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Abstract: Recent research has shown advances in the analysis of cardiovascular MRI images
using deep learning. However, two problems are apparent: How to measure the quality of the
result of semantic segmentations and how to expose dependencies on the actual MRI apparatus
used in obtaining the image data sets. The proposed method is based on traditional evaluations
at the pixel level. Admittedly, it would be convenient to judge incoming samples on their fa-
miliarity in relation to the training data. This would allow for filtering out inadequate samples.
In order to solve this conveniently, it is proposed to compare incoming samples to prototypical
centroid vectors in an embedding (sub space), by using dimensionality reduction. MRI images
used for this experiment are fed through a fully connected network model trained on short-axis
MRI’s of left ventricles. The machine learning model was tested using two different data sets
collected from two different MRI devices, one generating the UK Biobank data and another,
UMCG’s data. The raw MRI’s and the resulting segmentations are used for investigating the
problem of finding a reliable comparison method for judging whether an input sample meets
the expectations that are represented by the statistics of the training data. To achieve this, a
dimensionally reduced representation of the data is calculated with which centroids can be com-
puted for classes. Both are then used as dimensionally reduced representations of the data and
averaged to represent the centroid of their embedding. An optimal measurement is discovered
among three standard distance calculations (SAD, SSD and mean correlation), that is, SAD.
This was the best measurement of similarity in raw MRIs (non-segmented) as well as serving as
a predictor of segmentation quality, as verified by the Dice metric.

1 Introduction

Explainable AI has been receiving increasing atten-
tion in the last 10 years. This branch of AI tries to
tackle problems that exist in the interface between
users and AI systems. The aim revolves around de-
scribing model behaviour or decision making, un-
derstanding when a system is mostly right or very
wrong in its output, how to correct this error and
how trustworthy a system is [2]. This is especially
relevant in the field of Medical Sciences, where
the margin of error can be the threshold between
life and death. This makes it an extremely sensi-
tive area to deploying AI systems in practice or
amidst existing workflows. But also, one that would

prospectively benefit many times from doing so due
to data dependence and abundance, technological
involvement and many opportunities to automate
and improve existing medical techniques.

Explainability often means a trade-off between
prediction accuracy and model interpretability.
Many technologies have been developed in the last
decade that auxiliate model performance and de-
ployment. For example, in deep learning a tech-
nique called deep explanation has been developed
that maps an NLP model (RNN) capable of gen-
erating written explanations of models like CNNs
and their decisions thus teaching models how to
learn semantic associations in data features [11].
The two models output a classification together
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with the associated image descriptions of discrim-
inating features that led to the output label [9].
In model interpretation, stochastic And-Or-Graphs
(AOG) [26] has been developed with the same aim
as the previous research. This technique creates
a five-layer AOG that maps semantic meanings
between learned patterns [22]. Another technique
called Probabilistic Program Induction attempts to
describe parameters involved in character genera-
tion (e.g. in written symbols) by using a generative
model that recognises these symbols by develop-
ing an explanation of how a new character may
be created through a sequence of probable strokes
that is deduced from the training cases [12]. Fi-
nally, there are model induction techniques. These
refer to techniques that attempt to infer explainable
models from other more complex models that are
viewed as black boxes [10] (uninterpretable mod-
els). One such technique is LIME [19] (Local In-
terpretable Model-agnostic Explanations). This al-
gorithm explains classifier predictions using locally
approximate interpretable models that are then se-
lected by a method that chooses a set of locally
faithful representative instances of explanations of
the whole model. In this project an understandable
method is provided to judge the familiarity of an
input sample in comparison to the input data be-
fore a prediction or classification is made regarding
said data.

To illustrate an example of an interpretability
problem tackled by this work, take a 250 by 250
image. Initially, it will be represented by 62500 fea-
tures in a CNN. These are reduced through con-
volutions and max-pooling, for example, into a
smaller feature representation. In the case of W.
Bai, et al.’s model [5] used in this work, 16 convo-
lutional layers downsample the feature map every
two or three convolutions by a factor of 2. This
means that the model will have reduced the im-
age to approximately 245 features at the bottleneck
layer. At this point, the model reached the minimal
feature representation of the data that it can use
to reliably classify an input image. These are 245
reasons why the image is classified with a partic-
ular label as the output of the model, all possibly
contributing differently to the classification. If a vi-
sualisation technique is taken to try and make sense
of this feature space, 245 dimensions would be seen
- an explanation space that is made too complex to
interpret by the 242 extra dimensions added on top

of the graspable Cartesian plane.
Statistics can be used to reduce facts about com-

plex data composed by inordinate amounts of sin-
gular data points to readily understood numbers
(e.g. as a distribution’s mean, the t-value of a t-test
or the p-value used in hypothesis testing). There is
then a need for such summarising values or con-
cepts that work as sense-making mechanisms that
allow for peering into the machine’s mind, figura-
tively speaking. Especially in a field where most
explanatory techniques involve model training and
deployment which can easily lead to a recursion
problem (producing a model that aims at explain-
ing another model that is supposed to explain the
production or main model).

