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Chapter 1

Introduction and motivation.

1.1 Levitated nanospheres, an introduction.
Experiments of levitated nanoparticles nowadays are possible thanks to a complex
and a big configuration of scientific studies that include discoveries from the last
years and make use of elemental principles postulated hundreds of years ago. They
are feasible thanks to the advance in research of optomechanics, a discipline that
explores the interactions of electromagnetic fields to control the motion of micro and
nano-objects [1].

Tests of levitated particles are referred as a specific type of experimental config-
uration of Optical Tweezers (OTs) where a single laser beam traps nano/micro par-
ticles in gas, being usually air or high vacuum. Due to the low viscosity of the gas a
strong optical force is needed to trap the objects inside the optical trap in order to
counteract gravity. For that reason the single beam is strongly focused generating
a gradient in the intensity of the laser that leads to gradient forces through the
interaction of the laser electric field with the electric dipole of the particles. The
size of the focused beam determines the size of the optical potential well while the
particle charge polarizability and gradient of the laser intensity determine its depth.

During the next section we will go across a historical introduction to understand the
relevance of OTs, its applications and the place that levitated particles take in this
context. Next we will go deep into levitated particles experiments and specifically
into two of their main applications related to the goals of our research group: First,
their use as excellent mechanical resonators to measure weak forces and vibrations,
and second their value as ideal sensors to study thermodynamics at the micro and
nano-scale.

Among the different purposes, the main goal of this project is to illustrate the
groundwork to pursue the first acceleration to date of the relaxation to equilibrium
of a levitated nanoparticle from one stationary state to another. The end of the first
chapter contains further information about the goals and the outlook of the thesis.
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1.1.1 Towards levitated nanoparticles. Context:

A primary principle in levitation is the use of light momentum originating radiation-
pressure forces. In the 17th century Kepler first postulated this concept while ob-
serving that the tails of comets point away from the sun. Maxwell predicted them for
the first time and Lebedew, Nichols and Hull tested them in the 19th century. The
statistics of the radiation-pressure force fluctuations were experimentally derived by
Einstein in the 20th and Frisch and Beth demonstrated in the same century that
linear and angular momentum transfer photons to atoms and macroscopic objects.

Most of the first key steps towards levitated particles experiments were developed
by Arthur Ashkin in his work during the 1970s and 1980s with the invention of op-
tical tweezers. His first work demonstrated that radiation-pressure forces from laser
beams can be used to create stable traps and accelerate micro-sized particles [2]. In
the later years he improved the stability of the system, implemented feedback [3]
and discoverd the principle that we use to trap nanoparticles in our laboratory. He
developed the first single-beam gradient force optical trap for dielectric particles [4]
exploring also levitated particles in high vacuum. He furthermore trapped different
kind of particles like atoms, liquid drops or neutral particles. These studies gave
birth to several research fields that nowadays focus on the different applications that
OTs can reach depending on the object that is trapped, the optics configuration and
the regime that is explored. The broad impact of the invention of optical tweezers
lead him to win the Nobel Prize in Physics in 2018.

The work of Ashkin has been refined during the last decades and its multiple appli-
cations have become apparent [5]. Within physics a large amount of studies have
been devoted to the understanding of the different posibilites to induce distinct mo-
tions to the trapped object, such as the study of the inference of optical angular
momentum. In this thesis we devote part of our work to this field applying ex-
ternal modulations on the intensity and the polarization observing the effects on
the dynamics of our silica particle. See appendix C for experimental results and a
theoretical discussion in 2.5 and 2.3.3.

In addition, OTs systems like levitated nanoparticles can be used as mechanical
resonators thanks to their high quality factors being of great use in frequency and
force sensing experiments. They are also the most promising systems to study ther-
modynamics at a micro- and nanos-cale which still lacks total understanding beside
its great improvement in the last years. We leave the discussion of these applications
for the next section where we discuss them in greater depth due to their relevance
within the interest of our group.

It is of historical importance to mention the capability of OTs to measure the motion
and dynamics of brownian particles. These motion was first described by Richard
Brown in 1827 as the random movement of particles suspended in fluid when he
studied with a microscope the dynamics of pollen particles on water. It was never-
theless Einstein after his PhD work in 1905 who first predicted brownian motion at
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times longer than the momentum relaxation time of the particle. For these times he
derived an expression of their mean square displacement. Furthermore he stated the
equipartition theorem of statistical mechanics but wrongly concluded that due to
the fast relaxation of the motion, the instantaneous velocity of a brownian particle
would not be possible to measure in practice.

The pioneer study of Li [6, 7] refuted this statement measuring ballistic motion
of micro-beads in air for the first time. This is the motion of a particle at times
shorter than the momentum relaxation time of the system τp = m/γ = 2π/Γ, where
m is the mass of the particle, γ the Stokes friction coefitient and Γ the angular
damping coefficient. The work showed for the first time the coupling of the trapped
object to the thermal environment in a low-pressure underdamped regime. It was
the first time that the motion coupled to the damping rate of the air molecules Γair
was tested showing that the dynamics were driven by thermal noise.

The work inspired future research studies of levitated systems such as the first
measurement of the coupling to photon recoil noise [8], where the damping rate
is driven by the photon noise Γphoton due to reaching a pressure of 10−8mbar that
makes the influence of Γair neglectable. It also inspired the first test of Kramers
turnover [9] where the transition of the particle from one well to another is sub-
ject to the thermal noise of the air molecules Γair. Depending on the height of the
barrier that separates the wells, only selective pressures can provide an appropriate
damping rate to surpass the barrier.

More applications of OTs include the study of the complex dynamics of optically
bounded trapped particles. Counter propagating beams can create optical wells of
much larger size than the trapped particles capturing more than one particle at
the same time. By trapping dielectric particles, light can generate forces between
particles optically binding them. To end with physics applications we can also find
studies of hydrodynamics and rheology with the use of OTs.

Furthermore OTs find their greatest applications within biology. It has been of use
for the study of cells, DNA structures, DNA dynamics, molecular motors, motility
and motion of swimming microorganisms and scanning probe microscopy.

1.1.2 Levitated nanoparticles in sensing experiments

Levitation experiments are distinguised from other OTs configurations by the fact
that the laser is strongly focused and the object is suspended in air or high vacuum.
This combination helps to avoid dissipation of the object with its environment al-
lowing for a better isolation and a non-tethered oscillator to the environment [10].
Dissipation on the system can arrive from the surrounding gas and from the noise of
the optical field. The isolation allows for high quality factors making them excellent
candidates to measure forces and external vibrations as resonators.
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A resonator is a system that exhibits resonance behaviour with an external sig-
nal. In other words, when an external signal is implemented at a frequency that
matches a resonant mode of the frequency of the trapped oscillator or a small range
close to its value, then it resonates with it making its amplitude oscillations greater.

Levitated nanoparticles can be used as mechanical resonators thanks to their high
quality factors being of great use in frequency and force sensing experiments. The
quality factor describes if an oscillator is underdamped or overdamped and by how
much, and it depends on the damping term ΓCM and the frequency of the trapped
object ΩCM . It is defined as Q =

Epeak(0→T )

ELost(0→T )
= ΩCM

ΓCM
and also measures the ability

of a system to store energy. Its value leads to completely different dynamical be-
haviors of the particle. For a driven damped harmonic oscillator, the dynamics are
overdamped when Q < 1/2 while they are underdamped when Q > 1/2.

Figure 1.1: Dependence of quality factor on the volume of the oscillator. Levitated experi-
ments operate in the red shaded area. Black points represent nowadays tethered optomechanics
experiments. Picture obtained from reference [11]

An interesting comparison of the quality factors of different resonators was made by
Millen [10], where he compared levitated optomechanical resonators with previously
used resonators such as tethered optomechanical or tethered electromechanical res-
onators. See figure 1.1. While the quality factor of previously used resonators scales
linearly with the cube root of the particle volume, this is not the case for levitated
nanoparticles.

Because promising resonators require low masses and high quality factors, breaking
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the mentioned trend makes levitated particles ideal for sensing experiments. As it is
shown in figure 1.1 levitated particles can have at the same time both high quality
factors and low volume, and mass is inevitably related to the volume through the
density of the element. In short, levitated nanoparticles quality factors do not fol-
low the general trend of scaling linearly with the cube root of the volume allowing
them to be used as execelent resonators to sense forces. See section 2.6 for a further
discussion on the minimum forces that any resonator and levitated particles can
measure.

Since the quality factor of resonators is directly influenced by dissipation with the
environment, extremely isolated systems such as levitated particles allow for high
quality factors. Their very first limitation has to do with the coupling of the particle
to the thermal environment where, at high pressures, the damping term is governed
by the thermal noise Γair. Nevertheless, as lower pressures are reached the parti-
cle can be coupled to photon recoil noise, where the damping rate is driven by the
photon noise Γphoton. In a paper by Vijay Jain et al, [8] they coupled the particle
to photon noise at a pressure of 10−8mbar. Furthermore, external modulations can
be used to change the damping rate of the center of the mass and also its effective
temperature. This field is still under research and in this thesis we discuss some of
the possibilities to modulate such dynamics with external modulations, see section
2.3.3 and 2.5.

Working in air and a vacuum is nevertheless more challenging since the damping
term helps to stabilize the system and therefore while going to low pressures and
reducing this term losses of the particle are very common.

1.1.3 Levitated nanoparticles on thermodynamics applications

The first work to investigate thermodynamic processes with OTs was the optical
realization of a thermal ratchet where they modulated periodically in space the
potential of a trapped brownian particle immersed in water [12]. Due to the ne-
cessity to test the later foundation of stochastic thermodynamics and fluctuation
theorems [13] the research field grew in the last years.

Optically trapped micro/nano particles are ideal motion sensors of thermal fluc-
tuations and therefore convenient for studying stochastic thermodynamics thanks
to two characteristics.

The first is that the energy of the trapped object is comparable to the thermal
fluctuations of the environment being of the order of kBT . The second is the low
amount of degrees of freedom necessary to describe their motion (usually only trans-
lational degrees of freedom of the center of mass) which through the central limit
theorem allows for quantifying the energy fluctuations: For an extensive macroscopic
quantity U (like heat, work or entropy production) with variance σ2 and mean value
〈U〉, the cenral limit theorem allows that when a low amount of degrees of freedom
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describes the system: → 〈U〉 ∼ σ2 [11].

These two properties make it possible to quantify their energy fluctuations and
test macroscopic thermodynamical quantities. Most of the research done in the
last years was done with colloidal particles trapped in liquid where the overdamped
regime can be explored. But the underdamped regime lacks experimental results
and is of fundamental interest as well.

Levitated nanoparticles are trapped in gas or a vacuum and by trapping them
in a vacuum chamber, the coupling to the bath can be changed by changing the
pressure of the surrounding gas. This allows for exploring different scales of the un-
derdamped regime. Similarly to colloidal particles, levitated nanospheres can detect
stochastic behaviour since the relative fluctuations of microscopic variables become
comparable to their mean value. A recent literature review on the exploration of
thermodynamics in the underdamped regime is given by J. Gieseler [14].

Examples of studies with levitated particles are the study of equilibration processes
on experimentally accessible timescales verifying fluctuation equations [15,16]. Fluc-
tuation theorems are exact relations that describe statistical properties of the fluc-
tuations of macroscopic thermodynamic quantities (like heat, work and entropy pro-
duction). In reference [15] with the help of feedback cooling, Gieseler et al prepare
an initial steady state and investigate the fluctuations towards equilibrium during
the transition to a new steady state where feedback cooling is switched off. They
check a fluctuation theorem that quantifies the probability of observing second law
violations while observing fluctuations of the energy on very short timescales before
the fluctuations average out.

The possibility that OTs offer to alter the trapped optical potential allows additional
scenarios with thermodynamical interests. Important studies involve the accelera-
tion to equilibrium of a brownian particle from one state to another [17], the design
of heat engines [18], or the creation of multiple-stability states like a double-well
optical potential to test information thermodynamics [19], or kramers turnover [9].
In the next section we will specify within the applications of the first two since they
are related to the direction of this project.

