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Abstract

In a recent paper by Talsma et al. (2020) anti-Hebbian Spike Time Dependent Plasticity
(STDP) results were produced in a semiconducting single-walled carbon nanotube (s-SWCNT)
inked bottom gated field-effect transistor (FET) by pulsing the device with pulse-pairs with
varying delays. An attempt is made to reproduce these results using data on the plasticity of
the device, but this proved ineffective. Therefore two new experiments were performed to mea-
sure the plasticity of a similar device when pulsed with varying pulse lengths and varying gate
voltages. Using two Generalized Additive Models (GAMs) to describe the non-linear relation
between pulsing and conductance for positive and negative pulsing it is possible to produce
source-drain current values. The simulation is able to give insight into how the characteristics
of the device affect weight change using the source-gate bias as the main factor in conductance
change by producing a weight change graph over varying delays between the pre- and postpulse.
The anti-Hebbian results are the result of a misassignment of the pre- and post-synaptic labels
to the source-drain and gate terminals, in actuality the synaptic transistor produces Hebbian
STDP results. The simulation produces STDP-like results for negative delays due to the polarity
switch of the bias pulse when the delay becomes negative. This would make the device unable
to perform proper STDP and thus less suitable for integration into artificial neural networks.

1 Introduction
The field of artificial neural networks (ANNs) started with a physical implementation of a compu-
tational model of image recognition after which the field continued in digital form. Roughly 60
years later the field is making its return to the physical world as the field of material science is pro-
gressing in making electronics with variable conductance that could serve as artificial neurons and
synapses. This paper lays down a theoretical framework starting with the history of artificial neurons
and ANNs, segueing into electronics such as memristors and synaptic transistors, and how these can
be used for machine learning. This thesis then focuses on the simulation of the carbon nanotubes
(CNT) field-effect transistor (FET), or synaptic transistor, discussed in Talsma et al. (2020). The
synaptic transistor (a single-walled carbon nanotubes transistor, s-SWCNT) shows a variable con-
ductance when pulsed with either positive or negative pulses. Interestingly, the author reports an
anti-Hebbian spike-time dependent plasticity (STDP) response when the device is pulsed on both
its gate and source-drain terminal. By analysing the characteristics of the transistor and simulating
it I hope to discover what causes the STDP behaviour. Furthermore, the creation of a simulation
allows for exploring effects of alterations to the transistor. This, in turn, can guide synaptic transis-
tor development. Through this research project I aim to explain the results in Talsma et al. (2020)
by simulating the synaptic transistor based on the currently known data. The anti-Hebbian results
are counter-intuitive when we only take into account the plasticity measurements. These imply that
positive (bias) pulses cause weight increase not decrease and vice versa for negative (bias) pulses.
Is it possible to replicate the anti-Hebbian STDP response of the synaptic transistor in simulation
by incorporating new data on the plasticity given different pulse lengths and pulse voltages into a
statistical model?
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2 Theoretical Framework

2.1 Perceptron history

Fig. 1: A researcher pictured next to the camera
of the Mark I Perceptron, part of an image recog-
nition experiment (Rosenblatt, 1961).

The onset of physical artificial neural net-
works starts with Frank Rosenblatt’s per-
ceptron (1958) when he created a ma-
chine based on his computational model
of image recognition during his time at
the Cornell Aeronautical Laboratory.
Wanting to gain a better understanding of how
organisms process information, and the work-
ings of the biological neuron and its ability to
learn. In the aforementioned paper he explains
the workings of the perceptron as an implemen-
tation of statistical separability. Noting that the
perceptron is capable of spontaneous concept
formation: “If the system is exposed to a ran-
dom series from two ‘dissimilar’ classes, and
all of its responses are automatically reinforced without any regard to whether they are “right”
or “wrong”, the system will tend towards a stable terminal condition (...) i.e. the perceptron will
spontaneously recognize the difference between two classes.” This is analogous to a linear classifier
performing unsupervised learning, which is exactly what the perceptron does. The perceptron was
in fact the first physical artificial ‘neuron’ of its kind and was by all means meant to be a physical
system. Although his idea had first taken shape through simulation on the IBM 704 CAL supercom-
puter, Rosenblatt created a physical perceptron: the Mark I Perceptron (Fig. 2)

Fig. 2: The Mark I Perceptron (Rosenblatt, 1961).

The perceptron inspired the Multilayer Per-
ceptron (MLP) created by Rumelhart which
used the error back propagation algorithm to al-
ter weights between input, hidden, and output
layers (Rumelhart, Hinton, & Williams, 1986a,
1986b). The perceptron itself could only alter
weights between the hidden and output layers
through use of the error correction algorithm.
The MLP was one of the first Artificial Neu-
ral Network (ANN) algorithms and ushered in
decades of machine learning research, specifically within neural networks.

2.2 Introduction on synaptic transistors
The use of Neural Nets as a form of Artificial Intelligence has been a field of research since McCul-
loch and Pitts (1943) created the first computational model for neural networks, which is the model
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that Rosenblatt’s perceptron was build on. Rosenblatt’s physical implementation was limited by the
state of electronics at the time using an array of potentiometers to represent the connection weights,
it was therefore large and all connections between its neurons needed to be (randomly) connected by
cable. Since Rosenblatt’s invention developments in this area have been achieved using simulations
of neurons on typical Von Neumann-machines, the architecture on which general computers are
build. For decades, attempts to reintroduce these neural nets back to physical implementations has
made use of low-energy silicon-based complementary metal-oxide semiconductors (CMOS) ana-
logue circuits. However, recreating the synaptic functions of their biological counterparts has faced
integration problems as multiple transistors are needed to simulate one synapse. Recently, the de-
velopment of memristors and synaptic transistors has given an interesting alternative to their CMOS
counterparts (Dai et al., 2019). These synaptic transistors are multi-terminal devices through which
a current flows and are often made out of purified carbon nanotubes (CNTs). The current is adapt-
able through use of voltage pulses and can thus serve as a weighted connection between neurons as
is the function of synapses in the brain.

What’s interesting about these devices is their energy consumption, or rather their lack thereof.
Typical computer architectures have given us AI that can perform on superhuman level yet their
energy needs are enormous. Google’s AlphaGo, for example, is able to perform games of Go on
world champion level after just a few days of training. However, the first few versions of AlphaGo
used up to 40.000 watts of energy. In comparison the human brain only seems to use about 20W
and it does extremely well in pattern recognition, general problem solving, visual processing and
working memory tasks including becoming a world champion in Go (Drubach, 2000; AlphaGo
Zero: Starting from scratch, n.d.). Creating architectures based on the biological principles in the
brain may allow us to create a generation of computers with extremely low energy usage. With the
worldwide need for energy for ICT increasing from 3.9% in 2007 to 4.6% in 2012, doubling every
10 years, producing energy efficient computers would decrease that need (Van Heddeghem et al.,
2014).

2.3 Memristors
A memristor (or memory resistor) is a two-terminal circuit that is seen as the missing link in elec-
trical circuitry (Strukov, Snider, Stewart, & Williams, 2008). Three fundamental elements were
already known: the resistor, inductor, and capacitor, each describing a relation between current (i),
voltage (v), charge (q) and flux (φ). An element defined by the relationship between q and φ that
could “remember” its resistance was missing: the memristor (Chua, 1971; Adhikari & Kim, 2012).

In essence a memristor is a device that is able to have an alterable resistance through application
of an external bias voltage that, depending on the device, remains stable even when the device is in
an OFF-state. Some devices are able to sustain the same resistance over long periods of time after
altering its last state.

Memristors are useful as base elements in biologically-inspired neural nets and have the potential
to be used as a weighted connection between artificial neurons. For example it is possible to use
pairs of Phase Change Memory (PCM) units as an artificial synapse (Suri et al., 2011). By placing
these units in a crossbar array, providing a fully connected network, it is possible to produce perfect

6



pattern classification results (Prezioso et al., 2015). Memristors are a viable option in the search of
energy efficient computing resources. Although exact energy use varies among different types of
memristive devices, sub-pJ level (one millionth-millionth of a joule: 10−12J) energy consumption
has been reported per synaptic event (Yu et al., 2012).

