. Each of these experiments
showed promising results. In [9], a different method is introduced, which propagates the
error directly to the hidden layers, using random feedback connections. This method
then uses almost entirely local information as it does not not require the error to travel
backwards through reciprocal connections. This even simpler algorithm is able to reduce
training error to zero in deep convolutional neural networks. The experiments in these
two papers are all performed using either batch or mini-batch learning, also known as
off-line learning. In this thesis, we focus on on-line learning scenarios, where the weights
of a network are updated on each presentation of a single example. Moreover, every
presentation of an example is new, never before seen by the network. This is different
from off-line learning, where examples from a fixed training set are re-used.

We study a number of different student-teacher scenarios, where a neural network learns
an unknown rule through stochastic gradient descent. Several Monte Carlo simulations
are performed and stochastic on-line gradient descent is used to train these student net-
works, i.e. for the purpose of learning a regression scheme. This allows us to gain a
better understanding of the dynamics of feedback alignment and it can provide a use-
ful comparison with the performance of the more commonly used backpropagation. A
framework such as this one borrows techniques from statistical physics that aggregate
large physical systems in order to describe machine learning models that usually involve
many adaptable weights. Instead of looking at each weights individually, we can aggre-
gate these into so-called order parameters. This gives a more concise overview of the
learning process, which makes large systems more interpretable. Additionally, a gen-
eralization error can be calculated either empirically or analytically, to determine the
success of our training method.

As the weight parameters are iteratively updated in the learning process of a neural
network, the loss decreases. However, in some settings, the loss might slow down signif-
icantly for a period of time, before rapidly increasing again. This plateau phenomenon
can be seen in shallow and deep networks using backpropagation. The statistical me-
chanics of these phenomena have been studied in several situations [10, 11] and many
methods have been proposed [12, 13] to break these plateaus at an earlier stage in the
learning process. Using particular initializations of the order parameters in our student-
teacher scenarios, we can ”force” the training process to include long plateau states. By
doing this, the effect of using FA on the length of plateau states can be researched.

The following section describes and explains the methods used. In section 3 and 4,
the experiments are divided into two parts. Firstly, a number of results for different
scenarios using shallow networks are shown for feedback alignment. Secondly, we take
a look at deeper structures with 2 hidden layers for similar scenarios. At the conclusion
of both experimental result sections, these results are discussed in more detail. Section
5 concludes the thesis, answering the following research questions:

• Firstly, we want to investigate the performance of feedback alignment in both
shallow and deep networks to see if it is comparable to the performance of back-
propagation. Moreover, if the performance changes depending on the differently
learnable scenarios.
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• Secondly, we would like to research the effect, if any, of feedback alignment on
the length and frequency of unspecialized plateaus states. Furthermore, what
happens to the alignment between the forward and the feedback weights in these
fixed points.

• Thirdly, it would be interesting to know if feedback alignment requires the usage
of a network with sigmoidal activation in the hidden units or if we can change it
to an activation function of a different form like the ReLU function. The main dif-
ferences lying in the simplicity and non-symmetry of ReLU compared to sigmoidal
functions.

2 Methods

This section describes and explains the methods behind the experiments. On-line learn-
ing is generally executed using gradient descent with backpropagation. If we use feedback
alignment, an adaptation has to be made in the backpropagation algorithm, replacing
the forward weights by random feedback weights in the gradient calculations.

2.1 On-Line Learning of a Rule

In on-line learning using stochastic gradient descent(SGD), the gradient is calculated
and weights are updated based on a single presentation of an example. This is different
from off-line learning techniques like batch or mini-batch learning where a gradient is
computed as an average over an entire dataset or a part of the dataset, respectively.
In off-line learning, a fixed-size dataset, known as the training set is used to train the
network. Another set, the test set, is used to calculate the accuracy of the network in
correctly classifying novel data. In on-line learning, new examples ξ are presented in a
stream, where each presentation leads to an adaptation of the student weights. In prin-
ciple, one could still distinguish between the performance on previously seen examples
and the test error for novel examples. However, because the weights are updated on
every example and every example is never before seen by the network, only the gener-
alization error is considered.

In order to define and model meaningful learning situations we resort to the consid-
eration of student-teacher scenarios. In other words, the on-line learning of an unknown
rule defined by either a two-layer network or a deeper feedforward neural network. For
a two-layer neural network, the rule is defined by the structure of the network and its
corresponding input-to-hidden synaptic weight matrix C and hidden-to-output weight
vector v∗. In a two-layer neural network with linear output, this set of input-to-hidden
teacher weights is given by C ∈ RM×N . Here, N represents the input dimension and M
represents the number of hidden units in the second layer. Cn is the n-th input branch
and Cmn connects the n-th input value to the m-th hidden node. For initializations
of C and input vector ξµ, each hidden unit n receives an an input Cn· ξµ. This can
also be represented by the matrix-vector product Cξµ, resulting in a vector of all input
activations for the hidden units. In these hidden neurons, an non-linear activation func-
tion g(·) is used, mapping the input to an activation. The total activation of all units
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Figure 1: A two-layer network

would then be g(Cξµ). This output activation is then either linearly or non-linearly
combined in the output unit to produce the final state of the teacher. Figure 1 shows
an example network with input data ξ ∈ RN and a single hidden layer. This network
has N input units, M = 2 hidden units with a non-linear activation function, and a
linear output unit. With a linear output unit, the final state is a linear combination
of the hidden activations with the hidden-to-output weights v∗ ∈ RM . The state of a
two-layer teacher network is

τ(ξµ) = h

(
M∑
n=1

vng (Cn · ξµ)

)
. (1)

With Cn denoting the N -dimensional teacher weight vector of the n-th input branch and
vn the weight connecting the n-th hidden neuron with the output unit. This formulation
for the total state of the teacher can be altered to use only matrix-vector products and
dot-products,

τ(ξµ) = h
(
v∗· g(Cξµ)

)
. (2)

The output of Cξµ is a vector, the activation function g(·) applies to all vector compo-
nents separately. Therefore, the output of g(·) is also a vector with M components, the
same number of components in v∗, This allows the dot-product v∗·g(·) between the two
vectors, giving the final activation. In most of the following experiments, the activation
function h in the output unit is be a linear combination of the hidden-to-output weights
and the activations, allowing us to use the simpler notation:

τ(ξµ) = v∗· g(Cξµ). (3)

A teacher network such as this can be extended to as many layers as one might desire.
For example, when we have a 3-layer network with a linear output unit, the weight matrix
W ∗ ∈ RM2×M1 represents the weights connecting the first hidden layer to the second
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Figure 2: (a) A three-layer network with 2 hidden layers

one. Here M1 and M2 are the width of the first and second hidden layer, respectively.
The final state would then be

τ(ξµ) = v∗·h(W ∗g(Cξµ)). (4)

Figure 2 shows an example network with 2 hidden layers with N input units, M1 = 4
hidden units in the first layer, M2 = 2 hidden units in the second layer and a linear
output unit.

Now we can consider a second network, known as the student. This student network
has an equal number of layers, however, the width of each hidden layer can differ. The
student network may have fewer, equal or more units in the hidden layers. In our two-
layer example, the first layer would have K hidden units with J ∈ RK×N . The student
has no knowledge of the rule, as in other applications using a neural network, where a
network learns a particular mapping which is unknown. The student output for input
ξµ is described as

σ(ξµ) = v· g(Jξµ). (5)

The choice of a linear hidden-to-output transfer function does not restrict the capability
of a student network to learn a complex rule. In a paper by Cybenko et al. [14] it
is shown that two-layer networks with a linear output unit are known to be universal
approximators. For deeper networks, the student state would look similar to the state
for the teacher, with C replaced by J . The hidden-to-hidden weights W and hidden-
to-output weights v for the state of the student network are also different from W ∗ and
v∗ in the teacher. The weights J and v in a 2-layer network have to be adapted in the
learning process. In a 3-layer network, W has to be adapted as well. The goal weights
producing an output on input ξ that is as close as possible to the rule output.The training
process of any neural network is generally guided by a loss function. For a network with
real-valued output y(ξ), based on examples {ξµ ∈ RN , τ(ξµ) ∈ R}, it would likely use
quadratic deviation. In a student-teacher scenario, this is the quadratic deviation of the
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student network output with the rule output,

eµ =
1

2

(
σ(ξµ)− τ(ξµ)

)2
. (6)

If a network is trained using off-line learning, we have a fixed set of training data which
the student network uses to learn. The loss or error would then be an average over
all training samples in a batch or mini-batch. This average error is then propagated
back through the network in order to update the weights. A different set of examples,
which the network has never seen called the test set, is used to calculate the network’s
ability to classify new data. In on-line learning, we do not have a fixed training set, as
the weights are updated with each presented example. Because the examples are given
in a stream, we only consider the generalization error. The average error made by the
student is defined as the generalization error

εg = 〈ε〉ξ, (7)

where the average, denoted by 〈·〉 is taken over the distribution of random inputs.
Evidently, when the student weights are updated such that the student output represents
the teacher output as close as possible, eµ will be reduced in the training process. After
the forward pass, the loss eµ is propagated back through the network, hence the term
backpropagation. For a 2-layer network with a linear output unit, the weight vector v,
connecting the hidden layer to the output layer is reused together with the derivatives
of the activation functions. The gradient with respect to the hidden-to-output weights
is simply

∆v =
∂

∂v
eµ = δµg(Jξµ), (8)

where δµ = σ(ξµ)− τ(ξµ).
We use this vector of gradients to update the input-to-hidden weights,

vµ+1 = vµ − η

K
∆v. (9)

Here, η represents the step size or learning rate. Note that the update is scaled by the
width K of the hidden layer in the student network. Next, we can reuse δµ together with
the derivative with respect to the input-to-hidden weights to calculate a new gradient
vector δµ of component-wise results,

δµ = δµv � g′(Jξµ). (10)

The Hadamard product � is the element-wise multiplication of two vectors. If x and y
are vectors with n elements, the Hadamard product is

(x� y)i = xiyi, i = 1 . . . n. (11)

If FA is used in the update steps, v is replaced by a vector b with fixed random compo-
nents,

δµ = δµb� g′(Jξµ). (12)
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This is still only the partial gradient, the chain rule has to be applied another time.
However, we have to specify the updates separately for each row Ji of the input-to-
hidden student weights. Every component of the gradient vector δµ represents the cost
attributable to that node. Consequently, the update of the input-to-hidden weights is