1.2 Motivation. Speeding-up relaxation and heat
engines with levitated particles

The first of the previously mentioned possibilities lies within the main goal of this
project, which is to create the groundwork to pursue the acceleration of the re-
laxation to equilibrium of a levitated particle through techniques reminiscent to
short-cuts to adiabaticity (see section 2.7).

Relaxation processes toward equilibrium with levitated particles were already mea-
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sured by Gieseler et al [15], nevertheless they have never been accelerated. Pro-
tocols to speed-up relaxation towards equilibrium that were tested by Ignacio A.
Martinez [17] in the overdamped regime need to be tested in the underdamped
regime [20]. In figure 1.2 we can observe the scheme of an acceleration technique
towards equilibrium by Ignacio A. Martinez [17]. This experiment is of importance
since it served as inspiration for our own project with levitated nanoparticles.

Figure 1.2: Sketch of a relaxation process where the stiffness of the optical potential is increased
and the position distribution is studied. The particle is initially at equilibrium inside a poten-
tial well U(ti) (black line) with constant stiffness. The initial position distribution with variance
σx(ti)

2 is shown in blue. The stiffness is later increased and the particle therefore suffers a tran-
sitory process towards a new stationary state. The new stationary state differs from the first in a
higher stiffness of the final optical potential U(tf ) (represented with dashed lines). The position
distribution with variance σx(tf )2 of the final state is shown in red. The process between the two
stationary states is non-stationary and is the particle behaves stochastically with high fluctuations
of its macroscopic variables. In this case a reminiscent technique to shortcuts to adiabaticity called
Engineered Swift Equlibration (ESE) is used (see section 2.7). Figure obtained from reference [17].

By implementing such protocols we would be able to control the state of a lev-
itated nanosphere on unprecedented timescales reaching equilibrium hundreds of
times faster than the natural equilibrium rate. In addition, the realization of a
shortcut has direct applications in sensing experiments causing transitory cancel-
lation of resonance signals [18], in the driving of mesoscopic chemical or biological
processes, and in the design of efficient nanothermal engines.

The realization of a shortcut can modify the signal to noise ratio (SNR) scheme
helping to improve sensing tests of a certain frequency. When a shorcut process is
implemented within a time shorter than a specific resonance, it leads to the transi-
tory cancellation of the resonance signal [18]. It is a transitory process due to the
equipartition theorem. The shortcut causes an energy transition from the selected
resonance to the rest of the modes and degrees of freedom of the system. In our
particular case currently we detect three degrees of freedom related to center of mass
motion along the three directions in which the nanosphere can move. Therefore a
short-cut would cause an energy transition from one selected degree of freedom to
another. Nevertheless, additional degrees of freedom can be found in particles with
anisotropic geometry, which polarizabilities (described by a tensor) change with the
polarization vector of the light field. In the case of, for instance, a nanodumbell the
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linear, circular or elliptical polarization, can inject rotation, torsion or a combina-
tion of both respectively on the trapped object [21, 22].

Heat engines have been developed in the overdamped regime with colloidal particles
but not in the underdamped regime. It is of interest to do so since the dynamics of
the trapped object are influenced by inertia effects that cannot be detected in the
overdamped regime. Therefore the study of heat engines with levitated particles
can help to discover sources of irreversibility in colloidal heat engines. Due to the
stochastic behaviour of nano/micro particles trapped in optical wells, it is possible
that heat nanomotors could run in reverse [14]. Identifying these sources would
help in designing more efficient engines. While measurements of the momentum
distribution is very challenging in the overdamped regime it is very accesible in high
vacuum [6,23].

A colloidal stochastic heat engine converts heat flow into mechanical work oper-
ating under a cyclic process. The cycle contains two isothermal processes where
there is a variation of the potential to extract or implement work and two adiabatic
processes with an instantaneous reduction/increase in temperature, see figure 1.3.

Figure 1.3: Stochastic heat engine cycle. A heat engine converts heat flow into mechanical
work operating under a cyclic process. The cycle contains two isothermal processes where there
is a variation of the potential to extract or implement work and two adiabatic processes with an
instantaneous reduction/increase in temperature. Obtained from reference [11].

Compression and expansion is achieved by modifying the potential of the harmonic
potential that traps the nanospheres by increasing or decreasing it respectively.
Heating and cooling is done by changing the effective temperature of the center of
motion particle.

There is a maximum efficiency that a heat engine in contact with two baths of
temperatures TC , TH can reach determined by the second law of thermodynamics.
It is the so-called Carnot efficiency ηC = 1− TC

TH
. This efficiency is believed to only

be achievable when there is a zero power output without ejecting any work on its
surroundings. Therefore for practical applications, experimentalists are interested
in the efficiency at maximum output power.
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The efficiency of a heat engine at maximum output power is limited by the Novikov-
Curzon-Ahlborn efficiency [24, 25] η = 1 −

√
TC
TH

, which is smaller than the Carnot
efficiency setting a higher limit. Shortcuts to adiabaticity could be used in the adi-
abatic processes of a heat engine accelerating the usual slow driving. This raises
the question among the scientific community on whether they could help to surpass
the Novikov-Curzon-Ahlborn limit and for that reason a special attention has been
devoted to the study of shorcuts in recent years.

Shorcut methods used with colloidal particles implement non-trivial functions to
an input parameter (usually optical potential stiffness) of the equation of motion in
order to optimize a process. These functions are usually found through the so-called
reversed philosophy where instead of solving the equations of motion as usual (in-
puts i.e. stiffness give outputs i.e. position distributions), an imposed and desired
solution of the equation gives back only certain possibilities of possible input pa-
rameters of the potential stiffness. In the case of speeding-up relaxation processes
the non-trivial input function is implemented in the stiffness and is found such that
the relaxation is shorcuted as much as possible [17]. Nevertheless, in the design of
efficient heat engines the input function is found such that the adiabatic processes
of a full cycle give maximum efficiency [26,27], see sections 2.7 and 2.8 for a detailed
explanation of the process.

In the overdamped regime a clear example is the work of Ignacio A. Martinez who, in
addition to study the acceleration of relaxation processes, explored stochastic heat
engines [28]. He developed together with J.M.R. Parrondo a Carnot engine [29]
where the efficiency at maximum power matched the Novikov-Curzon-Ahlborn limit
and where for certain conditions and short cycles they surpassed the Carnot bound.

While in the underdamped regime there have not been experimental attempts yet,
there are theoretical proposals that are of interest with levitated nanospheres [26,27].
It is wondered whether efficiency-power trades could surpass the Novikov-Curzon-
Ahlborn bound. Levitated particles can check these trades in large regions and
controlling the effective temperature much more precisely than colloidal particles.
This is due to the possible combination of the control of gas pressure, feedback cool-
ing and external driving that could allow for the creation of non-thermal baths to
also surpass the Carnot efficiency [14].

Finally high vacuum avoids heating and decoherence from air molecules collisions
allowing the study of quantum physics and producing quantum mechanical systems.
Operating in the quantum regime can allow for the exploration of the possibility of
attaining Carnot efficiencies in heat engines [30] or surpassing the Carnot limit [31].
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1.3 Goals and Outlook of the project
The work hereby presented has the goal to set the foundations to pursue the first
experimental implementation of a shortcut on the relaxation to equilibrium of a
levitated particle. This requires two fundamental steps:

1. On the one hand precise knowledge of the relaxation time and the damping
rate of the system. Therefore this is the first specific goal of our project: to ob-
tain the relaxation time of the nanoparticle and verify it by measuring the position
and velocity of a levitated nanoparticle at equilibrium within timescales shorter and
longer than its relaxation time. This implies the detection of ballistic brownian
motion [6, 7].

2. On the other hand a relaxation towards equilibrium requires to observe the
transitional non-equilibrium dynamics between two distinct equilibrium states. For
this reason the second goal of our project is to observe this relaxation by compres-
sion and decompression of the optical potential stiffness. The change on the stiffness
is done with a step function between two constant values. In the future the change
could be done with a polynomial function obtained by ESE techniques in order to
accelerate the relaxation [17].

Furthermore an effort was dedicated in this work to look into the possibilities to
implement modulations experimentally and how they result in the center of mass
dynamics and temperature of the particle (see sections 2.5 and 2.3.3).

A good knowledge of the possibilities that external modulations offer to change
the dynamics of levitated particles, will open the gate to new research questions as
well as facilitate the pursuit of specific research goals. What does a levitated particle
system have to offer? What characteristics of its dynamics can we change externally
through modulations and forces? What research goals can we pursue through the
control of their dynamics? What level of control can we achieve?

Being the initial goal of the group to pursue the use of levitated particles as me-
chanical resonators in order to measure weak forces and vibrations, I dedicated a
part of my work to understand how external modulations could lead to force sensing
schemes.

The combination of distinct modulations provide differential equations with non-
trivial stability schemes that are of interest to study with methods related to the
theory of dynamical systems and chaos. As an example, a combination of external
modulations can create instability regions that lead to interesting sensing schemes
of weak forces with levitated particles [32]. Also although a complex combination
of modulations usually leads to non-solvable equations of motion, in occasions it is
possible to obtain analitically the PSD of such equation through averaging meth-
ods [33]. Our group is under a collaborative effort with the Bernuilli Institute and
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the group of Alef Sterk. The initiative aims to study the stability of the system of
levitated particles under the framework of dynamical system and chaos. For mor
detailed information on this aspect read section 2.5.3.

The goal of this project is the result of a literature research. It is a suitable ques-
tion for our experiment that has not been pursued yet, see appendix A for the
details. Protocols related to the theory of shortcuts to adiabaticity that were tested
by Ignacio A. Martinez [17] in the overdamped regime need to be tested in the
underdamped regime [20]. This regime can be explored by levitated nanospheres
in high vacuum [15]. Through an inverse engineering the thermalization can be
shortcutted in the compression or decompression of a harmonic oscillator from an
angular frequency Ωi to Ωf , getting an exact scaling solution of the underdamped
Fokker-Planck equation. See section 2.7 for more information.

By implementing such protocols we would be able to control the state of a levitated
nanosphere on unprecedented timescales reaching equilibrium hundreds of times
faster than the natural equilibrium rate. Furthermore the realization of a shortcut
has direct applications in the design of efficient nanothermal engines, in the driving
of mesoscopic chemical or biological processes and in sensing experiments.

1.3.1 Timetable and specific tasks

During the first months, September - December and January, I focused my efforts
on familiarizing myself with the laboratory environment as well as, together with
my PhD tutor, doing experiments at different pressures, polarizations and power in
order to read out the dynamics of the particle (see appendix C). Nevertheless, the
focus of my work during these months was devoted to reading the literature with the
goal of finding a suitable research question to test experimentally with the current
setup and the new implementation of an electric optical modulator (EOM) and a
picoscope (see appendix A). During these months, I studied as well the result of
external modulations in the differential equations that describe the dynamics of a
levitated particle. (see sections 2.5 and 2.3.3).

From February on, I focused my effort on reading the relaxation behaviour of the
levitated particle. I learnt from my PhD tutor how to perform experiments develop-
ing some of them on my own and reading the motion of the particle at a few mbars
with the use of a picoscope, a function generator and an electric optical modulator. I
studied the principles and how to work with these three new devices and planned on
my own the parameters to select in the picoscope and the functions to implement in
the wave generator in order to develope experiments at low pressures. Additionally
an incessantly alignment of the laser into the photodiodes was necessary.

Specific troubles that I treated on my own, apart from the literature study, are
for instance coupling the laser beam to a maintaining polarizing fiber through the
EOM in order to get a higher amount of power (see appendix B) or overcome to
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problems of the chiller that cools the laser. Moreover I met a bachelor student weekly
to provide advise in the development of simulations with the line of the project.
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Chapter 2

Theory

In this section we will give first the general equation of motion of the center of mass
of levitated nanoparticles influenced by both deterministic and stochastic forces.
Next we will explain the optical deterministic forces that make them levitate as well
as the stochastic forces that drive their motion inside the optical potential and are
responsible for their damping term and its coupling to a thermal bath.