This is one of the central problems regarding ma-
chine learning model interpretability - they are re-
garded as black boxes [10]. In such models, indepen-
dently of knowledge concerning the mathematical
principles involved in the system or model, there is
no explicit knowledge representation that is read-
ily understood by humans. Nor is there knowledge
regarding underlying reasoning, the causal chains
that lead to the output or their explanations that
do not involve model making [2]. There is then a
need to work towards making AI systems transpar-
ent, explainable and error [25]. Moreover, in the
case of Medicine as a domain of application, this is
especially relevant, where data complexity and het-
erogeneity is rampant. Medicine can then be seen
as one of the best thresholds for AI explainability
because the field will not accept anything below a
gold standard. This implies that models have been
extensively tested, error margins must be known
and as low as possible. It has to be possible for
professionals involved to understand the reasoning
behind the model’s probabilistic output.

In this work, a training-independent technique
will be deployed to further substantiate the qual-
ity of model output, its generalisability, and inter-
pretability. This is done using a MRI (magnetic res-
onance imaging) pipeline consisting of image pro-
cessing and a CNN model [5] trained on the UK
Biobank data set [7]. The technique involves sim-
ple measurements that could elucidate how famil-
iar the model is with a new image by measuring
the difference between the image and the training
data set used (the feature knowledge of the model).
This is done so as to enable some interpretation of
the quality of the models’ output as well as measur-
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ing its generalisability before trying a large batch
of new images from a novel data set. The result-
ing technique is supposed to deploy simple math-
ematics, no model production nor training. If the
measurement - the distance between images - is too
large, then the model probably doesn’t generalise
to the novel data set. The reason for this will not be
self-evident and can occur for many reasons, includ-
ing differences in the image generating apparatus.

A good dimensional space is required to enable
feature extraction. PCA is the method of choice for
many when it comes to dimensionality reduction
of data (including image data). This is the bench-
mark used in this work. To check if using the bot-
tleneck layers of a trained model results in a better
representation than PCA when it comes to dimen-
sionality reduction steps. These two methods will
be deployed to obtain a feature vector of an in-
put cardiac magnetic resonance image. Then, the
similarity measurements will be used on both to
compare them to a prototype vector that repre-
sents the data used for training. This can be ob-
tained by averaging the image vectors used in the
training data set, element-wise. This is the same
as calculating the centroid of the data. The vec-
tor that generates the results that are closer to the
ground truth (the centroid of the training data set)
is the best according to this quantitative measure
as long as it is in line with the resulting Dice metric.
Raw images not included in the UK Biobank data
set [8] should have a larger distance from the proto-
type and vice-versa: images from the UK Biobank
data set (UKBB) should show a shorter distance
from the prototype. While the segmentation data
set that yielded the best Dice metric should be the
closest to the segmentations of the training data set
centroid.

Two research questions are then presented, along
with two hypothesis.
Research Question 1: Does Bai et al.’s model

generalise (achieve gold-standard 94% classification
accuracy on the Dice metric) to a UMCG data set
from the UKBB?
Hypothesis 1.1: Bai et al.’s model will not gen-

eralise to UMCG data.
And to test the distance measurement as a pre-

ventive check of model generalisability to new data
sets, a second research question is asked. Research
Question 2: Does a training independent tech-
nique that produces a similarity measurement of

novel input to average training data point have a
better accuracy (as measured by predicting the seg-
mentation quality) when deploying a feature vec-
tor read from the bottleneck of the trained model
than when using PCA for image feature reduction
as measured by benchmark distance computations?

Hypothesis 2.1: Deploying a feature vector
read from the bottleneck of the trained model is
more accurate than using PCA for image feature re-
duction as measured by benchmark distances (the
sum of absolute differences (SAD), the sum of
squared differences (SSD) or the correlation coef-
ficient).

2 Methods

The data sets of cardiac MRI used in the follow-
ing experiments were fed to the model as loose se-
quences. In appendix G, two organised sequences
of images used for training can be seen. In the case
of the aforementioned data sets, the relevant im-
ages follow a sequence loosely and were picked to
represent the various stages of the cycle instead of
representing end diastolic relaxed periods or end
systolic contraction periods specifically.

To test these hypothesis the Euclidean distance
will be used on standardised, equal shaped image
vectors after a normalisation algorithm is used (Ap-
pendix H). This is done so as to compare perfor-
mance between using PCA-generated vector images
and a feature vector directly read from the trained
model’s bottleneck layer when it comes to segmen-
tation results as predicted by the Dice metric. The
standard images of the left ventricle will also be
analysed from this perspective so as to understand
the distance of input images to the images used to
train the model.

The Euclidean distance is the norm of the ele-
ment wise difference between two arrays. A contigu-
ous flattened array is calculated for each image on
which the Euclidean distance will be determined:

dEuclid(u, v) =

√∑
i

(ui − vi)2, (2.1)

where the distance d is the distance from some
point u(x1, y1) to some point v(x2, y2), or between
two feature vectors.
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The aforementioned ML pipeline [5] was de-
ployed in processing and analysing cardiovas-
cular magnetic resonance images from the UK
Biobank [7]. The model for LV, short-axis devel-
oped in the pipeline is reported to have gold-
standard classification accuracy in the UK Biobank
data set [5]. Regardless of this claim, a new sample
of the data set was fed to the model and the result-
ing classification analysed (table 3.4). The sample
consisted of 13 images and was evaluated as one
sequence.

