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Abstract
With the advances in Machine Learning, the deployment of Deep Learning models requiring GPUs
at inference time is becoming increasingly common. GPUs are expensive resources that are often
present in limited numbers as project resources. In a Kubernetes environment, where the inference
services run in a serverless platform, autoscaling GPUs during inference time is a challenge. Compa-
nies often need to make informed decisions on the autoscaling approach to use while designing and
implementing an inference serving system in such platforms.
When selecting an appropriate autoscaling approach, there is often a requirement to trade-off between
optimizing GPU utilization and having lower inference latency. One approach to improve GPU uti-
lization is to scale based on GPU-based utilization metrics. However, these are not easily available
on all Kubernetes platforms, and configuring them with the inbuilt Kubernetes resource, Horizontal
Pod Autoscalers is non-trivial. GPU utilization-based autoscaling is not served out of the box in Ku-
bernetes platforms, unlike its CPU autoscaling counterpart which boasts of a more mature system
ecosystem of off-the-shelf autoscaling controls. One approach for autoscaling GPUs, provided as an
off-the-shelf solution, uses the number of inflight requests to make a scaling decision (requests which
are being served and not yet responded to).
In this thesis, we design and implement a simple autoscaling system that scales the GPUs based on
the average GPU memory utilization. We compare both these approaches by studying their behavior
in response to different environmental conditions that incrementally simulate real-world characteris-
tics. These simulations model systems that are pounded by inference requests at a constant rate and
another in which the systems are loaded with variable traffic. Through experiments, we show that the
request-based autoscaling approach is better suited for use cases where the focus is on providing lower
inference latency rather than better GPU utilization. In contrast, the GPU utilization-based autoscal-
ing approach provides a more conservative way to utilize GPUs, generally leaving GPUs available for
other use but at the cost of providing slow inference response times.



CHAPTER 1

Introduction

Machine learning models which use GPUs to accelerate performance are becoming increasingly
common.[Kaiser(2019b)] For many use cases, GPU-based inference is the only way to achieve ac-
ceptable latency [Kaiser(2019a)]. GPUs are expensive resources and as a result, are often present in
limited capacities as project resources.
Knowledge of GPU resource pool utilization and their efficient management at runtime is of vital
importance for the following reasons:

• For some business cases, making a wrong decision on the number of GPUs required can
severely impact the business in financial costs.

• Given the limited availability of GPU resources, better management of GPU resources provides
flexibility in how to utilize and share them between computing tasks and projects.

• Monitoring the health of deployed systems and placing automatic alerts or controls on scaling
operations in case of unexpected behavior.

In real-world settings, there is often no guarantee on how ’GPU hungry’ the incoming requests
are or the rate at which incoming traffic will flow in. It is not uncommon to have inference requests
which use up 100% of the GPU instance.[Kaiser(2019b)] On the other hand, it would be wasteful
to spawn more GPU instances while underutilizing those already present to meet demand quicker,
without proper considerations in place. This hints at a requirement to dynamically scale the number
of GPU resources to meet the incoming demand. Circumventing the need for manual intervention,
automatic scaling solutions help businesses:

• to provide the minimal operational GPU resources required during deployment

• to scale out the number of GPU resources in the event of an increase in the GPU usage demands

• to scale down the number of GPU resources to maintain the minimal operational limit when no
usage demand is required

• to automate this scaling process 1-3 without human operator intervention

6
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Most off-the-shelf solutions, such as Seldon Core[Core(2021)], Cortex[Cortex(2021)] as well as KF-
Serving [KFServing(2021)] provide autoscaling solutions that focus on scaling the inference work-
load based on the number of inflight requests (requests which are being served and not yet responded
to). There are no ready-made solutions that provide autoscaling based on the GPU utilization metrics.
This highlights the need for autoscaling based on GPU utilization metrics and simultaneously builds
a case for it to become a more readily available solution.
This thesis investigates the need by providing a comparative study on both autoscaling approaches. To
do this, the project proposes the design as well as an implementation of a simple autoscaler that scales
on the basis of the rolling average of the GPU memory utilization metric. We discover that choosing
an appropriate autoscaling approach often involves a trade-off between efficient GPU utilization and
lower inference latency.

1.1 Related Work
Autoscaling for CPU-based clusters has been studied in depth such as in [Al-Haidari et al.(2013)]
and [Casalicchio(2019)]. Similarly, while [bol(2021)] presents the learnings and significant business
impact from a real-world autoscaling solution deployed for CPUs, it still provides relevant pointers
that can inspire the GPU-autoscaling design paradigm.
In the report [Cox et al.(2020)], the authors present three possible approaches to autoscale GPU-based
inference systems in Kubernetes. The approaches discussed are based on GPU utilization, inference
latency, and the number of inflight requests. According to the report, autoscaling based on GPU
utilization is difficult as not all Kubernetes platforms provide GPU duty cycle metrics. In some use
cases, it may be required to combine CPU utilization with GPU utilization to produce a complex
autoscaling metric to make a scaling decision. Reconciling such a metric is not a trivial task.
According to the article, [Kaiser(2019b)], the inference latency-based autoscaling approach makes
use of a user-defined latency target as its trigger. However, the approach is not a favorable one, since
one would need to know the target latency before launching the inference service. This is risky since
if an updated model having a longer inference latency compared to the previous version is deployed, it
could trigger infinite scaling. Furthermore, inference latency is a poor indicator for deciding to scale
down. The reason behind this is that the inference latency of a request only changes when requests
start waiting in queues. Figure 1.1a depicts a situation wherein the inference service replicas are
oversubscribed since the requests start queuing up. As a consequence, the latency per request would
increase. This would result in the system deciding to scale up.

(a) Over-subscribed inference service (b) Under-utilized inference service

Figure 1.1: Scaling behavior for system A
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When the inference service replicas receive requests at a rate slower than the system can handle,
there will be no change in the latency as there are no queued requests. This can be seen in figure 1.1b.
If the inference latency does not reduce as the intensity of the demand reduces, it cannot be trusted as
a good signal for scaling down.
The final approach discussed deals with scaling the number of GPU resources based on the number
of inflight requests in the system. As mentioned previously, most off-the-shelf GPU autoscaling ap-
proaches [Core(2021)] [Cortex(2021)] [KFServing(2021)] embrace this approach. [KFServing(2021)]
provides a scale to zero GPU autoscaling solution based on this approach.

1.2 Research Questions
The main research goal is to investigate the GPU utilization-based autoscaling approach by drawing a
comparison to the inflight requests-based autoscaling approach. To support this objective, the research
question this thesis targets to answer is:

• How to best perform GPU resource autoscaling in ML inference services and recommend be-
tween the autoscaling approaches in the context of efficient GPU utilization and reduced infer-
ence latency?

The question is broken down into several smaller research problems:

Q1. How to build an autoscaling component that leverages GPU utilization metrics to make
an autoscaling decision?

Q2. How does the inflight requests-based autoscaling system compare with the GPU utilization-
based autoscaling system when the systems are loaded with constant traffic?

Q3. How do the two approaches compare when the systems are loaded with variable traffic?

1.3 Milestones

M1 Investigating GPU based autoscaling approaches in Kubernetes
M2 Design and implement a system that scales GPUs on the basis of average GPU utilization.
M3 Setup the environment with a deployed ML inference service and run experiments
M4 Compare and evaluate the performance of both the systems for each experiment.