Once the basic framework is given, the dynamics will be described through their
differential equation of motion which was derived by Langevin in the 20th century.
We explain how experimental inputs result in new terms on the equation of motion
that can help to control their motion: for instance modulated potentials, feedback
cooling or parametric and direct driving. The broad amount of number of tools to
modify their motion motivate studies of the stability of these complicated equations
as well as pursue analytic and numerical solutions.

At the end of the section we give the general framework of shortcuts to adiabaticity
in levitated particles and more specifically of the Engineered Swift Equilibration
(ESE) method as well as the basic theory of heat engines for systems of levitated
particles.

2.1 General formalism
A nanoparticle contains up to 1010 degrees of freedom. One can compare the size
of its radius R with the radius of the atoms that it is made of R0 in order to
roughly compute (R/Ro)

3 ≈ 1010. Nevertheless, for practical reasons its behaviour
is characterized by its internal temperature and the motion of the centre of mass.
We relate the other degrees of freedom to this one to understand its behaviour. The
equation of motion of the nanoparticle center of mass is:

r̈(t) + ΓCMṙ =
1

m
[Ffluct (t) + Fdet(r, t)] . (2.1)

Where m is the mass of the particle, Ffluct stochastic forces and Fdet deter-
ministic forces. In the following section we want to identify how these forces can be
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implemented in the experiment in order to modify specific behaviours of the nanopar-
ticle. Experimentally both the thermal bath and the optical potential depth can be
altered.

2.2 Optical forces
We levitate Silica spheres of 156 nm diameter with a laser of a wavelength of 1056 nm,
being under the condition of the diameter being much smaller than the wavelength.
This is called the Rayleight regime and under these conditions the optical forces
are well known and can be simply formulated since the radiation-pressure force can
be neglected. The origin of the force that traps the levitated particle counteracting
gravity is electro-magnetical. The electric fields of the laser interact with the dipole
of the particle generating a force governed by the gradient of the intensity of the
laser and the complex polarizability:

α (λ) = 4πε0R
3 εr (λ)− 1

εr (λ) + 2
. (2.2)

where εr is the permittivity related to the complex refractive index through εr (λ) =
n (2πc/λ)2. The polarizability can be divided in its real and complex parts α =
α

′
+ iα

′′ . While the real part determines the optical potential depth, the complex
part is related to the absorption of photons.

The optical force that counteracts gravity can be expressed in the following for-
mula where E is the electric field of the light:

〈Fgrad 〉 =
α′

2

〈
∇E2

〉
. (2.3)

The system can be modelled as a harmonic oscillator and under the assumptions
that the laser beam is Gaussian and that the Rayleight regime applies, the gradient
force can be approximated as a linear resoring force:

〈Fgrad,q〉 = −kqq, q ∈ {x, y, z}. (2.4)

Where x, y are the spatial coordinates transverse to de direction of propagation of
the laser beam and z the longitudinal direction. The spring constants kq differ from
each degree of freedom of the center of mass of the nanoparticle and for a linearly
polarized Gaussian beam reads as:

kq =
4α′Popt(t, q, q̇)

πcε0wxwyw2
q

. (2.5)

Where wq stands for the waist of the beam in the q direction. The waist along
the longitudinal direction wz is given by the so-called Rayleight range z0 through
wz =

√
2z0. Since the dynamics of the particle can be modified in terms of time

and with the help of feedback also in terms of the position or the velocity of the
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particle, the power within the optical field Popt(t, q, q̇) has been included as a func-
tion of these variables. Due to the experimental possibilities it is usually var-
ied around its mean value and in the literature its modulations are expressed as
Popt(t, q, q̇) = P0 + δP (t, q, q̇).

Thus as an example and an easy exercise we could perform an experiment to quan-
tify the changes of the stiffness in terms of power. We could vary the power of the
applied laser while we measure the changes in the frequency of the Fourier Trans-
formed signal. Since the frequency of a harmonic oscillator depends on the stiffness

of its potential as: fq =

√
kq/m

2π
the observed changes on the squared frequency at

the noted values of applied power would give us the linear dependence between both
quantities. Nevertheless, this method assumes that the dynamics of the particle are
harmonic which is not always true, and the frequency of the particle can be mea-
sured only with certain uncertainty that depends on the pressure and the calibration
method to obtain the results.

2.3 Stochastic forces
The optically trapped nanoparticle at high pressures is driven by thermal stochastic
forces Fgas (t) from the mechanical collisions of the air molecules that couple the
particle to the air thermal bath. This is the main contribution of dissipation that
defines the damping of the center of mass ΓCM at pressures higher than 10−6 mbar.
Nevertheless below that pressure we can find contributions to the damping of the
center of mass motion from the light radiation and, in the quantum regime, noise
driving wavefunction collapse. Furthermore it is possible to apply external modula-
tions to influence ΓCM through a feedback mechanism or stochastic driving.

Stochastic forces are characterized by their power spectral density (PSD) Sn
ff where

the index n is included to indicate any stochastic contribution. In most of the cases
they are frequency independent (and therefore called as white noise) having auto-
correlation functions 〈Fn(t)Fn (t′)〉 = 2πSn

ffδ (t− t′)

After the so-called relaxation time τ = 2π/ΓCM the particle reaches thermody-
namical equilibrium at the effective temperature:

TCM =
πSff

kBmΓCM

. (2.6)

Where the PSD and the damping term can include the contribution of the distinct
stochastic forces that influence the particle Sff =

∑
n S

n
ff ; ΓCM =

∑
n Γn.
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2.3.1 Gas damping

At pressures higher than 10−6 mbar the damping term related to the gas thermal
bath where a spherical particle with radius R is immersed is:

Γgas =
6πµgasR

m

0.619

0.619 + Kn
(1 + cK) , Sgas

ff =
mkBTgas

π
Γgas. (2.7)

Where µgas is the viscosity coefficient µgas = 2
√
mgaskBTgas/3

√
πσgas. With value

for air: µgas = 18.27 × 10−6 kg( ms)−1. The Knudsen number given by Kn = l̄/a
where the mean free path is l̄ = kBTgas/

(√
2σgasPgas

)
and σgas = πd2

m. The radius
of air molecules is dm = 0.372nm. Finally cK = 0.31Kn/

(
0.785 + 1.152Kn + Kn2

)
.

This expression is simplified under the Knudsen regime at pressures lower than:
Pgas ≈ 54.4mbar/R(µm). This this the case, since for a particle of radius R(µm) ≈
0.1 µm we are easily below pressures of Pgas ≈ 544 mbar:

Γgas

2π
=

3

π
√

2

µvσgas
kBTgas ρ

Pgas

R
. (2.8)

2.3.2 Photon shot noise damping

Below a pressure of 10−6 mbar an optically trapped particle experiences a stochastic
force due to the noise of the discrete photons. It has been recently measured in
reference [8] and the effective temperature of this bath can be calculated with eq
(2.6). Its contribution to the damping term and the PSD of the particle are defined
as:

Γrad

2π
= cdp

Pscat

2πmc2
and Srad

ff = cdp
~ωPscat

2πc2
. (2.9)

With scattered power Pscat = σscat Iopt and σscat = |α|2k4
L/6πε

2
0. The factor cdp

takes its value depending on what is the direction of motion of the particle compared
to the polarization of the laser. It is cdp = 2/5 for motion along the direction of
polarization and cdp = 4/5 for perpendicular.

2.3.3 External modulated damping

The eq (2.6) represents an equilibrium state. When external modulations are ap-
plied injecting or extracting energy, the particle enters a non-equilibrium state and
the relation does not hold anymore. Nevertheless, once the external modulation
does not vary with time anymore, a new equilibrium must be reached within the
relaxation time τ = 2π/ΓCM .

On the contrary if the external modulation is constantly applied in terms of time,
the damping rate and the effective temperature can be modified independently. Due
to the time-dependence of the external forces non-equilibrium stationary states can
be reached. Such is the case of for instance the prepared state that Gieseler et al
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prepared with parametric feedback cooling [15]. Here they manage as well to define
an effective temperature of the "feedback bath" through the calculation of the av-
erage energy of the system.

There are many ways to implement feedback cooling, (see section 2.5.2) but ide-
ally it damps the particle motion at a rate Γfb without adding fluctuating forces
such that Sfb

ff=0. In that case it is called cold damping. Nevertheless, a real signal
with feedback mechanism contains noise heating the particle.

A feedback cooling process changes both the effective temperature and damping
rate of equation (2.13) a quantity δΓ such that ΓCM → Γeff = ΓCM + δΓ. The
effective temperature under the process is modified to:

Teff = TCM
ΓCM

ΓCM + δΓ
. (2.10)

Notice that the change of the damping term δΓ determines how much the temper-
ature changes and its sign if it increases or decreases.

As an opposite example, external stochastic forces would add fluctuating forces
without providing any damping. In this case Γdrive = 0 and Sdrive

ff = q2Sqq where b
is the coupling parameter to the control field and Sqq its spectral density. This can
be realized for example with fluctuating electric fields, where q corresponds to the
charge on the particle.

2.4 Equations of motion and dynamics.
In this section we will start our discussion centered on the later analysis of the control
of the dynamics of a levitated particle. We will discuss free brownian motion and
harmonic brownian motion and give the results of variance and PSDs that come out
of the differential equations

2.4.1 Free brownian motion

The equation of motion of the dynamics of a free particle coupled to a thermal bath
at temperature TCM with rate ΓCM was derived by Langevin in 1908 from Newtons
second’s law:

q̈ + ΓCMq̇ = Fq(t)/m. (2.11)

Being Fq(t)/m =
√

2kBTCMΓCM/mΞ(t) and Ξ(t) a normalised white noise pro-
cess with 〈Ξ(t)〉 = 0, 〈Ξ(t)Ξ′(t)〉 = δ (t− t′).

The equation of motion is driven by a stochastic force and therefore the motion
of the particle is randomized. Nevertheless, one can define quantities as the mean
square displacement given by [7]:
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σ2
q (t) =

〈
[q(t)− q(0)]2

〉
=

2kBTCM

mΓ2
CM

[
ΓCMt− 1 + e−ΓCMt

]
. (2.12)

At times longer than the relaxation time t � 2π/ΓCM we obtain the result
that Einstein obtained in his PhD work σ2

q (t) = 2Dt with diffusion coefficient D =
kBTCM/mΓCM. Nevertheless, at times shorter than the relaxation time inertia effects
are observed obtaining ballistic motion σ2

q (t) = (kBTCM/m) t2. Notice that in the
overdamped regime these effects are hardly observable since the relaxation time is
given by τ = 1/ΓCM

2.4.2 Harmonic brownian motion

Under the influence of an optical trap, the motion of the particle can be considered
harmonic close to the center of the well i.e. the equilibrium position. From equation
(2.3) one can use Newton’s 2nd law to obtain that the center of mass of the particle
follows brownian motion under the following differential equation:

q̈ + ΓCMq̇ + Ω0
2
qq =

√
2kBTCMΓCM/mΞ(t). (2.13)

In this case, due to the confinement of the optical trap, the particle oscillates in-
side with frequency Ω̃ =

√
Ω2

0 − Γ2
CM/4. The frequency is different for each degree

of freedom depending on the shape of the potential since the trap frequency is
Ω0q =

√
kq/m and kq given in eq (2.5).

As discussed in chapter 1, depending on the relation between the damping rate
and the frequency of the particle, we can have overdamped, underdamped and crit-
ically damped case. For the underdamped motion of levitated particles, the mean
square displacement of the position is given by:

σ2
q (t) =

2kBTCM

mΩ2
0

[
1− e−

πt
τp

(
cos(Ω̃t) +

π sin(Ω̃t)

τpΩ̃

)]
. (2.14)

Where τp = 2π/ΓCM is the momentum relaxation time of the system. The autocor-
relation function of the position is given as:

〈q(t)q(0)〉 =
kBTCM

mΩ2
0

− 1

2
σ2
q (t). (2.15)

And the autocorrelation function of the velocity as:

〈v(t)v(0)〉 =
kBTCM

m
e−

1
2

ΓCMt

(
cos(Ω̃t)− ΓCM

2Ω̃
sin(Ω̃t)

)
. (2.16)

The power spectral density (PSD) is defined as the Fourier transform of the position
autocorrelation function Sqq(Ω) =

∫∞
−∞〈q(t)q(0)〉eiΩt dt:

Sqq(Ω) = |χ(Ω)|2Sff(Ω) =
ΓCMkBTCM/πm

(Ω2 − Ω2
0)

2
+ Γ2

CMΩ2
. (2.17)
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Where χ(Ω) = m−1 [Ω2 − Ω2
0 + iΓCMΩ]

−1 is the harmonic oscillator response func-
tion.