Jµ+1
i = Jµi +

η

N
δµi ξ

µ for i = 1..K. (13)

Here, the update is scaled by the system size N . For a deeper network, the δµ term is
reused and the chain rule has to be applied several times. In a 3-layer network with 2
hidden layers, the gradient for the hidden-to-output weights is

∆v =
∂

∂v
eµ = δµg(x2), (14)

with g(x2) being the output activation of the second hidden layer. The update of v is
scaled by the width of the second hidden layer K2. The component-wise gradients with
respect to the hidden-to-hidden weights are

δµ = δµv � g′(x2). (15)

Again, if we use FA, v is replaced by b and δµ becomes

δµ = δµb� g′(x2). (16)

The update of W is

W µ+1
i = W µ

i +
η

K1
δµi g(x1), (17)

where K1 represent the number of units in the first hidden layer and g(x1) is the output
activation of the first hidden layer. For the input-to-hidden weights, the component-wise
gradients are

δµ = W T δµ � g′(x1). (18)

Here, the transpose of the hidden-to-hidden weight matrix W is used to propagate the
error back through the network. When using FA, we can replace the symmetric forward
weights W T by a random matrix B, resulting in

δµ = Bδµ � g′(x1). (19)

In the loss function landscape, BP provides a gradient in the direction of steepest de-
scent, while FA does not. However, the network learns how to use B and b, to provide
a gradient in the general direction of BP. As long as the angle between the update of
BP and FA is on average ∆hFA]∆hBP < 90◦ , the algorithm can take steps that re-
semble backpropagation. For a 2-layer network, this means that as long as on average
(evT )(be) > 0, the network can learn. The network does not need to have this property
initially, as the angle between two feature vectors sampled from a distribution with 0
mean and 1 variance N (0, 1) will be large. However, in the learning process, this angle
will reduce over time as the alignment increases. This alignment implies that b begins
to act like v and for deeper networks, B acts like W T and the system can make updates
that resemble BP. In [8], they indicate that feedback alignment, despite its simplicity,
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displays elements of second-order learning as feedback alignment encourages W to act
like a local pseudo-inverse of B. If B is exactly W+, the network would be performing
Gauss-Newton optimization.

In the student-teacher scenarios, we have a target network with a fixed distribution
of feature vectors sampled from N (0, 1). This target network can then be learned by a
student network through on-line learning, using backpropagation or feedback alignment.
We assume the target network can be defined as a feedforward neural network. This
can be either a 2-layer neural network with M units in the hidden layer, or another
structure, such as a 3-layer network with 2 hidden layers. Both networks will have input
dimension N . If a 2-layer neural network is used, the teacher has M hidden units, the
student network has K hidden units, followed by a single output unit. A 3-layer network
has two hidden layers. We structure these hidden layers, such that the first hidden layer
in the target network has M hidden units and the following layer has M/2 hidden units.
The student network would have K hidden units in the first layer and K/2 hidden units
in the second layer. For instance, if K = M = 4, the 3-layer network for both student
and teacher would look like the example network shown in Figure 2.

There are three different student-teacher scenarios with regards to hidden units. A
perfectly learnable scenario has K = M , an equal amount of student and teacher units
in every hidden layer. The two architectures match exactly, the student can entirely
represent the rule. When this desired result is reached, the generalization error εg = 0.
Because we have an infinite stream of i.i.d. examples ξ in our on-line learning scenario,
the perfect solution will always be reached, assuming the appropriate learning rate is
chosen. In reality, the complexity of the target is often not known, hence the reason for
studying cases with unequal complexity between the student and teacher network. An
overlearnable scenario has K > M , the student network is more complex than the rule
it is trying to learn. Over-parameterized networks are frequently used in deep learning
contexts, where the number of parameters far exceeds the number of training exam-
ples. Generally, this comes with a risk of overfitting. However, recent understanding
of the subject indicates that even over-parameterized networks can generalize well due
to the implicit regularization in a gradient-based learning process [15]. Contrarily, an
unlearnable scenario has K < M and Cn 6= 0 ∀n, the student network lacks complexity
in relation to the teacher network and can therefore not represent the rule perfectly.
In other words, the network does not have a sufficient number of neurons to model a
certain input-output mapping [16].

2.2 Sigmoidal Networks

There exist a number of sigmoidal activation functions, prominently used are tanh and
the logistic function. The variety of sigmoidal functions satisfy the original purpose
of an activation function, which is to simulate the firing rate of a biological neuron.
All sigmoidal functions are characterized by its monotonic shape and bell-shaped first
derivative. It is constrained by a pair of horizontal asymptotes as x → ±∞. Because
the theoretical concepts in this section are loosely based on previous studies [10, 17, 18],
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we consider the following sigmoidal activation function. On input x,

g(x) = erf(x/
√

2). (20)

In backpropagation using gradient descent, the derivatives of the activation function are
used to propagate the error back through the network, The derivative of the erf function
is

g′(x) =

√
2

π
e−x

2/2. (21)

In Figure 3 we can see a representation of the erf function and its derivative, it is clear
the symmetrical nature of the erf function. This is useful, individual student weights
vectors Ji, can have either positive or negative overlap with teacher vectors Cn. At the
end of training, students will either be specialized or anti-specialized to a teacher. If a
student Ji is fully anti-specialized to a teacher Cn, it is pointing in the exact opposite
direction, the angle Ji]Cn = 180◦. With a positive overlap, the student is fully spe-
cialized at the end of training, Ji]Cn = 0◦. The reason this is possible is exactly due
the symmetry of the erf function. If the overlap is negative, the activation function in
the student network will produce the exact opposite value of the teacher. Combining
this with the hidden-to-output weight, also opposites, the final output of the student
and teacher network will be equal. Because of this symmetry, the derivative is Gaussian
and feedback stage would have equal values for the activation derivatives. This concept
is especially useful for FA, as the random feedback weights are fixed.

The bell-shaped derivative has a quickly decreasing gradient in both directions. In
the training of neural network, this can form an issue over time. When the gradient
becomes very small, the speed of training can slow down significantly. Small gradients
are multiplied via the chain rule, resulting in even smaller updates for many layers.
This problem known as the vanishing gradient problem, is one of the advantages of using
another activation function with a different first derivative, explained in the following
section.

(a) (b)

Figure 3: (a) The sigmoidal erf activation function, (b) The Gaussian first derivative of
erf.
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2.3 ReLU Networks

The Rectified Linear Unit is a non-linear activation function composed of two linear
parts:

g(x) = xθ(x), g′(x) = θ(x), (22)

where θ(x) is the step function, defined as

θ(x) =

{
1 if x > 0

0 otherwise.

Immediately noticeable is the simplicity of the function, where the result of ReLU(x)
on input x is either 0, when x < 0 or x when x > 0. This means the tangent is
one, the derivative has only two values, which we can see in Figure 4. Because of
this simple derivative, vanishing gradients cannot exist along paths of active hidden
units. At ReLU′(0), the function is discontinuous, a derivative does not exist. If this
situation occurs in the training of a neural network with ReLU activation, a value
of 0 or 1 for ReLU′(0) can be chosen. For the experiments in the following sections
using ReLU Networks, ReLU′(0) = 0. This choice seems rather trivial as ReLU′(0)
only occurs for a single value. However, in a paper by David Bertoin et al. [19], it
is shown that the choice of ReLU′(0) can impact the performance of backpropagation,
especially when networks use limited numerical precision. Nevertheless, the general
concensus implies that ReLU′(0) = 0 seems to be most robust. This derivative means
that student weights are either updated with no scaling from the activation derivative,
or they are not updated at all. For example, in Equation 12, g(·) will be a vector
of ones and zeros, and δµi will be 0 or the value of what is backpropagated. This
is a significant difference from networks using the sigmoidal erf activation, where the
magnitude of the updates varies more and is never exactly zero. An advantage of
ReLU over sigmoidal activation is in its computational efficiency. Especially in deep
networks, where many neurons have to compute the output and the gradient is evaluated
as many times in the backpropagation steps. This computation takes more time with
a complicated non-linear sigmoidal activation function like the erf function. Therefore,
using ReLU activation in deep networks can reduce continuous training time. However,
there are disadvantages as well, most notably, the gradient being zero when the input
activation xi upon presentation of example ξµ is negative. If this is the case for all
input vectors ξµ, the hidden neuron will never activate, since it is never updated. A
solution to this problem, known as leaky ReLU has been suggested in [20] which has a
small gradient for negative input activations. In the context of feedback alignment, there
exists another downside to using ReLU activation. This is due to the non-symmetric
nature of the ReLU function and the feedback weights being fixed. With the sigmoidal
erf activation, student weights can either positively or negatively align with the teacher
weights. The quadratic deviation 1

2 (σ (ξµ)− τ (ξµ))
2

would still be identical, as would
the value for the derivatives of the activations. For the non-symmetric ReLU activation
function this is not possible, which can form an issue when training ReLU networks
using FA.
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(a) (b)

Figure 4: (a) ReLU activation: xθ(x), (b) The first derivative of the ReLU activation
function: θ(x)

2.4 Order Parameters

In this section, we go over some general statistical physics of on-line learning in a student-
teacher scenario. Without going into elaborate detail, a number of useful properties
are explained which can identify how a student learns the rule. For a more detailed
theoretical analysis, [10, 11, 17, 21] are useful resources. In the previous section, a
student-teacher scenario was defined for networks with 1 or 2 hidden layers. In this
scenario, the teacher defines the rule to be learned by the student. Aside from the
output, the student does not know anything about the rule. Among other benefits,
a student-teacher scenario such as this allows for studying how the student learns the
rule. In [17], learning dynamics for an on-line learning scenario are formulated in the
thermodynamic limit. This means that the system is studied based on a stream of
independent examples {ξµ, τ(ξµ)} ∈ {RN ,R} that are presented to the student and the
system size N →∞. Input components of ξµ are sampled from a distribution with zero
mean and unit variance:

ξi = N (0, 1), i = 1 . . . N. (23)

We can use this simple density of the input and the definitions of the input activations

xi = Ji· ξ, yn = Cn· ξ, i = 1 . . .K, n = 1 . . .M, (24)

where xi is the input activation to hidden student unit i and yn is the input activation
to hidden teacher unit n. Because the system is studied in the thermodynamic limit, by
the Central Limit Theorem (CLT), these input activations are a multivariate Gaussian
with a covariance matrix consisting of all covariances between pairs of input activations.
Because of the assumed i.i.d. components of the input vectors ξ ∈ RN ,