2.4 Synaptic Transistors

Fig. 3: “Schematic representation of the bottom-
gate device geometry used and of the terminal
used for the presynaptic and the postsynaptic sig-
nal” (Talsma et al., 2020)

Fig. 4: Possible conductance states in the CNT
transistor from (Kim et al., 2017). The potentia-
tion and depression show a strong non linearity
(NL) and variation margin (ΔG)

Synaptic transistors are a kind of memristive multi-terminal device. Multiple memristors are needed
to represent a synaptic weight and complex circuitry is needed to target a cell. A pair of identical
PCM units can represent a synaptic weight by making each device contribute either positively (Long
Term Potentiation; LTP) or negatively (Long Term Depression; LTD) towards the output CMOS
neuron current (Suri et al., 2011). Instead, synaptic transistors show similar characteristics, but can
solely represent a synaptic weight, have better stability, are easier to control, and can be produced
through a wide array of materials (Dai et al., 2019).

The synaptic transistor (see Fig. 3) possesses three terminals: a grounded drain terminal (D),
a source electrode (S) through which prepulses are sent, and a gate electrode (G) through which
postpulses are sent (Talsma et al., 2020). Current runs from the source electrode to the drain elec-
trode. The resistance (and conductance) of a synaptic transistor between source S and drain D can
be altered through the use of an external bias pulse between its gate G and source S. The use of
pre- and postpulses on different terminals makes them easier to implement circuitry for. Synaptic
transistors are designed in such a way that different voltage levels will alter the resistance in a dif-
ferent way, this is called hysteresis. The hysteresis in these devices causes the levels of resistance
that can be reached through negative pulsing (often, but not always, causing weight depression) and
positive pulsing (causing weight potentiation) to differ. The current levels over positive and negative
pulse trains are non-linear (see Fig. 4 & 7). This non-linearity might facilitate higher classification
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precision when used in a network. Synaptic transistors often utilize floating gates in the dielectric
beneath the CNT network. This gate is made of a conductive material such as gold and is able to
increase the non-linearity of the conductance in the device (Kim, Yoon, Kim, & Choi, 2015; Diorio,
Hasler, Minch, & Mead, 1996). Some synaptic transistors, as well as an array of other memristive
devices, have been shown to elicit (a)symmetric STDP weight change responses when swept with
pre- and postpulses with varying delays (Kim et al., 2017; Dai et al., 2019; Talsma et al., 2020).

2.5 Spike-Time Dependent Plasticity in machine learning

Fig. 5: A Hebbian STDP response constitutes a
tapered weight increase when postpulse follows
prepulse (∆t > 0) and decrease (∆t < 0) when pre-
pulse follows postpulse, plus its simplified form.
(Kim et al., 2017)

The STDP behaviour
of the synaptic transistor indicates that it might
be able to facilitate learning. Using the STDP
reaction of synapses to correlated spiking
of pre- and postpulses isn’t a new concept and
has been successfully used in ML applications.
STDP is an implementation of the Hebbian
rule (Hebb, 1949) that we observe in neurons
and has coined the famous phrase: ‘Neurons
that fire together, wire together.’ The typical
STDP curve shows a weight increase when
a prepulse is closely followed by a postpulse,
the weight increase tapers off when the delay
increases (long term potentiation). A symmetry
occurs for negative weight change when
the the prepulse is observed after the postpulse
(long term depression). This curve and its
simplified form can be seen in Fig. 5. Neuron
models that use STDP as a learning rule as an
update from the simple perceptron have been
developed through the years (Oja, 1982). Such
STDP neuron models have been used for image
classification in both shallow (Diehl & Cook, 2015) and deep neural networks (Lee et al., 2018;
Bahroun & Soltoggio, 2018) and variations using modulated STDP similar to dopamine reactions
in the brain can produce proper classification (Florian, 2007; Mozafari et al., 2018). Not only
Hebbian learning rules can be used in neural networks. When we flip the curve: LTP when post
follows pre and vice versa, we get an anti-Hebbian STDP curve. Which allows for neurons to learn
to respond to additional principal components of the given data (Carlson, 1990). As described in
the following section an anti-Hebbian STDP response is shown in the synaptic transistor we
investigate in this paper.

2.6 Research Focus

8



Fig. 6: The synaptic transistor shows an anti-
Hebbian response when pulsed with pulse-pairs
with varying delay. Increasing the weight when
postpulse (blue) is followed by prepulse (green)
and vice versa. The inset shows a pair of square
signal pulses with a delay of +0.02ms

The focus of this research project is the
simulation of the semiconducting single-walled
carbon nanotube (s-SWCNT) inked
simple bottom-gate field-effect transistor (FET)
described in Talsma et al. (2020) with the
goal of explaining experimental results. The
paper describes an anti-Hebbian Spike-Time
Dependent Plasticity (STDP) response in
its weight change when the device is subjected
to a backward sweep of pulse-pairs of ±20V
after a reset sequence bringing the conductance
to a very low state. These pulse-pairs have a
delay δt between the pre- and postpulse (green
and blue lines respectively, see inset Fig. 6)
ranging from +50 to −50ms. In this backward
sweep the device is pulsed with pulse-pairs
with a range of delays going from δt =+50
to −50ms, the resulting weight change graph
is shown in Fig. 6. The red dashed line in the
inset of this figure correlates to the source-gate
bias. It is assumed that this bias is what drives the conductance change in the synaptic transistor.
The change in synaptic weight is defined by ∆W =

ISD,a f ter−ISD,be f ore
ISD,be f ore

. By simulating the weight
change of this transistor through the data given in the paper I hope to understand what mechanics of
the transistor are essential to this response. Most apparent are the plasticity measurements (Fig. 7)
and the hysteresis curve (Fig. 8). These mechanics are examined more closely in the following
section.

2.7 Relevant mechanics

Fig. 7: Plasticity measurements on the Source-
drain current for 2000 consecutive positive and
negative pulses: “One dot represents a current
measurement, directly followed by a pulse and a
delay before the next measurement.”

Indicative of the transistor behaviour
are the plasticity measurements shown
in Fig. 7 and the hysteresis in the transfer
characteristics shown in Fig. 8. Note that
when the current flowing through the transistor
(conductance) increases, the resistance
decreases and vice versa. For congruence
with the figures shown in this paper we only
discuss the conductance, not the resistance.
A pulse-train measurement (PTM) is able
to demonstrate the plasticity of a device. The
PTM is performed by modulation of only one
of the terminals while keeping the other one
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constant and pulsing the device one polarity at
a time (Santschi & Stanton, 2003). The source-drain channel is used as a read channel, any mention
of read-current IDS is measured on this channel. Fig. 7 shows the change in read-current (read at
2V) of the FET after having been pulsed with strong negative or positive pulses (±25V). The
transistor shows a gradual increase in conductance when pulsed with positive pulses and a very
strong decrease after just a few negative pulses (note that the y-axis is in log-space). The transistor
thus shows very strong reset behaviour on negative pulsing.