For evaluating the accuracy of the model seg-
mentation on UMCG data, the same quantitative
measurements deployed by W. Bai, et al. [5] will
be used, namely, the Dice metric. This calculation
outputs a value between 0 and 1 and is defined as:

Dice(u, v) =
2|u

⋂
v|

|u|+ |v|
(2.2)

It is used to calculate the overlap between an au-
tomated segmentation u and its respective manual
segmentation v. The higher the output value the
closer the contours, thus, the better the result.

Three more measurements are used and com-
pared so as to obtain a good predictive metric in the
context of the present work, namely that of com-
paring images and segmentations. In digital image
processing, the sum of absolute differences (SAD) is
a measure of the similarity between pixels. It is cal-
culated by taking the absolute difference between
each pixel in the original image and the correspond-
ing pixel in the image being used for comparison.

dAbs(u, v) =

n∑
i=0

| (ui − vi) | (2.3)

Where ui is the ith item in an image vector and
vi is the ith item in the other image vector.

The sum of squared differences (SSD) measures
similarity based on pixel by pixel intensity differ-
ences between the two images.

dSSD =

n∑
i=0

(ui − ū)2 (2.4)

Where ui is the ith item in the vector, ū is the
mean of all the pixels in the array and (ui − ū)2 is
the deviation of each pixel from the mean.

The correlation coefficient is a statistical measure
of the strength of the relationship between the rel-
ative comparison of two images. The values range
between -1.0 and 1.0, with a meaningful but weak
relationship thresholded at 0.3 or 30%.

r(u, v) =
Cov(u, v)

σuσv
(2.5)

Where Cov(u, v) is the covariance of the variables
u and v. And σu is the standard deviation of u and
σv is the standard deviation of v.

3 Results

The Dice metric is used to compare automatic and
expert drawn segmentations of the left ventricle. As
such, it will be used for the same purpose as in Bai
et al., to check automatic segmentation quality by
comparing segmentation correlation.

Table 3.1: UKBB Dice Metric comparison
(MDM - ”Mean Dice Metric”) calculated from
13 Dice distances.

New UKBB data
LV, SA (short-axis)

Bai et al. score
LV, SA

MDM 0.132 0.94

Table 3.4 shows a very poor Mean Dice Metric
result in overlap for the novel UKBB (UK Biobank)
segmentations. This result might be induced by
different intensity scales between the novel UKBB
data set and the training data set. Indeed, it can
be verified in Figure 3.9, where the overall image is
much brighter than the UMCG image in Figure 3.8.

To check to what extent the model is applicable
to UMCG data, a small data set consisting of 13
UMCG left ventricle short-axis images was also fed
to the model. Below (table 3.2) is the Mean Dice
Metric results.

Table 3.2: UMCG Dice Metric comparision
(MDM - ”Mean Dice Metric”) calculated from
13 Dice distances.

New UMCG data
LV, SA

Bai et al. score
LV, SA

MDM 0.574 0.94

The results in table 3.2 show a much better dice
metric than for the novel UKBB sample data set,
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albeit it being lower than the 0.94 gold standard
reported by Bai et al on the UKBB training set. It
is seen then that even though hypothesis 1.1 is veri-
fied - that the model does not have a gold standard
classification on UMCG data - the latter still shows
a significantly higher value than the novel UKBB
data set. This unexpected result will be addressed
further below. If the measurements show that the
used UKBB data set is indeed further from the av-
erage embedding representative of the training data
of the model than the UMCG data set, hypothesis
2.1 will also hold as long as these are better pre-
dictors (smaller values or distances) than the PCA
equivalents. This is the case if the UKBB novel data
set shows a distance from the UKBB training data
set greater than the UMCG data set and the PCA
equivalents do not. Otherwise the results are incon-
clusive.

In appendix F the standard deviations of each
vector can be seen as a preliminary comparison be-
tween PCA and the averaged vectors. These are
quite similar between PCA and averaged vectors
both for real images and the segmentations of said
images. Overall low standard deviations can be ob-
served, independently of the data set; this means
centred distributions around the mean for the im-
age arrays.

Plotting the PCA explained variance (check ap-
pendix E) reveals how many components can be
discarded. This aids comparison with CNN bottle-
neck layer since the latter is the minimal represen-
tation possible while still allowing for reconstruc-
tion on the output. These fitted PCAs are then
used as described in the methods section, to gener-
ate standardised vectors of the reduced data sets of
images and segmentations. These images are used
to compare distances by calculating average em-
beddings per data set (segmentation and normal
images UKBB and UMCG).

Figure 3.1: Visualising the explained variance of
a PCA fitted on 19 UMCG images

Using 12 components for PCA fitted on UMCG
images.