〈ξjξl〉 =

{
1 for j = l
0 for j 6= l

}
(25)

the many degrees of freedom, i.e. the components of the adaptive vectors, can be
characterized in terms of only very few quantities. The covariance between student
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input activation xi and student input activation xj is defined as

Qik =

N∑
j=1

N∑
l=1

JijJkl〈ξjξl〉 =

N∑
j=1

JijJkj = Ji·Jk, i, k = 1 . . .K. (26)

Similarly, we can define the covariance between student-teacher input activations and
the covariance between teacher-teacher input activations as follows:

Rim = Ji ·Cm, Tmn = Cm ·Cn, i = 1 . . .K, m, n = 1 . . .M. (27)

Note that that the rule constants Tmn are fixed, as they define the rule, i.e. the param-
eters of the teacher network. If the rule covariances are isotropically initialized, then
Tmn = 0 for m 6= n. These covariances or overlaps, are the so-called order parameters,
able to aggregate many parameters into a descriptive summary. Such parameters are
especially helpful when studying on-line rule-learning scenarios in 2-layer networks. In
the thermodynamic limit N →∞, the order parameters are self-averaging, which allows
for exact continuous learning dynamics to be formulated. Using the order parameters,
an exact analytical solution for the generalization error εg can be formulated as an ex-
pected average over the simple input density. In early stages of learning, a unstable
fixed point in the learning dynamics may be reached where the loss decrease slows down
significantly. In such a plateau state, the corresponding student-teacher overlaps are
either close to identical or close to exactly opposite. When such a symmetry is broken,
the students will specialize and the loss will rapidly decrease again. We can display the
evolution of the order parameters after training to observe when a student Ji specializes
to a certain teacher vector Bn, also showing when and how the system might break out
of a plateau state. In networks with deeper layers, the order parameters are still a useful
tool. However, they can not be used in the calculation of an analytical generalization
error, as there exists no analytical solution for deeper networks. One could design or-
der parameters like this for other layers. This is rather unnecessary, as the other layer
weights have significantly lower input dimension, there is no need to aggregate many
degrees of freedom into very few quantities.

2.5 Generalization Error

During the on-line learning process, the success of learning can be measured in terms of
the generalization error εg. This quantity, also known as the test error in many fields of
machine learning, represents the accuracy of the network correctly responding to new
input data. In the thermodynamic limit N → ∞, we can rely on the simple density of
the input ξ with i.i.d. components sampled from N (0, 1) to define the generalization
error for a 2-layer network as the expected prediction error on the presentation of novel
examples:

εg(J ,v) = 〈ε(J ,v)〉ξ. (28)

An expression for the generalization error can be derived using the order parameters,
rule constants and hidden-to-output weights v. For a 2-layer network with erf activation,
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this equates to

εg =
1

π

[ K∑
i,j=1

vivj sin−1

(
Qij√

1 +Qii
√

1 +Qjj

)

− 2

K∑
i=1

M∑
m=1

viv
∗
m sin−1

(
Rim√

1 +Qii
√

1 + Tnn

)

+

M∑
m,n=1

v∗mv
∗
n sin−1

(
Tmn√

1 + Tmm
√

1 + Tnn

)]
,

(29)

here vi represents the i-th hidden-to-output student weight and v∗m the m-th hidden-
to-output teacher weight. The original derivation of this analytical solution for Soft
Committee Machines is from [18] and second layer weights were introduced in [10].
When the rule parameters are isotropic and have unit norm, Tmm = 1 and Tmn = 0 for
m 6= n, this simplifies to

εg =
1

π

[ K∑
i,j=1

vivjsin
−1

(
Qij√

1 +Qii
√

1 +Qjj

)

− 2

K∑
i=1

M∑
m=1

viv
∗
msin

−1
(

Rim√
1 +Qii

√
2

)

+

M∑
m=1

sin−1
(

(v∗m)2

4

)]
.

(30)

For a 2-layer network with ReLU activation, an analytical solution for the generalization
error is also known. In [11], the formula for εg is derived for a ReLU SCM architecture
which has fixed and equal hidden-to-output weights v. Including these weights is trivial,
as they can be linearly combined with the order parameters and rule constants.

εg =
1

2

[ K∑
i,j=1

vivj

Qij4
+

√
QiiQjj −Q2

ij

2π
+

Qij sin−1
(

Qij√
QiiQjj

)
2π


− 2

K∑
i=1

M∑
m=1

viv
∗
m

Rim
4

+

√
QiiTmm −R2

im

2π
+
Rimsin

−1
(

Rim√
QiiTmm

)
2π


+

M∑
m,n=1

v∗mv
∗
n

Tmn
4

+

√
TmmTnn − T 2

mn

2π
+
Tmnsin

−1
(

Tmn√
TmmTnn

)
2π

].

(31)
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Again this can be simplified with isotropically initialized teachers that have unit norm,
to

εg =
1

2

[ K∑
i,j=1

vivj

Qij4
+

√
QiiQjj −Q2

ij

2π
+

Qij sin−1
(

Qij√
QiiQjj

)
2π


− 2

K∑
i=1

M∑
m=1

viv
∗
m

Rim
4

+

√
Qii −R2

im

2π
+
Rimsin

−1
(
Rim√
Qii

)
2π


+

M∑
m=1

(
(1− π)(v∗m)2

2π

)
+

M∑
n=1

v∗mv
∗
n

2π

]
.

(32)

For 2-layer networks with a non-linear output unit, or networks with 3 or more layers,
there exists no analytical solution. An empirical estimate has to be relied on as a
measure of overall performance. For example, we can take the quadratic deviation of
student and teacher output on random input ξµ, averaged over Ns test samples,

εg =
1

Ns

Ns∑
µ=1

1

2
(σ(ξµ)− τ(ξµ))2. (33)

For each presentation of a test example, the weights do not get updated, as that would
skew the final result of εg. Of course, doing these calculations for every presented exam-
ple would be extremely time consuming, especially when learning convergence requires
the presentation of many examples. Generally, we calculate the order parameters and
the generalization error after one or multiple presentations of at least N examples.

2.6 Role of the Learning Rate

The learning rate is a common theme in the realm of machine learning and it can be
a challenge to find the η giving optimal performance. If the learning rate is too high,
the process will diverge and a solution will not be reached. If the learning rate is too
small, the learning process will likely converge but it can take a large amount of time.
Generally, η will be lower when a rule is learnt using ReLU networks, compared to when
erf networks are used. The reason for this lies in the fact that the gradient in the update
steps for the ReLU activation function is generally higher. This increases the magnitude
of the actual updates, essentially increasing the learning rate, allowing for a lower η
to be considered. In the context of online learning with stochastic gradient descent, a
larger η can be used in the early stages of learning. Once the error function is close to
a global or local minimum, a small η is necessary to let the process converge. If η is too
large, the process will oscillate around this minimum indefinitely. For this reason, many
adaptive learning rate methods exist. Common methods include time-based decay and
exponential decay. In the following experiments, we will stick to an empirically chosen
small fixed learning rate which ensures convergence in solvable scenarios.
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3 Results for Shallow Networks

This section describes several experiments for a number of different setups using shallow
networks. A shallow network has one hidden layer. The hidden neurons in these net-
works use a non-linear activation function, either erf or ReLU. All experiments represent
the on-line learning of a rule through stochastic gradient descent. Networks are trained
using a Monte Carlo setup, which means all input data ξ ∈ RN is randomly generated
from an independent normal distribution N (0, 1) and given in a stream. We compare the
performance of backpropagation (BP) with that of feedback alignment (FA), using met-
rics as the generalization error and order parameters, explained in the previous section.
Input-to-hidden weights are sampled from a normal distribution N (0, 1) and scaled by√
N . This scaling reduces the magnitude of the variance for the pre-activations. Among

other advantages, this reduces the chance of vanishing gradient issues when the hidden
layer activation is too high. A generalized method of Gram-Schmidt orthogonalization
is used to initialize the student and teacher weights J and B with preset overlap,

Rim = 0, Qii = 0.5, Qik = 0.49 for i 6= k (34)

for i, k = 1 . . .K and m = 1 . . .M . The rule constants are initialized isotropically
with unit norm, Tmm = 1 and Tmn = 0 for m 6= n. The student weights J are
initialized such that the individual vectors Ji have high overlap between them. This
initial high overlap increases the symmetry between students, which in turn increases
the difficulty of a student vector Ji specializing to a teacher vector Ci, often resulting in
longer plateau states. Furthermore, the overlaps between J and C are initialized, such
that all students are orthogonal to all teachers, students have no initial overlap with
any teacher. In situations where the hidden-to-output weights are fixed and identical,
as in [17], initializing the student with zero overlap would be unwise as the system
can get stuck in a fixed point indefinitely. The student network will not be able to
specialize. However, with variable hidden-to-output weights v randomly sampled from
N (0, 1) in our experiments, students will naturally have some initial overlap with the
teacher weights. Other feature vectors, v∗ and b are sampled from N (0, 1) as well. In
the graphs shown below, the x-axis scale is generally α = µ/N , the total timesteps
divided by the input dimension. This can be seen as one run trough a dataset with
equal dimension as input examples.