Fig. 8: “Transfer characteristics of the tran-
sistor operating in an inert atmosphere, a pro-
nounced hysteresis is shown depending on the
voltage scanning direction”

The transfer characteristics
(Fig. 8) are extracted by clamping the
voltage on the drain electrode, in this example
on ±2.5V, while sweeping the gate voltage
forward, and backward from −100V to and
from 100V. The transfer characteristics show
that on forward and backward sweeping with
positive and negative voltages (red and blue
respectively) the conductance is subject to the
strongest electron trapping when approaching
±25V: here |IDS| is lowest thus most electrons
are trapped and don’t contribute to the
current. However the minima differ on forward
and backward sweeps for the same voltages.
This hysteresis is responsible for the height of
the voltage threshold of conductance change in
CNT transistors such as the synaptic transistors
and CNT field effect transistors (CNTFETs).
When approaching these minima electron
trapping occurs, electron release occurs when
moving away from the minima. The plasticity
measurements have likely been performed with

±25V pulses as the voltage thresholds (the minima) are near these values. Ideally the conductance
of a synaptic transistor would change with increasing voltages in a (semi-)linear fashion, yet
because of electron trapping a hysteresis is formed making the relationship between conductance
change and voltage non-linear: the conductance saturates as voltage increases or the device is
pulsed consecutively. Thus a difference ∆VGS is created between the effective gate-source voltage
(VGS), the amount sensed by the CNTFET, and the applied VGS, the amount of applied bias to the
bottom gate. When the transistor is put into an ON state as VGS is applied electron trapping occurs
around the SiO2 interface. ”Therefore ∆VGS progressively increases due to the charged traps
surrounding the CNTs, which causes the drain current (ID) to decrease as a function of time.” (Park
et al., 2016) Such an electron trapping effect is shown in Fig. 9. This decrease in weight change as
the potentiation pulse length increases might be caused by saturation of the dielectric which
surrounds the floating gate. When subjected to a pulse the dielectric becomes unresponsive to
pulses larger than an unknown length. This saturation indicates that longer pulses might not be as,
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Fig. 9: During a 2s pulse (from t=5 to t=7) an electron-trapping effect is shown causing the source-
drain current IDS to drop while being pulsed (Talsma et al., 2020)

or more, effective as shorter pulses.
In order to properly simulate the synaptic transistor we need to investigate the mechanics described
above. First, the plasticity of the device obtained through a PTM indicates how much the
conductance changes by a single pulse at any given moment. Second, the transfer characteristics
indicate at what voltages pulsing is most effective. Third, the saturation influences how much the
conductance changes with pulse length.

2.8 Observations, Expectations, Assumptions, and Unknown mechanics

(a) (b)
Fig. 10: A pair of square signal pulses of 20V with a delay of ±0.02ms

As described in Section 2.6 in order to measure the STDP response of the synaptic transistor,
current is measured while subjecting the transistor to pulse pairs of ±20V with varying delays from
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δt =+50ms to δt =−50ms. The final bias, i.e. the difference between the voltage over the source
and gate electrodes, is expected to drive the conductance change. In the simulation that we perform
in this paper solely the bias-pulse is processed as a driver of conductance change. See Fig. 10 for
an example of such a pulse pair. The pre- and postpulses are each 100ms long, 50ms for each
polarity. The bias pulse (in dotted red) shows three peaks, one stronger than the other two. For
positive delays (δt > 0) the stronger peak is positive and the weaker peaks are negative. For
negative delays (δt < 0) the stronger peak is negative and the weaker peaks are positive. In our case
the weaker peaks are ±20V and the stronger peak is ±40V. The length of the stronger bias pulse
peak (occuring between δt > 0.05 & δt < 0.07) grows larger as |δt| grows towards 50ms. When
|δt| grows past 50ms the bias pulse shortens as the two pulses move away from each other. The
source-gate bias is defined as the sum of applied biases (Ipre− Ipost). Given the mechanics
described in this and the previous section we can deduce the following:

2.8.1 Observations

1. The plasticity measurements indicate that positive pulsing causes weight increase and
negative pulsing causes weight decrease.

2. Weight increase due to positive pulsing is gradual, but negative pulsing causes a strong
weight decrease.

3. The transfer characteristics indicate that pulsing with voltages around 25V is most effective
for weight change to occur, but the exact effect of stronger (and weaker) pulses is unknown.

4. The saturation effect indicates that there is some limit to the effectiveness of pulse length,
longer pulses might not elicit stronger conductance change. The exact maximal pulse length
is unknown.

5. However, the plasticity measurements also indicate that continued pulsing does elicit
continued conductance change. No limit seems to be reached.

Observation 4 & 5 seem to contradict each other. As no maximal pulse length caused by the
saturation effect is known and continued pulsing elicits continued conductance change we assume
that longer pulse lengths elicit stronger conductance changes. Given these observations the
response of the synaptic transistor is expected to exhibit the following response when subjected to
STDP measurements such as the one in Fig. 6:

2.8.2 Expectations

1. Pulse length expectation: As the delay grows towards |δt|= 50ms weight change increases,
i.e. longer pulse lengths elicit stronger conductance change

2. Pulse direction expectation: Pulse pairs with positive delay (δt > 0) cause positive weight
change and vice versa due to the high voltage bias-pulse peak.
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3. Stronger negative pulse expectation: The effect of negative pulsing, and thus negative
weight change, is stronger than that of positive pulsing.

A note on the pulse direction expectation (2) is that since the transistor shows very strong reset
behaviour (strong reaction to negative pulsing) in the case of positive delay the pair of weaker
negative peaks might overpower a stronger positive peak. More data regarding the plasticity with
different voltages is needed to assert this. Taking these expectations its possible to sketch an
expected STDP response. For this sketch I take the transistor in a low-conductance state, as it is
when starting the plasticity measurements. This means the device starts in a conductance state of
5% of the whole range of conductance given by the plasticity measurements. It is also assumed that
the effect of 40V pulsing is stronger than that of 20V pulsing, meaning the weaker peaks of the
bias-pulse are not stronger than the stronger 40V peak. Furthermore, as in the original STDP
results, the device is swept backwards from +50ms to -50ms. The expectations listed above would
result in the response shown in Fig. 11.

Fig. 11: Expected STDP response of the transistor given our assumptions.

In order to guide this simulation research I reiterate the unknown mechanics of the transistor.
Gaining an understanding of these mechanics will allow for simulations that are closer to the truth.

1. The effect of pulse lengths shorter or longer than 10ms on the gate terminal.

2. the effect of voltage lower or higher than ±25V on the conductance when applied to the gate
terminal.

2.9 Comparing expectations to the s-SWCNT-FET’s STDP response
Comparing our observations of the STDP response we observe that the pulse length (1) & pulse
direction expectation (2) don’t hold. In the STDP response we observe that it is anti-Hebbian and
its response is strongest when |δt| is low. This breaks both expectation 1 and 2. The stronger
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negative pulse expectation (3) does hold, as the negative weight change is stronger than the positive
weight change. Fig. 12 shows the discrepancies between our expectations and the response. These
discrepancies are stated as follows:

2.9.1 Discrepancies

1. Tapering discrepancy: at a point where the length of the bias-pulse peaks (both the strong
and weak peaks) is maximal almost no weight change occurs while it is maximal at low |δt|,
breaking the pulse length expectation (1).

2. Direction discrepancy the weight change direction breaks the pulse direction expectation (2)

The tapering discrepancy (1) could be explained by the saturation effect shown in Fig. 9, however
Talsma states that no saturation occurs: “the effect of the applied pulse width on the transient
behavior of the synaptic weight is examined (see Figure 3b). (Figure 9 in this paper) The current
drops over a pulse width of 2 s, which indicates that electron trapping is not saturated in the pulse
width time.” which contradicts his own findings. Furthermore, it is important to note that the STDP
results are obtained through a backwards sweep of pulsing with pulsepairs. Starting at +50ms the
device is swept with pulsepairs of varying delays to -50ms. This makes the tapering phenomenon
even more peculiar. The strong weight change as soon as δt becomes negative can possibly be
explained by the lowering of the conductance state until the peaks of the bias-pulse flip and
suddenly cause strong weight change, but the strong weight change as δt reaches 0 can’t be
explained by that fashion. This also means that the STDP measurements observed are not
independent, but instead rely on the sweeping to work.