Figure 3.2: Visualising the explained variance of
a PCA fitted on 14 UMCG segmentations.

Using 12 components for fitted UMCG PCA on
segmentations.

Figure 3.3: Visualising the explained variance of
a PCA fitted on 14 novel UKBB images.

Using 8 components for fitted PCA on UKBB
images.
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Figure 3.4: Visualising the explained variance of
a PCA fitted on 14 novel UKBB segmentations.

As can be seen in Figure 3.1, 12 components is
all it takes to rebuild the images in UMCG PCA
non-segmented data and so 12 components are used
to draw image vectors and pack these in a data set.
In UMCG segmented data (Figure 3.2), 12 com-
ponents seem to be sufficient for image reconstruc-
tion as well. For UKBB non-segmented data (Fig-
ure 3.3) 8 components are used and 5 are deployed
for the segmented data (Figure 3.4). Further com-
parison can be drawn between segmentations and
MRI for the fitted PCAs.

Figure 3.5: Visualising and comparing the ex-
plained variance of the UMCG fitted PCA MRI
and segmentations (segmentations in green,
MRI in red).

The overlap is clear in the case of the UMCG
data (Figure 3.5). These results serve as an indi-
cation for a good similarity between the segmenta-
tions and the MRIs, the two centroid classes used
to build image array data.

Figure 3.6: Visualising and comparing the ex-
plained variance of the UKBB fitted PCA MRI
and segmentations (segmentations in purple,
MRI in blue).

In the case of the UKBB novel data (Figure 3.6),
it can be noted that segmentations and MRI de-
viate before three components are available. This
can be explained by the small number of images in
both data sets. Notwithstanding this fact, the fleet-
ing curves indicate dissimilarity for which further
evidence will be collected.

The following tables show the distances between
segmentation and image fitted PCA average em-
beddings and the average embedding that repre-
sents the UKBB data set used to train the model,
produced by averaging 550 UKBB images and their
respective segmentations separately.

Table 3.3: Distance measurements between
PCA vectors and averaged vectors including
segmentations from bottleneck layer (UMCG
SEG) to averaged training vector from UMCG
data set

PCA seg PCA img UMCG seg UMCG img

SAD 49.361 168.350 46.816 170.458

SSD 1.841 0.780 1.855 0.787

mean corr 0.071 0.323 0.064 0.324

Table 3.4: Distance measurements between
PCA vectors and averaged vectors including
segmentations from bottleneck layer (UKBB
SEG) to averaged training vector from UKBB
novel data set

PCA seg PCA img UKBB seg UKBB img

SAD 43.441 216.694 219.497 169.339

SSD 1.996 1.927 1.844 0.772

mean corr -0.003 0.007 -0.021 0.105
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Table 3.5: Distance measurements between
UMCG and UKBB vectors to averaged train-
ing vector.

UMCG seg UKBB seg UMCG img UKBB img

SAD 46.816 219.497 170.458 169.339

SSD 1.855 1.844 1.927 0.772

mean corr 0.064 -0.021 0.324 0.105

In order for hypothesis 2.1 to hold, that is, that
deploying a feature vector read from the bottleneck
of the trained model is better than using PCA for
image feature reduction as measured by benchmark
distances (the sum of absolute differences (SAD),
the sum of squared differences (SSD) or the cor-
relation coefficient), UMCG distances would have
to be smaller than novel UKBB and PCA. This
is because UMCG had the best Dice metric (best
segmentation agreement between expertly drawn
segmentations and model output) and thus these
should be the most similar to the training set. The
results in table 3.3 read as follow: regarding the real
segmentation, the UMCG segmentation or bottle-
neck output is closer to average training set than
the PCA segmentation, as measured by the sum
of absolute differences. The SSD or sum of squares
is higher for the UMCG data indicating that these
vectors would fit UKBB’s training set slightly worse
than the PCA. A lower mean correlation indicates
less correlation with the UKBB training data aver-
aged vector than the PCA. It should be noted that
these differences are very small when compared to
the SSD.

Figure 3.7: Visualising a left ventricle segmen-
tation used in the training UKBB data set.

(a) Segmentation

(b) LV SAX MRI (Left Ventricle
Short-Axis Magnetic Resonance

Image)

Taking the real images, under UMCG img and
PCA img, a slight inversion of results occurs,
favouring PCA averaged vectors over UMCG aver-
aged vectors in all measures. These are smaller than
for the difference across the segmentation data.
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Figure 3.8: Visualising a left ventricle segmen-
tation from the data used in the UMCG data
set.

(a) Segmentation

(b) LV SAX MRI

In comparing novel UKBB data and the aver-
aged bottleneck segmentations and image vectors
to PCA, a higher SAD for UKBB segmentation
indicates a much worse similarity to the average
training set than the PCA. The difference in fit as
measured by SSD is almost neglectable in compar-
ison, but the PCA is still worst off. Regarding the
mean correlation, the PCA has less negative corre-
lation than the novel UKBB segmentation average.
In terms of raw images and not segmentations, the
UKBB novel data set averaged vectors do much
better in approximating the training UKBB data
set than the PCA.