Table 1.1: Project Milestones

1.4 Scope/Limitation
To build towards its objective of comparing the different GPU autoscaling approaches, this study
makes a few working assumptions, which can be relaxed in subsequent investigations. To conduct the
experiments, a complex system of several interacting components and services had to be implemented
(as described in Chapter 3). In absence of off-the-shelf solutions, a simple GPU-utilisation-based
autoscaling system was implemented which is restricted to the use of Nvidia GPUs (More information
on the same is available in the appendix). Second, the maximum number of GPUs available to either
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system was provisioned at six, and this number was always made available to the system. This is
equivalent to reserving a cluster of six online GPUs and could result in overestimating the cost of the
cluster setup. However, in the real world, one can dynamically request cloud compute instances and
provision or release instances in real-time which would further reduce costs.

Third, it is non-trivial to assess and compare the efficiency of the two systems in real-time en-
vironments, particularly as this would require access to real-time production environments and their
incoming requests. Hence, the project attempts to simulate these environments. Further, since there
are a large number of variations to real-time environments to be considered, only a limited number of
environments are simulated.

Fourth, in terms of concurrent processing, running multiple models on the same GPU resource
can help boost GPU utilization. However, since most ML model servers do not readily provide this
functionality, it is out of the scope of this thesis. In the same vein, parallel processing of multiple
requests for a single ML-model system on the same GPU resource has been left to future work owing
to the intertwined complexities of multiprocessing and Deep Learning (DL) algorithm implementa-
tions. For instance, DL libraries such as TensorFlow will process subsequent requests sequentially
since TensorFlow uses a global single compute stream for each physical GPU device 1. The current
study assumes that the threshold concurrency limit for each individual model server is 1. Note, the
study however does implement a certain degree of multiprocessing by sending requests to multiple
GPU instances.

1.5 Target Group
This thesis targets data scientists, software, and DevOps engineers working with ML inference serving
systems to fulfill and sustain service level agreements (SLA) for quality attributes such as availability
and performance. The thesis could also be used in the project planning phase to make an informed
decision on the type of autoscaling approach to use while designing the inference serving system.

1.6 Thesis Outline
The thesis is organized into sections as follows. Chapter 2 introduces the reader to the technical
background on critical concepts used, while Chapter 3 provides a detailed description of the system
architecture set up for the study. The experimental approach, setup, as well as evaluation metrics,
are described in Chapters 4 and 5. Chapter 6 documents the results and comparisons between the
different setups, while Chapter 7 presents main result inferences and Chapter 8 concludes.

1https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/commonruntime/gpu/gpu device.ccL284
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Theoretical Background

The study involves an elaborate technical ecosystem. The background behind certain concepts and
algorithms is described here.

2.1 Cloud Computing
This thesis uses Google Cloud Platform 1 to deploy the inference serving systems and compare their
performance in different environments. Since the systems rely on the cloud it is important to under-
stand what cloud computing is. NIST defines Cloud Computing as a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction. [Mell et al.(2011)]

2.2 Kubernetes
Kubernetes is an open-source system for automating deployment, scaling, and management of con-
tainerized applications [Kubernetes(2021)]. It was inspired by the Borg cluster management system
from Google[Google(2015)] and later donated to the Cloud Native Foundation. In the past decade,
Kubernetes has seen a growth in the number of users. Several enterprises now use Kubernetes to
deploy their applications in private data centers, public clouds as well as hybrid cloud environments.

2.3 Autoscaling
Autoscaling is the ability of a system to dynamically scale the number of instances. This means that
if the system experiences a surge in the incoming traffic, to maintain the desired level of availability
of the service provided by the system, the number of instances required to serve the traffic should
be increased as well. Likewise, the system should reduce the number of instances in case the load
decreases. Thus by automating the scaling decisions according to pre-determined objectives in quick

1https://cloud.google.com/

10
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response to changing conditions, the system can avoid wasting resources. In the context of this thesis,
instances refer to GPU resources, and the process of scaling means to increase or decrease the number
of GPU resources.
Horizontal scaling refers to the process of adding or removing instances. The incoming traffic is dis-
tributed uniformly among the instances currently available, this is usually handled by a load balancer.
Vertical scaling means increasing the capacity of the currently running instance. Vertical scaling is
generally associated with a certain degree of downtime while upgrading the resource, therefore hori-
zontal scaling is preferred when dealing with environments that consist of fluctuating load.
Both the autoscaling approaches discussed in this thesis are threshold-based autoscaling approaches.
Threshold autoscaling is a reactive approach where the system monitors the values of metrics and
makes a decision to scale out in case the values exceed the use of user-defined thresholds.

2.3.1 Horizontal Pod Autoscaler
According to the documentation mentioned in [Kubernetes(2021)], A Horizontal Pod Autoscaler or
HPA is a Kubernetes resource which dynamically scales the number of pod replicas in a deployment
based on the observed value of a single or multiple metrics specified in the HPA definition. The
following is an example of a HPA definition.

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:

name: hpa-demo
namespace: default

spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: target-deployment

minReplicas: 1
maxReplicas: 6
targetCPUUtilizationPercentage: 80

Since the GPU utilization-based autoscaling approach makes use of the HPA to scale the number
of GPU resources it is important to understand the underlying algorithm of a HPA.

The following describes the HPA Autoscaling algorithm as mentioned in [Kubernetes(2021)]:

1. The HPA is implemented as a Control Loop with the default duration of every period set as 30
seconds.

2. The HPA periodically queries the targeted set of pods to collect the value of the metric specified
in the HPA definition.

3. It compares the collected value with the target value specified in the definition.

4. Scaling of the number of replicas take place with the following conditions:

• MinReplicas ≤ Replicas ≤MaxReplicas

• desiredReplicas = ceil[currentReplicas * ( currentMetricValue / desiredMetricValue )]
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5. The HPA takes five minutes before deciding to scale down the number of replicas (in case
a scaling operation just took place), this is known as the cool-down period. The purpose of
the cool-down period is to introduce a degree of robustness to the system against frequent
conflicting decisions.

6. There is only a single policy for scaling down which allows 100% of the currently running
replicas to be removed which means the scaling target can be scaled down to the minimum
allowed replicas.

7. For scaling up there is no cool-down period. When the metrics indicate that the target should
be scaled up the target is scaled up immediately.

8. Any scaling will be skipped if the ratio, CurrentMetricValue/DesiredMetricValue is sufficiently
close to 1 (10% tolerance).

[Kubernetes(2021)] states that approach taken by the HPA has two benefits:

• The autoscaling algorithm for the HPA works conservatively. It rapidly scales up the number
of pods when user load is detected. However, scaling down the number of pods is not treated
as urgent.

• The HPA algorithm avoids thrashing, i.e. it prevents rapid execution of conflicting decisions if
the load is not stable.

2.3.2 Inflight Request Based Autoscalers
The autoscaling approach used by this autoscaler is to scale the number of instances by counting the
number of inflight requests. Inflight requests refer to the requests which are currently in the system
and have not been processed yet. The autoscaler can scale the number of inference service replicas
and hence GPU resources to closely match the incoming demand. It is even able to scale to zero in
case there is no demand.
For this thesis, the Knative Pod Autoscaler which uses the inflight requests-based autoscaling ap-
proach is used. The following is an example of the definition of a service using the inflight requests-
based autoscaler.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:

name: demo-service
namespace: default

spec:
template:
metadata:
annotations:
# Target 10 in-flight-requests per pod.
autoscaling.knative.dev/target: "10"
autoscaling.knative.dev/minScale: "2"
autoscaling.knative.dev/maxScale: "6"

spec:
containers:
- image: gcr.io/knative-samples/autoscale-go:0.1
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In the definition provided above, a service called ’demo-service’ is defined. The configurations for
the autoscaler are present as annotations. The number of inflight requests the service can handle,
beyond which the autoscaler would deploy a new instance of the service is 10. The minimum number
of instances of the service is 2 and the maximum possible instances the autoscaler can scale up to is
6.
The default behavior of the autoscaler is to scale to zero if the minimum scale is not defined and in
theory can scale out the number of instances to infinity if maximum scale is not defined.