Fig. 12: Discrepancies with the given expecta-
tions of the STDP measurements. Adapted from
(Talsma et al., 2020)

The direction discrepancy
(2) is incongruent with the plasticity
measurements as a pulse-pair with positive
delay δt > 0 contains a positive bias-pulse
peak and should thus cause positive weight
change. The same can be said for negative
delay δt < 0 as pulse pairs with negative
delay contain a strong negative bias-pulse peak
and should thus cause negative weight change.
This isn’t the only inconsistency in the paper.
Fig. 13 shows the weight change of the FET
caused by a pulse-pair with a flipped polarity,
the positive polarity first (note that the inset is
different). Opposed to the pulse-pair discussed
earlier here positive delay causes a stronger
negative bias-pulse peak and vice versa.
However, the STDP response is still of an anti-Hebbian nature. This indicates that it might not be
the bias-pulse that drives the conductance change.
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Fig. 13: STDP response of the s-SWCNT-FET to a pulse-pair with positive-first polarity (Talsma et
al., 2020)

Another contradiction is in the way the author assigns the pre- and post-synaptic function to the
different terminals as shown in Fig. 3. The authors assigns the pre-synaptic connection to the
source terminal and the post-synaptic connection to the gate terminal. In an overview of
neuromorphic nanoelectronic materials by (Sangwan & Hersam, 2020) an artificial synapse based
on charge trapping, such as the subject of this paper, is discussed. They stated that the gate terminal
acts as a connection for pre-synaptic neurons and it facilitates writing. The source and drain
terminal act as a connection for post-synaptic neurons and is used as a reading terminal. A similar
remark is made by Diorio et al. (1996) stating that the drain or source current is typically selected
to be the synapse output, and thus connects to the post-synaptic neuron. A schematic with the
proper assignment is shown in Fig. 14. This coincides with the data given in Talsma’s paper as the
PTM is performed with potentiation on the gate terminal and read currents are measured from the
source-drain terminal, but is not consistent with the assignment in Fig. 3. This entails that the curve
in the STDP measurement results should be flipped horizontally as the pre- and postpulse are now
switched, causing positive delay to be negative delay and vice versa resulting in Fig. 15. The STDP
measurements of the synaptic transistor would therefore actually show evidence of a Hebbian
learning rule, which coincides with the results shown in Kim et al. (2015). However, this still does
not explain the results seen in Fig. 13. An investigation into the mechanics of the synaptic
transistor is needed to solve these discrepancies and test the made expectations.
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Fig. 14: Schematic of a synaptic transistor utilizing a floating gate such as the one discussed in this
paper. Sangwan and Hersam (2020) assign the pre-synaptic terminal to the source-drain and the
post-synaptic terminal to the gate.

Fig. 15: Given the possible misassignment of the pre- and post-synaptic terminal the STDP mea-
surements should be flipped horizontally. Adapted from (Talsma et al., 2020).

In order to discuss the simulations their results will be tested to a set of expectations given in
Section 2.8 and whether they solve the discrepancies given in Section 2.9. How these relate to the
STDP curve is shown in Fig. 12. At each step data is obtained that describes a characteristic of the
device and is added to the simulation. An attempt is made to describe how this data adds
complexity to the simulation, and if that added level of complexity brings the resulting delay graph
closer to the results produced by Talsma et al. (2020).
As mentioned before I believe that a mistake has been made regarding the assignment of the
terminals of the synaptic transistor and their biological counterparts. To repeat, it seems that the
gate terminal should be assigned to the pre-synaptic neuron and the source-drain terminal to the
post-synaptic neuron as is shown in Fig. 14. The delay graphs produced in this paper should thus
be compared to the STDP results shown in Fig. 15 where the results are flipped horizontally as
positive delay become negative delay and vice versa. This solves the direction discrepancy (2) for
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the STDP results shown in Fig. 6. However the results in Fig. 13 remain unanswered, here an
inverted pulse-pair (positive polarity first) causes weight change in the same direction as a negative
polarity first pulse-pair. One should also keep in mind that the delay graph produced by Talsma et
al. is a results of a backward sweep from δt =+50ms to δt =−50ms without resetting the device
in between pulse-pairs. To summarize, in order to be able to properly investigate the effect that the
bias-pulse has on the conductance of the device we need to know what the effects of different
pulse-lengths are on the conductance state, as with varying delays the length of the bias-pulse peaks
change, and we need to know what the effect of different voltages are on the conductance to
properly process the weaker ±20V and the stronger ±40V peaks.

3 Methods, Results & Discussion per Simulation
In order to solve these discrepancies I propose to simulate the synaptic transistor through a
statistical model using pulse train measurements. This will allow us to investigate the unknown
mechanics as well as test the expectations and discrepancies by evaluating them with the simulated
STDP measurements. Three simulations are performed, each using new data gathered based on the
needs created by the previous simulation. This section first describes the transistor simulation
requirements, the programming languages used, the statistical framework and data preparation, and
the device used for the new plasticity measurements.
Per simulation a description is given of the data that the statistical model uses, how each simulation
works, the produced STDP measurements, and a discussion based on its evaluation. For each
simulation a conclusion is made as to what extra data is needed in an attempt to make the reader
understand how the two experiments for simulation 2 & 3 were devised.

3.1 Transistor simulation
The goal of the simulation is to produce a delay graph by backward sweeping the simulated
memristor with pulse-pairs, starting with positive delay sweeping towards negative delay. Multiple
simulations are performed, each simulation uses a regression model fit to the obtained experimental
data, to get a sense of what the contribution is of each characteristic to the STDP measurements,
each iteration adding more predictors to the regression model. The simulation of the synaptic
transistor will be written in Python and the statistical model will be produced in R. In order to
produce the delay graph a simulation is needed that produces current values I, analogous to the
source-drain currents IDS measured. The simulation would need to have the following
characteristics:

1. Able to produce a read-current value analogous to the source-drain current

2. Able to produce a plasticity response such as in the PTM measurements

3. Able to be pulsed with both negative and positive voltages

4. Able to be pulsed with pulses of varying voltages
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5. Able to be pulsed with pulse-pairs of varying delays

6. Able to process a source-gate bias given a pulse-pair

7. Able to be reset to a value within a range given by the statistical model

8. Able to change its behaviour given a statistical model fed with transistor data including, but
not limited to: plasticity measurements, voltage threshold measurements, and saturation
measurements.

Similar to the STDP measurements in Talsma et al. (2020) a delay-graph will be produced by
performing a backward sweep of delayed pulses with a delay from +0.05ms to −0.05ms with no
reset sequence in between pulsing. Each simulation will be started in a low-current state as both the
original STDP measurements and the PTMs were performed after a reset sequence on the transistor.
To this effect the starting current of the simulation will be the average first current measurement of
all used PTMs for the statistical model which amounts to about 5% of the total conductance range
in the data. The simulation consists of three parts: first, an array of 100 pulse-pairs with differing
delays are constructed with a corresponding bias-pulse, starting with δt =+0.05ms to
δt =−0.05ms. Second, each bias-pulse is fed to a statistical model that returns the next current
value. These two steps repeat until the whole array of pulse-pairs is processed, each pulse-pair
returning a new conductance value from the statistical model. Finally, the transistor’s current and
the weight changes for each bias-pulse are recorded to produce a delay graph.

3.1.1 Processing pulse-pairs

The pulse-pair is created by making two separate square wave of one period, each 100ms long.
Using python’s scipy package, the signal.square() functions allows us to make these (Virtanen et
al., 2020). Each pulse is contained in an array (pre[t,v], and post[t,v]) consisting of paired values
(t, v) describing time and voltage. To implement the delay the two arrays are padded with zeroes
until len(array) = tpulse +δt where array is either of the two arrays, tpulse is the pulse length, and
δt is the delay. If the delay is positive then post[t,v] is rolled to the right by |δt| such that the
postpulse occurs after the prepulse. If the delay is negative then pre[t,v] is rolled to the right by |δt|
such that the postpulse occurs before the prepulse. Then, both arrays are padded with zeroes such
that the first and last values of both arrays are the same. The starting value being (0, 0) and the
ending value being (tn, 0), where tn > max(pre[t], post[t]). When both pulses are created the
bias-pulse array is created bias[t,v] = [pre[t], pre[v]− post[v]]. The result is an array with pairs of
time and voltage values. As it is the aim to incorporate pulse length into the simulation this array is
transformed into an array of pulse durations and voltages bias[tpulse,v].
During the simulation an array of bias-pulses is given to the statistical model. Each bias-pulse
consists of multiple pairs of pulse durations and voltages [tpulse,v] (e.g. one such pair looks like
[tpulse = 2ms,v =+20V ] another like [tpulse = 2ms,v =−40V ]). Each pair [tpulse,v] and the current
conductance Iprev of the device is given to the corresponding GAM (upward GAM for positive
voltage and downward GAM for negative voltages) each set of values giving back a new
conductance value that is then used with the next voltage-pulselength pair [tpulse,v] and given to the
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model. The conductance at the end of a bias-pulse is compared to the conductance before the
bias-pulse was given and is saved as the weight change for the delay graph. The exception to this
process is simulation 1 which uses the current conductance to infer an estimated pulse number.
This pulse number is used to infer the next conductance value.