Figure 3.9: Visualising the data used in the
UKBB novel data set.

(a) Segmentation

(b) LV SAX MRI

The UMCG data set is more similar to the av-
erage training set than the PCA in segmentation
data, while the PCA fits the data slightly better
in the case of raw images. The UKBB novel data
set is more distant from the average training set
when it comes to the segmentations than the PCA
as measured by SAD.

Comparing UMCG and novel UKBB in 3.5 and
following from the Dice metric results, SAD (Sum
of Absolute Distances) is the best measurement.
The other measurements are unreliable as can be
seen in Figure 3.5: SSD shows close scores for dis-
tances from UKBB training segmented set and the
segmentations of UMCG and UKBB novel data
sets. Since the Dice metric’s base score (the ground
truth) indicates that UMCG sample data is more
similar to the UKBB training set than the novel
UKBB sample data, this cannot be the case. That
is, UMCG segmentations are much more similar
than the novel UKBB data set and this is reflected
in SAD but not in SSD. Mean correlation was in-
conclusive for all comparisons since none was above

8



the weak correlation threshold of 0.3. SAD yielded
correct predictions for both UMCG segmentations
and novel UKBB sample dataset raw images. Since
novel UKBB images are still from the UKBB distri-
bution, these raw images are expected to be more
similar to the 550 UKBB data set than the UMCG
ones and this is shown to be the case. The SAD
score for novel UKBB images is smaller than for the
UMCG data set, thus the former data set is more
similar than the latter. The resulting SAD score for
segmentations then predicts the Dice score as well
as the objective expected difference between raw
images.

The following compiled PCA images can be con-
trasted with the previous data set examples.

Figure 3.10: Visualising the data used in the
UKBB PCA novel data set.

(a) Segmentation

(b) LV SAX MRI

Figure 3.11: Visualising the data used in the
UMCG PCA data set.

(a) Segmentation

(b) LV SAX MRI

4 Discussion

Deep learning (DL) is the most widely used Ma-
chine Learning (ML) approach, seeing plenty of ap-
plications across virtually every field, most promi-
nently in visual object recognition and natural lan-
guage processing (NLP). Models learn useful repre-
sentations and features automatically, directly from
data, bypassing an otherwise manual and conceptu-
ally difficult step of feature design and extraction.
These automatic techniques have advantages par-
ticularly for high-dimensional data such as statisti-
cal images used in medical research. MRI is one of
the fastest-growing research fields where ML meets
a better-than-human performance in a clinical ap-
plication, more specifically in the analysis of the
output of a complex imaging technique [23]. CNNs,
or convolutional neural networks, are the preferred
algorithm in MRI analysis [14]. In a nutshell, auto-
mated MRI analysis using a fully convolutional net-
work (FCN) architecture predicts a pixel-wise im-
age segmentation (semantic segmentation) by ap-
plying a number of convolutional filters onto an in-
put image. The convolutional layer maps local con-
nectivity allowing the network to learn the spatial
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local correlation of the input. Where for each pixel
there is a higher correlation to its neighbouring pix-
els than to distant pixels. The model then learns
image features from fine to coarse levels using these
convolutions and combines multi scale features for
predicting the label class at each pixel.

One problem that assails the multidisciplinary
field of ML and more specifically the use of CNNs,
in general, is the problem of model interpretability.
Prospective applications of AI systems and efforts
by the ML research community that could improve
and automate diagnosis, for example, see these ef-
forts cut short. Medical governing bodies and repre-
sentatives do so on the basis of model interpretabil-
ity and lack of generalisability. These experts claim
that such a system is a ’black-box’, where it is ulti-
mately impossible, not to know, but to completely
understand causal links and processes that generate
the output so as to justify it.

SVMs (Support Vector Machines) and other au-
tomatic techniques often serve preliminary data
analysis before feeding data to the main classifier in
order to aid model interpretation [5]. By comparing
new input to the training set used to fit the model
in question, these methods usually give a dichoto-
mous answer (yes or no) to the question ”is this
data similar enough to the training set to rely on
model output?”. This is so that researchers know
when further learning is required. Two problems
are relevant in this context: these methods need
to be retrained on new data every time they are
used - just like the classification model they serve.
This is a problem because data is scarce, expensive
and time-consuming to handle, as is the training
involved in such preliminary models. The second
problem arises from the fact that this binary check,
like the served classifier, does not give reasons for
its result, thus making it what some in the field re-
fer to as a ’black-box’. Again, this is analogous to
not knowing why the result is what it is, remaining
unexplained or too complex to make sense out of.

SAD and other statistical summaries try to
tackle the first problem by answering the same
question without needing training time - they are
training independent. And they tackle the second
problem through their simplicity - no longer does
a model need to be explained or understood since
the model is removed and in its place simpler well
known mathematical computations are used in-
stead (e.g. Euclidean distance).

The goal of these experiments was to work to-
wards AI explainability while reinforcing the use
of techniques that are more general and can be
applied across data sets regardless of what ML
model is being deployed when checking the quality
of the output of another model. If such a method
is discovered, an increase in generalisability will be
reached since the method is training-independent,
thus reducing the resources that would have been
necessary for creating a preliminary model that is
not reusable (e.g. time, data collection, money and
computational resources).

