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Abstract 

Regression-based deconvolution allows for the separation of overlapping event related potentials. 

This carries great potential for naturalistic study designs but has not been validated for within 

subject analyses so far. As opposed to across subject analyses, tests on within subject estimates may 

not be valid since t-tests on individual β estimates rely on the assumption of independence to allow 

inference. EEG data violates this assumption. In this report we assessed the effects of this non-

independence on type-1 error rates of β parameters estimated from EEG via continuous-time 

regression. To this end, we simulated null-signals that had different degrees of non-independence. 

Subsequently, a number of different experimental conditions were simulated, modelled, and their 

parameters tested. We found non-independence of the residuals increased type 1 errors 

dramatically once systematic overlap was added to the model. We further discuss possible solutions 

that could be tested. Since EEG data violate the assumption of independence to a much greater 

extent than traditionally dealt with in the time-series literature, none of these solutions should be 

trusted without thorough empirical testing beforehand. Thus, we discourage the application of 

overlap-correction for within-subject analyses for now.  
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The Effects of Autocorrelation on Overlap Corrected rERPs 

Applying regression to Electroencephalography (EEG) carries great potential. A myriad of 

different implementations have seen a recent spike in interest (Cornelissen et al., 2019; Dandekar et 

al., 2012; Gert et al., 2021; Kristensen et al., 2017). Obtaining Event Related Potentials (ERPs) via 

regression (rERPs) offers a convenient way to control for effects of confounding covariates and 

model non-linear effects with the help of splines (Smith & Kutas, 2015b). Most importantly for this 

report, it enables the deconvolution of EEG responses that may overlap due to the experimental 

design, like button presses, or uncontrollable factors like eye movements (Dimigen & Ehinger, 2021; 

Ehinger & Dimigen, 2019). This way regression-based deconvolution enables more naturalistic and 

dynamic research designs by removing previous constraints that came with traditionally averaged 

ERPs.    

Within subject analyses face an issue with this approach that has not been explored so far in 

the literature around continuous-time regression of EEG (Ehinger & Dimigen, 2019; Smith, 2011; 

Smith & Kutas, 2015a). Inherent to regression techniques, like ordinary or generalised least squares, 

is the assumption that the residuals of the modelled data need to be independent from each other 

to assure valid inference (often shortened to the first “I” in i.i.d. and described in the Gauss-Markov 

theorem). Just as for fMRI and many other time series data (Bartlett, 1946; Hyndman & 

Athanasopoulos, 2018; van Rij et al., 2019; Woolrich et al., 2001). EEG signals will usually violate this 

assumption (Bae & Luck, 2019; Doyle & Evans, 2018; Linkenkaer-Hansen et al., 2001).  

In what follows, we aimed at exploring the effect of serially correlated data / autocorrelation 

on the validity of regression-based deconvolution. To this end, we made use of artificial as well as 

resting-state EEG signals. With this, we hope to inform future studies that aim to to analyse overlap 

corrected rERPs within subjects. Such applications could be especially relevant to small clinical 

samples that would face power issues in a group analysis. 
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Autocorrelation 

Whereas Person’s r describes the magnitude and direction of similarity of two separate 

variables, autocorrelation describes the similarity of one variable with itself (usually through time). 

Any repeatedly measured variable of length n, has n – 1 autocorrelation coefficients. For example, a 

100 points long time-series could have 99 autocorrelation coefficients. Each of these coefficients 

denotes a so called lag. At lag 0 we take the correlation of the time-series with itself. This will always 

yield a correlation of one. If we shift a copy of the time-series one datapoint into the past and line it 

up with the original time series their correlation will now denote the autocorrelation at lag 1 (see 

figure 1).  By shifting the copied time-series n data points into the past we can calculate the 

autocorrelation at lag n. When any of the lags, apart from lag 0, is significantly different from zero, 

we speak of an autocorrelated time-series. Some may refer to such variables also as serially or 

temporally correlated.  