3.1.2 Statistical model & data preparation

In order to produce read current values I a statistical model is made using non-linear regression
given a set of pulse lengths tpulse (simulation 2), gate voltages V (simulation 3), and the previous
current values Iprev. The statistical model should produce results as similar to the data as possible,
thus non-linear regression is used aiming to get high R2 values explaining as much deviance as
possible. As no classification is performed, nor any extrapolation to other devices overfitting should
not be a problem. By fitting the model as close to the data as possible the simulation should infer
results that are as close to the truth as possible. In order to perform this non-linear regression the R
package ‘mgcv’ (Wood, 2017) and the complementary package ‘itsadug’ are used (van Rij,
Wieling, Baayen, & van Rijn, 2020). These packages allow one to fit a GAM (Generalized
Additive Model; Hastie & Tibshirani, 1990) to the data. The GAM allows for describing nonlinear
relations between the predictors and the dependent by combining smooth functions to fit to the
data. All models will be subjected to a model reduction, keeping only significant predictors.
For all simulations the read currents I and Iprev are scaled from 0 to 1, after which the data is split
into two sets, ‘up’ for all data with positive pulses (potentiation), ‘down’ for all data with negative
pulses (depression). For each simulation the starting conductance is set to the average starting
conductance of the PTMs used in the statistical model, about 5% of the conductance range. For
some simulations the regression is performed after taking the logarithm of the read current values
IDS. In order to prevent log(0) =−in f a small value is added to all scaled data points I and Iprev in
all simulations. For the first two simulations there is no information on how stronger and weaker
pulses than either ±25V or ±20V affect the conductance of the transistor. For these simulation all
pulses above a certain voltage threshold Vmin are treated equal as stronger pulses do not necessarily
mean stronger conductance change and vice versa as can be observed by the transfer characteristics
in Fig. 8.

3.2 Transistor experiments
The two experiments that produce data for simulation 2 & 3 use a similar transistor to the one used
in Talsma et al. (2020). The device is an FET that uses an active material consisting of a
polymer-wrapped single-walled CNT network and is bottom gated. The transistor differs by its
channel width, which is made larger by having more source and drain channels that interlock,
providing more contact between the source electrode and the drain terminal. This should not affect
the response of the transistor to be radically different. For the experiments performed for
simulation 2 & 3 a PTM is performed by pulsing the gate and reading on the source-drain, hereby
utilizing the charge-trapping and inducing conductance change in the device.
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3.3 Simulation 1: Talsma’s plasticity measurements
3.3.1 Methods - Data simulation 1

The GAMs created for simulation 1 were fit with data from Talsma et al. (2020), that data is shown
in Fig. 16 & 17. The data consists of 2000 measurements for positive pulsing (upward) and 1500
pulses for negative pulsing (downward). Both sets of data are scaled, the downward data is then
transformed to logspace.
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Fig. 16: PTM results from Talsma et al. (2020)’s experiment
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Fig. 17: PTM results from Talsma et al. (2020)’s experiment
downward pulses scaled and in logspace

3.3.2 Methods - Simulation 1: Statistical model

First, a delay graph is produced by fitting a GAM to the plasticity measurements given in Talsma et
al. (2020), measurements shown in Fig. 16 & 17. Since these data only include pulses with a length
of 10 ms it is impossible to include pulse length as a predictor for I. Instead this first model uses
the pulse number Pn as a predictor and two GAMs are created, one for each possible pulse polarity
(up or down). The formula of the maximal model of these GAMs is as follows:

I∼s(Pn) (1)

where s() denotes a smooth function being used on the predictor. The pulse number Pn−1 is
inferred by the pulse polarity, which determines what data to use (up or down), and the last read
current of the transistor. The new pulse number value Pn is calculated by adding a pulse increment
value δP determined by the length of the pulse divided by the recorded length of 10ms such that:

δP = tpulse/10 (2)

Pn = Pn−1 +δP (3)

As information on how different voltages affect the conductance is lacking it is assumed that all
pulses above a certain voltage threshold Vmin are equal. For this simulation Vmin is set to ±25V as
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this is the VGS used in the PTM performed by Talsma et al. (see Fig. 7). This entails that the smaller
±20V peaks are not processed in this simulation.

3.3.3 Results - Simulation 1

Results of the GAM created for both the positive pulsing (upward GAM) and the negative pulsing
(downward GAM) are shown in Table 1. The upward GAM uses 2000 pulses and is able to explain
100% of the deviance in the data (R2 = 1). The downward GAM uses 1500 pulses, the data is
transformed to logspace, and the model is able to explain 98.4% of the deviance in the data
(R2 = 0.984). Both models use a smooth function over the pulse number (Pn) as a significant
predictor (P-value < 0.001). Both GAMs were then used to create the delay graph shown in Fig. 18
as described in section 3.1.1. The table shows per predictor the estimate and confidence interval for
linear effects, allowing for interpretation of its effect on current value I. For the smooth effects no
such estimate is given, only the P-value describing how precise the smooth functions can be
mapped to the non-linear effect.

Table 1: Simulation 1 - GAM model summary. R2 shows that 100% and 98.4% of deviance in the
data is explained by the upward, and downward GAM respectively.
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Fig. 18: Simulation 1 - Delay graph
Blue shows the weight change, red the Drain-Source current.

3.3.4 Discussion - Simulation 1

The first simulation is an attempt to see if the plasticity measurements that are given by Talsma et
al. are sufficient to produce the STDP results that are shown in their paper. The statistical model
driving this simulation is driven by the plasticity measurements shown in Fig. 16. The simulation
produces the delay graph shown in Fig. 18 with weight change ∆W shown in blue and the
conductance expressed as Drain-Source Current (excluding the starting conductance of 0.05) in
red. It is apparent that the results given by the first simulation are different from the expected delay
graph shown in Fig. 11 and the flipped STDP results shown in Fig. 15. As the plasticity
measurements only describe pulsing of ±25V any pulses below this value are disregarded. As
shown in Fig. 10 each pulse-pair consists of a strong peak of one polarity and a two smaller peaks
of the other. These two smaller peaks are disregarded as their voltage (±20V) is below the set Vmin
of ±25V. Any effect these two parts of the pulse may have had on the conductance are thus not
taken into account in this version of the simulation.
The pulse length expectation (1) holds for δt > 0, but only partly holds for δt < 0. As |δt| grows
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towards 50ms weight change increases for both polarities, but it seems that the strong reset
behaviours shown in negative pulsing causes a strong weight change of -100%. This reset occurs
on the first pulse-pair with negative δt. Furthermore as the data does not describe the effect of pulse
duration on the device the given pulse duration is treated as a multiplier for the weight increase.
This makes this expectation self-fulfilling and thus weakens this claim. The pulse direction
expectation (2) holds, but this claim is weak as the two smaller peaks of the bias-pulse are
disregarded. The stronger negative pulse expectation (3) holds, mainly due to the strong negative
weight change shown when δt becomes negative. The delay graph does give an interesting insight
in the STDP regarding negative delay. As the device is pulsed from positive to negative delay the
conductance begins to increase, similar to the original PTM. However, as the delay shortens and
becomes negative the strong peak in the bias-pulse flips from positive to negative. This event
triggers a negative pulse and as observed in the original PTM a negative pulse that follows
continued positive pulsing elicits a strong reset behaviour in the device. This partly solves the
tapering discrepancy (1) for δt < 0 i.e. the strong weight change as δt reaches zero. Why a strong
weight change for low |δt| occurs when delay is positive can’t be answered by this simulation’s
results.
The plasticity measurements given by Talsma et al. are not enough to recreate the STDP results
shown. The simulation is able to reproduce the strong negative weight change as δt becomes
negative, but fails to explain how this weight change tapers off when reaching ±50ms and the
strong weight change when δt reaches zero while still positive. The simulation grossly
oversimplifies how pulsing affects the device as measurements using only one pulse length is used
to describe various pulse lengths. This results leads to needing more information regarding pulse
lengths. Furthermore, the smaller peaks of each pulse-pair should be included and thus more
information regarding the plasticity of the device when pulsed with higher (to capture the effect of
the ±40V pulse) and lower voltages (for the smaller peaks of ±20V, and 0V) needs to be
researched. In order to find out the effect of pulse length on the conductance of the device a new
experiment is performed where the device is pulsed with different pulse lengths. That data is then
used to fit the GAM and produce conductance values given bias-pulses of varying lengths.