3.1 Sigmoidal Networks

We begin our experiments with the analysis of FA in 2-layer sigmoidal erf networks,
comparing its effectiveness to BP. Here, we are using a 500-4-1 student network in a
perfectly learnable scenario. Thus the input layer has dimension N = 500, the hidden
layer has K = M = 4 units in both student and teacher and there is one linear output
unit. When using FA, the hidden-to-output weight vector v used in the backpropagation
step, is replaced by a vector b with random components. In Figure 5, we can see the
generalization error for a single simulation with identical initial conditions for BP and
FA. The learning rate is fixed at η = 0.1. We can see that even for identical initial
conditions, performance can differ quite substantially. Both methods have multiple
plateau states of different length and position. After breaking these plateau states,
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both methods asymptotically reduce the error to zero. Figure 7 showcases the order
parameters Rim for BP in blue and FA in red. Each graphs shown 4 lines for both FA
and BP, representing the 4 students. At the end of training, three of these lines will go to
0, while the remaining one will go to either 1 or -1. This represents a student being either
fully specialized or anti-specialized. This specialization depends on the signs of v∗, the
signs of v for BP and the signs of b for FA. Because the random feedback vector b is fixed,
the alignment is also fixed to that sign. For BP, the signs of the forward weights v could
flip over the time of training, which would invert the overlap with the teacher. We are
also interested in the overall performance, as an average over multiple simulations. The
adjacent plot shows this average, where the evolution of εg is logarithmically scaled.
This graph represents an average over n = 10 simulations. Because of the variance
that can occur between the two methods, the early stages of εg can be quite different
between the two methods. Large plateau states in one simulation can dominate the
average, especially on a logarithmic scale. However, after all unspecialized states have
been broken, the final exponential decrease of εg is very similar, as the slope is almost
identical. The alignment plot in Figure 6a shows the inverse cosine alignment between
v and b in degrees,

θ = cos−1
(b · v)

(||b|| ||v||)
. (35)

This alignment represents the angle between the hidden unit changes prescribed by FA
and those prescribed by BP, ∆hFA]∆hBP . Initially, this angle is large, for sufficiently
large feedback vector, this angle would be close to 90 degrees. However, for b used here
with a shorter length, the initial angle can be smaller or larger. Over time, the angle
decreases as the network learns how to use the feedback weights effectively. This decrease
in angle indicates that the algorithm takes steps that are closer to backpropagation. In
the alignment plot, after an initial decrease and fluctuation, the alignment settles at a
final angle. The network has found an optimal alignment with b for which the error
can reduce to zero. In Figure 6b, this alignment is overlayed on the evolution of εg
for FA from Figure 5a. Here, the values on the y-axis only correspond to the values of
the generalization error. The alignment overlayed on top is shown only for purposes of
comparing the fluctuations in the alignment with the plateau states in the loss decrease.
This overlaying is useful to observe the behaviour of the alignment between the updates
made BP and those made by FA when the learning has reached a loss plateau. Here,
for all three plateau states, the updates made by BP and those made by FA de-align, as
the angle increases. When this state is broken, the updates swiftly re-align as the angle
decreases.
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(a) (b)

Figure 5: (a) Evolution of the generalization error εg for FA and BP in a sigmoidal 500-
4-1 network with erf activation. The initial conditions are identical for both methods,
(b) Plot of the average εg on a logarithmic scale for n = 10 simulations with different
random initializations.

(a) (b)

Figure 6: (a) Inverse cosine alignment between the b and v. This alignment represents
the angle between the hidden unit changes prescribed by BP with those prescribed by
BP ∆hFA]∆hBP . (b) The inverse cosine alignment overlayed on εg for FA of Figure
5a
.
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Figure 7: Order parameters Rim for FA and BP in a 500-4-1 erf network. Both methods
have identical initial conditions. BP is shown in blue, FA in red.

3.1.1 Non-Linear Output

The output unit can also be non-linear with an erf activation function, mapping the
activation in the output unit to a value between -1 and 1. If we use a network like this,
the gradient for the hidden-to-output weights becomes

∂

∂v
eµ = (σ(ξµ) − τ(ξµ)) h′(v · g(Jξµ))g(Jξµ). (36)

One could argue that this update is not biologically plausible, as it requires the individual
nodes of the hidden layer to know the weights of the other nodes in the hidden layer.
When a node i with synaptic weight vi is updated, it requires knowledge of all other
components in v. We could replace the v by the random feedback vector b here as well.
This changes the gradient to

∂

∂v
eµ = (σ(ξµ)− τ(ξµ)) h′(b · g(Jξµ))g(Jξµ). (37)

If we do this, the value for the derivative h′ changes, depending on the result of b·g(Jξµ)).
Consequently, the magnitude of the gradient would increase or decrease. Figure 8 shows
the evolution of εg for both these FA options. Because there currently exists no analytical
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solution for εg in a 2-layer network with a non-linear output unit, we calculate an
empirical estimate, using Equation (33). This is reflected in the graph, as the resulting
plots lack smoothness compared to the results for an analytical solution of εg. The
linear plot on the left shows that this different variant of FA works as well as the
normal variation, even breaking the plateau state earlier. For the right plot, we have
increased α and εg is scaled logarithmically. Aside from a slightly earlier escape from
the unspecialized state, convergence to zero εg looks almost identical for both variants
of FA. Even the angle of alignment over time is close to identical, as shown in Figure 9.

(a) (b)

Figure 8: (a) Evolution of an empirical estimate εg versus α for FA and the different
variant of FA for a 500-4-1 student and teacher network with erf activation. Both
methods have identical initial conditions (b) The same estimated εg on a logarithmic
scale with increased α.
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Figure 9: Evolution of the inverse cosine alignment representing the angle between the
updates made by FA and those made by BP in a 500-4-1 student and teacher network.
This angle is shown for FA and the different variant of FA which changes the activation
derivative in the gradient.

3.1.2 Overrealizable, K > M

The same student network setup is used in the following experiment, however, we reduce
the complexity of the teacher network. Here, N = 500, K = 4 and M = 2, making it
an overrealizable scenario. In general, this means that either students will share spe-
cialization. In this case, the absolute value for the order parameters Rim for multiple
students specializing to the same teacher should add up to 1. More likely, some stu-
dents will be seen as a redundancy and these will be phased out, reducing either the
corresponding Ji or vi to zero, or both. In Figure 10a we see the evolution of εg for
both BP and FA. The resulting graph represents a single simulation with η = 0.1 and
identical initial conditions for both methods. Here, we can see that FA breaks out of
the short plateau state earlier and εg is asymptotically reduced to zero. Figure 11 shows
the order parameters Rim corresponding with the εg graph for BP in blue and FA in
red. Here we can see the adaptation the student network makes when it has increased
complexity compared to the teacher. Two students specialize to two teachers, while
the other two are phased out. For both methods, the graph would indicate that two
students that should be phased out still have some overlap with the teacher. This is due
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to the fact that the hidden-to-output weights v will also set the corresponding values to
0, which might happen before the Ji are made completely redundant. In this example
experiment, the hidden-to-output teacher weight vector v∗ = [−0.5003, 0.6596]. After
training, the hidden-to-output student weight vector v = [0, 0,−0.6596, 0.5003] for FA
and v = [0, 0,−0.6596, 0.5004] for BP. Figure 12a displays the evolution of the align-
ment between the hidden-unit updates prescribed by BP and those prescribed by FA.
After an initial fluctuation, the angle follows a slight increase until settling at the final
unchanging angle. The adjacent graph shows the inverse cosine alignment overlayed on
the εg graph for FA from Figure 10a. From this graph, it is shown that the increase of
the angle between v and b occurs at the small plateau state. To get a better idea of the
general performance of FA in an overrealizable setting, we again take an average over
multiple simulations and show the evolution of εg on a logarithmic scale. The resulting
graph is shown in Figure 10b as an average over n = 10 simulations for both methods.
Again, FA is shown to reach convergence slightly earlier due to earlier escapes from loss
plateaus.

(a) (b)

Figure 10: (a) Evolution of εg for a 500-2-1 teacher network and a 500-4-1 student
network with erf activation. The results are for a single simulation with identical initial
conditions for both FA and BP. (b) Evolution of εg on a logarithmic scale. The results
are averaged over n = 10 simulations.
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Figure 11: Order parameters Rim for a 500-2-1 teacher network and a 500-4-1 student
network with erf activation. FA is shown in red, BP is shown in blue.

(a) (b)

Figure 12: (a) Inverse cosine alignment angle between the updates made by BP and
those made by FA in an overrealizable scenario for a 500-4-1 student and a 500-2-1
teacher network with erf activation. (b) The inverse cosine alignment overlayed on the
evolution of εg for FA from Figure 10a
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In a paper by Frederieke Richert et al. [15], it is shown that for identical sigmoidal acti-
vation function erf(x/

√
2) and overrealizable scenarios, the generalization error changes

from exponential decrease to a different power-law rate of convergence, with εg ∝ 1/α2.
The setup in this paper is different however, an SCM is used which has fixed unit hidden-
to-output weights. Moreover, a particular normalization is used which allows all student
vectors to learn, all students are seen as relevant by the system and no student will be
set to zero. In Figure 13 we can see the evolution of εg from Figure 10a on a single
and a double logarithmic scale. Here we can see that when εg decreases, this happens
exponentially. The lines in the single logarithmic plot, after the plateau states is bro-
ken, go from a steep straight line to a somewhat less steep line. This indicates that the
decrease of εg stays exponential, albeit slightly slower from a certain point on. If there
was a power-law convergence, εg in the single logarithmic graph would be asymptotically
bound on the x-axis. The tail of the double logarithmic graph would have a straight
line for εg, as the slope would be proportional to 1

α . In Figure 13b, it is clear that the
tail of the graph is curved, asymptotically bound on the y-axis.
[15].

(a) (b)

Figure 13: (a) Evolution ofεg on a logarithmic scale for both FA and BP for a 500-
2-1 teacher network and a 500-4-1 student network, (b) Evolution of εg on a double
logarithmic scale

3.1.3 Unrealizable, K < M

We are also interested in the opposite situation in relation to the complexity of student
and teacher, an unrealizable scenario with K < M . The student network lacks complex-
ity compared to the teacher. The previous scenario is flipped, now K = 2 and M = 4.
In an unrealizable scenario, it is impossible to achieve zero generalization error as the
student cannot fully realize the rule. The student cannot specialize to all teacher weight
vectors, so a balance has to be found for which a global minimum can be reached. We
can see this in Figure 14a, showing the generalization error for both FA and BP. This
graph shows the results for a single simulation with η = 0.1, where the initial conditions
are identical for both FA and BP. Both methods reach the same nonzero εg, which is
the minimal εg achievable as the student lacks the complexity to fully realize the rule.
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We do observe that FA goes through two short plateau states before reaching this value,
while BP does not. In Figure 16 the effect that an unrealizable scenario has on the order
parameters Rim can be seen. Here, the blue lines represent the evolution of the order
parameters Rim for BP and the red lines for FA. We can see that, for this particular
initialization, BP breaks the symmetry faster and specializes. We observe that while
both students phase out 2 teachers and specialize mostly to another teacher. They also
maintain a positive overlap with one other teacher, corresponding with a minimum in
the loss landscape. Figure 15a shows the inverse cosine alignment between v and b.
Interestingly, the alignment fluctuates at a low degree angle before settling at a final
angle. The adjacent graph shows this alignment overlayed on top of the εg graph for
FA from Figure 14a, showing again that the angle increases at loss plateaus. Of course,
not many conclusions can be drawn from a single simulation, the graph in Figure 14b
shows an average over n = 10 simulations with different random initial conditions for
the feature vectors. Here we see that, on average, BP has a slight advantage as it seems
that the plateau states are generally shorter.