Figure 1  

Assessing Autocorrelation 

Note. (a) A time series in red with itself shifted by n sampling points (lags) in blue underneath. (b) 

Scatter plots of the individual datapoints for each of the three lags. (c) The autocorrelation 

function (acf), meaning the autocorrelation as a function of lag. The orange horizontal line 

denotes the 95% confidence interval to support judging how far the signal significantly predicts 

itself (Hyndman & Athanasopoulo, 2018).    
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As alluded to earlier, such autocorrelational processes affect our analyses of time-series data 

and are ubiquitous across domains. For example, economists and ecologists use the phenomena to 

derive seasonalities and other trends in their data (Hyndman & Athanasopoulos, 2018). However, for 

neuroscientists, it has been more of a nuisance. While recent neuroimaging studies have used 

autocorrelation to derive connectivity statistics of different brain regions (Arbabshirani et al., 2019; 

Shinn et al., 2021), traditionally it has been regarded a violation of statistical assumptions that 

complicated statistical analysis. In the worst case, it goes unnoticed or uncorrected resulting in 

inflated the false-positive rates (Baayen et al., 2017; Burock & Dale, 2000; Lund et al., 2006; Purdon 

& Weisskoff, 1998; Woolrich et al., 2001). Even classical response variables from psychology like 

reaction times aren’t free of the interdependencies that are described by autocorrelation (Baayen et 

al., 2017; Thul et al., 2021). 

Effects of Violating the Assumption of Independence 

In an ideal scenario all our inference gleaned from our data is valid. For a statistical test to be 

valid its false positive rate needs to be under the nominal specificity (often α= 0.05). Certain 

assumptions may be violated without the test becoming invalid (we usually refer to these tests as 

robust against certain violations). It is often the combination of violations that invalidate statistical 

inference (Friston et al., 2000). However, violating the independence assumption has been shown to 

impact the false-positive rate greatly across domains (Astrophysics: Carter & Winn, 2009; Ecology: 

Kissling & Carl, 2008; Neuroscience: Woolrich et al., 2001) . 

In the case of non-independence (measured via autocorrelation), the usual rules for 

calculating degrees of freedom no longer apply and overestimate the true, or effective, degrees of 

freedom (Afyouni et al., 2019; Friston et al., 2000; Worsley & Friston, 1995). In other words, the 

effective sample size of independent datapoints used to compute an estimate becomes smaller than 

the actual dataset length under autocorrelation. Thus, adapting the hypotheses tests by estimating 

the effective degrees of freedom could already be the solution to this problem. However, previous 

studies on the topic in fMRI have noted that this quickly becomes an impractical problem to solve 
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due to the complex covariance structures involved (Afyouni et al., 2019; Bollmann et al., 2018). 

Furthermore higher sampling rates seem to exacerbate the complexity (Bollmann et al., 2018). We 

will return to this issue towards the end of the paper. Another solution proposed is to whiten your 

data by removing the autoregressive components from your data with a two-step procedure. While 

this approach is still widely used in the fMRI community (Olszowy et al., 2019) it has also seen its fair 

share of criticism across domains for reducing size and power properties of hypotheses tests (Cliff et 

al., 2021; Sul et al., 2005). 

Before any such considerations can be made for regression-based deconvolution of EEG 

data, we first need to assess its robustness against the independence violation. 

Autocorrelation in EEG  

In the spectral domain EEG data will usually follow a 1/f structure (Cohen, 2014; Zarahn et 

al., 1997), in which power of frequency components declines the higher the given frequency. Such 

high power / low frequency components are the strongest source of autocorrelation (Fadili & 

Bullmore, 2002; Smith, 2011). While these 1/f structures are present all throughout nature (Halley, 

1996), we assumed the strength of autocorrelation to be especially strong far into high lags in EEG 

data because of the common usage of high sampling rates between 250 and 1000 Hz (see figure 2 a). 