The PSD provides the Temperature TCM and the damping rate ΓCM, and the
frequency spectrum of the autocorrelation function gives the trap frequency in its
main peak.

The harmonicity of the motion is valid under the condition:

3kBTCM

w2
qΓCMΩ0qM

� 1. (2.18)

If this condition is not met, non-linearities of the potential must be taken into
consideration linking the different motional degrees-of-freedom and making them
not independent anymore.

2.5 Modulations and control of the dynamics.
Eq (2.13) assumed brownian harmonic motion of an optically trapped particle. In
this section we will consider different scenarios that would add new terms to eq
(2.13). We will discuss the possibilities that levitated experiments offer to alter its
dynamics and effective temperature.

The combination of an electric optical modulator, a polarizer and a function gener-
ator offer infinite possibilities (see chapter 3) of functions in terms of time f(t) that
can vary the power of the laser and therefore the trap stiffness and the frequency of
the trap. Notice that eq (2.5) suggests that the stiffness of the harmonic potential
could be modulated through the laser power. This results in a time dependent trap
stiffness and therefore trap frequency in eq (2.13) Ω0

2
q → Ω0

2
qf(t).

Furthermore the use of a feedback mechanism that reads the particle motion al-
low for implementing position or velocity dependent functions to the laser power.
The feedback offer therefore, the implementation of position/velocity dependent
functions f(t, q, q̇). If the function is implemented to the laser power, then in eq
(2.13) Ω0

2
q → Ω0

2
qf(t, q, q̇). Getting:

q̈ + ΓCMq̇ + Ω0
2
qf(t, q, q̇)q =

√
2kBTCMΓCM/mΞ(t). (2.19)

Where the implementention of velocity dependent functions can lead to a change in
the damping rate such that the new effective damping term would substitute ΓCM
in eq (2.13): ΓCM → Γeff = ΓCM + δΓ. Where δΓ is the new contribution.

Additionally one could implement external electric or magnetic forces that inter-
act with the particle independently of the optical trap. It is usual to test the force
sensitivity of the oscillator through the implementation of these forces. Moreover it is
possible to implement them with the use of feedback making them position/velocity
dependent. For instance, applying an electrical feedback signal to electrodes placed
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close the levitated charged particle [34, 35]. In these cases an external force is im-
plemented:

q̈ + ΓCMq̇ + Ω0
2
qq =

√
2kBTCMΓCM/mΞ(t) + fext(t, q, q̇). (2.20)

2.5.1 Power modulation

Experimentally an EOM can vary the power around a mean value P0. We ex-
press it then as Popt(t) = P0 + δP (t). Where δP (t) is the variation of the power
through the EOM. This results in a time dependent trap frequency in eq (2.13)
Ω0

2
q → Ω0

2
q+δkq(t)/m. Where δkq(t) stands for the variation on the stiffness through

the laser power variation δP (t) related through eq(2.5).

Furthermore the use of a feedback mechanism that reads the particle motion allow
to implement position or velocity dependent functions to the laser power. The feed-
back offer therefore, the implementation of position/velocity dependent functions to
the laser power δP (t, q, q̇). In this case in eq (2.13) Ω0

2
q → Ω0

2
q + δkq(t, q, q̇)/m.

Then the general equation of motion of a particle in a thermal bath and confined in
a modulated optical potential would read as:

q̈ + ΓCMq̇ + (Ω0
2
q + δkq(t, q, q̇)/m)q =

√
2kBTCMΓCM/mΞ(t). (2.21)

Such modulations implemented through the gradient force (see eq (2.3)) are generally
called in the literature as "parametric", examples of it are parametric driving [36]
or parametric feedback cooling [23].

In the case of parametric feedback cooling, Gieseler implemented a modulation de-
pendent on position and velocity such that f(t, q, q̇) = 1 + ηqq̇/Ω0 or following the
new formalism: δkq(t, q, q̇)/m = Ω2

0ηqq̇, where η represents the feedback strength.
This implemented fucntion is linearly velocity and position dependent but results
in a non-linear modulation in the eq (2.21). The velocity dependence leads to not
only the modification of the trap frequency but also to the change of the particle
damping rate ΓCM .

In the case of parametric driving, Gieseler implemented a time-dependent func-
tion in order to excite the particle injecting energy and allowing for large amplitude
oscillations that could explore non-linearities of the optical potential. The imple-
mented function was f(t) = 1 + ε cos (Ωmt) or in the new formalism δkq(t, q, q̇)/m =
Ω2

0ε cos (Ωmt) where the parameters, strength ε and frequency Ωm of the modulation
were controlled externally.

2.5.2 Feedback cooling

For the sake of generality since the center of mass motion of the particle could be
modulated not only through the power of the laser but also through external forces
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the feedback cooling ffb(t) usually reads as an independent term in the equation of
motion:

q̈ + ΓCMq̇ + Ω0
2
qq =

√
2kBTCMΓCM/mΞ(t) + ffb(t, q, q̇). (2.22)

In order to extract energy from the particle, the feedback term could be imple-
mented linear to the velocity ffb(t, q, q̇) = Aq̇ with optimized gain A. This is called
cold damping since the motion is damped without any additional heating. Another
option would be to add a term dependent on the position: ffb(t, q, q̇) = A1q̇ + A2q.
such configuration was made by Ashkin [3] to improve the stability of the levitated
particles.

As mentioned before, Gieseler implemented the so-called parametric feedback cool-
ing [23] which differs from the previous cases in its nonlinearities. It was implemented
through the gradient force (see eq (2.3)) with a modulation of the trapping poten-
tial. While in the previously discussed schemes the damping rate is independent of
the oscillator energy, in this case the power is a function of the oscillator amplitude.
Solutions of the variance and the PSD at steady states while applying this method
can be found in his PhD thesis.

A feedback cooling process changes both the effective temperature and damping
rate of equation (2.13) a quantity δΓ such that ΓCM → Γeff = ΓCM + δΓ. The
effective temperature under the process is modified to:

Teff = TCM
ΓCM

ΓCM + δΓ
. (2.23)

Notice that the change of the damping term δΓ determines how much the temper-
ature changes and its sign if it increases or decreases.

2.5.3 Non-linearities, direct and parametric driving

Until now, we have given the general formalism of how the implementation of ex-
ternal modulations results in the equation of motion. We have also discussed some
of the most interesting applications when adding a velocity dependent term to im-
plement feedback cooling to the motion of the particle. Here we will discuss further
examples of functions in terms of time that have been used in recent studies. Their
implementation can vary the motion of the particle in distinct manners and serve dif-
ferent purposes such as exploring non-linearities of the optical potential well, seeking
sensitive force sensing schemes, designing bistability amplitude regions or studying
the phenomena of stochastic resonance.

Parametric driving

As the adjective parametric indicates, parametric driving is a modulation in the
optical potential in terms of time that drives the motion of the particle. A specific
scheme was introduced by Gieseler where he used this term to drive the motion
of the nanoparticle into non-linear regions of the optical potential well. In order to
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study non-linearities, the particle must be driven to higher amplitudes. Jan Gieseler
et al implemented a function in eq (2.19) such that f(t) = 1 + ε cos (Ωmt), or in
the previous formalism δkq(t, q, q̇)/m = Ω2

0ε cos (Ωmt). The external parameters,
strength ε and frequency Ωm of the modulation were controlled externally. Such
a modulation, can interact with the particle, altering its motion when selecting
resonant frequencies with the center of mass trap frequencies Ωm = nΩ0. The
highest resonance is at n = 2.

Figure 2.1: A strongly focused beam creates an optical potential with nonliniearities. The first
order nonlinear term is well known as the duffing factor ξ and was measured by Gieseler with the
help of a parametric driving that drove the particle with higher amplitudes to the non-linear parts
of the potential.

In their study they excited the particle amplifying its amplitudes thanks to the
modulation. This allowed them to reach the non-linearities of the optical potential
and compute its duffing factor ξ. Introducing non-linearities into eq (2.13) as well
as the parametric external modulation we get:

q̈ + ΓCMq̇ + Ω2
0

[
1 + ε cos (Ωmt) + ξq2

]
q =

√
2kBTCMΓCM/mΞ(t). (2.24)

Studies similar to these can be carried out in the Stark decelerator of our laboratory
where a modulation of the voltage implemented on the electrodes create anharmonic
wells that trap samples of particles. Similarly to the study of Gieseler we could mea-
sure the non-linear terms of the Stark potential while applying parametric driving.
Gieseler computed through secular perturbation theory the anharmonicities effects
on the harmonic trap Ωeff. = Ω0

(
1 + 3

8
ξq2
)
. In my bachelor thesis I computed

through perturbation theory the non-linear terms of a general quartic potentil ob-
taining the same equation. Although an experimental effort was made to find the
resonance of SrF with parametric driving, future steps could be implemented in
order to compute the non-linearities of the Stark potential.
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Direct driving.

Another example is the implementation of direct driving. In this case the modulation
comes from an external force instead of from a modulation of the potential. The
difference from the previous case is that the term in the equation of motion does not
have to be necessary multiplied by the position term. An example of this modulation
was done by Ricci implementing direct driving through external electric fields [37]
in order to simulate an external force and study the sensing possibilities of the
resonator for instance to measure mass. He used as well a sinusoidal function such
that in eq (2.20) fext(t) = F0

m
cos(ωdr) where the controlled external parameters were

the electric strength of the modulation F0 and the frequency ωdr. In this case the
major influence is injected in the trapped particle when ωdr is in resonance with the
frequency of the trapped particle Ωm = nΩ0 where the highest resonance is again
n = 2.

Combination of modulations.

Finally it is also interesting to apply combined modulations. Ricci created an ampli-
tude bistability region with the use of feedback cooling, direct driving and external
noise [38]. Bistability regions have also been of application in order to compare the
classical system to a quantum mechanical one [39], and have been explored not only
with feedback cooling but also with cavity schemes [40].

Laser 

Pressure control 

 

Input 
perturbation 

Feedback 

Non-linearities 
 

Direct driving 
 

Parametric driving 
 

Parametric 
feedback cooling 

 

Figure 2.2: Scheme of the setup for combined modulations and the result in the equation of
motion. While the first equation gives the general equation of motion the second gives specific
examples of modulations discussed in the text.

Some theoretical efforts studied the stability of similar dynamical schemes to
seek for the detection of weak forces with the use of resonators. Ricci implemented
a direct driving scheme such that in eq (2.20) fext(t) = F0

m
cos(ωdr).The induced ex-

ternal force served to simulate a detectable force by the resonator and under these
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conditions he obtained the minimum detectable force if a nano-oscillator in eq (2.28).

Similar studies can be a beautiful match between the interests of our group and
the studies that the Bernuilli Institute and the group of Alef Sterk. A combination
of external modulations can create instability regions that lead to interesting sensing
schemes of weak forces with levitated particles [32]. In occasions it is possible to
obtain analitically the PSD of such equation through averaging methods [33].
Ricci discussed in his PhD thesis the implementation of different modulations to
infer bistability dynamics and explore what possibilities this would bring to improve
force sensing with levitated particles, see fig 2.2.

The general equation including non-linearities read as:

q̈ + ΓCMq̇ + (Ω0
2
q[1 + ξq2] + δkq(t, q, q̇)/m)q =

√
2kBTCMΓCM/mΞ(t) + fext(t, q, q̇).