3.4 Simulation 2: Pulse length experiment
3.4.1 Methods - Pulse length experiment

To investigate the plasticity of the device regarding different pulse durations, the device is
consecutively pulsed by 200 positive pulses, followed by 200 negative pulses while varying the
pulse durations per run. The voltage of the pulses is set at ±20VGS with a read voltage of
+10VSD,read The pulse durations measured are shown in Table 2.
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Pulse length levels
duration (ms)

1
5
10
20
50

100
200
500

1000
2000

Table 2: List of pulse durations used in the PTMs for the pulse length experiment

3.4.2 Results - Pulse length experiment

Figure 19 & 20 show the PTM results of the pulse length experiment. Figure 21 & 22 show the
relationship of each current value to the next (I vs. Iprev) for all positive and negative pulsing
respectively. The positive pulsing shows a clear linear relationship between I and Iprev. In the
negative pulsing this relationship is less clear. The more linear the relationship is the easier it is to
fit the GAM to the data. Interestingly, the strong reset behaviour is shown in the plot by the points
that keep low current values (I < 0.2) while Iprev increases.
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Fig. 19: Pulse length experiment - PTM results with varied pulse durations (ms)
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Fig. 20: Pulse length experiment - PTM results split by pulse duration.
All measurements performed used ±20V for pulsing and +10V as read-voltage.
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Fig. 21: Pulse length experiment - PTM results of positive pulsing.
Source-drain current (I) plotted by its previous value (I.prev) split by pulse length.
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Fig. 22: Pulse length experiment - PTM results of negative pulsing.
Source-drain current (I) plotted by its previous value (I.prev) split by pulse length.

3.4.3 Methods - Simulation 2: Statistical model

The second simulation adds in the data collected by the pulse length experiment and thus contains
information on how different pulse lengths affect the plasticity of the device. Having gained this
information we no longer use Pn, instead for each value I its previous current value Iprev is added.
The new current value I then maximally has the following predictors: its previous current value
Iprev, the pulse duration tpulse, and the interaction between these two such that:

I∼s(tpulse)+ s(Iprev)+ ti(tpulse, Iprev) (4)
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where ti() produces a tensor product interaction. This simulation uses a vmin of 20V as that is the
VGS used in the experiment. This entails that both the weaker 20V and the stronger 40V peaks are
processed, but they are treated equally as the model can’t distinguish between the two.

3.4.4 Results - Simulation 2

Results of both GAMs are shown in Table 3. The upward GAM uses 1979 pulses and is able to
explain 99.6% of the deviance in the data (R2 = 0.996). Current values were predicted using a
smooth function over the previous current (Iprev), and a smooth function over the interaction
between the pulse length (tpulse) and Iprev. All predictors are significant (P < 0.001). The main
effect of tpulse is not significant in predicting I, and thus excluded. The downward GAM uses 1993
pulses and is able to explain 81.7% of the deviance in the data (R2 = 0.817). This is less accurate
than the upward GAM or the GAM of simulation 1 and the question remains whether it is accurate
enough. No other set of predictors produced better results than this. Values are predicted using
smooth functions over two main effects: Iprev & tpulse, and a smooth function over the interaction
between tpulse and Iprev. All predictors are significant (P < 0.001). Data was collected over 10
PTMs with varying pulse durations and shown in Fig. 19 & 20. Each run consists of 400 pulses,
200 pulses per polarity.
Both GAMs were used to create the delay graph shown in Fig. 23.

Table 3: Simulation 2 - GAM model summary
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Fig. 23: Simulation 2 - Delay graph
Blue shows the weight change, red the Drain-Source current.

3.4.5 Discussion - Simulation 2

The second simulation takes the plasticity of the device into regard when pulsed with pulses of
different length and is able to process both the ±20V and ±40V peaks, although it does not
differentiate between them. These measurements are taken from a similar device as that of Talsma
et al., the original data is thus not used. The GAMs that are fed with this data are now able to
produce current values I using the pulse duration tpulse. This allows us to more accurately predict
the conductance change of different delays δt. Furthermore, where the current values I were
produced by an estimate pulse number in simulation 1, I is now predicted using the previous
current value Iprev. This allows for a more realistic simulation as the state of the device itself holds
no record of pulse numbers, but the current conductance is part of it.
Fig. 20 shows the 10 PTMs separated by pulse length tpulse. As pulse length increases the
conductance change also grows. Although conductance change is stable for tpulse = [5,20] (note
that the device starts at a higher current for tpulse = 5) as tpulse grows past 20ms the conductance
change becomes stronger. This is a confirmation of the pulse length expectation (1), longer pulses
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do elicit more conductance change. Furthermore, the data shows that some form of saturation is
seen in all PTMs, demonstrated by the non-linearity of the conductance change. As the device is
given positive pulses, the difference ∆VGS between the effective gate-source voltage (VGS) and the
applied VGS increases. This effect causes the source-drain current to curve as more electron traps
surrounding the CNTs are charged, i.e. each consecutive pulse has less effect on the conductance of
the device.
The delay graph for this simulation is shown in Fig. 23 including the conductance in red. For this
experiment the device was pulsed with voltages of ±20V, this allows the simulation to include the
effect the smaller peaks of each pulse-pair have on the conductance of the device as Vmin = 20. It is
important to remember that the bias-pulse contains one stronger positive peak and two weaker
negative peaks for δt > 0 and vice versa for δt < 0, refer to Fig. 10 for a visual reminder. The
question was posed whether the two weaker peaks of the bias-pulse could have a stronger effect on
the conductance than the stronger peak, and at some points this does seem to be the case. When
δt =+0.05 the two negative peaks outweigh the positive peak after which weight change is mostly
positive for δt > 0. This is due to the simulation not being able to infer conductance change based
on the applied VGS and thus does not differentiate between the smaller ±20V peaks and the
stronger ±40V peak. The delay graph starts with a strong negative weight change after which the
weight increases for positive δt. This happens because at a starting conductance (Istart) of 0.05 the
two negative peaks function as a strong reset. As long as the device is in a low conductance state
negative pulsing will have little effect. This causes the positive pulse to elicit stronger positive
weight change as δt→ 0. As soon as δt < 0 the device is pulsed with two positive peaks instead of
one, causing strong positive weight change. As δt→−0.05 the weight change oscillates due to the
positive and negative pulsing outweighing each other. The polarities alternatingly become stronger
than the other. Finally at δt =−0.05 it seems that the conductance reaches a critical point eliciting
a reset pulse from the strong negative peak in that pulse-pair.
the pulse direction expectation (2) does not hold for this delay graph, but as both the ±20V and
±40V peaks are processed equally by the simulation it is impossible to make claims about the high
voltage bias-pulse peak. the stronger negative pulse expectation (3) also does not hold as it seems
that the conductance oscillates around an equilibrium with positive and negative pulsing
alternatingly outweighing each other.
Adding the ability to use pulse length in the simulation did not make the delay graph consistent
with the STDP results, although it does seem that the simulation is able to produce an anti-Hebbian
potentiation peak for δt < 0. This seems to be moreso a shortcoming of the simulation due to the
combined effect of the peaks of the pulse-pair switching polarity and the simulation being unable to
process the difference between ±20V and ±40V pulses. This polarity switch does shed light on the
tapering discrepancy (1) in regard to the strong weight change at low |δt|, but the simulation lacks
such a peak for δt > 0. One could argue that these results rule in favor of Talsma’s anti-Hebbian
STDP results, but it seems that this result is only produced because of this inability to differentiate.
The results of this simulation thus leads to needing more information regarding the effect of
different VGS on the plasticity of the device. Thus we conduct another experiment where the pulse
length is kept at 10 ms and instead the gate voltage is varied. The data from that experiment is then
combined with the data with varying pulse lengths. The GAMs are fit to that data allowing for the
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processing of both varying pulse lengths as well as gate voltages. This means that the GAMs can
distinguish between the effects of the ±20V and ±40V peaks in the bias-pulse.