This leads to highly correlated residuals across long spans in the data. In comparison, the 

autocorrelation of the hemodynamic response function observed in the functional magnetic 

resonance literature, while present, is probably less intense (Bollmann et al., 2018) given the 

typically slower sampling rates of 3 to 1 Hz (see figure 2). Whether common pre-processing steps of 

EEG like high-pass filtering with cut offs at 0.1 Hz / 0.01 Hz or down sampling may already attenuate 

false positive rates to acceptable levels will be assessed here. 

Apart from low-frequency induced autocorrelation, we could also imagine a scenario where 

a dominant oscillatory frequency could induce autocorrelation only for certain conditions (theta) or, 

in blocked designs, only towards the end of the experiment due to fatigue (alpha). Take, for 

example, a n-back task where theta band power increases with working memory load. In the case 
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that autocorrelation increases false-positive rates we might see effects in the high memory 

conditions that are absent / nonsignificant in the low memory conditions. Whilst such a finding could 

easily lead to a myriad of post-hoc explanations, it could possibly also be attributed to ill-defined 

degrees of freedom in the autocorrelation laden condition. 

The Current Study 

This study empirically tested the validity of standard parametric significance tests of β 

parameters of overlap corrected rERPs and is divided into three parts. First, we generated artificial 

signals and compared their relevant statistics to those of real resting-state EEG data. From this, a 

suitable stand-in for further simulations was chosen. This was done because of EEG’s hard to control 

for complexities overcomplicating the interpretations of our simulations.  Next, we generated three 

different types of event related signals using their onsets as parameters for the regression model. 

One void of overlap, one in three different, but heavily controlled, intensities of overlap, and one 

type with purely randomly placed onsets. In a last step, we modelled the artificial null data with the 

Unfold toolbox (Ehinger & Dimigen, 2019) and measured the false positive rates. By varying the 

model parameters and filter/resampling settings this yielded insights into the robustness of the 

regression-based deconvolution approach under autocorrelation. 

Methods 

To begin with, we needed to decide how we would approximate EEG time-series. We 

focussed on comparable power spectral density (PSD) functions, the most important aspect being 

Figure 2  

Downsampling 1/f Noise 

Note. (a) ACFs of 1/f noise sampled at decreasingly lower sampling rates.  
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the general 1/f shape PSD functions take with EEG data (Doyle & Evans, 2018). This was important 

since high power low frequency oscillations should be the strongest cause for long lasting 

autocorrelation. We needed to find such a stand-in since real data would most likely have too many 

complexities / idiosyncrasies depending on the specific data set used. These would over complicate 

any conclusions drawn from our simulations. To find this stand-in, we decided to compare not only 

different kinds of artificial noise but also different manners of generating them.  

Generating Noise 

In the literature, 1/f noise is usually described as pink noise, one of many types of coloured 

noise that all differ in their PSD slopes. Pink noise has been referred to as the best null model of 

neural activation (Doyle & Evans, 2018). It turned out that generating pink noise was not an easy 

endeavour and different implementations all differed in their low frequency component power. We 

ultimately decided for the implementation of the SignalAnalisys.jl Julia package (version 0.4.0), 

which filtered white noise with a manually defined digital filter (see appendix A).  

White noise was generated by repeatedly sampling from a normal distribution (N(0,1)). This 

generated white noise’s characteristic flat PSD function with equal power throughout all present 

frequency components.  

To get insights into how 1/f noise would differ from a simple autoregressive sequence, we 

also included an AR(1) signal in some our analyses. AR(1) noise was generated as seen in equation 1. 

Where 𝑝 = 1 , 𝜙 = 0.8, and 𝜔 ~ N(0,1). 

Equation 1: 𝑋𝑡 =∑ 𝜙𝑗𝑋𝑡−𝑗
𝑝

𝑗=1
+𝜔𝑡 

Our last tools to manipulate the intensity of autocorrelation were high-pass filtering and 

resampling the signal to lower sampling rates. For our filters we made use of MNE’s default FIR filter 

settings since they ought to be commonly used by the field. They make use of a hamming window 

and have a transition bandwidth of at least 2Hz or 25% of the lower passband edge (Gramfort, 2013; 

version: 0.23). When downsampling, MNE performs appropriate low pass filter to avoid aliasing. 
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The resting state EEG data used to compare the artificial signals to were previously recorded 

as part of an unpublished master’s thesis (Skukies, 2020). They used 62 passive electrodes with 

multi-channel amplifiers (BrainAmp, BrainProducts GmBH, Gilching Germany). The electrodes were 

laid out according to the international 10-10 system (EasyCap, BrainProducts GmBH, Gilching 

Germany), with their reference and ground electrodes having been placed just above the nasion. 