(2.25)
And using parametric feedback cooling, direct driving as well as parametric driving
we get:

q̈+(ΓCM+Ω0ηq
2)q̇+Ω2

0

[
1 + ε cos (Ωmt) + ξq2

]
q =

√
2kBTCMΓCM/mΞ(t)+

F0

m
cos(ωdr).

(2.26)
See figure 2.2 for clarity.

2.6 Force sensing
The minimum detectable force of a nano-oscillator is limited by the thermal energy
of its center of mass as well as its mechanical quality factor:

Fmin =

√
4kqkBTCMb

ΩqQm

. (2.27)

Where b is its measurement bandwidth. Notice that high quality factors and low
temperatures of the center of mass of the nanoparticle lead to high sensitivities.

Since levitated nanoparticles can be isolated avoiding dissipation, they contain high
quality factors. This together with their low masses, make them ideal force sensors.
Equation (2.27), stands for a general nano-resonator while in the specific case of
levitated particles, the expression can be simplified as:

Fmin =
√

4kBTCMMΓCMb. (2.28)

Notice that the minimum force is proportional to the center of mass and to the
damping rate ΓCM , which shows that low pressures increases the sensitivity. Notice
as well that if feedback cooling is applied, the effective damping rate and damping
temperature must be included following the formalism given in section 2.3.3.

The equation (2.28) was deduced by implementing a direct driving scheme by
Ricci [37] such that in eq (2.20) fext(t) = F0

m
cos(ωdr). The induced external force

served to simulate a detectable force by the resonator.
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2.7 Shortcuts to adiabaticity (STA)
As its name indicates, shortcuts are fast routes to obtain a desired result of slow
physical processes. The fact that it is aforementioned as a shortcut to adiabaticity
(STA) has to do with the particularity that the term only involves adiabatic paths
when changing the parameters with which a system is controlled.

In contrast to the usual definition in thermodynamics, here the adiabatic termi-
nology includes a broader definition. In this case any process is called adiabatic
when the slow change of the control parameters of the system stay invariant to the
so-called adiabatic invariants. They are the phase space areas in classical systems
and the quantum number in quantum systems [41].

Usually STA protocols are used in isolated systems. Nevertheless, reminiscent tech-
niques have been done in systems in contact with a thermal bath: In the case of a
classical system in contact with a thermal bath, like our experiment, the realization
of a STA has direct applications in the design of efficient nanothermal engines, in
the driving of mesoscopic chemical or biological processes or in modifying the signal
to noise ratio scheme (SNR) of sensing experiments.

2.7.1 STA in levitated nanospheres

The particular problem of our experimental setup is characterized by the Langevin
equation (see section 2.4.2) where the motion of a brownian particle is driven by
a white noise. In this context, the change of the control parameters of the system
upset the state variables that define a particular thermodynamical state. This is the
induction of a transition from one state to another of the system.

Within this framework, a shortcut can be induced in order to find a fast route
to reduce the relaxation time that takes the system to thermalize from one state to
another. With our current experimental setup the only time-controlled change that
can be induced is the shape of the potential, but with other experimental configu-
rations external electric/magnetic forces could also be applied from different sources.

Two standard STA methods can be applied to accelerate the equilibration in classi-
cal systems in contact with a thermal bath. On the one hand an inverse engineering
and on the other hand a transposition of the counterdiabatic ideas. Nevertheless,
the second provides an auxiliary potential that is not relevant from an experimental
point of view [42].

The so-called engineered swift equilibration (ESE) protocols have been introduced
to study the isothermal compression of a colloidal particle. Through an inverse
engineering, the thermalization can be shortcutted through the compression or de-
compression of a harmonic oscillator from an angular frequency Ωi to Ωf , getting
an exact scaling solution of the underdamped Fokker-Planck equation.
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Protocols related to the theory of shortcuts to adiabaticity that were tested by
Ignacio A. Martinez [17] in the overdamped regime need to be tested in the under-
damped regime [20]. This regime can be explored by levitated nanospheres in high
vacuum [15].

By implementing such protocols we would be able to control the state of a levitated
nanosphere on unprecedented timescales reaching equilibrium hundreds of times
faster than the natural equilibrium rate. Furthermore the realization of a shortcut
has direct applications in the design of efficient nanothermal engines, in the driving
of mesoscopic chemical or biological processes and in sensing experiments.

2.7.2 Engineered swift equilibration (ESE) in the underdamped
regime

The ESE meethod was proposed by Ignacio A. Martínez in the reference [17] for
the overdamped regime and an extension has been developed in the underdamped
regime by Marie Chupeu in the reference [20]. The specific problem for a modulated
potential in terms of time U(t) was solved numerically by Gómez Martín [43]. Here
we will resume part of the work of Chupeu with the aim of using it in the near future
to pursue the first acceleration to equilibrium of a levitated nanoparticle through a
time dependent potential U(t).

ESE general formalism.

The probability density function K(x, v, t) of an object confined in a potential and
immersed in an underdamped thermal bath evolves obeying the Kramers equation:

∂tK + v∂xK −
∂xU

m
∂vK = Γ∂v(vK) + Γ

kBT

m
∂2
vK. (2.29)

Where U(x, t) is the confining potential, and T the temperature of the bath. At
thermal equilibrium the probability is given by the Boltzmann law:

Keq(x, v) = K0 exp

(
−U(x)

kBT
− mv2

2kBT

)
. (2.30)

By modifying the potential we can connect an initial equilibrium state with potential
Ui(x) and temperature Ti to final equilibrium state characterized with Uf , Tf . The
ESE method assumes that the probability density function is Gaussian in the velocity
variable during the change of states:

K(x, v, t) = exp
(
−A(x, t)− B(x, t)v2 −D(x, t)v

)
. (2.31)

To keep the formalism the most general possible, the thermal bath could be time
dependent. Nevertheless, we will discuss here only ESE methods with constant
thermal baths since our experimental setup cannot control this variable. In the
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overdamped regime this is achieved by implementing an external random function
that acts as noise [44,45] (see section 2.3.3).

The usual approach to solve equation (2.29) would be to give an input potential
U(x, t) and temperature T (t) and obtain the solution of the probability density
K(x, v, t). Instead, the ESE technique adopts a reverse philosophy where the con-
trol parameters U(x, t) and T (t) are free and a desired dynamics is chosen for the
functions A, B and C of eq(2.31). Later, from the chosen functions, we obtain the
evolution of the control parameters that can lead us to the desired dynamics.

The procedure then is to choose he functions A, B and C and plug them in eq
(2.29). The different powers of v can be separated obtaining:

∂xB = 0,

−Ḃ − ∂xD = 2Γ
(

2B2kBT
m
− B

)
,

−Ḋ − ∂xA+ 2∂xU
m
B = Γ

(
−D + 4kBT

m
BD
)
,

−Ȧ+ ∂xU
m
D = Γ

(
1 + D2kBT

m
− 2BkBT

m

)
.

(2.32)

These sets of equations must hold in order to connect the two imposed states. Of
course, they have to be adapted to specific protocols with desired constraints, such
as duration of the protocol, amplitude of the transition and number and nature of
control parameters.

Time-modulated potential protocol

In our specific case, the potential will not be position-dependent and therefore large
simplifications can be done. A variant of this problem was solved numerically by
Gómez Marín [43]. Furthermore in our case the temperature will be constant.

The parameter from the potential that is changed from the power is the stiffness (see
eq 2.5) giving therefore a certain trap frequency Ω(t), we define the time-dependent
potential as:

U(t, x) =
mΩ2(t)

2
x2. (2.33)

And the temperature we set it constant. Under these conditions the probability
density is now written in a simplified form:

K(x, v, t) = N(t) exp
(
−α(t)x2 − β(t)v2 − δ(t)xv

)
. (2.34)

Where for analogy A(x, t) = α(t)x2 − lnN , where N(t) normalizes the function,
B(x, t) = β(t), and D(x, t) = δ(t)x. The equations (2.32) are then simplified as:

−α̇ + Ω2δ = ΓkBT
m

δ2,

−β̇ − δ = −2Γβ + 4ΓkBT
m

β2,

−δ̇ − 2α + 2Ω2β = −Γδ + 4ΓkBT
m

βδ.

(2.35)
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With boundary conditions that correspond to the initial and final state:

α(0) =
mΩ2

i

2kBTi
, α (tf ) =

mΩ2
f

2kBTf
,

β(0) = m
2kBTi

, β (tf ) = m
2kBTf

,

δ(0) = δ (tf ) = 0.

(2.36)

In the next steps Chapeau simplifies the equations, re-scaling them and defining
a new time variable s = t

tf
. Then, from now on the dot refers to derivatives with

respect to the re-scaled time , where tf is the time at which the modulated function
stops running.

˙̃α = 2NΩr̃δ̃ − 2NΓδ̃
2,

˙̃
β = −2NΩδ̃ + 2NΓβ̃ − 2NΓβ̃

2,
˙̃δ = −NΩα̃ +NΩκ̃β̃ +NΓδ̃ − 2NΓβ̃δ̃.

(2.37)

such that:

α̃ ≡ 2kBTi
mΩ2

i

α, β̃ ≡ 2kBTi
m

β, δ̃ ≡ kBTi
mΩi

δ, Ω̃ ≡ Ω

Ωi

, κ̃ ≡ κ

κi
= Ω̃2. (2.38)

Where NΓ = Γtf and NΩ = Ωitf are two introduced parameters that are key to
understand the possible protocols.
The chosen selected conditions:

α̃(0) = 1, α̃(1) =
(

Ωf
Ωi

)2

= χ,

β̃(0) = β̃(1) = 1,

δ̃(0) = δ̃(1) = 0.

(2.39)

After some more definitions Chapeau arrives to the following final differential equa-
tions that play a key role in finding the functions of the stiffness:
He defines:

ã =
2kBTi
mΩ2

i

a = α̃− δ̃2

β̃
. (2.40)

And
∆̃ = ãβ̃. (2.41)

Obtaining:

β̃ = 1− ∆̃

2NΓ∆̃
. (2.42)

δ̃ =
β̃ȧ

2NΩã
. (2.43)

And as a final equation for the stiffness:

κ̃ =
α̇

2NΩδ
+
NΓ

NΩ

δ. (2.44)

Although the process seems tedious it leaves a very simple method to compute possi-
ble solutions of the stiffness. He refers to two possible protocols in order to compute
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such frequency:

Protocol A: Choose shape of ∆̃(s), deduce then β̃ from eq(2.42), then compute
ã from eq (2.41), then δ̃ follows from eq(2.43) and finally the stiffness in computed
from eq(2.44)

Another route towards an explicit protocol consists in choosing the function ˜β(s)
and deduce the other functions from it. Nevertheless, Chapeau finds that, after
some analytic steps, this method requires numerical methods.

2.7.3 Relaxation times and ESE possible protocols.

Two time-scales are key to understand the possible protocols. On the one hand
the time period of the oscillation 1/Ω and on the other hand the time associated
with the friction 1/Γ. This scales are compared to the duration of the protocol tf
through the previous introduced parameters NΓ = Γtf and NΩ = Ωitf . From there
the timescale of position relaxation is defined as tx = Γ/Ω2

i and the timescale of the
velocity or momentum relaxation as tv = 1/Γ. Nevertheless, for units consistency
in the later discussion of the results we use the regular damping coeffitient to define
the momentum relaxation time since it is expressed in seconds. The relation of these
times is τp = 2πtv = 2π/Γ.

Figure 2.3: Behaviour of the stiffness during the compression protocol. The diagram shows
different possibilities of the stiffness for three compared time parameters: the duration of the
protocol tf , the angular position relaxation time tx and the angular velocity relaxation time tv.
They are compared through the parameters NΓ = Γtf and NΩ = Ωitf . The colors indicate zones
classified in terms of the capability to accelerate of the protocol. Red zones show slow protocols
(tf is the largest) and therefore less interesting. The green ones show interesting protocols for
a relaxation shortcut. Finally grey areas show negative stiffness areas which are not possible to
do experimentally. Remember that s = t/tf and the time axis of the evolution of the stiffness is
therefore normalized. Obtained from reference [20].
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Note that the maximum of these last two timescales defines the global relaxation
timescale of the system. For our system the momentum relaxation is longer and
therefore this is setted as the relaxation time of the system τ = τp.