(a) (b)

Figure 14: (a) Evolution of εg for a 500-4-1 sigmoidal teacher network and a 500-2-1
student network for a single simulation. Both methods have identical initial conditions.
(b) Average εg after n = 10 simulations with different random initializations.
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(a) (b)

Figure 15: (a) Inverse cosine alignment between v and b, representing the angle between
the updates for FA and BP. For a 500-2-1 student network and a 500-4-1 teacher network.
(b) The inverse cosine alignment overlayed on the evolution of εg for FA from Figure
14a
.
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Figure 16: Order parameters Rim for BP and FA in an unrealizable scenarios with a
500-2-1 student network and a 500-4-1 teacher network, both with erf activation. The
blue line represents BP, the red line represents FA.

3.2 ReLU Networks

When researching the performance of FA in ReLU networks, we have to take into con-
sideration the signs of the random weights in b. Because the random weights are fixed,
when these signs do not correspond with those of the teacher weights in v∗, the process
cannot converge. For example, if a teacher weight in v∗ is positive and a feedback weight
in b is negative, the network will always drive the corresponding input-to-hidden weight
vector in J in the opposite direction. For sigmoidal networks, this is not an issue due
to the symmetry of the sigmoidal activation. However, for the non-symmetric ReLU
activation, this becomes an issue. Using a simple example network with K = M = 2, we
can see this non-convergence in Figure 17. Here, v∗ for the teacher network contains a
positive and a negative value, while the feedback vector b consists of two positive values.
εg does not converge as FA sends one of the Ji in the wrong direction. The alignment
plot next to it shows that the alignment between the forward weights and the feedback
vector stays low. The angle ∆hFA]∆hBP between the two vectors stays close to 90◦,
as the network can not learn how to use the feedback vector effectively. If BP is used in
the update steps, it does not matter if the signs align between v and v∗ on initialization,
over the course of training, they can flip and learning can converge.
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(a) (b)

Figure 17: (a) Evolution of εg for a ReLU network with an unusable feedback vec-
tor, where the signs of the vector components in b do not align with the signs of the
components in v∗. (b) Inverse cosine alignment between forward weights v and b

Because of this problem, to use FA in combination with a ReLU network, one either has
to know something about the rule, or an overrealizable scenario has to be considered.
The first option is rather unlikely in realistic machine learning situations. Possibly from
a Bayesian point of view, we could say we have some prior knowledge of the weights.
If all the weights of b and v∗ are set to positive values, the issue with the signs would
disappear. For the following experiment, we do exactly this, implying we have some
prior knowledge about the signs of the hidden-to-output weights of the rule network.
The graphs in Figure 18 show the evolution of εg with this prior knowledge about the
rule with η = 0.05. From the graph on the left with a linear scale, we observe that,
unlike in the previous example with misaligned signs, FA shows convergent behaviour.
The generalization error goes to zero after a short plateau state in around the same
number of discrete timesteps α as BP. The graph beside it shows the same result on a
logarithmic scale.
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(a) (b)

Figure 18: (a) Evolution of εg for a 500-4-1 ReLU network with prior knowledge about
the signs of the teacher weights, (b) The same graph on a single logarithmic scale.

Aside from the output, the rule is generally unknown. One could run different initial-
izations in the hopes that for one of them, the process will converge. This is highly
unlikely though, especially in networks with a large number of adaptable weights. The
most realistic option is to use an overrealizable scenario, where K > M . In such a
situation, there is a higher chance that enough of the signs in b are correspond with
those of the teacher weights v∗. To ensure a 100% chance of this correspondence, we
need K ≥ 2M , the width of the hidden layer in the student has to be at least twice the
size of that of the teacher. If we then initialize b with an equal amount of positive and
negative components, at least M of these signs will align. The students corresponding
with these equalities can then specialize to a teacher. The other student weights can
then either be seen as redundant by the network, or students might share specialization
if multiple signs correspond. For this experiment, we use a 500-4-1 student network and
a 500-2-1 teacher network. Here K > M , the student has more complexity than the
teacher. In Figure 19a we see the evolution of the generalization error εg for both BP
and FA. This graph represents a single simulation with identical initial conditions for
both methods, using η = 0.05. We observe that the usage of FA results in an earlier
escape from the loss plateau compared to when BP is used. In the graph in Figure 20a,
the inverse cosine alignment representing the updates made by BP and those made by
FA is shown and in the neighbouring graph, this angle is overlayed on top of the εg graph
from Figure 19a. After an initial decrease, the angle increases again when the loss starts
to slow down. Following is a short semi-plateau, when this plateau is broken, the angle
decreases again and settles at a final value when εg is asymptotically reduced to zero.
Figure 21 displays the evolution of the order parameters Rim for BP in blue and for
FA in red. Again, both methods behave almost exactly alike. From the graph, it looks
as though both student 2 and 4 share specialization with the other students. However,
two of the four hidden-to-output weights are zero at the end of training, two student
units are phased out. Even if there is the expected specialization, the order parameters
Rim do not necessarily have to settle at -1 or 1. This is due to the linear nature of
the positive part of the ReLU function and the linear output unit. There are different
combinations possible between Ji and vi that still converge to a correct solution. The
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graph in Figure 19b shows the generalization error on a logarithmic scale. These plots
are averaged over n = 10 simulations with random initializations. Here, we can see that
FA and BP perform similarly until a certain point in the learning process. At this point,
the decrease of εg for FA goes from fast exponential decrease to a slower exponential
decrease.

(a) (b)

Figure 19: (a) Evolution of εg for both FA and BP for a 500-2-1 teacher network and a
500-4-1 student network with ReLU activation. Single simulation with identical initial
conditions for both methods. (b) Generalization error for BP and FA on a logarithmic
scale, averaged over n = 10 simulations with random initial conditions.

(a) (b)

Figure 20: (a) Inverse cosine alignment for the updates made by BP and those made by
FA for a 500-2-1 teacher network and a 500-4-1 student network with ReLU activation.
(b) The alignment overlayed on the evolution of εg for FA from Figure 19a
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Figure 21: Order parameters Rim for a 500-2-1 teacher network and a 500-4-1 student
network, both with ReLU activation. Blue represents BP, red represents FA.

3.3 Discussion

From the experiments described in this section, it is shown that FA works even for shal-
low networks with one hidden layer and a small number of adaptable hidden-to-output
weights. We observed that, in general, performance is very similar for differently real-
izable scenarios. This is indicated by the averages in Figure 5b, 10b and 14b. In some
situations, the use of FA might be useful in breaking unspecialized plateaus states ear-
lier. However, this is not necessarily always the case. At times, the opposite situation
may even occur, where using FA results in a longer plateau state compared to using
BP. This is also visible in Figure 5b showing an average over n = 10 simulations. For
at least one of these simulations, training using FA goes through a long plateau state
before εg decreases again rapidly and the learning process converges. In overrealizable
scenarios, there may be a more systematic correspondence between using FA and earlier
escapes from plateau states. However, in underrealizable scenarios, the opposite may be
true. As shown in Figure 14a, where FA goes through two plateau states before reach-
ing a minimum. There is some slight oscillation at this value of εg. Because the rule is
unrealizable and we use a fixed learning rate with on-line gradient descent, the value of
εg will always oscillate around this minimum. Figure 6b for a perfectly realizable sce-
nario and Figure 12b for an overrealizable scenario show what happens to the alignment
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between the updates made by BP and those made by FA in plateau states where the
decrease in loss can come to a complete halt. At each point in training when a plateau
is reached, the angle ∆hFA]∆hBP increases, i.e. the updates made by BP de-align
with the updates made by FA. When a plateau is broken, this angle swiftly decreases
again. Only after all plateaus are broken and εg is asymptotically decreasing to 0, does
the angle settle at a final value. In an unrealizable scenario, the situation is similar.
However, the angle can decrease to even lower values before increasing again when a
loss plateau occurs, as seen in Figure 15b. Here, the angle even goes down to 0, meaning
that v and b are completely aligned, both are pointing in the identical direction. As
mentioned previously, the alignment of the updates made using BP with those of FA
changes depending on the different scenarios shown in section 3. In most situations, the
initial decrease is large at the beginning of learning before sharply decreasing in the first
few timesteps α. After this, some fluctuation occurs, where every increase of the angle
represents the system being stuck in a fixed point in the learning dynamics. In perfectly
realizable scenarios, the final angle settles after some initial fluctuation. In unrealizable
learning situations, the evolution of the angle shows that it reaches very small values,
before increasing again and settling at a higher angle. In overrealizable scenarios, there
is some initial fluctuation again. After this short oscillation, the angle starts slowly in-
creasing until a final non-changing angle is reached. This slow increase represents some
components of the v being set to zero, which either increases or decreases the alignment
between those components of b and v, how these weights were aligned beforehand. The
final angle is generally higher than its realizable and unrealizable counterparts. This is
logical, as the number of redundant parameters in v increases, the corresponding com-
ponents in b have no alignment with these parameters.

In overrealizable scenarios, a recurring phenomenon is the change in the exponential
decrease of εg to a slower, but still exponential decrease. We compared the results for
an overrealizable shallow sigmoidal network to that of Frederieke Richert et al. [15]
where they discover a different rate of convergence. This convergence was proportional
to a power-law decrease, where εg ∝ 1

α2 . This is not confirmed by these experiments.
The main and most important difference between their experiments and the ones shown
in this thesis, is that they use a particular normalization of the student output which
allows all students to learn and replicate one of the teachers. Therefore, this rate of
convergence in overrealizable shallow networks only happens when multiple students
specialize to one teacher. In our scenario, there is no normalization factor and reducing
components from v to zero becomes the preferred solution.

When a different variant of the gradient for FA in shallow networks with a sigmoidal
output unit was used, the process still converged to zero εg. By changing the inner prod-
uct of the derivative of the activation function, the magnitude of the updates changes as
well, as the result of g(·) is different. Using this variation, the alignment between the
updates made by BP and those made by FA barely changes, visible in Figure 9. This is
likely why the performance is very similar compared to the normal variation of FA, as
is shown in Figure 8.