2.4 GPU Memory Utilization Metric
The GPU utilization based autoscaling component makes it’s scaling decison based on the rolling
average of the GPU memory utilization metric. This metric represents the percentage of time over the
last second that the GPU’s memory controller was being utilized to either read or write from memory.

2.5 Metric collection using Prometheus
Prometheus is an open source monitoring system 2 which collects metrics and stores them in a time-
series database. Prometheus relies on the pull model to collect the metrics. The process of collecting
metrics is called scraping. The instrumented services expose their metrics in a format understandable
by Prometheus.
A potential challenge with this model of metric collection is that Prometheus needs to know where
to collect the metrics from. Statically configuring the endpoint is not an option since services in a
micro-service architecture are generally ephemeral, hence there is a need to dynamically configure
the location of the services. Prometheus servers have inbuilt solutions for service discovery (service
monitors) which helps them overcome this challenge.

2https://prometheus.io/
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System Architecture

This chapter describes the architecture of the composite systems studied.

3.1 Base Architecture
Both inflight requests based as well as GPU utilization based autoscaling systems are built upon on a
common base architecture. Figure 3.1 represents the base architecure for both the systems.

Figure 3.1: Base Architecture

The components of the base architecture are:

1. Inference Service Deployment
This is a kubernetes deployment of pods which contain containers running inference services.
Each inference service pod required exactly one GPU resource.

14
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2. Ingress Gateway
This is a gateway for routing requests to the appropriate inference service. It acts as a load
balancer sitting at the edge of the system. Requests sent by external or internal applications to
the ingress gateway are either routed to the activator (in case of insufficient inference service
pods in the inference service deployment) or directly to the pod running the inference service.

3. Activator
The Activator is a critical component of the architecture. The following are the purposes the
activator serves:

(a) It buffers the incoming requests, in case there are an insufficient number of inference
service pods and it sends metrics to the autoscaler.

(b) As inference service pods become available, it balances the load efficiently among the
newly created inference service pods. This prevents overloading of any pod. Essentially
protecting the system from bursts so that we do not see requests queuing in the pods.

4. Autoscaler
This is the main component of study and is different for both the systems in terms of the ap-
proach it takes to scale the number of inference service pods, and hence GPU resources in both
the systems.

5. Kubernetes controllers:
This includes all the Kubernetes controllers responsible for deploying the inference service
pods as well as other relevant resources.

3.1.1 Request Flow
In this section the general flow of an inference request in the inference serving system is discussed.
Figure 3.2 depicts the various stages in the flow of the inference request.

Figure 3.2: Request flow
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The various stages are described below:

• Stage 1
The client sends an inference request to the ingress gateway.

• Stage 2
On reaching the ingress gateway, if there are no inference services available to handle the in-
coming request, the request is forwarded to the activator, where it is stored in a buffer.

• Stage 3
The activator then ’pokes’ the autoscaler in order to trigger the deployment of the required
number of inference service replicas.

• Stage 4
The autoscaler communicates with the kubernetes controllers in order to scale the number of
replicas of the inference service in order to meet the incoming demand.

• Stage 5
The kubernetes controllers increase the scale of the inference service deployment, deploying
new replicas.

• Stage 6
The activator sends the stored request to the newly deployed inference service replica.

• Stage 7
Once the inference service processes the request, it sends the response to the ingress gateway,
which sends it back to the client.

• Stage 8
The next request sent to the ingress gateway is directly sent to the inference service replica,
provided it is available. The process repeats from stage 2 if the inference service is not available.
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3.2 Inflight Request Based Autoscaling System
As mentioned before, the inflight requests based autoscaling system builds upon the base architecture
(Figure 3.1). Figure 3.3 depicts the architecture of the system which uses an autoscaler that scales on
the basis of the number of inflight requests.

Figure 3.3: Inference serving system which scales on the basis of the number of inflight requests

The components which this system adds/ makes changes to the base architecture are:

1. Inference service deployment
The inference service deployment now has a configurable concurrency threshold, which denotes
the number of inflight requests the inference service can handle. As mentioned in section 1.4
the limit is set to 1.

2. Queue Proxy:
Every inference service pod deployed has a corresponding queue proxy. The purpose of the
queue proxy is:

(a) To ensure the configured concurrency for the inference service.

(b) Emit metrics regarding the number of inflight requests to the autoscaler.

3. Inflight requests based autoscaling component
This component is responsible for autoscaling the number of replicas of the inference service
in order to closely match the incoming demand. This includes scaling the number of replicas
to zero in case there is zero incoming traffic. The autoscaler monitors the incoming requests
to each replica and makes a decision to scale the number of replicas based on the configured
concurrency for the revision.
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3.3 GPU Based Autoscaling System
The architecture of the GPU based autoscaling system is represented by figure 3.4.

Figure 3.4: Inference server system using autoscaler based on GPU-utilzation

The architecture deviates from the previous system with respect to the working principal of the
autoscaling component as well the absence of the queue proxy.
The inference services no longer have a configurable concurrency threshold but instead have a config-
urable average GPU memory utilization threshold. The system uses the native Kubernetes resource,
called the Horizontal Pod Autoscaler(HPA) 1 as the autoscaling component. The HPA scales the
number of replicas of the inference service based on the average GPU memory utilization metric. If
the observed value crosses the user-defined threshold the system uses the HPA algorithm to scale the
number of GPU resources.
Since GPU metrics are not easily available in every Kubernetes platforms, a general approach to ex-
tract GPU metrics and export them as custom Kubernetes API is required. Figure 3.5 depicts a simple
approach to compute the GPU memory utilization of the GPU resources being used and export the
rolling average of this GPU memory utilization value (over a window of 1 minute) as a custom metric
to be used by the HPA. The solution relies on the Data Center GPU Manager(DCGM2) exporters
to pull and make available GPU related metrics. These metrics are then scraped by the Prometheus
server, where they are stored in a time series database. To compute the GPU memory utilization value
of only the GPU resources being utilized at that instant, a component named ’custom exporter’ is
used. The component contains a python script running in a container. The script computes the GPU
memory utilization of the GPU resources being utilized and makes them available for the prometheus
server to scrape and store. Once the new metric is stored in the prometheus server, a prometheus
adapter uses PromQL3 to compute the rolling average of the GPU memory utilization and exposes
it as part of the custom metrics API endpoint. The HPA then receives the average GPU memory
utilization value by accessing this endpoint.

1https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
2https://docs.nvidia.com/datacenter/dcgm/dcgm-user-guide/index.html
3https://prometheus.io/docs/prometheus/latest/querying/basics/
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Figure 3.5: Exposing custom GPU utilization metrics



CHAPTER 4

Approach

Both the systems, discussed in the previous section, will be subjected to a set of experiments to eval-
uate their performance in different environments.

The following is the purpose for every experiment conducted:

1. Monitoring and deriving the relation between the ML inference service system’s ability to serve
a certain demand load, and the quantity cum duration of each GPU resource’s utilisation.