And perhaps more importantly, model-expert
disagreement, where the model classifies a certain
input as x but a human expert disagrees, taking
the input to be a y instead, can be tackled by tech-
niques that help elucidate, simplify and show how
certain the model is of its conclusion. This can solve
the disagreement between the human and the ma-
chine and further aid the pursuit of embedding AI
in different industry wide workflows without fear
for what goes on inside the machine.

5 Conclusions

The output of the bottleneck layer of a fully con-
nected layered model was used to generate vec-
tors representative of segmented sections of the
heart, more specifically the left ventricle of a short-
axis view. Using these, differences to another vec-
tor were measured. The latter vector was obtained
from a sample data set consisting of data used to
train the model on segmented MRI left ventricle
short axis images of the heart. These efforts culmi-
nated in a data-independent technique that pro-
duces a similarity measurement in line with the
expected model’s output as measured by the Dice
metric.

The distances measured on these averaged vec-
tors are shown to be comparable to the state of
the art PCA reduced vectors. These are compara-
ble since the latter does not involve model training.
In regards to the distance measurements, these are
useful in comparing two vectors of the same domain
in terms of their relative difference.

There are readily available computational meth-
ods for calculating this difference, including ML al-
gorithms. But deploying a new model generates a
black box problem and this is not acceptable in
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medical science. This problem can potentially be
avoided by deploying a PCA or a PCA equivalent
dimensionality reduction method such as the bot-
tleneck layer output of a model, together with said
distance measurement, as long as this yields a re-
liable similarity measurement that predicts model
outcome. This was the theoretical experiment pro-
posed in the present work.

The Euclidean distance computes the distance
of two real-valued vectors. It is the square root of
the sum of squared differences across two vectors,
element-wise. This method can be summarised in
readily understood metrics which are widely used
in statistics without the complex modelling layers
that are rampant in ML algorithms. As such, the
distance calculation strategy presented in this work
gathered data that supports hypothesis 2.1, which
has not been falsified. That is, that using a stan-
dard difference measurement - a distance measure
between vectors based on simple arithmetic com-
putations - can reliably predict the resulting Dice
metric or segmentation quality of a model without
the use of an extra model. More specifically, SAD
or sum of absolute distances can be deployed for
this purpose.

The averaged vectors from the UMCG data set
have yielded the most similar measurements to the
ground truth or vector averaged from the 550 MRIs
UKBB data set used in training the model. This is
evidenced by the Dice metric. Since the Dice met-
ric was higher for the UMCG data set than for
the novel UKBB sampled data set, a good distance
measurement should result in a higher similarity
(shorter distance) between UMCG and the train-
ing data set segmentations. This reasoning applies
to raw images in the same way: the fact that novel
UKBB raw MRI images belong to the same dis-
tribution as the training set used as ground truth
means that novel UKBB raw MRI images should
show a shorter distance than UMCG raw MRI im-
ages to said ground truth (under this measure-
ment).

The results from the SSD metric do not pre-
dict the expected segmentation quality for either
images, nor does mean correlation which yielded
less than significant results (¡ 0.3) in both data set
comparisons. The raw MRI novel UKBB data set,
which was objectively closer in similarity, features
and shape to the 550 image sample training set
used to calculate the ground-truth or average em-

bedding, had a shorter SAD result in raw image
comparison. And UMCG segmented images had a
shorter SAD as well.

In conclusion, SAD both shows that the novel
UKBB data set is closer to the ground truth in
terms of real image differences (the non-segmented
MRIs) as well as predicting that UMCG segmen-
tations are more similar to ground truth than the
UKBB novel data set’s as evidenced by the Dice
Metric, which was higher for UMCG data than for
the novel UKBB data set segmentations.

Regarding the poor SSD and mean correlation
results, these could be caused by the differences in
image production techniques, like image standard-
isation algorithms used in the making of the data
sets as well as during the production phase (e.g. dif-
ferent MRI machines or underlying preprocessing
algorithms). Future work should be done in rectify-
ing that dissimilarity did not increase due to these
intermediate processes. Furthermore, establishing a
meaningful threshold for the SAD metric per data
set is a process that still requires further analysis
and development. This could be done by calculat-
ing average differences using images belonging to
the same distribution as described in the present
paper. Finally, upon establishing such a threshold,
an image can be vectorised or reduced after which
SAD should be calculated. Thresholding can then
be deployed to substantiate model output and in-
terpret it further.
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A Classification performance
measurements in Bai et
al.’s pipeline

A.0.1 Dice Metric

The DICE metric requires the MIRTK tool to be
installed. Installing CMAKE (a compiler tool) to
get MIRTK to run and solve dependency prob-
lems might be required. The relevant code is in
common/cardiac utils.py (lines 939:961). The
result is saved as a pandas dataframe. This func-
tion utilizes common/image utils.py to calcu-
late the actual metric. Two functions exist, one
that solves the dice metric using the Tensor-
flow library and another that uses the Numpy li-
brary instead (namely, tf categorical dice() and
np categorical dice()).