3.5 Simulation 3: Voltage data
3.5.1 Methods - Voltage experiment

To investigate the plasticity of the device when pulsed with different voltages, the device is
consecutively pulsed by 1000 positive pulses, followed by 1000 negative pulses. The gate voltage
used VGS differs per sweep, the different values are shown in the following Table 4. The read
voltage VSD,read is set to +10V and tpulse is kept at 10ms for these measurements.

Run Gate Voltage levels (V)
1 +0V/-20V
2 +20V/-20V
3 +20V/-40V
4 +40V/-20V

Table 4: List of gate voltages used in the PTMs for the voltage experiment

3.5.2 Results - Voltage experiment

Figure 24 shows the results of the plasticity measurements with varying gate voltages. Figure 25
shows the results of both the pulse length and the voltage experiment split per run. The color
coding indicates the gate voltage used. The positive pulsing of run 3 is omitted due to measurement
errors. Figure 26 & 27 show the relationship of each current value to the next (I vs. Iprev) for all
positive and negative pulsing respectively. For both kind of pulsing the data shows a linear
relationship between I and Iprev.

33



0.00000

0.00005

0.00010

0.00015

0.00020

0 100 200 300 400

Pulse No.

D
ra

in
−

S
o
u
rc

e
 c

u
rr

e
n
t

gate voltage

40

20

0

−20

−40

Fig. 24: Voltage experiment - PTM results with varied voltages.
Data is colored according to gate voltage, only the first 200 pulses of positive and negative pulsing
is shown. Gatevoltage for pulsing varies per run and read-voltage is set at +10V and pulse length

at 10ms for all runs. Positive pulsing for run 3 is omitted due to measurement errors.
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Fig. 25: Voltage & pulse length experiment - Combined PTM results with varied pulse lengths and
voltages.

Data is split by run index. Color coding shows the gate voltages used. All measurements are
performed with +10V read-voltage. Run 1-4 shows results for the voltage experiment. Run 5-14 are
results from the pulse length experiment. Only the first 200 positive and negative pulses are shown.
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Fig. 26: Voltage experiment - PTM results of positive pulsing.
Source-drain current (I) plotted by its previous value (I.prev) split by run index. Run 3 is omitted

due to measurement errors.
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Fig. 27: Voltage experiment - PTM results of negative pulsing.
Source-drain current (I) plotted by its previous value (I.prev) split by run index.

3.5.3 Methods - Simulation 3: Statistical model

This simulation adds the data collected by the voltage experiment investigating the effect of
different gate-source voltages VGS on the plasticity of the device. A maximal GAM for these data is
as follows:

I∼s(tpulse)+ s(Iprev)+ s(VGS)+ ti(tpulse, Iprev)+ ti(tpulse,VGS)+ ti(Iprev,VGS) (5)

containing tpulse, Iprev, and VGS as main effects, and their interactions. As it is now possible to
incorporate the effects of a wider range of gate voltages VGS a voltage threshold Vmin is no longer
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needed and it is possible for the model to discern between the ±20V and ±40V peaks.

3.5.4 Results - Simulation 3

Results of the upward and downward GAMs are shown in Table 5 and Fig. 6. The upward GAM
uses 2550 observations and is able to explain 99.8% of the deviance in the data (R2 = 0.998).
Current values are predicted using tpulse and the gate voltage VGS as main predictors, no smooth
functions were used over these two predictors as they have a linear relation to I when interactions
are accounted for. A smooth function is used over Iprev, and over the interaction between tpulse &
Iprev, and VGS & Iprev. All predictors are significant (P < 0.001).
The downward GAM uses 2759 observations and is able to explain 90.6% of the deviance in the
data (R2 = 0.906). Current values are predicted with VGS as a main effect (no smooth function), and
the interaction between VGS & Iprev (no smooth function). Smooth functions were used over tpulse
and Iprev as main effects, and the interaction between tpulse & Iprev. All predictors are significant
(P < 0.001). Both models exclude the interaction between tpulse & VGS. This makes sense as tpulse
is kept at 10ms for the voltage experiment, and the pulse length experiment uses a VGS of ±20V. In
interaction between the two can only be found if both tpulse and VGS are varied.
Data was collected over 14 PTMs combining the 10 runs of the pulse length experiment with 4 new
PTMs where VGS is varied. For each run only the first 200 pulses of each polarity are used. Both
GAMs were used to create the delay graph shown in Fig. 28.

Table 5: GAM summary of the upward GAM. R2 shows that 99.8% of deviance in data is explained
by the GAM.
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Table 6: GAM summary of the downward GAM. R2 shows that 90.6% of deviance in data is ex-
plained by the GAM.
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Fig. 28: Simulation 3 - Delay graph
Blue shows the weight change, red the Drain-Source current.

3.5.5 Discussion - Simulation 3

The third simulation adds data regarding the effect of different gate voltages VGS on the
conductance of transistor. Four PTMs are added to the 10 gained in the previous experiment,
adding up to 14. In Fig. 25 each PTM is shown, the color coding indicates the gate voltage used.
For both positive and negative pulsing the ±40V pulses elicit much stronger conductance change in
the device. For negative pulsing the −40V pulse acts as a complete reset setting the source-drain
current to levels 100 times smaller, from 44µA to 0.43µA, within two pulses. For positive pulsing
the +40V pulse is much more effective in increasing the conductance of the device than its +20V
counterpart, increasing the conductance by more than 9 times over 200 pulses for the same pulse
length: 19.3µA vs. 171.6µA (run 7 vs. 4).
The simulation is now able to use the current conductance Iprev, the pulse length tpulse, and the gate
voltage VGS to produce a new current value I. Thus the ability to differentiate between the ±20V
and ±40V pulses is added. Unfortunately the GAM was unable to properly describe the effect of
pulsing at VGS = 0V. As shown in Fig. 29 the data shows small increases for I as the device is
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pulsed (Fig. 29a), yet the simulation returns decreasing currents for low Istart (Fig. 29b). For higher
currents the GAM does return increasing current values (Fig. 29c). Pulsing for VGS = 0 has thus
been excluded from the simulation.
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Fig. 29: (a) Data on pulsing for VGS = 0, and GAM output for Istart = 0.05 (b) and Istart = 0.5 (c)

The resulting delay graph is shown in Fig. 28. This graph shows similarities to the one produced by
simulation 1. They both have a strong weight change at the start of the sweep and a strong negative
peak when the polarity of the pulse-pair flips. Comparing this graph to the expectations the
following remarks can be made.
Regarding the pulse length expectation (1) the simulation does show strong weight change at
|δt|= 0.05, but this does not continue throughout the sweep and the weight change tapers off
similar to the original STDP results. For positive δt weight change peaks at δt = 0.025 after the
initial peak at δt = 0.05 instead of the expected increase as δt increases. This also does not hold for
δt < 0 and the weight change actually decreases as δt→−0.05, except for the peak at δt =−0.05
where pulse width is maximal. The fact that weight change decreases while |δt| increases is likely
due to the diminishing effect of negative pulsing. The first few pulses elicit strong negative weight
change, but this quickly flattens as the device is pulsed. This solves the tapering discrepancy (1) for
δt < 0, but not for δt > 0, where the tapering of weight change does not happen.
The pulse direction expectation (2) holds and can be confirmed with these results as in all cases
positive delay causes positive weight change and vice versa, with the smaller bias-pulse peaks
never outweighing the high voltage bias-peak.
The stronger negative pulse expectation (3) does not hold as the effect of negative pulsing is not
always stronger than that of positive pulsing. Taking into account these results with those of
simulation 2 it is possible to explain this. As the device is negatively pulsed and conductance
decreases the effect of negative pulsing becomes weaker and the effect of positive pulsing becomes
stronger. These two effects balance each other out until almost no weight change is observed as
δt→−0.05. I am unable to explain the strong weight change observed at δt =−0.05, and it is
more probable that is due to the effect of a bug in the simulation code, than it is due to the nature of
the data.
Although the delay graph produced by this simulation is closer to the original STDP results, taking
into account the horizontal transformation, a strong positive weight change as δt→ 0 is still
lacking. The answer might lie in the effect pulsing at VGS = 0 has on the device as this simulation
does not take this into account. The length of zero voltage pulses that intersperse the voltage peaks
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actually increases as |δt| decreases. Although one might assume that pulsing at zero voltage is
analogous to not pulsing the gate the data shows that conductance change does happen at VGS = 0V
as can be seen in Fig. 29a, making this assumption wrong.. As VGS describes the difference
between the gate and source electrode this could be attributed to the difference (voltage) between
these electrodes and the drain electrode. Thus a logical step would be to explore the effect of
pulsing the gate at VGS = 0V in a wide range of conductances as the change in conductance due to
this kind of pulsing is very small, but might differ based on the conductance of the device.