Additionally, ocular movements were recorded with two electrodes placed at the outer canti. The 

EEG was recorded at 5000hz with an online low-pass filter set to 1000hz with the BrainVision 

recorder software (BrainProducts GmBH, Gilching Germany).    

Generating Overlapping Signals 

There was no event related activity in our modelled signals. Since we were interested in false 

positives, we merely generated differing event 

onsets to test how robust regression-based 

deconvolution would perform the face of 

autocorrelation under different experimental set 

ups. 

First, we wanted to see if autocorrelation 

alone would bias the false-positive rate. We did so 

by creating an intercept only model of a single 

event type. Its onsets were evenly spaced 

throughout the signal with sufficient distance (2.5 

seconds) between the onsets to avoid any overlap. 

This will be referred to as the “no overlap” 

condition.  

Next, we added a second event type onto 

this model, placed in one of three different 

distances to the first event. This resulted in a low-, 

Figure 3  

Visualizing the Three Different Overlap Conditions 

Note. In red this figure shows the duration and 

position of the ‘A’ event in a trial. The ‘B’ event is 

shown in green. Each row plots all modelled trials of 

this example seed, ordered by overlap intensity.  
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mid-, and high-overlap condition respectively (see figure 3). In the low overlap condition, 9.3 % (~11 

points on average) of the second event’s sampling points overlapped with those of the first. For the 

mid condition this proportion increased to 42% (~50 points on average) and in the high overlap 

condition to 90.4% (~108 points on average). These conditions should roughly mimic classical EEG 

study designs in which, for example, a button press would follow a certain event in a predictable 

manner. 

Lastly, since previous work on autocorrelation induced biases championed randomness as 

the easiest solution (Thul et al., 2021), we also included a condition that contained no controlled 

relation between the two events. They were both placed randomly throughout the signal causing 

variable overlap intensities depending on the seed. Random or at least variable overlap would be 

best compared with unpredictable event onsets in free viewing and other naturalistic experimental 

designs. All conditions had a total of 95 events per event type. Both events were modelled with a set 

of FIR basisfunctions spanning 1.2 seconds from 400 ms before to 800ms after onset. Defined like 

this, such a basis set is also used in the Unfold toolbox’s tutorial, likely making them the default for 

many researchers starting out with this method. 

Testing Validity 

In order to compute the false positive rates, we kept all factors but one fixed in our 

simulations (made easier with DrWatson.jl; Datseris et al., 2020). This way we could test claims 

about the impact of autocorrelation and model parameters separately. At 200 repetitions per model 

condition this means that each data point in the results presented below is an average from 200 

separately fitted models that only differed in the seed used for the onset jitter. When testing the 

effects of autocorrelation, all signals used were modelled with the exact same model specifications 

and parameters. By inspecting the change in false-positive rates due to model parameters and the 

change to this change over autocorrelation conditions, we can make statements about when 

regression-based deconvolution stops yielding valid statistical inference at a first stage analysis.  
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Results 

To decide on a suitable stand-in for real EEG data we first compared the ACF and PSD of our 

artificial signals with those of an exemplar EEG subject (see Figure 4). Pink noise, while not a perfect 

match, approximated both of these measures the best.  

Figure 4 

Compare EEG to Artificial Signals 

Note. (A) Power spectral density function computed via the Welch method of 4 different 

artificial noise types and 2 EEG signals that were filtered at either 0.01Hz or 0.1 Hz with a 

high-pass filter. (B) Autocorrelation functions of the same signals. 