These three metrics were implemented again so
as to process images outside of the pipeline. These
methods can be seen bellow.

Listing 1: Python updated segmentation quality
measurements

def compute dice coefficient (mask gt, mask pred
):

volume sum = mask gt.sum() + mask pred.
sum()

if volume sum == 0:
return np.NaN

volume intersect = (mask gt & mask pred).
sum()

return 2∗volume intersect / volume sum

B UK Biobank’s cardiovascu-
lar magnetic resonance pro-
tocol[18]

B.1 The protocol

The reliability of most image processing networks,
indeed, even their generalisabilty is dependent on
details regarding the data used during training,
testing and verification. Furthermore, when the ori-
gin of these data are advanced medical imaging
machines, protocol differences across hospitals (e.g.
at production level regarding image cleaning work
flows) and manufacturers (e.g. regarding produc-
tion level work flows) may change the resulting data
processing strategies and the model output. Re-
garding the CMRs used in the UK Biobank dataset,
20-min CMRs were taken by a 1.5 Tesla scanner
(fabricated by MAGNETOM Aera, Syngo Platform
VD13A, Siemens Healthcare, Erlangen, Germany).
This was used together with the Cardiac Dot En-
gine (Siemens Healthcare, Erlangen, Germany) for
quality control and consistency of image acquisition
throughout the study.

On top of the machine’s standard cardiac pack-
age, a Shortened Modified Look-Locker Inversion
recovery technique (ShMOLLI, WIP780B) was im-
plemented to allow native (non-contrast) myocar-
dial T1 mapping.

In regards to UK Biobank’s CMR acquisitions,
these include piloting and sagittal, transverse and
coronal partial coverage of the chest. For cardiac
function, horizontal long axis, vertical long axis, left
ventricular outflow tract, and cines, both sagittal
and coronal, were obtained. The relevant stack for
the work at hand would be the short axis (SA) stack
of balanced steady state free precession (bSSFP)
cines, that cover the left ventricle (LV) and right
ventricle (RV).

Immediately before and after this bSSFP acqui-
sition of the aorta, brachial blood pressure read-
ings are being obtained using a manual sphygmo-
manometer used for calibrating peripheral wave-
forms and immediately afterwards a brachial pres-
sure wave trace is digitally computed by the Vi-
corder (Skidmore Medical, Bristol, UK) with the
cuff statically inflated to 70 mmHg using a volume
displacement technique. The Vicorder software cal-
culates values for central blood pressure by ap-
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plying a brachial-to-aortic transfer function. Aortic
distensibility represents the relative change in area
of the aorta per unit pressure, measurement which
is taken into account by Bai and used to check seg-
mentation validity.

B.2 Access

Researchers are able to access the DICOM CMR
image files through the UK Biobank portal by au-
thenticated request. The automated inline ventric-
ular function option is enabled on the scanner pro-
viding automatic assessment of LV contours and
volumes. There is also a multitude of bio-statistical
data available regarding subjects.

B.3 Funding and manual contours

Manual analysis to create a CMR reference stan-
dard for the UK Biobank imaging resource in 5000
CMR scans was funded by the British Heart Foun-
dation (BHF) project grant (PG/14/89/31194, PI
Petersen until 2018. A UK Biobank CMR Image
Analysis Consortium exists and has been working
towards standardization and automating CMR im-
age analysis.

C NIfTI images

Medical images have 4 key constituents: Pixel
Depth, Photometric Interpretation, Metadata, and
Pixel data. These constituents are responsible for
the size and resolution of the image. The medical
image expected by Bai et al.’s pipeline is of NIfTI
type. This is not a popular type in machine learning
nor in cardiology. NIfTI stands for Neuroimaging
Informatics Technology Initiative. A major feature
is that the format contains two affine coordinate
definitions. In Euclidean geometry, an affine trans-
formation is a geometric transformation that pre-
serves lines and parallelism. These relate each voxel
index (i,j,k) to a spatial location (x,y,z) - a single
sample, or data point representing a single piece of
data, such as opacity, or multiple pieces of data,
such as a color in addition to opacity. The main
difference between the more common ML type for
image manipulation - DICOM - and NIfTI is that
the raw image data in NIfTI is saved as a 3d image,
whereas in DICOM an image is saved in 2d slices.
This makes NIFTI more preferable for some ma-
chine learning applications over DICOM, because
it is modelled as a 3d image by definition. Han-
dling a single NIFTI file instead of several hundreds
of DICOM is easier for MRI purposes or modeling
the corresponding 3d body parts. NIfTI stores 2
files per 3d image as opposed to dozens in the more
popular DICOM. Its use is aimed at establishing a
technical solution to the problem of multiple data
formats used in fMRI (functional magnetic reso-
nance imaging) research.
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D Regarding Bai et al.’s
model