For ReLU networks, the issue with the signs of v∗ and b allowed us to study three
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situations. When these signs do not align, the process will not converge as some compo-
nents of b are unusable. One might compare this to the unrealizable scenario from the
experiments using erf networks. The difference being that all components of b in unreal-
izable erf networks are still usable in some manner. We may have prior knowledge of the
signs of the hidden-to-output teacher weights v∗. In this situation, the performance of
both methods is very similar, as seen in Figure 18. The entire learning process becomes
rather trivial, as both FA and BP do not need large α to reach very low εg. This rather
unrealistic experiment at least indicates that the usage of FA in the update steps does
work with ReLU networks. The other, more realistic scenario is an overrealizable one,
where K ≥ 2M . Any redundant students will be set to zero and εg will converge to 0
at similar rates. The graph in Figure 19b shows that BP and FA converge to 0 εg at
a similar exponential decrease. For FA, this exponential decrease slows down at some
point. This slowdown only happens for 2 out of the n = 10 simulations, it is unclear
as to why this occurs. However, it seems somewhat insignificant, as εg < 10−5 at that
point in the training process.

4 Results for Deep Networks

In this section, a number of experiments are shown concerning the training of 3-layer
networks. These networks have two hidden layers, with the synaptic hidden-to-hidden
weight matrix W connecting the two. This means that if we use FA, apart from v being
replaced by b in the backpropagation step, we also replace W T by B. The teacher
weightsW ∗ and the forward weightsW are sampled from a normal distribution N (0, 1),
as are the random feedback weights B. The student-teacher overlaps are initialized as
explained above for shallow networks. Again, we supply the system with a stream of
examples with i.i.d. components from N (0, 1), using stochastic on-line gradient descent
to perform the weight updates.

4.1 Sigmoidal Networks

For the first experiment with a deeper structure, we go back to a neural network with
erf activation in the hidden units. We reduce the input dimension from N = 500 to
N = 250, to speed up convergence. Moreover, because the network has more layers, it is
more complex, the input dimension can be reduced while still observing phenomena like
long plateau states. Again, the first scenario to be studied is a perfectly realizable one. In
section 2, the structure of the deep networks used in the following experiments is shown.
For a student network, the first hidden layer will have K hidden units, the second layer
has K/2 hidden units with a single linear output unit. A teacher network has an identical
structure, with M and M/2 units in the first and second hidden layer, respectively. Here,
K = M = 4, both student and teacher are 250-4-2-1 erf networks. In the original FA
paper by Lillicrap et al. [8], it is mentioned than when the forward weights are initialized
at or near zero, it promotes faster convergence to a correct local minimum. The feedback
matrix B begins to act like a local pseudo-inverse of W . This does not mean that for
different initializations of W and v, the process would not converge. However, as this
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promotes faster convergence, forward weights are initialized W and v to 0 when FA is
used. Because this is a more complex network with an increased number of adaptable
weights, the learning rate is reduced to η = 0.02. There exists no analytical solution for
the average prediction error εg on new input data when 3-layer networks are considered,
therefore we calculate it empirically as an average over Ns random test inputs, as shown
in Equation (33). In Figure 22 we can see the generalization error on a linear scale for a
single simulation with BP and FA. The initial conditions are identical for both methods.
As εg is calculated using an empirical average, the graph lacks smoothness compared
to the analytical solution for εg used in section 3. However, it is clear that both FA
and BP observe a plateau state at a similar εg of differing lengths. For this particular
initialization, the system breaks out of this unspecialized state faster when FA is used.
The graph in Figure 24 shows the order parameters Rim for BP in blue and FA in red.
The long symmetric state corresponding to the loss plateau of εg is clearly visible in
student 1. In Figure 23, the inverse cosine alignment between the updates made by BP
and those made by FA is shown. After a sharp decrease, there is some initial fluctuation
at the beginning of the learning process, followed by an optimal final angle for which
the system reaches convergence. The adjacent graph shows the inverse cosine alignment
overlayed on the εg graph of Figure 22 for FA. The initial increase of the alignment
happens exactly at a plateau state, as does the second increase.
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Figure 22: Evolution of εg for a 250-4-2-1 student and teacher network with erf activa-
tion. The results are for single simulation with identical initial conditions for FA and
BP.

(a)

-

(b)

Figure 23: (a) Inverse cosine alignment angle between the updates made by BP and
those made by FA for a 250-4-2-1 student and teacher network with erf activation. (b)
The inverse cosine alignment overlayed on the evolution of εg for FA.
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Figure 24: Evolution of the order parameters Rim in a 250-4-2-1 student and teacher
network. BP is shown in blue, FA in red.

To get an idea of the overall performance of FA in realizable networks with 2 hidden
layers, α is increased and an average is taken over n = 5 simulations. This can be seen in
Figure 25. Shown is a side-by-side view of εg for both methods on a single logarithmic
scale. Individual simulations are displayed in grey and the blue line represents the
average over all n = 5 simulations. The average performance of both methods is quite
similar, with some plateaus of differing length in the early stages of learning, followed
by a quick exponential decrease to zero error.
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(a) (b)

Figure 25: (a) Evolution of εg for BP in a 250-4-2-1 network. The results are averaged
over n = 5 simulations, the individual simulations can be seen in grey. (b) The same
situation for FA.

In the gradient from equation (16), x2 = Wg(Jξµ). As for the gradient for the shallow
network with a non-linear output unit, this gradient requires individual nodes in the first
hidden layer to know the incoming weights of the other nodes in that layer. This means
that when a node i in the second hidden layer is updated, it needs to have knowledge of
all incoming weights Wj . We could argue once more, that this is biologically implausible
and replace W by BT in the derivative of the activation function. The resulting partial
gradient will be

∂

∂W
eµ = δµb� h′(BTg(Jξµ)). (38)

With the same setup as described above, we run another experiment using this variant
of the gradient. In Figure 26, we see the evolution of the εg for three simulations with
identical initial conditions and different learning rates. The graph shows an entirely
different situation compared to the results for the shallow variant. After some initial
decrease in εg, the learning process diverges and the generalization error increases again
rapidly before fluctuating at a high value.
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Figure 26: Evolution of εg for a 250-4-2-1 student and teacher erf network using a differ-
ent variant of the gradient, where the input for that activation derivative is changed. The
graph shows three individual simulations with identical initial conditions and different
learning rates.

4.1.1 Overrealizable, K > M

Again, we are interested in an overrealizable scenario, where the student network has
increased complexity compared to the teacher network, K = 8 and M = 4. The 250-4-2-
1 teacher network is identical to the one used in the previous experiment. However, the
250-8-4-1 student network has twice the complexity regarding the number of adaptable
weights. Again, we use η = 0.02. After learning, generally only 4 students remain that
have optimal overlap with the 4 teachers. The other 4 students are likely phased out and
set to zero. Because of the large number of teacher weights C, we refrain from showing
the evolution of the order parameters Rim here. Figure 27 shows the progression of εg
on a linear scale for both FA and BP. Again, for a fair comparison, both methods use
identical initial conditions. Here, both FA and BP reach a plateau state at a similar value
of εg. For these initial conditions, FA breaks the symmetry in fewer discrete timesteps
than its counterpart. In Figure 28a the angle over time between the updates made by
BP and those made by FA is shown. Next to this graph, this alignment is overlayed on
top of the εg graph for FA from the previous figure. Again, we see that when the short
loss plateau is reached at the early learning stage, the angle will increase. After this
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plateau, the angle slightly decreases again before slightly increasing again to the angle
corresponding with an exponential convergence rate.

Figure 27: Evolution of εg for a 250-4-2-1 teacher network and a 250-8-4-1 student
network with erf activation. The results are for a single simulation, both BP and FA
have identical initial conditions
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(a) (b)

Figure 28: (a) Inverse cosine alignment angle between the updates made by FA and
those made by BP, for a 250-8-4-1 student network and a 250-4-2-1 teacher network
with erf activation. (b) The inverse cosine alignment overlayed on the evolution of εg
for FA from Figure 31a.

In Figure 29 we see the results for both FA and BP with εg on a logarithmic scale.
Convergence rates are similar, with BP having a slight advantage. However, the indi-
vidual simulations of FA go through shorter and fewer plateau states. We want to take
a closer look at the decrease of εg for two individual simulations for both BP and FA.
More specifically, two simulations which seem to behave asymptotically in the single
logarithmic plot. Figure 30 shows a comparison of the single and double logarithmic
plot. In the single log-plot, after breaking of the unspecialized states, the decrease of
εg seems to be asymptotically bound. As α increases, the decrease of εg is no longer
exponential. The tail of the double-log plot appears to be straight, which would indicate
that there is power-law convergence εg ∝ 1/α2, this is confirmed by measuring the slope.
For these two individual simulations, multiple students are sharing specialization to a
teacher. This corresponds with the findings in [15], where they observe a power-law rate
of convergence in situations with shared specialization.
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(a) (b)

Figure 29: (a) Evolution of εg for FA in a 250-8-4-1 student network with a 250-4-2-1
teacher network, both with erf activation in the hidden units. The results are averaged
over n = 5 simulations, the individual simulations can be seen in grey. (b) The same
situation for BP.

(a) (b)

Figure 30: (a) Two individual simulations for BP and FA taken from Figure 29 where
the decrease of εg is asymptotically bound on a single logarithmic scale. (b) Double
logarithmic plot of the same individual simulations, the tail of both graphs follow a
straight line, indicating that εg ∝ 1

α2 .

4.1.2 Unrealizable, K < M

In the analysis of an unrealizable scenario for a deep network, the previous situation
is flipped. Here, N = 250, K = 4 and M = 8, the 250-4-2-1 student network lacks
complexity in comparison to the 250-8-4-1 teacher network. The same learning rate
is used as in the overrealizable and perfectly realizable scenario, η = 0.02. As with
shallow networks, it is expected a student will specialize to multiple teachers as the
rule cannot be perfectly realized. Figure 31a displays the evolution of εg for a single
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run with identical initial conditions for FA and BP. Both methods go through a short
plateau state before reaching the same minimal εg at which the students have specialized
optimally to the teachers. When FA is used, this value of εg is reached at a slightly later
stage, due to the unspecialized state being slightly longer. In Figure 32a we can see
the corresponding alignment between the updates made by BP and those made by FA.
Again, as in the alignment graph for a shallow unrealizable situation, the alignment
dips to some low degree angle before increasing again and settling at a final angle. The
neighbouring graph shows this angle of alignment overlayed on top of the εg graph for
FA from Figure 31a. Again, in the short plateau state, the alignment increases before
decreasing swiftly again when the loss continues decreasing. The graph in Figure 31b
shows an average over n = 5 simulations for both methods, the performance of both
methods looks quite similar, with BP having a slight advantage.