2. Evaluate the system’s decision to scale in order to meet the demand.

3. Analyze the latency statistics for both the systems.

The following are the experiments performed on both the systems:

4.1 Loading the systems with a constant traffic
The objective of running this experiment is to test the ability of the system to serve a fixed demand.
A business use case which would generate such a load is offline batch processing - images are sent to
the inference system in batches of fixed sizes. The rate at which the requests are sent to the system is
more or less constant.
This experiment has been designed to mimic such a scenario, where in a large volume of images
(15000 images) are sent to the inference serving system at a constant rate in batches of 6. For the
GPU utilization based autoscaling system, the threshold for the average memory utilization has been
set to 30 %.

4.2 Load system with variable traffic
The objective of running this experiment is to evaluate the ability of the system to make a scaling
decision in order to meet the periodically fluctuating demand. The experiment attempts to mimic
an environment, where the intensity of the incoming inference requests to the service varies with

20
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each interval. In doing so, we can test the response of the system to upscaling and downscaling, and
whether either system is more resilient and resource efficient to dramatic fluctuations.
The experiment is divided into four phases. A total of 48000 requests are sent to each system in four
phases with varying rates. In the first phase, 16200 requests are sent with a frequency of 90 requests
per second. In the second phase, 9600 requests are sent with a frequency of 20 requests per second.
The third phase sees a rise in the request frequency with 16200 requests sent at 90 requests per second.
In the final phase, 6000 requests are sent with a frequency of 10 request per second.
For the GPU utilization based autoscaling system, the threshold for the average memory utilization
has been set to 30 %.

4.3 Reducing the user-defined threshold of GPU Memory utilisa-
tion to observe GPU scaling

The objective of this experiment is to evaluate the performance of the GPU utilization based autoscal-
ing approach in an environment where the average GPU memory utilized by the GPU resources serv-
ing the inference load, frequently crosses the user-defined threshold. However, there is some rigidity
in GPU memory utilisation imparted by the ML algorithm’s design, and thus simply increasing the
batch size of incoming requests without re-designing the computational efficiency (introducing paral-
lelization) of the algorithm will not raise memory usage. As redesigning or improving parallelisation
of the ML model’s inference ability to raise GPU memory utilisation of the system is out of scope of
this study, we instead simulate the scenario of over-utilisation by lowering the trigger threshold of the
GPU Memory utilization below the observed memory utilization
To evaluate the performance, both Experiment 1 and 2 are performed on the system with the newly
set threshold (6%).



CHAPTER 5

Experimental Setup

In this section we discuss the architecture of the setup required to conduct the experiments. Figure
5.1 depicts the underlying architecture for the setup.

Figure 5.1: Experimental Setup

The following is a description of the main components of the experiment setup. 5.1.

1. Load generator: Generates and sends inference requests to the gateway.

22
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2. Kubernetes Cluster: The cluster consists of six nodes. Each node has a single GPU (Nvidia
Tesla P100) and is a N1-standard-8 machine(8 vCPUs, 30GB memory).

3. Gateway: This is the entry point of the serving system. The gateway is responsible for routing
the requests to the appropriate service.

4. Autoscaler: This is the main component under study. The goal of the autoscaler is to make an
autoscaling decision either based on GPU memory utilization or the number of inflight requests.

5. Model server: The model server hosts the trained inference model and exposes the predict
logic via a GRPC / HTTP endpoint on the server. A replica of the model server is always
running to avoid the initial start-up delay.

6. GPU telemetry: To monitor the utilization metrics of the GPUs in the cluster.

7. Trained models: The system uses pre-trained ML models. For the purpose of this study, we
use a simple publicly available multi-class classification ML model 1, pretrained on a public
dataset 2, with the objective to classify input images as different types of flowers.

5.1 Tools and Technologies
The following are the list of tools and technology used:

1. Kubernetes:
Kubernetes provides the platform required to deploy and scale the serverless-inferencing sys-
tems. It is an open-source for automating deployment, scaling and management of container-
ized applications [Kubernetes(2021)].

2. Google Kuberentes Engine:
Google Kuberentes Engine (GKE) provides a configurable Kubernetes cluster. The cluster is
managed by Google using Google infrastructure. 3

3. Tensorflow:
An open source ML platform which provides the libraries for building and training ML models.
It also provides libraries to serve the trained model as an inference service.

4. KFServing:
KFServing provides a framework to serve inference services in Kubernetes providing features
such as GPU Autoscaling, scale to zero, and canary rollouts to ML deployments. [KFServing(2021)]

5. Istio:
KFserving utilizes the Istio 4 Ingress Gateway resource provided by Istio. The gateway helps
route requests to the inference services.

6. Knative Serving:
The study adopts the architecture set up by Knative serving. Knative Serving provides a plat-
form to deploy serverless applications over kubernetes.

1https://www.tensorflow.org/hub/tutorials/image feature vector
2https://www.tensorflow.org/datasets/catalog/tf flowers
3https://cloud.google.com/kubernetes-engine
4https://istio.io/
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7. Cert Manager:
Cert manager is used for provisioning the certificates for the KFServing webhook server.

8. Hey Load Generator:
This is an open-source load testing tool 5 used to simulate an environment with multiple users,
sending inference requests at set intevals.

9. Data Center GPU Manager(DCGM): For GPU telemetry, Nvidia’s DCGM 6) is used. It is a
tool used to monitor the utilization of the GPUs in a cluster.

10. Prometheus: Prometheus is used to record the GPU metrics exported by a DCGM exporter
and store it in a time-series database using a HTTP model.7

11. Grafana: Grafana 8 is used as the data visualization platform to analyse the GPU utilization as
well as other collected metrics.

5.2 Evaluation Metrics
To evaluate the performance of both the autoscaling systems, the following autosacling performance
metrics defined by SPEC [Herbst et al.(2016)] are used:

5.2.1 Autoscaling performance metrics proposed by SPEC Cloud Group
These metrics quantify the autoscaling capabilities of the two autoscaling approaches and help the
developer community to select the appropriate strategy for their workload. The metrics include:

• Provisioning accuracy metrics
Represented as θU and θO, describe the relative amount of under-provisioned or over-provisioned
GPU resources, respectively, during the measurement interval.

θU [%] =
100
T

T

∑
t=1

max(dt− st ,0)
dt

∆t

θO[%] =
100
T

T

∑
t=1

max(st−dt ,0)
dt

∆t

• Wrong-provisioning timeshare metrics
Represented as τU and τO, measure the time in which the autoscaler underprovisions or over-
provisions, respectively, during the time of the experiment.

τU [%] =
100
T

T

∑
t=1

max(sgn(dt− st ,0))∆t

τO[%] =
100
T

T

∑
t=1

max(sgn(st−dt ,0))∆t

5https://github.com/rakyll/hey
6https://docs.nvidia.com/datacenter/dcgm/dcgm-user-guide/index.html
7https://prometheus.io/
8https://grafana.com/
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• Overall provisioning accuracy metric

θ =
θU +θO

2

• Overall wrong provisioning timeshare metric

τ =
τU + τO

2

Here we define:

1. T as the duration of the experiment and the current time as t ∈ T

2. dt represents the number of GPU resources demanded by the autoscaler and and st denotes the
number of GPU resources supplied by the system at time t.

3. ∆t denotes the time interval between the last and the current change in either demand (d) or
supply (s).

4. sgn is the signum function.

Lower values for these metrics indicate a better autoscaling strategy.

5.2.2 Inference response time
The inference latency statistics for both the autoscaling systems are compared for both the experi-
ments. Lower inference latency indicates a faster autoscaling approach.