The pipeline and associated scripts can be
found in the following Github repository: https:
//github.com/BlueVelvetSackOfGoldPotatoes/

medicalMRIcnn. The network is adapted from the
VGG-16 network[24] and it consists of a number of
convolutional layers for extracting image features.
Each convolution uses a 3 * 3 kernel and it is
followed by batch normalisation and ReLU. After
every two or three convolutions the feature map
is down sampled by a factor of 2 so as to learn
features at a more global scale. Feature maps
learnt at different scales are up sampled to the
original resolution using transposed convolutions
and the multi-scale feature maps are then con-
catenated. Finally, three convolutional layers of
kernel size 1 * 1, followed by a softmax function,
are used to predict a probabilistic label map. The
segmentation is determined at each pixel by the
label class with highest softmax probability. The
mean cross entropy between the probabilistic label
map and the manually annotated label map is
used as the loss function. Excluding the transposed
convolutional layers, this network has in total
16 convolutional layers. An image representing
the network architecture can be found in figure
G.2. This architecture is similar to the U-Net[20].
The main difference is that U-Net performs up
sampling step by step. It iteratively up samples
the feature map at each scale by a factor of 2 and
concatenates with the feature map at the next
scale. In contrast to this, the proposed network
may be simpler on the up sampling path. It up
samples the feature map from each scale to the
finest resolution in one go and then concatenates
all of them. In sum:

• Each convolution uses a 3 * 3 kernel and it is
followed by batch normalisation and ReLU;

• After every two or three convolutions, the fea-
ture map is down sampled by a factor of 2 or
3;

• Feature maps learnt at different scales are up
sampled to the original resolution using trans-
posed convolutions and the multi-scale feature
maps are then concatenated;

• Three convolutional layers of kernel size 1 *
1, followed by a softmax function, are used to
predict a probabilistic label map;

• This network has in total 16 convolutional lay-
ers.

D.1 Pre-processing

DICOM images as well as manual annotations were
converted into NIfTI format. For short-axis im-
ages, 4875 subjects (93500 annotated image slices)
were available - randomly split into three sets
of 3975/300/600 for training/validation/test. 3,975
subjects for training the neural network, 300 valida-
tion subjects for tuning model parameters, and fi-
nally 600 test subjects for evaluating performance.

16



E Regarding PCA Analysis

The goal in principal component analysis or PCA is
to extract the important information from the data
and to express this information as a set of summary
indices called principal components. These can be
taken to be the lines that best fit the data out of
all the points that make up the image. In appendix
G, figure G.1 there is a small visualisation analysis
that was done using Jupyter notebooks. The less
components used the less information is available,
thus yielding a worst reconstruction of the original
image.

It can be seen in appendix G, figure G.1, that
with just 50 components (half of the fitted PCA) a
fully recognisable image can still be reconstructed.
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F Std Tables

STD DEV
Real Imgs 0.248
Seg Imgs 0.112

Table F.1: STD DEV of avg vector represen-
tative of dataset used to train the model con-
structed from 550 Short Axis images and their
segmentations

Novel UKBB PCA
Real Imgs 0.236228 0.236229
Seg Imgs 0.1077 0.1081

Table F.2: STD DEV of avg vector and PCA
representative of novel ukbb dataset used to test
the model constructed from 13 Short Axis im-
ages and their segmentations

UMCG PCA
Real Imgs 0.2822 0.2847
Seg Imgs 0.11117 0.11115

Table F.3: STD DEV of avg vector and PCA
representative of UMCG dataset used to test
the model constructed from 18 Short Axis im-
ages and their segmentations

Brain Tumor MRI Flowers Hand Digits
Avg Vector 0.3292 0.220 0.226
PCA 0.3291 0.239 0.223

Table F.4: STD DEV of avg vector and PCA
representative of three other small datasets that
serve as more evidence for the quality of the
distance metric
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Figure G.1: Visualising the effects of diminish-
ing components in image fitted PCA.

Figure G.2: Visualising the general model de-
ployed by Bai et al. [5]

20



Figure G.3: Visualising the UKBB LV and RV.

Figure G.4: Visualising the UKBB sequence of
end diastolic relaxation period where the cham-
ber fills itself.
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Figure G.5: Visualising the UKBB sequence
of end systolic contraction where the chamber
empties itself.
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H Algorithmic transforma-
tions of images

Listing 2: Python standard image loading and
resizing

’’’
INPUT: img − path to image.
OUPUT: final img − the resized, vectorized and

grey scaled image.
’’’
def standardize(img, resize =True):

img grey = cv2.imread(img, cv2.
IMREAD GRAYSCALE)

if resize :
resized = cv2.resize(img grey, (256, 256))

thresh = 1
img binary = cv2.threshold(resized, thresh,

255, cv2.THRESH BINARY)[1]

final img = center image(img binary)

return final img

Listing 3: Python standardisation of image vec-
tor before adding image to vectorized dataset

’’’
INPUT: img − a vectorized image, vectorized

using cv2.
OUPUT: pixels − the resulting standardized

vector
’’’
def standardize(img):

pixels = img.flatten()
pixels = pixels / np. linalg .norm(pixels, ord

=1)
pixels = normalize(pixels [:, np.newaxis], axis

=0).ravel()
return pixels
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