Figure 5  

False-Positives by Overlap 

Note. The y-axis shows the different overlap conditions we modelled. Each plotted point 

represents the average false -positive rate over 400 models with the error bars denoting 

their standard errors.  The black vertical line represents the nominal alpha value, values 

beyond it indicate an invalid test. 
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Next, we assessed to what extent hypotheses tests carried out on single estimates were 

robust to autocorrelation. We found that uncorrelated white noise showed no signs of increased 

false positive rates under any of the tested conditions (see figure 5). Both correlated noise types, the 

AR1 and pink noise (i.e., the EEG null model) did show increases in the false positive rate in the mid 

and high overlap condition. Furthermore, pink noise also displayed increased false positives at the 

low overlap condition already. All noise types, however, showed no signs of increased false positives 

in the random event onset condition, even though this condition also included overlapping events.  

As a last step, we wanted to see how continuous changes to autocorrelation and overlap 

intensity change these results (see figure 6). The pink noise condition showed continually increasing 

false positives with higher autocorrelation (i.e., lower high-pass filter cut-off values). This effect 

became more apparent with higher degrees of systematic overlap. The same trend with somewhat 

higher false positive rates could be observed for the AR(1) signal. By looking at the partial 

autocorrelation functions, which partial out the influence of earlier lags when calculating later lags, 

we could also see that the pink noise signal falls short of the AR(1) signal’s first lag autocorrelation. 

Lag two and three still showed significant autocorrelation in the pink noise signal but as expected 

not in the AR(1) one. No false positive rate increases were observed in the white noise signal. 

However, with high overlap the average false-positive rate seems to shift further below the nominal 

alpha. We found that not only is autocorrelation directly increasing the false-positive rate, but the 

degree of overlap also seemingly mediated this effect. 

Discussion 

In this report we assessed the validity of parametric statistical hypothesis tests run on the β 

estimates of overlap-corrected rERPs. We found the tests to be robust against violations of the 

independence assumption when no overlap was present or when the events’ onsets were fully 

randomised. In the case of systematic overlap, as would be the case with fixed trial structures 

causing the overlap of evoked potentials, the tests quickly became invalid under autocorrelation. 

Furthermore, by varying the degree of overlap and autocorrelation on a more continuous scale, we  
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observed that the strength of the first autocorrelated lag especially could already be highly 

informative about the increases to the false positive rate.  

Figure 6  

False-Positives with Continuous Overlap and Autocorrelation 

Note. The x-axis shows how many data points on average overlapped in a given model. The y-axis shows the false-

positive rate. Each colour represents a different high-pass filter cut-off that practically lowered the autocorrelation 

present in the signal by removing low frequency components. The coloured lines were fitted to their respective 

data points, each representing the average of at least 242 estimates. To fit the lines, we used the default 

geom_smooth function’s “gam” method available through ggplot2 (Wickham, 2016).  Beneath, are the first ten lags 

of the partial autocorrelation function. Column (A) Shows the results for white noise, (B) for pink noise, and (c) for 

AR(1). 
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Both conditions with nominal type 1 errors differed from the systematic overlap conditions 

by having orthogonal (no overlap) and closer to orthogonal (randomised) predictors. The degree to 

which the modelled predictors are orthogonal seemingly mediates the increase of the false-positive 

rate due to autocorrelation in figure 6. By looking at the white noise simulations, one can observe 

how less orthogonal designs without autocorrelation actually resulted in more conservative false-

positive rates. Less orthogonal predictors mean that the same datapoints are reused for different 

predictors making them (partial) collinear. This causes increased standard errors, as the variance 

present in the data cannot be distributed across predictors as clearly as I it would be without 

collinearity. This resulted in less false positives overall.  