5.2.3 GPU Activity
This metric evaluates the amount of time the GPU resource is active for over the duration of the
experiment. A higher value for the same indicates that the GPU resource was highly active during the
experiment while a lower value could mean that the GPU resource was sitting idle for longer periods
of time during the experiment.

GPU Activity % =
Amount of time GPU is active

Duration of the Experiment
∗100

5.2.4 Cost
The autoscaling systems are compared based on the monthly costs generated for running the clusters.
The costs are calculated based on the Google Cloud Platform(GCP) billing policy for GPU resources
[Google(2021)]. The breakdown includes a fixed provisioning cost per GPU instance, followed by a
variable cost proportionate to the number of seconds a GPU is run for in the experiment. The Google
Cloud Pricing Calculator9 has been used to generate the monthly pricing estimates. To arrive at these
estimates, it has been assumed that the experiment is run once a day for 5 days a week.

9https://cloud.google.com/products/calculator/
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Results

This chapter provides quantitative experiment results to evaluate the performance of both the systems
when placed in different environments. As discussed in experiment outline in chapter 4, the systems
are first loaded with constant request traffic, following which the systems are made to experience
variable traffic. In the final experiment the memory utilization threshold of the GPU utilization based
autoscaling system is reduced to a value below the observed average memory utilization and both the
preceding experiments are performed on this system. We use the following terminology to demar-
cate the different autoscaling systems studied:(1) System A: The inflight requests based austoscaling
system, and (2) System B: GPU utilization metric based autoscaling system

6.1 Experiment 1 - Loading the system with constant traffic
Both the systems are loaded with 15000 requests at a steady rate. The following is a graph depicting
the total number of inference requests sent by the load generator measured every 15 seconds.

Figure 6.1: Inference Requests sent by the load generator
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6.1.1 Inference latency statistics

The following tables represent the latency distribution (Table 6.1) as well as general statistics on the
observed response times (Table 6.2).

System 10% 25% 50% 75% 90% 95% 99%
A 0.0528s 0.0756s 0.0961s 0.0987s 0.0997s 0.1003s 0.1063s
B 0.4007s 0.4915s 0.5003s 0.5638s 0.5997s 0.6008s 0.6945s

Table 6.1: Latency distribution

System Total Slowest Fasted Average Throughput
A 227.0306s 2.3452s 0.0491s 0.0902s 66.0704
B 1275.8354s 3.4288s 0.0510s 0.5098s 11.7570

Table 6.2: Response Statistics

For system B, requests start queuing up in the activator as the system only uses a single GPU
throughout the experiment. As a consequence, higher values for the slowest as well as average re-
sponse times are observed compared to that of system A.
The total inference response time for system A is roughly six times faster than that of system B.

6.1.2 Scaling pattern

This section evaluates the GPU scaling behaviour of both the systems as observed during the experi-
ment. Figures 6.2 and 6.3 show the GPU resources demanded and provisioned by both the systems.

(a) GPU Resources Demanded vs Time (b) GPU Resources Provisioned vs Time

Figure 6.2: Scaling behavior for system A
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(a) GPU Resources Demanded vs Time (b) GPU Resources Provisioned vs Time

Figure 6.3: Scaling behavior for system B

In Table 6.3 the calculated autoscaling metrics for both the systems have been shown.

System θU θO τU τO θ τ

A 5.5% 0% 6.6% 0% 2.75% 3.30%
B 0% 0% 0% 0% 0% 0%

Table 6.3: Autoscaling Metrics

Since system B demands a single GPU throughout the experiment, it neither over-provides nor
under-provides GPU resources at any point. On the contrary, system A reacts to the high volume of
incoming requests and scales out to 6 GPU resources. In the process of scaling, it undergoes the cost
over-provisioning of GPU resources.

6.1.3 GPU memory utilization

The following graphs depict the GPU Memory utilization values of all six GPUs in the cluster over
the duration of the experiment.

(a) GPU utilization for GPU 1 in system A (b) GPU utilization for GPU 1 in system B

Figure 6.4: GPU memory utilization of GPU 1 during experiment 1
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(a) GPU utilization for GPU 2 in system A (b) GPU utilization for GPU 2 in system B

Figure 6.5: GPU memory utilization of GPU 2 during experiment 1

(a) GPU utilization for GPU 3 in system A (b) GPU utilization for GPU 3 in system B

Figure 6.6: GPU memory utilization of GPU 3 during experiment 1

(a) GPU utilization for GPU 4 in system A (b) GPU utilization for GPU 4 in system B

Figure 6.7: GPU memory utilization of GPU 4 during experiment 1
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(a) GPU utilization for GPU 5 in system A (b) GPU utilization for GPU 5 in system B

Figure 6.8: GPU memory utilization of GPU 5 during experiment 1

(a) GPU utilization for GPU 6 in system A (b) GPU utilization for GPU 6 in system B

Figure 6.9: GPU memory utilization of GPU 6 during experiment 1

It is observed that all the GPU resources are utilized when the experiment is performed on system
A, whereas in system B, a single GPU resource (GPU 6) is utilized . Table 6.4 provides the GPU
Activity of each GPU resource in the cluster measured over the duration of the experiment. It can be
observed that system B uses the GPU resources more conservatively as compared to system A.

GPU Number GPU Active Time in System A GPU Active Time in System B
1 92.5% 0%
2 92.4% 0%
3 92.5% 0%
4 92.5% 99.6%
5 92.5% 0%
6 92.6% 0%

Table 6.4: GPU activity for both the autoscaling systems
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6.1.4 Monthly Cost
The monthly estimate generated for running the cluster1

System Monthly Cost
A $16.57
B $93.22

Table 6.5: Monthly cost for running the cluster

It is important to note that the cost shown for system B in table 6.5 is inflated, since it is calculated
based on the assumption that all 6 GPU resources are pre-booked and thus contribute a fixed cost
despite not clocking active usage minutes. If the systems used a GPU-on-demand acquisition model,
the monthly cost of maintaining the cluster would reduce to $15.54. Table 6.6 shows the cost of
maintaining the clusters assuming the GPU resources are pre-booked based on the number of GPUs
used by both the systems during the experiment.

System Monthly Cost
A $16.57
B $15.54

Table 6.6: Monthly cost for running the cluster assuming GPUs are pre-booked according to the
number of GPUs utilized during the experiment

1Obtained from GCP Cost calculator
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6.2 Experiment 2 - Loading the system with variable traffic
In this experiment, the systems are loaded with inference traffic of variable intensities. A total of
48000 requests are sent to each system in four phases with varying rates. In the first phase, 16200
requests are sent in batches of 6, with a frequency of 90 requests per second. In the second phase,
9600 requests are sent in batches of 2, with a frequency of 20 requests per second. The third phase
sees a rise in the request frequency to 90 requests per second, with 16200 requests sent in batches of
6. In the final phase, 6000 requests are sent with a frequency of 1 request per second.
The following graphs depict the total number of inference requests sent by the load generator mea-
sured every 15 seconds over all the four phases.

Figure 6.10: Inference Requests sent by the load generator

6.2.1 Inference latency statistics
The inference latency statistics are divided into 4 subsections, representing the four phases.

• Phase 1
Table 6.7 and 6.8 represent the latency distribution and general statistics related to the inference
response times for the requests sent in phase 1.