With these definitions possible protocols can be checked in figure 2.3. Green ar-
eas show compression protocols that would allow the acceleration of the system.
For our frequency Ω ≈ 100 kHz, we have that tv > tx and therefore we are in-
terested in protocols where ts < tv < tx which corresponds to the stretched green
region for NΓ < 1 and NΩ > 1.

2.8 Heat engines
STA can help us improve the efficiency of nanothermal engines optimising their de-
sign [41]. Ignacio A. Martinez explored stochastic heat engines in the overdamped
regime [28] developing together with J.M.R. Parrondo a Carnot engine [29] .There
are theoretical proposals for the underdamped regime that are of interest to be
tested with levitated nanospheres [26, 27].

Shorcut methods used with colloidal particles implement non-trivial functions to
an input parameter (usually optical potential stiffness) of the equation of motion in
order to optimize a process. These functions are usually found through the so-called
reversed philosophy where instead of solving the equations of motion as usual (in-
puts i.e. stiffness give outputs i.e. position distributions), an imposed and desired
solution of the equation gives back only certain possibilities of possible input pa-
rameters of the potential stiffness. In the case of speeding-up relaxation processes
the non-trivial input function is implemented in the stiffness and is found such that
the relaxation is shorcuted as much as possible [17]. Nevertheless, in the design of
efficient heat engines the input function is found such that the adiabatic processes
of a full cycle give maximum efficiency [26,27].

A colloidal stochastic heat engine converts heat flow into mechanical work oper-
ating under a cyclic process. The cycle contains two isothermal processes where
there is a variation of the potential to extract or implement work and two adiabatic
processes with an instantaneous reduction/increase in temperature, see figure 1.
Compression and expansion are achieved by increasing and decreasing the potential
of the harmonic potential that traps the nanospheres, while heating and cooling is
done by changing the effective temperature of the center of motion particle.

While the overdamped regime has been well explored, the underdamped regime
lacks experimental results. It is of interest to check optimal protocols for maximum
efficiency at fixed power. Can we determine optimal driving protocols for different
values of power? Could we extend the results to include feedback control? Can we
explore the quantum regime at high vacuum and attain Carnot efficiencies? [30]

32



Figure 2.4: Stochastic heat engine cycle. Obtained from reference [11]

Additionally the realization of a shortcut can modify the signal to noise ratio (SNR)
scheme helping to improve sensing tests of a certain frequency. When a STA pro-
cess is implemented within a time shorter than a specific resonance, it leads to the
transitory cancellation of the resonance signal [18]. It is a transitory process due
to the equipartition theorem. The shortcut causes an energy transition from the
selected resonance to the rest of modes and degrees of freedom of the system. In
our particular case currently we detect three degrees of freedom related to center of
mass motion along the 3 directions in which the nanosphere can move. Therefore a
short-cut would cause an energy transition from one selected degree of freedom to
another. Nevertheless, additional degrees of freedom can be found in particles with
anisotropic geometry, which polarizabilities (described by a tensor) change with the
polarization vector of the light field. In the case of, for instance, a nanodumbell the
linear, circular or elliptical polarization, can inject rotation, torsion or a combina-
tion of both respectively on the trapped object [21, 22].

By monitoring the dynamics of a colloidal particle while implementing cycles of
a heat engine, one can extract the work statistics. A stochastic heat engine converts
heat flow into mechanical work operating under a cyclic process. To apply work
to a nanoparticle we could either modulate the optical potential or implement an
external force through a control parameter λ(t) such that the time variable of the
potential or external force are changed as U(q, λ(t)); f(q, λ(t)). For example for
a harmonic potential U(q, t) = k(t)q(t)2/2, the control parameter is λ(t) ≡ k(t),
but another possibility would be to implement a ratchet moving the trap and being
its center then, the control parameter. Nevertheless, for the general case we will
consider λ(t).
Implementing both, an external force and a modulated potential, the incremented
work and heat reads as:

dW = (∂U/∂λc) dλc + f dq, (2.45)

dQ = F dq. (2.46)

Where F (q, λc) = −(∂U)/(∂q) + f is the total force acting on the particle with the
contribution of the external force f and the modulated potential. If the external force
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has both deterministic and stochastic contributions, then along a long trajectory:

W(q(t)) =
∫ τ

0

[
(∂U/∂λc) λ̇c + f q̇

]
dt,

Q(q(t)) =
∫ τ

0
Q̇dt =

∫ τ
0
F q̇ dt.

(2.47)

Consider now that the only external implementation is the modulation of the poten-
tial such that U(q, t) = k(t)q(t)2/2 and taking its stiffness as the control parameter.
Then for expansions processes when the stiffness of the trapped potential is de-
creased, it is usually convenient to consider the equations of motion of the mean
square displacement or variance:

σ̇2
q = −mµσ̈2

q − 2µk(t)σ2
q + 2mµσ2

v . (2.48)

where µ = 1/ (mΓCM) , σ2
n(t) ≡ 〈q̇2(t)〉. At this point the usual approach for col-

loidal particles is to simplify equation (2.48)neglecting the term proportional to σ̈2
q

since in the overdamped regime ΓCM >> Ω. This simplification in the overdamped
regime allows to deduce analytically protocols of the evolution of λc that maximize
the efficiency of a stochastic heat engine. There is not known analytic solution of
protocols in the underdamped case, instead numerical methods are used. Very rapid
variations of the the control parameter are necessary for optimum protocols in both
regimes, a particle reacts slowly to variations of the control parameter in the over-
damped regime and fast in the underdamped regime. Therefore it must be more
optimum to extract work with in the underdamped regime.
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Chapter 3

Methods

This chapter describes first the scheme of the current and future planned experimen-
tal setups. Second it presents the new implemented devices during this academic
year: a picoscope, an electric optical modulator (EOM) and a wave generator. We
explain some of their important characteristics to take into account when performing
experiments. Third, we give the steps and methodology taken in the experiments
during this master project. Finally an important effort has been devoted to the cali-
bration process to transform the recorded signal into position, as well as a discussion
of its errors and possible improvements in section 3.3.

3.1 Experimental setup
First we will present the setup with which we measured the results shown in this
master project. Notice that the current setup includes the feedback mechanism and
a photodetector to measure the longitudinal direction of the particle.

In fig 3.1 we can find the current experimental setup which we describe here.

In the first compartment the source of a Mephisto MOPA laser produces a gaussian
profile beam in the transverse electromagnetic mode TEM00 and at a wavelength
of 1064nm. We use a power amplifier at a fixed current of 54A (nevertheless, in
appendix C the current is slightly changed to observe modifications of the FFT).

The beam is redirected to the second compartment with a round wedge prism where
a galilean telescope (GT) adjusts the size of the beam in order to focus it through
the EOM. Before entering it, a half wave plate (HWP) sets an horizontal polariza-
tion of the beam. The EOM varies the polarization through time since a voltage
function is applied with a function generator changing the polarizability properties
of the crystal through which the laser light travels (see section 3.1.1). The modified
laser enters then a polarization-maintaining fiber (PMF).

The laser gets out of the second compartment through the PMF and is directed
with mirrors to the polarization beam splitter which allows for passing only hori-

35



zontally polarized light into the vacuum chamber. Since the EOM is changing the
polarization through time and the HWP only allows horizontally polarized light to
pass, this results in a power modulation. This effect is double checked with another
HWP after the PBS that is also setted to only allow horizontal light to pass. (For
the appendix C we analyze the effects of changing the polarization with this HWP).

The laser is focused with a microscope objective (MO) of numerical aperture NA=0.8
creating a high intensity gradient of the laser that sets the optical trap. We can
check wether a particle is trapped with a CCD camera that is focused to the center
of the trapped from outside the vacuum chamber. Once a particle is trapped after
nubelizing (see section 3.2.2), the scattered light is collected with an aspheric lens
collimating it out of the vacuum chamber. Finally the beam enters the detection

Figure 3.1: Simplified scheme of the experimental setup.

system where the beam is splitted 50:50 in order to detect the vertical y and hori-
zontal x motion modes of the particle. We use the method of differential detection
where by using D-shaped mirrors the horizontal signal is divided into right and left
components, and the vertical signal into top and bottom components. These signals
are then detected using photodiodes (PD) and collected with multimode fibers to
the amplifiers. There, the difference between the splited components of each orien-
tation is measured and the result amplified by a factor of 106. Finally we record the
signals in the picoscope.
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3.1.1 Picoscope, wave generator and EOM.

Picoscope

A Picoscope 5000 series reads the recorded signal of the photodiodes as well as the
generated wave from the function generator. A picoscope 5000 series have certain
limitations such as the sampling rate and amount of data samples saved per time.
The inputs to record a signal are the collection time, the amount of samples and the
number of bits. For the selected inputs it gives a certain sampling rate according
to its limitations. The limitations of the samplin rate and amount of collected data
per time change depending on the number of channels used and the bits. One can
find the details in the manual.

Figure 3.2: Picoscope.

All the experiments are done by using the same channels for specific signals. We
use channels B and C to read the difference of the horizontal and vertical modes
respectively. Channel D is used for the generated signal and finally in channel A we
record one of the not-substracted signals of the two photodiodes.

Wave generator

A wave generator Rigol DG1032Z supplies a recorded signal to the EOM. It is a 2
channel Function / Arbitrary Waveform Generator to create high quality signals up
to 30 MHz (Sine) with very low jitter (200 ps) and the new SiFi (SIgnal FIdelity)
technology. The device includes an USB-Host- and an USB-device interface which
allows to program your own functions. This is of use in order to pursue a shortcut
so we can implement certain desired functions. Nevertheless, for the thesis we use
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a square wave. Usually this signal is amplified by a factor of 40 before arriving the
EOM that has a half-wave voltage of 330V.

Figure 3.3: Function generator.

Electric optical modulator EOM

An electric-optical amplitude modulator SN U00885 RF IN is used in order to mod-
ulate the polarization through time and with the help of a half wave plate before
the laser enters the EOM and another one afterwards, we modulate the intensity.

Figure 3.4: EO Amplitude Modulator SN U00885 RF IN.
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Figure 3.5: EO Amplitude Modulator output as a Function of Applied Voltage (Listed in Terms
of Vπ

With the EOM and the help of a polarizer we can reduce the electric field ampli-
tude at the rate of the applied voltage to the EOM. And the nanosphere potential
stiffness is proportional to the square of the amplitude. . In order to change double
the stiffness we need to change a root-square of 2 the amplitude. Roughly speaking,
the initial amplitude of the electric field must equal 0.7 the final amplitude. From
figure 3.5, this requires roughly a voltage of 1/4Vπ which is aprox 80V since at our
wavelength (1064nm) the Half-wave voltage (Vπ) of the EOM is around 330 V.

The physical principle of the EOM is the following. Applying Vπ = 330V to the
EOM we change 90 degrees the polarization. With the help of a polarizer it would
be translated as a zero output amplitude (see fig 3.5). With the same logic applying
to the EOM a voltage of 165 V, we would reduce by half the output amplitude.
Notice that by changing the offset

At the moment we are able to generate with a function generator a signal of a
maximum amplitude of 10 volts. This signal is amplified 20 times applying to the
EOM a signal of 200 V amplitude. Nevertheless, with the help of an offset we could
reach the Half-wave voltage required to change 90 degrees the polarization (which
is not needed for our purposes).

We need to set an offset to this wave. Otherwise we do not change the output
amplitude since same values of positive and negative voltage would apply the same
polarization contribution to the output light (see fig 3.5 ). Since we apply a square
wave to the EOM, without offset we do not change the output amplitude. This is
because a square wave generates same positive and negative values of voltage. The
EOM therefore would change the same amount but in different directions the po-
larization. And when the light passes through the output polarizer both lights with
different polarizations would contribute the same amount after the output polarizer.
Since we need a change of about 80 V and also an offset, a wave of 40 V amplitude
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and the same value of offset would fit our estimations.