Interestingly, the decrease in false positives seemed to have strengthened with stronger 

negative partial autocorrelation lags caused by the high-pass filters (see figure 6a). While we cannot 

explain this effect, it lends itself well to advice for caution when generalizing the results of this 

report to real EEG data. Real EEG data will often contain such negatively autocorrelated lags which 

were absent from our artificial signals. Furthermore, our artificial signals differed from real EEG data 

by having been generated from stationarity stochastic processes. Thus, autocorrelation measured at 

an early interval in our pink, white or AR(1) noise will equal the autocorrelation measured at an 

interval towards the end of the signal. Real EEG’s voltage deflections arise from summed post-

synaptic potentials, muscle artifacts, and may wax and wane in erratic or even task-dependent 

manners. Ignoring the bursting nature of EEG activity has caused erroneous conclusions with other 

methods before (Jones, 2016). Whether such non-stationarity decreases or further increases the 

false-positive rates is unclear at this point. Running our simulations on the EEG data used in figure 4, 

we did observe the same pattern as we observed for the artificial data (see figure 5), but with large 

variations from subject to subject (Appendix B).  

How to Proceed?   

The next question becomes what the best method would be to reduce or fully remove any 

non-independence of the residuals to test hypotheses on a single subject level. 
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As showcased in figure 6, high-pass filters with cut offs as high as 2.7Hz did not sufficiently 

lower the partial autocorrelation function to make the tests valid. The same held true for 

downsampling as evident by the large correlation of early lags even after downsampling the signal to 

a 100th of its original sampling frequency (see figure 2). Since EEG research usually relies on high-

pass filters with much lower cut offs (Luck, 2005) both of these approaches do not suffice to render 

the residuals independent and with that the tests remain invalid. 

Traditional pre-whitening methods used in the fMRI community, and briefly mentioned in 

the introduction here, may also not be applicable. With higher sampling rates (designated by smaller 

TRs) these pre-whitening methods have been shown to be insufficient since the complexity of the 

covariance structure increases with higher sampling rates (Bollmann et al., 2018; Smith, 2011). 

Similar problems have been reported for the estimation of effective degrees of freedom (Afyouni et 

al., 2019). Whether the proposed algorithms to solve these issues for other kinds of data would also 

work for rERPs would have to be investigated in future work.  

A promising sounding solution iteratively fits models in which not the data but the residuals 

get filtered with an optimal band-pass filter (this was also explored in Friston et al., 2000) to whiten 

them (Smith, 2011). This and a wavelet transforms to effectively remove any autocorrelation were 

suggested by Smith in their dissertation (Smith, 2011). Up until one week before finalising this report 

we had only considered their published work in which these considerations are missing.  Had we 

known about these promising sounding solutions before, we would have tested them for this 

project. Now, this remains to be done in future work. 

Conclusion  

We can conclude that autocorrelation indeed poses a problem for single subject analyses 

and that inference drawn from overlap corrected models that deal with systematic overlap quickly 

become invalid. For now, overlap-correction should only be applied when statistical tests will be 

carried out across subjects. However, we have also shown that inference in the case of low overlap 

or less systematic overlap may not be as heavily affected by autocorrelation. Before within-subject 



AUTOCORRELATION AND RERPS   17  

analyses on overlap-corrected rERPs can be considered, the solutions proposed by Smith should be 

thoroughly tested for their feasibility and flexibility.   
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Appendix 

A.

%Synthesise pink noise: 

Nx = 2^16;  % number of samples to synthesize 

B = [0.049922035 -0.095993537 0.050612699 -0.004408786]; 

A = [1 -2.494956002   2.017265875  -0.522189400]; 

nT60 = round(log(1000)/(1-max(abs(roots(A))))); % T60 est. 

v = randn(1,Nx+nT60); % Gaussian white noise: N(0,1) 

x = filter(B,A,v);    % Apply 1/F roll-off to PSD 

x = x(nT60+1:end);    % Skip transient response 

 
  

B 

False Positives by Overlap 

Note. The y-axis shows the different overlap conditions we modelled. Each plotted point 

represents one Subject (7 in total). We calculated the average false -positive rate over two 

data sets per subject and 16 different permutations of randomly selected channels (to get 

signals of sufficient length). 400 models were regressed onto these signals with the error 

bars denoting the standard error across the 16 generated signals.  The black vertical line 

represents the nominal alpha value, values beyond it indicate an invalid test. 