System 10% 25% 50% 75% 90% 95% 99%
A 0.0570s 0.0819s 0.0978s 0.1001s 0.1243s 0.1379s 0.1613s
B 0.4982s 0.0819s 0.0978s 0.1001s 0.1243s 0.1379s 0.1613s

Table 6.7: Latency distribution

System Total Slowest Fasted Average Throughput
A 264.7642s 2.2597s 0.0492s 0.0973s 61.1865
B 2703.0474s 4.6491s 0.2962s 0.9986s 5.9932

Table 6.8: Response Statistics
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• Phase 2
Table 6.9 and 6.10 represent the latency distribution and general statistics related to the infer-
ence response times for the requests sent in phase 2.

System 10% 25% 50% 75% 90% 95% 99%
A 0.0515s 0.0519s 0.0524s 0.0536s 0.1140s 0.1275s 0.1582s
B 0.2367s 0.3003s 0.7090s 1.1229s 1.3049s 1.4023s 1.5156s

Table 6.9: Latency distribution

System Total Slowest Fasted Average Throughput
A 501.6552s 2.0061s 0.0502s 0.0648s 19.1367
B 3690.1597s 3.8326s 0.1373s 0.7687s 2.6015

Table 6.10: Response Statistics

• Phase 3
Table 6.11 and 6.12 represent the latency distribution and general statistics related to the infer-
ence response times for the requests sent in phase 3.

System 10% 25% 50% 75% 90% 95% 99%
A 0.0553s 0.0798s 0.0976s 0.0999s 0.1111s 0.1228s 0.30368s
B 0.6995s 0.7992s 1.1001s 1.2972s 1.4004s 1.4955s 1.6028s

Table 6.11: Latency distribution

System Total Slowest Fasted Average Throughput
A 255.4326s 2.1345s 0.0494s 0.0938s 63.4218
B 2850.4794s 5.5516s 0.2378s 1.0544s 5.6833

Table 6.12: Response Statistics

• Phase 4

Table 6.13 and 6.14 represent the latency distribution and general statistics related to the infer-
ence response times for the requests sent in phase 3.

System 10% 25% 50% 75% 90% 95% 99%
A 0.0514s 0.0519s 0.0526s 0.0538s 0.0757s 0.1069s 0.1318s
B 0.0519s 0.0531s 0.2946s 0.9055s 1.2989s 1.3989s 1.5126s

Table 6.13: Latency distribution
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System Total Slowest Fasted Average Throughput
A 602.4522s 0.1537s 0.0503s 0.0584s 9.9593
B 3235.4530s 4.2545s 0.0504s 0.5228s 1.8545

Table 6.14: Response Statistics

It is observed that the inference response times to serve the requests sent during each phase is much
faster when system A is used. This is again due to the inability of system B to scale up the number of
GPUs during the phases with high intensities of requests. As a consequence, a single GPU processes
all the requests sequentially, leading to requests waiting in the activator for longer durations of time.

6.2.2 Scaling pattern
This section evaluates the GPU scaling behaviour of both the systems as observed during the experi-
ment. Figures 6.11 and 6.12 show the GPU resources demanded and provisioned by both the systems
as measured every 15 seconds.

(a) GPU Resources Demanded vs Time (b) GPU Resources Provisioned vs Time

Figure 6.11: Scaling behavior for system A

(a) GPU Resources Demanded vs Time (b) GPU Resources Provisioned vs Time

Figure 6.12: Scaling behavior for system B

System A closely monitors the incoming traffic. It scales the number of GPU resources, up and
down, matching the varying intensities introduced by each phase. The scaling, however introduces
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under-provisioning costs. On the other hand, system B does not scale the GPU resources to the
varying intensities of each phase since the GPU memory utilization for every request remains more
or less the same (and below the set threshold). As a result, a single GPU resource is used to handle
the entire inference load.
Table 6.15 depicts the autoscaling metrics calculated for both the systems during experiment 2.

System θU θO τU τO θ τ

A 0.17% 0% 1.02% 0% 0.08% 0.51%
B 0% 0% 0% 0% 0% 0%

Table 6.15: Autoscaling Metrics for experiment 2

Since no scaling happens when system B is used, no under-provisioning or over-provisioning of
GPU resources is observed. On the contrary, system A undergoes under-provisioning of GPU re-
sources.
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6.2.3 GPU Memory utilization
The following graphs depict the GPU memory utilization values of all six GPUs in the cluster over
the duration of the experiment.

(a) GPU utilization for GPU 1 in system A (b) GPU utilization for GPU 1 in system B

Figure 6.13: GPU memory utilization of GPU 1 during experiment 2

(a) GPU utilization for GPU 2 in system A (b) GPU utilization for GPU 2 in system B

Figure 6.14: GPU memory utilization of GPU 2 during experiment 2

(a) GPU utilization for GPU 3 in system A (b) GPU utilization for GPU 3 in system B

Figure 6.15: GPU memory utilization of GPU 3 during experiment 2
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(a) GPU utilization for GPU 4 in system A (b) GPU utilization for GPU 4 in system B

Figure 6.16: GPU memory utilization of GPU 4 during experiment 2

(a) GPU utilization for GPU 5 in system A (b) GPU utilization for GPU 5 in system B

Figure 6.17: GPU memory utilization of GPU 5 during experiment 2

(a) GPU utilization for GPU 6 in system A (b) GPU utilization for GPU 6 in system B

Figure 6.18: GPU memory utilization of GPU 6 during experiment 2

Similar to the previous experiment 1, it is observed that all the GPU resources are utilized when
the experiment is performed on system A, whereas a single GPU resource (GPU 6) is utilized for
system B.
Table 6.16 provides the GPU Activity of each GPU resource in the cluster measured over the duration
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of the experiment. It can be observed that system B uses the GPU resources more conservatively as
compared to system A.

GPU Number GPU Activity in System A GPU Activity in System B
1 43.29% 0
2 32.98% 0
3 59.79% 0
4 37.11% 99.27%
5 23.98% 0
6 92.7% 0

Table 6.16: GPU activity over the duration of the experiment for both the autoscaling systems

6.2.4 Monthly Cost
The monthly cost estimates calculated for running the cluster for both the systemss is shown in table
6.17.

System Monthly Cost
A $105.41
B $297.82

Table 6.17: Monthly cost for running the cluster

As seen before in experiment 1, it is important to note that the cost shown for system B is inflated,
since it is calculated based on the assumption that all 6 GPU resources are pre-booked. If system
B pre-booked a single GPU resource or the system used a ’GPU-on-demand’ acquisition model,
the monthly cost of maintaining the cluster would reduce to $49.64. Table 6.18 shows the cost of
maintaining the cluster assuming that the GPU resources are pre-booked based on the number of
GPUs used by both the systems during the experiment.

System Monthly Cost
A $105.41
B $49.64

Table 6.18: Monthly cost for running the cluster assuming GPUs are pre-booked according to the
number of GPUs utilized during the experiment
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6.3 Experiment 3: Reducing the user-defined threshold for aver-
age GPU memory utilization

In this experiment the threshold for the average GPU memory utilization is set to 6 % for system B.
Both experiments 1 and 2 are then run on this system to evaluate the performance in the two different
environments.

6.3.1 Load the system with constant traffic

As done previously, the systems are loaded with 15000 requests, with a request frequency of 90
requests per second. The following is a graph depicting the total number of inference requests sent
by the load generator measured every 15 seconds.

Figure 6.19: Inference Requests sent by the load generator

6.3.1.1 Inference Latency Statistics

Tables 6.19 and 6.20 represent the latency distribution and general statistics on the observed response
times.