3.6 Outliers & data exclusion
Whilst preparing the data for the GAMs used for simulation 2 & 3 some values were omitted. For
some runs every few pulses erroneous values would occur that were a consistent amount higher or
lower than other values in the PTM. This probably occurred due to a fault in the code of the reading
instruments used for the experiment. Some examples of this can be seen in Fig. 20 for pulse
lengths of 1, 5, 10, 20, 100, 200, 500, and 1000 in the negative pulsing, but such values were
present in both positive and negative pulsing. Similar occurrences were present in the data of
simulation 3 for both positive and negative pulsing. Furthermore, because of the use of Iprev for
every erroneous measurement the next measurement also had to be removed. Finally, the positive
pulsing of run 3 performed at +20V (Fig. 25) has also been removed as that part of the PTM did
not produce a smooth curve like other PTMs with the same settings. Fortunately, there are enough
other runs describing the effect of +20V pulsing on the conductance to make up for this loss. This
should not have a detrimental effect on the −40V pulsing in run 3, thus that part of the PTM is
included in the data.

3.7 Limitations & further research
In creating simulations it is important to talk about made assumptions. All simulations are
simplifications of reality. In order to simplify reality it is unavoidable to make assumptions about
the natural world. Discussing these assumptions will help us to get closer to realizing how the
results of this paper came to be and can give us insight into why they differ from the results
observed directly from the transistor.
The first caveat is that only a very limited state of the device is taken into account. As not only the
pulse-pairs influence the device, but previous pulsing also has an effect on the plasticity of the
device. The only form of history of the device used is its previous read-current value, disregarding
any history before that point. In reality there are more factors that influence the plasticity of the
device. Such factors include the temperature of the transistor as pulsing the device creates heat and
heat alters the conductivity. It has been observed that synaptic transistors show more non-linearity
and variation margin in their conductance when the device is hotter (Oh, Jo, & Son, 2019). A key
factor in the conductance of the device is in the way that charge is carried when the source-drain
current is read. Charge can either be carried through electrons or through holes that occur due to
either imperfections in the dielectric of the synaptic transistor, the presence of hydroxyl groups at
the dielectric s-SWCNT interface, and the polymer energy levels (Talsma et al., 2020). Neither

42



temperature nor a representation of charge carrying is used in the simulation. The question remains
whether the device’s state can be summarized only by its previous read-current.
The second caveat is that the delay graph in Talsma et al. is produced by pulsing both the gate
(pre-synaptic) and source-drain terminal (post-synaptic), but the PTMs used in simulation only
describe pulsing on the gate-terminal. This should however not be a large problem as pulsing on
the source-drain terminal does not elicit (significant) conductance change, but it does lead to the
third caveat.
The third caveat is the assumption that the source-gate bias is the leading conductance change
driver. As discussed in Section 2.9 it seems that δt has a more important role in driving weight
change than polarity of the bias-pulse. When comparing Fig. 6 to Fig. 13 it can be observed that the
amplitude of the pulses are inverted (a positive polarity leading square wave is used as opposed to a
negative polarity first wave), but the direction of the weight change is still the same. It might be the
case that bias-pulses are not processed the same by the transistor as gate pulsing. If a more realistic
simulation is desired one should use PTMs that are driven by source-gate bias pulses instead.
The fourth caveat is one of both this simulation and the original experiment in that the device is
pulsed without reset schemes in between each pulse and are instead produced by a backward sweep
of pulse-pairs with decreasing delays. The occurrence of short term depression might be caused by
the polarity flip of the bias-pulse when δt crosses zero and the question remains whether these
STDP results are stable when the device isn’t swept but directly pulsed with a pulse-pair with low
|δt|. If the STDP results only occur in a backward sweep than the device is unsuited as an STDP
unit in neural networks.
The fifth caveat is the use of just the PTM in simulation. In section 2.7 it is described that the
relevant mechanics indicative of the transistor’s behaviour are the plasticity measurements (the
PTM), the hysteresis in the transfer characteristics, and the saturation. Although the gate voltage
measurement do give insight into the transfer characteristics and the pulse length measurement give
insight into the saturation of the device one can argue that this is not enough to describe these
mechanics.
The final caveat is the exclusion of zero voltage gate-pulsing in the simulation. The assumption
was that such pulsing had no effect on the conductance of the device, but results of the gate-voltage
experiment stated otherwise as can be seen in Fig. 29. The effects are small, but as the amount of
zero-voltage pulsing increases as δt decreases they could have a significant effect on the
conductance of the device and therefore the weight change.

3.8 Remarks on the use of the SWCNT field-effect transistor
Having produced these simulations an insight is gained into how the STDP results of Talsma et al.
are produced. The simulations indicate that the STDP results are dependent on the use of a
(backward) sweep of pulsing with varying delays. The question remains whether the device
produces STDP regardless of the current state of the device, i.e. with independent pulsing. Even
though the device produces STDP-like responses with a variation of simple pulse shapes,
supposedly making it easier to integrate the device into hardware implementations. If these results
are not obtainable when pulsing independently then the SWCNT field-effect transistor’s suitability
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for integration into artificial neural networks becomes less viable as an STDP response should be
present at any conductance state. However, it does not make the device unsuitable for integration
into other neuromorphic computing implementations.

4 Conclusion
This paper aimed to reproduce and explain the anti-Hebbian STDP results produced by Talsma et
al. by using the Pulse Train Measurements data in their paper. Based on these plasticity
measurements two discrepancies were stated. First, the weight change tapers off as |δt| → 0.05 and
is maximal at low |δt|. Second, the weight change breaks direction and is of anti-Hebbian nature.
An initial attempt at producing such results in a delay graph has failed as the data that describes the
gate-terminal of a synaptic transistor being pulsed at ±25V for 10ms is insufficient in processing
the more complex pulse-pair that is used when producing the STDP results. To improve the
processing of these pulse-pairs data on the plasticity of the synaptic transistor when pulsed with
different pulse lengths and different gate voltages has been produced. By using a Generalized
Additive Model (GAM) to describe positive and negative conductance change of the transistor
(> 80% explained in simulations) it was possible to produce results that are more similar to the
STDP results, but the simulations were unable to reproduce the anti-Hebbian results. One cause is
the misassignment of the pre- and post-synaptic connections to the source-drain and gate terminal.
The correct assignment is that of the pre-synaptic connection to the gate terminal, and the
post-synaptic connection to the source-drain terminal (Sangwan & Hersam, 2020; Diorio et al.,
1996). The results by Talsma et al. should thus be flipped horizontally and are instead learning rules
of the Hebbian type similar to that of Kim et al. (2015). This solves the direction discrepancy (2).
The tapering discrepancy (1) is then partially solved. Long-term depression in the transistor seems
to be caused by a polarity flip of the source-gate bias pulse and the question remains whether these
results are stable when pulsed independently. The weight change then tapers off as δt→−0.05
because the effects of positive and negative bias pulses (both contained in the pulse-pair) balance
each other out. Attempts to reproduce the STDP results for δt > 0 were ineffective.
It is now possible to conclude that the use of plasticity measurements with different pulse lengths
and gate voltages alone is not enough to reproduce STDP and thus more information on the device
is needed. The simulation points in the way of what the effect is of zero-voltage pulsing on the
device. Furthermore, the question arises whether the STDP results remain stable with independent
pulsing, and whether the bias-pulse is the leading factor in conductance change.
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