Choice of parameters

In order to observe the relaxation process of the nanosphere we need to set very
specific values to the wave generator and to the picoscope. Find the table below
where we organise the choice of values:

Pressure
(mbar)

Relaxation
time (ms)

Frequency
of square
wave (kHz)

Picoscope
collection

time (amount
of data stored)

Picoscope
samples

10 mbar ≈ 0.03 ms 10 kHz 100 ms/ div 10MS

Table 3.1: Choice of parameters for the expected relaxation time.

Let us explain here how we made this choice:

1. The frequency of square wave is chosen to be able to observe the relaxation
of the particle. A choice of 10 kHz allows to look for compression/decompression
cycles of 0.05 ms which is slightly longer than the relaxation time therefore observ-
ing the appropriate time-scale.

2. Picoscope collection time. With this option in the picoscope we select for how
long we store data. The scope always shows 10 divisions and stores until the last
time value of the 10th division. For instance the option of 100 ms/div would store
1 second of data. The longer, the more cycles of the process we measure but it is
more appropriate to store different fields since otherwise the picoscope would limit
the sampling rate, and the higher the sampling rate the better the resolution. For
instance for a square wave of period 1ms, if we measure during 104 ms we would
get 104 cycles. The scope always shows 10 divisions and stores until the last time
value of the 10th division.

3. Picoscope sampling rate. We need to select how many samples we store per
second. To answer this question we first should decide how many samples per
jump/cycle we want to store. For instance if we decide to have 104 samples per
jump, for a wave frequency of period 1ms we need 10MS/s while for a wave of
period 10 ms we need 1 MS/s. It is nevertheless usually convenient to maximize
this parameter doing appropriate choice of number of samples and collection time
(see the manual for limitations).

4. Amplitude of square wave. We would like to double the stiffness of the opti-
cal potential. Amplitude of 10 V is enough due to the steps discussed in the section
3.1.1.
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3.2 Methodology
In this section we will explain the steps taken when performing the experiments to
obtain the results shown in this master project.

3.2.1 Power monitorization

Ideally, before trapping the nanoparticles, a measurement of the laser power before
the macroscopic objective helps us to keep track on its fluctuations through time.
It also help us to analyze what values of the laser power improve the likeness to
trap for long times and when the trapping is stable while going to low pressures.
From my experience usually higher powers close to 4.5 mW while using the OD2
filter lead to a better stability but with values close to 3.5mW is easier to trap at
the beginning. This could be explained since higher powers lead to deeper trapping
potentials.

Figure 3.6: Power meter.

3.2.2 Particle loading

To load the trap we fill an OMRON MicroAir U22 nebulizer (see figure 3.7) with
a solution that contains 50 mg of silica particles of 143 nm diameter and density
of 1.85 g/cm3 with 1 ml of ethanol. The nubelizer contains a piezoelectric crystal
that vibrates at frequencies around 1−3 MHz to generate a fountain of gas through
the Bernoulli principle. The piezoelectric shakes the solution increasing its kinetic
energy with a simultaneous decrease in its potential energy which includes static
pressure and internal energy causing its vaporization.
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Figure 3.7: OMRON MicroAir U22 nubelizer.

The nubelizer is used to vaporise the solution inside the vacuum chamber through
a funnel. This allows to spread the vapor in a localized region. By moving the fun-
nel very carefully and with the help of the CCD camera that detects the scattered
light of the laser, we select to vaporize in the region closest to the focus of the laser
beam. Afterwards it is of help to close the vacuum chamber before the particle gets
trapped. This is in order to avoid the instability that an external air current might
induce on the system as well as to avoid any vibration that we might induce while
closing the chamber.

The CCD camera allows us to detect the trapping of particle/s inside the opti-
cal trap. The brightness of the detected particle is not always the same indicating
that the scattered light also changes. This could be related to thermal fluctuations
of the laser. In some occasions we also trap more than one particle or bigger parti-
cles since while vacuuming, the frequencies are not shown at the expected values in
the fourier transformed detected signal.
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3.2.3 Towards vacuum

Once the vacuum chamber is closed (see fig 3.8), and we trapped a stable particle,
we slowly open the vacuum valve in order to go to low pressures. The reason why
slow opening is necessary is to not induce high air currents on the system that
might cause instability and loss of the trapped particle. Lowing the pressure from
atmospheric to 10 mbar might take between 1 and 3 hours in the present.

Figure 3.8: Vacuum system. Vacuum chamber and three valves: Yellow wheel-shape valve is
opened first and allows to get down to pressures of the order of 1mbar. The black wheel-shape
valve allows to reduce the pressure up to 10−3 mbar. Finally the blue L-shaped valve is used
to get the system back to atmospheric pressures when the others are closed. The valves are all
connected with tubes to a mechanical pump. Foam protections are used to avoid vibrations that
can cause instability on the system while opening the valves. In the future a turbo-pump might
be implemented to get to lower pressures with high control.

3.2.4 Signal allignment and data acquisition

While we open the valve we must make sure to get enough power to the photodi-
odes and that the alignment is correct. In fig 3.9 we represented visually how the
collected light of the laser is losing power through its path in order to record the 3
different directions.

We must be sure that each photodiode gets the very same power and read therefore
similar values of the voltage. See in fig 3.9 that once the scattered light is collected
with an aspheric lens and collimated, a fraction of the power is deviated in order to
record the longitudinal position. With the use of a power meter we make sure that
this is only a third of the total collected power. The 2/3 of the remaining power
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is directed with mirrors and again once must make sure to split these ramining
power 50:50 for measuring the vertical and horizontal motion modes. To do this
we play with the mirrors. Later we use the photodiodes wheel holders in order to
align the laser. A usual resource is to connect a visual laser to the input of the
multimode-fiber. Nevertheless, usually this is not necessary.

Figure 3.9: Detection system.

Once we have signal inside a photodiode we try to maximise it and equally share
it witthin both of the photodiodes of the same mode. Once the power is equal, the
difference of both must be zero. Usually during the experiment we need to repeat
this step several times sine the laser often suffers small misalignments that could be
related to temperature variations of the source or small changes on the holders of
the mirrors that guide the laser.
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3.3 Calibration
The scattered light of a nanoparticle is collected by an aspheric lens. Its power is
given by:

Pscat = |α|2k4
LIopt /6πε

2
0. (3.1)

Notice that the scattered power light depends on the local intensity Iopt and is there-
fore changing as the particle moves inside the potential well. This allows for position
sensitivity via calibration. It also depends on the wavevector kL and the polariz-
ability α. The polarizability depends on the radius (see eq(2.2)), and therefore the
scattered light that one can detect rapidly increases with the radius.

The detection is done with a photodetector that converts the injected photons in
voltage. The detected signal measured in voltage must therefore be calibrated and
converted into position. This is a big source of uncertainty in most of the experi-
ments.

The standard method is to fit the recorded data to the expected PSD or the variance
of the position distribution. This method nevertheless, has around a 30 % uncer-
tainty [10, 46] for various reasons: It assumes the particle is in equilibrium and we
already discussed that if a modulation in terms of time is implemented on the parti-
cle non-equilibrium behavior must be considered. The method also assumes that the
motion can be treated as a harmonic oscillator since eq (2.17) is used to fit the data
and the potential is not always harmonic [36], but this can be compensated [46].
Furthermore, the method requires the knowledge of the local temperature near the
particle and the mass of the particle. The temperature is not always measured with
accuracy and the mass can be calculated from measuring the damping rate, but this
requires accurate knowledge of the particle shape and density. Finally it has been
shown that calibration is pressure dependent [46].

Another possibility is to use an external force in order to calibrate a detector. For
instance an electric force [46,47], but this requires a good knowledge of the external
applied force. It is also possible to use a measurement of combined frequencies to
extract the damping, with high precision [48].

In this thesis we will follow the linear-calibration approach fitting the PSD and
we will analyze its errors. Future corrections to this model could be done taking
into account non-linearities of the trapping potential or using a harmonic driving
force [46].

3.3.1 Calibration for harmonic trapping potential

There are two equivalent ways to calibrate the detector for a harmonic brownian
particle in thermal equilibrium. They both assume that the photodiode signal Vi at
a certain direction i = x, y, z is proportional to the corresponding particle displace-
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ment qi via the calibration factor:

ci = Vi/qi. (3.2)

1. The first method consist of calculating the variance of the recorded voltage
time trace Vi(t) and use the equipartition theorem, which states that the averaged
potential energy is given by:

〈Epot〉 =
1

2
mΩ2

0

〈
q2
〉

=
1

2
mΩ2

0

〈V 2〉
c2
calib

=
1

2
kBTb . (3.3)

The use of the mass m, the bath temperature Tb and the oscillation frequency Ω0

is necessary to obtatin ci from eq (3.3). For higher pressures than 1mbar it can be
assumed that the bath temperature equals the temperature of the vacuum chamber
which can be measured with a thermometer. The oscillation frequency Ω0 can be
obtained from the PSD of the experimental data. Finally the mass can be obtained
from the size and density provided by the manufacturer, but this assumption may
introduce an error as the particle size is not perfectly monodisperse. Instead, an
independent calibration of the particle mass can be done fitting the PSD.

2. We used the following method in which we obtain the experimental spectral
density of the voltage signal SV V (Ω) = c2

calib Sqq(Ω) and we fit it to eq (2.17). This
method is equivalent to the previous one since the deduction of equation (2.17)
makes use of the equipartition theorem as well, (see the derivation of eq(2.17) in the
ref [49]). Nevertheless, it only requires one fit since the mass can also obtained from
it, being therefore more accurate a priori. We explain it here below.

Using the PSD for calibration

a) Obtain the two-sided PSD SV V (Ω) of the recorded V (t). Due to the noise from
the driving stochastic function Ξ(t) averaging many experimental PSD Sreck will give
a closer result to the expected formula given by the eq (2.17):

S(Ω)qq ≡< Sreck >≈ |χ(Ω)|2Sff(Ω) =
ΓCMkBTCM/πm

(Ω2 − Ω2
0)

2
+ Γ2

CMΩ2
. (3.4)

In our case we use the Welch’s average periodogram method [50] to compute such
PSD through data compression by windowing techniques. A different way to reduce
the noise in a recorded spectrum is “blocking”. A block of consecutive data points(
Ωk1 , S

rec
k1

)
. . .
(
Ωk2 , S

rec
k2

)
, are represented by only one new data point

(
Ωk, Sreck

)
, [51].

We briefly discuss the different techniques at the end of this section.

b) Rewrite eq (2.17) into eq (3.5) with SV V (Ω) = c2
calib Sqq(Ω) and by setting

A = c2 〈q2〉 = c2 kBTCM

mΩ0
; Ω = 2πf ; Ω0 = 2πf0; Γ = 2πg, and fit it to the experi-

mental data with free parameters A, f0 and g.

SV V (f) =
A

4π2

2f 2
0 g

(f 2 − f 2
0 )

2
+ f 2g2

. (3.5)
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We use lmfit from Python using techniques reminiscent to least-squares fitting. No-
tice that one must be consistent and if one prefers to use the one-sided PSD Ŝ(f)
the following change must be done Ŝ(f) = 4πS(Ω ≥ 0) [46].

c) Obtain the particle radius from eq(3.6) and the mass from the density ρpart
and the volume computed with the obtained radius R and assuming an spherical
particle:

R = 0.619
9√

2πρpart

√
M

NAkBT

Pgas

Γgas

. (3.6)

Here M is the molar mass of the gas.

d) Obtain the calibration factor from the definition of A as c =
√
AmΩ2

0/ (kBT ).

Least-squares fitting assumes first that the data points follow a Gaussian distri-
bution and second that they are statistically independent. Since the first condition
is usually not fulfilled, data compression is necessary in order to obtain a not-noisy
data set that is normally distributed. When using data compression by windowing
with a large number of windows, the values of the compressed power spectrum be-
come statistically independent and Gaussian distributed fullfilling the above-exposed
conditions. While windowing compresses to equidistant points on the frequency axis,
blocking does not have this constraint, and is therefore useful for data display with
the logarithmic frequency axis. A free MATLAB code that they developed to cali-
brate optical tweezers with this technique can be found in ref [52].