10% 25% 50% 75% 90% 95% 99%
0.0519s 0.0550s 0.0845s 0.1261s 0.1873s 0.2826s 0.5964s

Table 6.19: Latency distribution

Total Slowest Fasted Average Throughput
306.8517s 4.3214s 0.0495s 0.1200s 48.8835

Table 6.20: Response Statistics
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With a decrease in the threshold value, the total inference response time becomes approximately
four times faster than before. System A still shows a faster response time compared to system B.
However, the difference in the response times between the two systems have drastically reduced.

6.3.1.2 Scaling Behaviour

This section evaluates the GPU scaling behaviour of both the systems as observed during the exper-
iment. Figure 6.20 shows the GPU resources demanded and provisioned by the system as measured
every 15 seconds.

(a) GPU Resources Demanded vs Time (b) GPU Resources Provisioned vs Time

Figure 6.20: Scaling behavior of the system during experiment 1

Table 6.21 depicts the autoscaling metrics calculated for both the systems during the experiment.

θU θO τU τO θ τ

0.76% 0% 4.56% 0% 0.38% 2.27%

Table 6.21: Autoscaling Metrics

It is observed that the low threshold for the average GPU memory utilization triggers an early
scale up to 6 GPU resources. The behavior is similar to that of system A. However, it takes a longer
duration for system B to scale down due to the cool down period introduced by the HPA (Section
2.3.1).
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6.3.1.3 GPU Utilization

The following graphs depict the GPU memory utilization values of all six GPUs in the cluster over
the duration of the experiment.

(a) GPU memory utilization for GPU 1 (b) GPU memory utilization for GPU 2

(c) GPU memory utilization for GPU 3 (d) GPU memory utilization for GPU 4

(e) GPU memory utilization for GPU 5 (f) GPU memory utilization for GPU 6

Figure 6.21: GPU memory utilization of all GPU resources during the experiment

It is observed that system B starts utilizing all 6 GPU resources, similar to system A.
Table 6.22 shows the GPU activity of all the GPU resources in the cluster during the experiment.
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GPU Number GPU Activity
1 72.72%
2 63.63%
3 63.63%
4 72.72%
5 63.63%
6 90.90%

Table 6.22: GPU activity over the duration of the experiment

It is observed that system B does not use the GPU resources in a conservative manner anymore.
It’s behaviour is similar to that of system A.

6.3.1.4 Monthly Cost

Table 6.23 provides the monthly cost estimate calculated for running the cluster for both the systems.

System Monthly Cost
A $16.57
B $ 22.41

Table 6.23: Monthly cost for running the cluster

The difference between the cost estimates has reduced compared to before. However, system A
still has a lower cost.
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6.3.2 Loading the system with variable traffic
As done previously in Experiment 2, the systems are loaded with inference traffic of variable intensi-
ties. A total of 48000 requests are sent to each system in four phases with varying rates. In the first
phase, 16200 requests are sent with a frequency of 90 requests per second. In the second phase, 9600
requests are sent with a frequency of 20 requests per second. The third phase sees a rise in the request
frequency with 16200 requests sent at 90 requests per second. In the final phase, 6000 requests are
sent with a frequency of 1 request per second.
The following graph depicts the total number of inference requests sent by the load generator mea-
sured every 15 seconds over all the four phases.

Figure 6.22: Inference Requests sent by the load generator

6.3.2.1 Inference Latency Statistics

• Phase 1
Tables 6.24 and 6.25 represent the latency distribution and general statistics on the observed
response times for the requests sent in phase 1.

10% 25% 50% 75% 90% 95% 99%
0.0523s 0.0699s 0.1126s 0.1630s 0.2143s 0.3657s 0.5990s

Table 6.24: Latency distribution

System Total Slowest Fasted Average Throughput
A 264.7642s 2.2597s 0.0492s 0.0973s 61.1865
B 387.9200s 4.4531s 0.0495s 0.1407s 41.7612

Table 6.25: Response Statistics
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• Phase 2
Tables 6.26 and 6.27 represent the latency distribution and general statistics on the observed
response times for the requests sent in phase 2.

10% 25% 50% 75% 90% 95% 99%
0.0542s 0.0550s 0.0562s 0.0956s 0.1596s 0.1901s 0.2363s

Table 6.26: Latency distribution

System Total Slowest Fasted Average Throughput
A 501.6552s 2.0061s 0.0502s 0.0648s 19.1367
B 529.9146s 0.3521s 0.0497s 0.0817s 18.1161

Table 6.27: Response Statistics

• Phase 3
Tables 6.28 and 6.29 represent the latency distribution and general statistics on the observed
response times for the requests sent in phase 2.

10% 25% 50% 75% 90% 95% 99%
0.0518s 0.0571s 0.0982s 0.1430s 0.1783s 0.1982s 0.2386s

Table 6.28: Latency distribution

System Total Slowest Fasted Average Throughput
A 255.4326s 2.1345s 0.0494s 0.0938s 63.4218
B 294.5161s 0.3613s 0.0493s 0.1072s 55.0055

Table 6.29: Response Statistics

• Phase 4
Tables 6.30 and 6.31 represent the latency distribution and general statistics on the observed
response times for the requests sent in phase 2.

10% 25% 50% 75% 90% 95% 99%
0.0519s 0.0550s 0.0845s 0.1261s 0.1873s 0.2826s 0.5964s

Table 6.30: Latency distribution

System Total Slowest Fasted Average Throughput
A 602.4522s 0.1537s 0.0503s 0.0584s 9.9593
B 613.1551s 0.2520s 0.0500s 0.0632s 9.7855

Table 6.31: Response Statistics
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It is observed that the inference response times for system B have reduced and are much closer to that
of system A. This is because system B scaled up the number of GPU resources to 6 during the high
intensity phases.

6.3.2.2 Scaling Behaviour

This section evaluates the GPU scaling behaviour of the system as observed during the experiment.
Figure 6.23 shows the GPU resources demanded and provisioned by the system as measured every
15 seconds.

(a) GPU Resources Demanded vs Time (b) GPU Resources Provisioned vs Time

Figure 6.23: Scaling behavior

Table 6.32 depicts the autoscaling metrics calculated for both the systems during experiment.

θU θO τU τO θ τ

1.77% 0% 3.28% 0% 0.885% 1.64%

Table 6.32: Autoscaling Metrics

Similar to the previous experiment, the low threshold triggers the scaling up of the number of GPU
resources used by the inference system from 1 to 6. In addition, we note that while system A would
scale down in phase 2 as seen in Figure 6.11, the number of GPU resources in system B remain at 6
during phase 2. This is attributed to the ’cool down’ period built into the HPA logic (Section 2.3.1),
wherein after scaling up, the HPA waits for a duration of 5 minutes before making a decision to scale
down. As a consequence, by the time it gets an opportunity to decide on whether to scale down, the
system is loaded with the high intensity of requests in phase 3 forcing the system to maintain the use
of 6 GPU resources. The GPU resources gradually scale down in phase 4 (low-intensity).
A certain degree of under-provisioning of GPU resources is observed during the experiment.
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6.3.2.3 GPU Utilization

The following graphs depict the GPU memory utilization values of all six GPUs in the cluster over
the duration of the experiment.

(a) GPU memory utilization for GPU 1 (b) GPU memory utilization for GPU 2

(c) GPU memory utilization for GPU 3 (d) GPU memory utilization for GPU 4

(e) GPU memory utilization for GPU 5 (f) GPU memory utilization for GPU 6

Figure 6.24: GPU memory utilization of all GPU resources during the experiment

All 6 GPU reources are utilized in system B. Table 6.33 displays the GPU activity of all 6 GPU
resources during the experiment.
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GPU Number GPU Utilization
1 60.83%
2 45%
3 53.33%
4 53.33%
5 60%
6 66.66%

Table 6.33: GPU Activity over the duration of the experiment

As seen in the previous experiment, system B does not utilize the GPU resources in a conservative
manner anymore.