(a) (b)

Figure 31: (a) Evolution of εg using a 250-4-2-1 student network and a 250-8-4-1 teacher
network with erf activation. Resulting graphs are for a single run with identical initial
conditions for BP and FA. (b) Similar graph for an average of n = 5 simulations with
different random initial conditions for both methods.
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Figure 32: (a) Inverse cosine alignment angle between the updates made by FA and
those made by BP, for a 250-4-2-1 student network and a 250-8-4-1 teacher network
with erf activation. (b) The inverse cosine alignment overlayed on the evolution of εg
for FA from Figure 31a
.

4.2 ReLU Networks

We are also interested in the effectiveness of FA in deeper networks with ReLU activation
in the hidden units. However, we run into the same issue as before when the signs of b
and B do not correspond with those of the teacher weights v∗ and W ∗. If we were to
run a scenario with K = M , it is highly likely that the signs of the feedback weights do
not align with those of the teacher weights. The resulting εg graph would look similar
the graphs shown in Figure 17. We could assume some prior knowledge of the teacher
weights again and initialize both the feedback weights b and B, and the teacher weights
v∗ and W ∗ with only positive weights. If we do this, the rule becomes very trivial to
realize, as is shown in Figure 33, showing the evolution of εg on a linear and logarithmic
scale. Even with a relatively small η = 0.01, both methods go through one short plateau
state before reaching convergent behavior in a small number of discrete timesteps α.
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(a) (b)

Figure 33: (a) Linear plot of the evolution of εg for a 250-4-2-1 ReLU network with prior
knowledge of the teacher weights, (b) Logarithmic plot of the same situation.

We are more interested in the dynamics of an overrealizable scenario with an overly
complex student, as this is more realistic than the student having prior knowledge of the
rule it is trying to learn. For erf networks, we had the option of initializing the forward
weights to zero. This not possible for ReLU, as the derivative at ReLU′(0) is manually
defined as 0. Therefore, the derivative of the activations in the gradient calculation will
always be zero when the forward weights are initialized as such and no updates will be
made to the weights. For the following experiment, we use the same input dimension
N = 250, as we used for sigmoidal networks. However, the complexity of the student
network is increased even further. Using a 250-4-2-1 teacher network and a 250-10-5-1
student network, K = 10 and M = 4. A smaller learning rate is used, η = 0.01. Some
preliminary testing indicated that the student overlaps Qik need not be initialized to
high values to observe long symmetric states. Therefore, the student-student overlaps
are changed to Qik = 0 for i 6= k. In Figure 34 we see a comparison of the evolution
of εg for both BP and FA. This graph represents a single run for both methods with
identical initial conditions. Here, BP goes through multiple plateau states before the
error asymptotically reduces to zero. When FA is used, it suffers from only one short
plateau state before the same convergent behaviour is shown. Figure 35a displays the
alignment angle for updates made by BP and those made by FA. Immediately noticeable
is the final angle being considerably higher than the same angle for overrealizable deep
erf networks. We can get a more detailed comparison by increasing α and showing the
evolution of εg on a logarithmic scale, this is shown in Figure 36. The average of n = 5
simulations is shown in blue, the individual simulations are included in grey. For many
runs, using BP can result in long unspecialized states. When FA is used, the plateau
states are fewer and significantly shorter.
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Figure 34: Generalization error εg for a single run with identical initialization, an over-
realizable scenario with a 250-4-2-1 teacher network and a 250-10-5-1 student network
with ReLU activation.

(a) (b)

Figure 35: Alignment angle between the updates made by BP and by FA for an over-
realizable scenario with a 250-4-2-1 teacher network and a 250-10-5-1 student network
with ReLU activation.
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(a) (b)

Figure 36: (a) Empirical generalization error εg for BP for a 250-4-2-1 teacher network
and a 250-10-4-1 student network with ReLU activation. The results are averaged over
n = 5 simulations, the individual runs can be seen in grey. (b) The same situation for
FA.

4.3 Discussion

For deeper erf networks with 2 hidden layers, the performance of FA is comparable to
BP in many situations. In perfectly realizable and overrealizable scenarios shown in
this section, FA can be at least as effective as BP. Figure 25 confirms this for realizable
scenarios, as the average decrease of εg is very similar once all plateau states are broken.
For particular initial conditions, we can see that FA can be used to get out of a loss
plateau earlier. This fact is showcased in Figure 22 showing the rapid decrease of εg
after the system breaks the symmetry. This rapid decrease comes earlier in the learning
process for FA. We can see exactly what happens in Figure 24, showing the order param-
eters Rim in blue for BP. In the early stages of learning, student 1 tries to specialize and
anti-specialize to 2 teachers simultaneously, whereas student 2 has no specialization. For
FA, shown in red, the symmetry in Rim is resolved at an earlier stage. As in the results
for shallow networks, when a plateau state is reached, the updates made by FA de-aligns
with the updates made by BP, shown in Figure 23b, 28b and32b. In overrealizable deep
erf networks, FA breaks the plateau states earlier on many individual simulations in
which BP does not. This can be seen in Figure 29, where the individual runs in grey of
FA reach a state of convergence at an earlier stage of learning than most of the individ-
ual runs for BP. However, the average in blue shows that BP has a faster decrease in εg.
This could be due to some fortunate initializations for BP. Moreover, this faster decrease
seems rather insignificant, as εg < 5−5 at the point in the training process where the
loss decrease of BP dips below FA. After all symmetric states are broken, we can see the
decrease of εg going from an exponential decrease to a smaller exponential decrease. For
some initial conditions, using both FA and BP, the decrease of εg on a single logarith-
mic scale can be asymptotically bound. In Figure 30a, two individual runs which have
this property are shown. This indicates that the decrease of εg has stopped following
an exponential decrease, instead having an algebraic power-law decrease α ∝ 1

α2 . The
graph in Figure 30b confirms this suspicion, by showing the evolution of εg on a double
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logarithmic scale for these two simulations. The tail of both graphs follow a somewhat
straight line, indicating that the rate of decrease changed. The measured slope confirms
that εg has stopped decreasing exponentially. This situation solely occurs when multiple
students share specialization with a teacher. This corresponds with the experimental
results for Soft Committee Machines performed by Frederieke Richert et al.[15], showing
that this situation can also occur in deeper networks.

If the different variant of FA is used where the gradient for the activation in the second
layer is changed, it does not show convergent behaviour. Instead, the learning will di-
verge after some point and εg stays high, as showcased in Figure 26. Results for various
learning rates are shown to indicate that the divergence is not related to a poorly chosen
η. At the point where εg starts rapidly increasing, the absolute values of the weights
in W start increasing rapidly as well. This divergent behavior is rather confusing, as
changing the weights in g′(·) only changes the magnitude of the updates. It might indi-
cate that the g′(·) term conveys important information that contributes to the alignment
for deeper networks. This information apparently gets altered in a manner that does not
allow the update steps to represent backpropagation. Another possible reason lies in the
fact that in the update for the second layer weights, both B and b are used. This may
hinder the ability for the system to find the proper alignment with the feedback weights.

In the overrealizable scenarios using networks with ReLU activation, we again observe
this faster breaking of plateau states when FA is used. These experiments shown in Fig-
ure 34 and 36, show BP suffering from more plateaus states of increased length compared
to the results for FA. However, it is unclear if this is due to the fact that the situation is
overrealizable, or simply because K is set to a high number. Resulting in more student
vectors that need to learn the rule. The convergence following the plateau states is faster
for BP. However, when the εg is already sufficiently low, the faster decrease of εg seems
less important compared to the loss decrease slowing down significantly in the early
stages of learning. Interestingly, the angle representing the alignment between updates
made by BP and those made by FA in Figure 35a is considerably high. The explanation
for this lies in the manner in which a student ReLU network can eliminate a redundant
student. As mentioned in section 2, if for all input vectors ξ the activation is negative,
the neuron will never be updated again. This situation can occur when a redundant
student is being phased out. All incoming weights Wi to a neuron in the second hidden
layer become negative over time and the activation will always be zero. These weight
vectors may not have any form of alignment with the feedback weights, possibly even
pointing in the opposite direction. This allows the angle for the alignment to be even
higher than the same angle in overrealizable learning scenarios using erf networks.

5 Conclusion

In this thesis, we have discussed a new learning technique for neural networks called
feedback alignment. This method can be used for learning in both shallow and deep
feedforward neural networks. The technique differs from the widely used backpropaga-
tion, which uses identical and symmetric weights in the feedback stage. We compared the
performance of feedback alignment to backpropagation using neural networks with the
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sigmoidal erf activation and networks with ReLU activation. Different learning scenarios
were used to compare the performance of feedback alignment with backpropagation.

To answer the first research question, it appears that FA can perform at least as ef-
fectively as BP in most learning scenarios used in the experiments with erf networks.
In realizable and overrealizable scenarios, the system changes the forward weights such
that the learning process will resemble backpropagation and εg will reduce to zero. Nei-
ther method has a clear advantage in terms of the convergence rate. In overrealizable
scenarios, we observed that the decrease of εg can change from exponential to power-law
in deep networks for both methods. The reason this happens more often is deeper net-
works is likely due to the increased complexity. For a shallow network, is easier for the
student to set the single components of v to zero. In deeper networks, the components
in W have to be considered as well and students sharing specialization will happen at
an increased frequency. This shared specialization in deep networks seems to occur more
often when FA is used, possibly explaining why the decrease in εg in generally slower
than BP when all plateau states are broken. In unrealizable scenarios, the rule cannot be
realized and a zero generalization error cannot be reached. Both methods will converge
to a system state in which εg is minimal.