6.3.2.4 Monthly Cost

Table 6.34 presents the monthly cost estimates calculated for running the cluster for both the systems.

System Monthly Cost
A $105.41
B $106.16

Table 6.34: Monthly cost for running the cluster

The cost for maintaining the cluster for system B is similar to that of system A.
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Result Discussion

In both Experiments 1 and 2, where the defined threshold for the average memory utilization (30%)
is sufficiently greater than the observed memory utilization, longer inference response times are ob-
served for the GPU utilization based autoscaling approach.

System Total Response Time
A 227.03s
B 1275.83s

Table 7.1: Inference Response Time in Experiment 1

System Total Response Time
A 1442.45s
B 4075.43s

Table 7.2: Inference Response Time in Experiment 2

In Experiment 1 and 2, the GPU utilization based autoscaling approach uses a single GPU resource
to handle the incoming inference workload. The approach utilized the GPU resources in a more
conservative manner as compared to the inflight requests. On the contrary, all 6 GPU resources are
utilized for the duration of the experiments in the case of the inflight requests based autoscaling
approach.

Since the inflight requests based autoscaling approach scales the number of GPU resources during
both experiment 1 and 2, it experiences a certain degree of under-provisioning of GPU resources. This
can be seen by the values described in Table 6.3 and 6.15.
In Experiment 3 where the defined threshold for the average memory utilization is reduced to 6 %, it
is observed that the behaviour of the GPU utilization based autoscaling system is similar to that of the
inflight requests based autoscaling system. Similar inference response times, GPU activity as well as
monthly costs for maintaining the clusters are observed.
Since the inbuilt autoscaling algorithm of the HPA handles thrashing by introducing a cool-down
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period, where the resources aren’t scaled down for at least five minutes following a scaling operation,
substantially lesser degrees of under-provisioning of GPU resources is observed.

Further, as seen by the corresponding monthly cost estimations for each system (Sections 6.1.4
6.2.4), it is observed that in cases of an on-demand-GPU acquisition strategy, the GPU-utilisation
based metric system, at higher utilisation target thresholds, is cheaper than the latency-favouring
inflight requests based approach. This is indicative that such an autoscaling test simulation can po-
tentially help companies make informed decisions about the outer bounds of cloud compute costs
projections for either solution. This is of course, subject to other factors such as the system’s multi-
processing capabilities, and real-time environment characteristics.
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Conclusion

The thesis explored a possible alternate approach to GPU-autoscaling based on GPU memory uti-
lization and compared its performance to the existing inflight based autoscaling approach currently
provided by most inference serving solutions in the market. This was done by first designing and
implementing an autoscaling component which scales on the basis of the average GPU memory uti-
lization metric, and then integrating it with an ML inference system.
The autoscaling algorithm used by the approach is that provided by the in-built Kubernetes resource,
Horizontal Pod Autoscaler. Following the implementation, the autoscaling component was integrated
into an inference serving architecture described in Chapter 4. The final system was compared with
another inference serving system having a similar architecture, differing only in the autoscaling com-
ponent, which is an autoscaler that scales on the basis of the number of inflight requests.

The thesis conducts a comparison of two systems that mark different ends of the austoscaling
objectives. It inspects the boundaries of their behaviours to better inform the design of any autoscaling
system. The main findings of this thesis are summarized below:

• Implementation and integrating custom solutions for GPU utilization based autoscaling
which can inform industry applications: Designed and implemented a custom solution which
can be adapted and reused for testing or estimating costs by simulating behaviour of proposed
ML inference deployment systems under varying conditions of incoming request traffic and
system configurations.

• Latency in serving requests: Inflight-request based autoscaling, by virtue of definition of
its scaling objective, offers lower latency than GPU based autoscaling. However, it does so
at the expense of availing more GPU resources and potentially operating them at suboptimal
levels. On the other end of the spectrum, optimising solely on basis of GPU utilisation metrics
can result in more aggressive conservation of resources at the cost of slower processing and
response times.

• Managing GPU-use efficiency: A tradeoff is observed between optimising for GPU utilisation
at device level, versus response latency of the ML inference service. Thus, it is found that
scaling logic based on GPU use metrics such as GPU memory utilization, more efficiently uses

50



CHAPTER 8. CONCLUSION 51

a single resource to serve the entire request load, whereas a latency favouring system will use
more resources while under-utilising each GPU in the stack so as to process requests quicker by
concurrent processing. Thus, if a certain use-case can afford higher latency times, but requires
minimal resource count, it can choose an approach closer to the GPU utilisation metric based
autoscaling paradigm.

• Resource Sharing flexibility: Inflight-requests based autoscaling offers low inference times
which is a requirement for several business cases, particularly in services that are part of cus-
tomer facing applications. However it frequently requires the acquisition of a number of GPU
resources to maintain these response speeds. This leaves the scarce GPU resources less flexible
for sharing between different ML inference services.

• Monetary Cost: The cost for maintaining the clusters vary according to the pricing model and
GPU acquisition strategy for cloud compute. If considering a pay-by-second model for a fixed,
pre-booked number of GPUs, 1, the costs for maintaining a cluster running an inflight-request
based autoscaling system appear lower compared to its GPU-based autoscaling counterpart, for
performing inference on the same workload. On the other hand, if following an on-demand-
GPU acquisition strategy, GPU-utilisation based autoscaling appears to be significantly cheaper
than the latency favouring inflight requests based scaling approach. However, it is non trivial
to determine exact cost functions, due to other influencing factors such as deployment strategy,
cloud pricing model as well as the efficiency of the Deep learning logic deployed (parallelisation
capability).

• Notes on limits and convergence: In case of GPU-metric based autoscaling, the study finds
that lowering the value of GPU memory utilisation threshold to enable early triggering of the
scaling decisions, causes the system to begin to mimic the behaviour of its inflight requests
based autoscaling counterpart. In other words, we observe that lowering average GPU utiliza-
tion threshold in the GPU-metric based scaling paradigm converges to the performance of the
inflight request based autoscaling system. This allows delivering faster inference serving times
as well as utilizing the available GPU resources in the cluster.

8.1 Future Work

The study, while systematically investigating foundational questions in the design of a GPU-based
autoscaling strategy, also identifies interesting regions for possible future work beyond the thesis.

• The GPU utilization is usually low for serving a single model. An approach to increase the
GPU utilization would be to run multiple models in parallel in the same GPU. Currently, Nvidia
Triton inference server [Nvidia(2021)] allows placing multiple models in the same container but
there is a need for a smarter solution which can intelligently place multiple models in the same
container based on current GPU memory utilization.

• Exploring the performance of the GPU utilization based autoscaling system on a more com-
plex metric which combines CPU utilization with GPU utilization can provide a more accurate
measure to base the scaling decision on.

1https://cloud.google.com/products/calculator
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• Incorporating predictive autoscaling to further improve the performance of the autoscaling so-
lution. In Predictive autoscaling, an ML model is used to predict the future values for the
autoscaling metrics.
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Appendix
DCGM currently supports the following products and environments:

• All K80 and newer Tesla GPUs

• NVSwitch on DGX-2

• All Maxwell and newer non-Tesla GPUs

• limited DCGM functionality is available on non-Tesla GPUs
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