The overall performance can differ quite substantially depending on the learning sce-
nario. For particular initializations of the rule weights and student weights, the learning
process can suffer from long symmetric states where the student has not specialized to
the teacher. In relation to the second research question, using FA in the update steps
can assist in breaking these unspecialized states in fewer discrete timesteps. The reason
for this is unclear. However, we observed that when such a plateau state is reached, the
alignment between the updates made by BP and those made by FA changes. When a
loss plateau is reached, the angle ∆hFA]∆hBP will almost exclusively increase. Essen-
tially, a plateau is a fixed point in the learning dynamics, which is unstable. When the
system is aligned, it behaves like backpropagation and when a fixed point is reached, the
system has more degrees of freedom compared to BP as the weights are not constrained
to be identical. This could be the reason that a plateau state is broken earlier. However,
this does not explain the reason why the angle always increases, indicating that there
is more theoretical understanding required of the learning dynamics when FA is used.
There seems to be a correlation between the complexity of the student compared to the
rule and the length and frequency of plateau states. In unrealizable scenarios, using
FA has no particular positive effect on loss plateaus, possibly even increasing the length
and frequency. For perfectly realizable scenarios, using FA might assist in earlier escape
from a loss plateau. However, this does not appear to by systematic, as changing the
initialization of the hidden layer weights for BP may achieve the same goal. In overre-
alizable scenarios, FA seems to have a fairly systematic advantage in terms of breaking
plateau states at an earlier stage of learning, especially in the training of deeper networks.

In relation to the third research question, networks with ReLU activation can be trained
using FA. However, a clear disadvantage is the probable need to use an overrealizable
scenario, as the activation function is not symmetric and the feedback weights are fixed.
However, in realistic machine learning situations, there are often more model parame-
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ters than there are training examples. Especially in deep learning, where networks can
have millions of adaptable weights. Interestingly, as in the results for networks with erf
activation, the breaking of plateau states in these overrealizable scenarios is assisted by
using FA, most notably in the deeper networks.

6 Outlook

In this section, a number of possible future extensions and improvements to this thesis
are outlined. These were not included in this project due to time or scope constraints.

6.1 Direct Feedback Alignment

In the paper by Arild Nøkland [9], a method is proposed where neurons receive teaching
signals from disconnected paths. The error is propagated directly from the output layer
to each hidden layer, using fixed random feedback connections. This novel principle,
called direct feedback alignment, is another step towards biologically plausible machine
learning techniques. Normal FA and BP require the error to travel backwards through
symmetric or other reciprocal connections. This in itself is not biologically implausible,
as cortical areas are known to be reciprocally connected [22]. However, the authors of [9]
question whether this is how an error signal is relayed from one area of the brain to more
distant areas. The feedback path becomes disconnected from the forward path, and the
layer is no longer reciprocally connected to the layer above. For a 3-layer network with
a single output unit, the gradients corresponding to the hidden layer update directions
are

δa1 = b1e· g′(a1), δa2 = b2e· g′(a2), (39)

where bi is a fixed random weight vector with appropriate dimension and ai are the
network activations at hidden layer i. If all hidden layers have the same number of
hidden neurons, we can use the same random vector for each layer update. For example,
if N = 100 and K = M = 4, we have a 100-4-4-1 network structure. This allows for
the same feedback vector b ∈ RK to be used in the update steps for both v ∈ RK and
W ∈ RK×K . For a short example experiment, overlaps are initialized with Qik = 0 for
i 6= k, Qii = 0.5 and Rim = 0. Rule constants are isotropically initialized Tmm = 1
and Tmn = 0 for m 6= n. All feature vectors are sampled from a Gaussian distribution
N (0, 1) and hidden units use the sigmoidal erf activation function. Figure 37 shows the
evolution of εg for DFA and FA for a single run with identical initial conditions. For this
particular initialization, using DFA results in an earlier escape from the loss plateau,
following is a similar convergence rate for both methods. This simple example indicates
that DFA can work at least as good as FA when the weights are updated using SGD. It
might be an even better method in the context of breaking plateau states. However, in
a future project, a more detailed comparison can be made between the effectiveness of
the two variations of feedback alignment.
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Figure 37: Evolution of εg for a single simulation of both FA and DFA with identical
initial conditions. A 100-4-4-1 network with erf activation is used.

6.2 Efficient Computing Improvements

All experiments performed in this project were done on a single computer, using no
parallelization or GPU speed-ups. This allows anyone to replicate these experiments
without the need of any high-powered computing equipment. However, this could mean
the simulations take a large amount of time, especially the experiments using deep
networks. For a future project, it would be interesting to use parallelization to get a more
accurate average from a larger number of simulations. Also, adding GPU computation
for the purpose of doing many large matrix products in a fraction of the time it would
take on the CPU. This would also allow for larger system sizes N to be studied.

6.3 Combination with Other Techniques

As mentioned, incorporating learning rate adaptation can speed up convergence. Also
interesting would be including the effect of weight decay on the performance of FA.
Different activation functions could be incorporated as well, like leaky ReLU [20] or the
Piecewise Linear Unit(PLU) [23].

Dropout regularization [24] is a technique used to prevent overfitting in deep neural
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networks, when few examples are provided. This method randomly shuts units off from
learning, which approximates training a large number of neural networks with different
architectures in parallel. It would be interesting to study the effect of dropout regular-
ization in combination with feedback alignment.

The rule network does not have to consist of fixed non-changing parameters. In a
process known as continual learning, the target network can change over time and the
learning system must be able to detect and track this concept drift [25, 26]. As the rule
changes, intuitively one assumes that the alignment between the updates made by BP
and those made by FA will also change. Therefore, the combination of FA and concept
drift could be worthwhile topic of research.

6.4 Improved Theoretical Understanding

While the setup of the student-teacher scenarios is based on theoretical learning dynam-
ics in large systems, the conclusions of this thesis are based almost entirely on empirical
results. It would be useful to supplant these results with a better theoretical under-
standing of the learning dynamics when feedback alignment is used in conjunction with
stochastic on-line gradient descent in multi-layer feedforward neural networks. This
could provide an improved explanation as to why the the updates made feedback align-
ment de-aligns with those made by backpropagation in plateau states where the loss
slows down. Moreover, if this de-alignment contributes to a faster escape from such a
fixed point.
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A Extended Methods and Initializations

This appendix section describes a number of extended explanations regarding the meth-
ods used and possible issues regarding the initializations and their solutions.

A.1 Initialization in Narrow Networks

Because we study the performance of FA in relatively networks with low width, we may
have to initialize our hidden-to-hidden and hidden-to-output weights in such a manner
that it represents wider networks. For example, in the thermodynamic limit, N → ∞,
any set of feature vectors sampled from a normal distribution N (0, 1), will also be
normally distributed, i.e. have 0 mean and 1 variance. This ensures that the magnitude
of these feature vectors will be significant enough. If we sample only few parameters
from N (0, 1), these properties are not guaranteed. This can hinder the performance
in a student-teacher scenario. In a 3-layer network, if some columns (weights coming
from a node) of the hidden-to-hidden weight matrix W for the rule network consist of
small values, the student network might see this node as not significant. The weights
coming from that node may be set to zero. This does not allow the student to perfectly
represent the rule, the training process will converge to a wrong local minimum and a
zero generalization error will not be achieved. Therefore, we can scale the columns W ∗

j ,
of the teacher network, such that their magnitude is high enough. Using a scaling factor
f , we can scale every W ∗

j as follows,

Wj =
Wj

||Wj ||f
. (40)

For example, if f is 1, this scaling forces all Wj to have unit norm. Obviously, each
vector component of the hidden-to-output weights v∗ is just a single value, a column
with length 1. For these values, we can exclude numbers below a certain threshold. As
the feedback weights are fixed, we want to perform a similar initialization process for
B and b. Ensuring that each row of B has significant magnitudes. Not doing this can
significantly slow down learning.

A.2 Alignment Calculation

In section 3, it was shortly explained how the alignment between FA and BP is calculated
for a 2-layer network. As the inverse cosine alignment between b and v,

θ1 = cos−1
b · v
||b||||v||

,

as the inverse cosine of two non-zero vectors of an inner-product space. The result of
b·v

||b||∗||v|| lies in the range [−1, 1]. If θ1 = −1, b and v point in the opposite direction of

each other. If θ1 = 1, they point in the same direction. If θ1 is 0, the two vectors are
orthogonal and completely uncorrelated. The inverse cosine converts this to an angle in
radials, between 0 and π. Converting this to an angle in degrees, we get an alignment
between 0 and 180 degrees. This angle represents exactly the angle between the hidden-
unit updates for FA and of that prescribed by BP. If a 3-layer network is used, we need
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also the angle between W T and B, We can easily get the average angle of all vectors in
W T and B by vectorizing both matrices. A vectorization is a linear transformation of
a matrix to a column vector. This column vector is obtained by stacking the column of
a matrix on top of one another. Vectorization of W T and B results in two long vectors
wv and bv. Again, we take the inverse cosine alignment between these two vectors

θ2 = cos−1
bv ·wv
||bv|| ||wv||

. (41)

The total alignment between the updates for FA and BP for both layers is the average
over the angle of both layers.

θ =
θ1 + θ2

2
. (42)

B Additional Results

This appendix section showcases a number of additional results related to the experi-
ments in section 3 and 4 in no particular order. These results were not shown in these
sections because their relevancy was not considered important enough to contribute to
the conclusions made in this thesis.
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Figure 38: Evolutino of the student-student overlaps Qik for a 500-4-1 student and
teacher network with erf activation. After initial symmetry, all students gain zero overlap
with other students. Their magnitude finalizes at 1, same as all teacher vectors, implying
that a student has either fully specialized or anti-specialized to a teacher. As the results
sections already contained a larger number of graphs, the Qik graphs were not shown in
there. Moreover, they usually directly correspond with the Rim graphs, depending on
the realizability of a scenario.
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Figure 39: Order parameters Rim in a situation where the decrease of εg goes from
exponential to power-law, as in Figure 30a. Here, multiple students have some form of
shared specialization to a teacher
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Figure 40: Evolution of εg for a 100-10-5-1 student and teacher network with erf activa-
tion for both BP and FA with identical initial conditions. This graph is shown here as an
indication that the proficiency of FA to break plateau states in overrealizable scenarios
shown in section 3 and 4 is due to the increased complexity of the student compared to
the rule. Instead of the reason being that FA performs better when the width of the
hidden layers are larger in general. Of course, more simulations are needed to draw any
decisive conclusion, which is why this graph was not included in the experimental result
sections
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Figure 41: The average angle between the updates made by BP and FA for shallow
sigmoidal erf networks for n = 10 simulations for each scenario. This graph showcases
that when the scenario is perfectly realizable, the angle is lowest. For overrealizable
scenarios the angle is highest.
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