Systematic calibration errors.

The calibration model implemented here contains errors related to the pre-made
assumptions that could be corrected with better models as discussed at the beginning
of this section. But it also contains systematic errors related to the measurement
devices, or missing information of the material parameters. To estimate the error of
the calibration, we consider that c2 = AmΩ2

0/ (kBT ) performing error propagation:

σ2
c2

(c2)2 =
σ2
A

A2
+
σ2
m

m2
+ 22

σ2
f0

f 2
0

+
σ2
T

T 2
. (3.7)

For the errors σA and σf0 we use the uncertainties obtained from the fitting using
the least square method.

The standard deviation of the mass σm comes from m = 4πρpart R
3/3 and using

eq (3.6):
σ2
m

m2
=

32σ2
g

g2
+

(
3
2

)2
σ2
T

T 2
+

32σ2
pgas

pgas 2
+

22σ2
ρpart

ρ2
part

+

(
3
2

)2
σ2
M

M2
. (3.8)

Here the error from the damping term can also be used from the uncertainty of the
fitting. The temperature error requires a measurement of the temperature inside
the vacuum chamber which is still not performed and is therefore taken equal to
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10%. The error of the gauge pressure is of 10%, the density of the particle of 5%
and the molar mass as well [46]. Finally the calibration error is computed through:

σ2
c/c

2 = σ2
c2/
[
4
(
c2
)2
]
. (3.9)

Obtaining an error of more than 30%, see section 4.1.1.

Energy calibration.

For many applications it is usually sufficient to know the energy of the oscillation
mode. In this case it is possible to define a calibration factor that does not contain
the uncertainties of the mass error:

C =
c2

m
=

Ω2
0 〈V 2〉
kBT

. (3.10)

Since fitting errors are usually small, the uncertainty of this calibration factor is
now mainly limited by the uncertainty of the temperature measurement. It can be
calculated from C = AΩ2

0/ (kBT ).

Notice that the energy of a harmonic brownian particle is given by:

E(x, p) =
1

2
mΩ2

0x
2 +

p2

2m
=

1

2
mΩ2

0x̄(t)2. (3.11)

Where the second equality follows from the slowly varying amplitude approximation
x(t) = x̄ sin (Ω0t) , ˙̄x� Ω0x̄ which is fulfilled if the amplitude takes many oscillation
periods to change. In literature usually an analysis of E

kBT
is done [15].

Notice from eq(3.3) that therefore the potential energy can be calculated as:

Ep =
1

C

Ω2
0 〈V 2〉
kBT

. (3.12)

And the same can be done for the total energy in cases where the slowly varying
amplitude approximation is fulfilled.
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Chapter 4

Experimental results

This chapter is divided in two sections:

In the first one we monitor the position and velocity of a levitated nanosphere
at a pressure of 9 mbar and at timescales shorter than its relaxation time observ-
ing ballistic brownian motion. We obtain its MSD and the expected relaxation time.

In the second section we present an experiment where by changing the intensity
of the laser among two values we create two different equilibrium states. We study
the transitory dynamics of compression and decompression cycles. The nanoparticle
at equilibrium in the first state is compressed/decompressed to the second and its
dynamics are studied at time-scales of the order of the relaxation time and at a
similar pressure of 10 mbar. During the compression processes, the stiffness of the
optical potential is changed from the first state to the second with a step function
such that kf = 1.8ki. During the decompression processes kf = ki/1.8 . In the
future, the very same procedure could be followed while changing the stiffness with
a shortcut function instead of a step in order to accelerate the relaxation towards
equilibrium.

4.1 Levitated particle at equilibrium
First we analyze the data for a nanoparticle trapped at equilibrium at a pressure of
9 mbar.

4.1.1 PSD, radius, mass and calibration.

We follow the steps shown in section 3.3, obtaining the fit of the PSD for the
horizontal and vertical motion modes. They are shown in fig 4.1, and from the fit
we obtain the parameters of table 4.1:
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Figure 4.1: Experimental double-sided PSD SV V for the horizontal x (red) and vertical y(green)
motion modes. The black line corresponds to fits of eq(3.5) to the experimental data through least
squares methods.

Parameter x y
f0 (kHz) 103.73± 0.24 97.61± 0.23
g (kHz) 34.97± 0.59 31.51± 0.58

A× 103 (bit2) 431.8± 4.9 285.7± 3.5
R (nm) 71.06 78.89
m (fg) 2.8± 1.0 3.8± 1.4
c ( bit

µm
) 11.2± 3.4 13.1± 4.0

C ( bit2

µm2fg
) [Eq. (3.10)] 45.35 45.35

Table 4.1: Obtained parameters and errors from the fit f0, g and A. From this parameters
the systematic errors of the calibration factors and the mass have been calculated as explained in
section 3.3.1
.

The radius R is computed using eq(3.6) where we introduce the density of the
particle provided by the manufacturer ρpart = 1850± 92 kg/m3, the molar mass of
dry air M = (28.97 ± 1.45) × 10−3 kg/mol, the pressure obtained from the gauge
as P = 9± 1.0 mbar and the damping rate obtained from the fit. Since we cannot
measure the temperature inside the vacuum chamber yet, the temperature of the
room T = 293± 10 K has been introduced.

Pressures of P fit
x = 9.11 ± 0.13 mbar and P fit

y = 9.11 ± 0.18 mbar are obtained
from the fits by using eq (2.7) and inserting the calculated radius and mass of the

50



table. The pressure values of the fit are compatible with the value measured with
the pressure gauge which is: P = 9± 1 mbar.

The masses are computed using m = 4πρpart R
3/3 and the obtained R from the

table as well as the density of the manufacturer. We obtain mfit
x = 2.8± 1.0 fg and

mfit
y = 3.8± 1.4 fg. The values are both compatible with the mass provided by the

manufacturer m = 2.83± 0.14 fg.

Finally we obtain the values for the calibration factor using c =
√
AmΩ2

0/ (kBT ).
Here the corresponding masses calculated in the previous steps and the factor A
from the fit are used. Find the obtained values in table 4.1.

The systematic errors of the mass and the calibration factor are computed as ex-
plained in section 3.3.1.

The fits are implemented to the experimental part of the PSD that is shown in
the pictures. We selected this frequency range since for higher and lower frequencies
the fit does not match the experimental data.

4.1.2 Instantaneous position and velocity

Through calibration and implementing a manual frequency filter we can obtain the
instantaneous position of the nanoparticle. We show it in fig 4.2.
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Figure 4.2: Instantaneous position of the horizontal (red) and vertical (green) modes of a levitated
particle at equilibrium at a pressure of 9 mbar.

For the manual frequency filter, the position set is splitted in small sub-sets. The
average of the sub-vectors is calculated and substracted to the position values.

Due to the random nature of the motion, we average every ten values of the position
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in order to compute the velocity. The same sets shown before in fig 4.2 are now
averaged and its velocities are calculated and shown in fig 4.3 .
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Figure 4.3: Averaged position and velocity for a brownian nanoparticle in equilibrium at a
pressure of 9 mbar.

Notice first that the velocities are maximum/minimum when the particle po-
sition is close to zero. This occurs for the two motion modes at the same time
suggesting that at these times the particle is in the center of the well with maximum
kinetic energy and minimum potential energy. The sign (positive or negative) of the
velocities indicates whether a particles is "going" or "coming" from the center of
the well. Notice that this occurs inversely between the two modes.

Notice second that as expected the velocities are zero when the particle oscillates at
its maximum amplitude. This occurs as well for the two motion modes at the same
time suggesting that at these times the particle is situated in the border of the well
containing minimum kinetic energy and maximum potential energy.

4.1.3 Relaxation time and mean square displacement

As explained in section 2.7.3, the relaxation of the levitated nanosphere system is
given by the momentum relaxation time, which for units consistency is defined as:

τp =
1

g
=

2π

ΓCM
. (4.1)

Notice that here g is the regular damping rate while ΓCM is the angular damping
rate. According to the obtained values from the fit:

τ fitx =
1

gfitx
= 28.59± 0.49 µs ; τ fity =

1

gfity
= 31.74± 0.60 µs. (4.2)
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We corroborate this calculating the mean square displacement of the nanoparti-
cle in equilibrium as defined in eq (2.14). In order to calculate it we substract every
position of a subset q(t) by a fixed initial position q(0) and square the result. Then
we use all the subsets to calculate the average of each (q(t) − q(0))2. The result is
fitted using again least squares methods with python obtaining the figure 4.4.
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Figure 4.4: The mean square displacements of a silica nanosphere trapped in air at 9 mbar for
the horizontal mode (red) and vertical mode (green). The lines are the fittings according to Eq.
(2.14) leaving as free parameters the relaxation time, the frequency of the particle and the constant
A = kBt

mΩ2
0
.

We used the frequency of the particle, the relaxation time and the constant
A = kBt

mΩ2
0
as free parameters obtaining new relaxation times of:

τMSD
x = 28.63± 0.10 µs ; τMSD

y = 30.331± 0.090 µs. (4.3)

While tfitx and τMSD
x are compatible, τ fity and τMSD

y are not. This is probably due to
the not perfect fit of the MSD in fig 4.4. Nevertheless, they are of the same order
and therefore usefull for our practical goals. We intend to observe the relaxation of
the variance of the position and velocity distributions in the next section.

Notice in fig 4.4 that as it predicted by the eq (2.14), the amplitude of the oscil-
lations of the MSD decays exponentially with time. Also notice that its oscillation
frequency is given by the frequency at which the particle oscillates, which depends
on the damping rate and the frequency of the harmonic trap: Ω̃ =

√
Ω2

0 − Γ2
CM/4.

We calculate as well the MSD for shorter timescales t << τp in order to observe
evidence of ballistic brownian motion. We find in figure 4.5 that the MSD starts to
behave quadratically according to the prediction of eq (2.12) when t << τp which is
(kBTCM/m) t2. Note that one can observe in fig 4.5b that at times of 10−4 ms the
MSD starts to show ballistic motion.
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Figure 4.5: MSD data for ballistic motion (a) and for longer time-scales (b). Note that one can
observe in b) that at times of 10−4 ms the MSD starts to show ballistic motion.

Nevertheless, notice that the vertical axis of figures 4.5 and 4.4 is not correct
quantitavely with the theory. We believe this is due to the procedure of computing
the MSD that has enlarged the error of the calibration factor.

4.2 Transitory dynamics of a compressed and de-
compressed nanoparticle.

We present here the results while compressing and decompressing the optical po-
tential of the nanoparticle with a step function. We intend to study the transition
behaviour of the dynamics. We first present the calibration of our data. We then
study the position and velocity distributions as well as the variation of their vari-
ance through time. This is done for the initial state with stiffness ki and for the
final states with stiffness kf . The behaviour of the variance through time is also
compared to the non-modulated case of the previous section in order to appreci-
ate differences. Finally we show plots of the position probability density and of
the phase space of the system that might help to analyze the relaxation for longer
momentum relaxation times at lower pressures in the future.

4.2.1 PSDs and calibration

We follow here the same procedure explained in section 3.3. Notice nevertheless
that in that process it is assumed for the steps followed that the particle must be in
equilibrium and we are studying here a non-equilibrium transitory process. For the
current matter non-equilibrium dynamics will occur while the nanoparticle changes
from the first state to the second. An option to overcome this would be to use for
calibration only the compressed and decompressed recorded data after the relax-
ation time. Nevertheless, this results in using for the PSD only half of the data. We
tried this obtaining not good fits for the PSD.
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For that reason we use for calibration and the fit of the PSD data similar cuts
to the later on analyzed data (see figure 4.9). See code for details. Due to the non-
equilibrium process then the calibration quantitative values might not be completely
correct for this case, but for the current matter we are interested in the relation be-
tween them in order to observe relaxation.

We follow the same steps of section 4.1.1 in order to obtain the fitted PSD now
for the 4 cases, of compressed and decompressed. The fits are implemented to the
experimental part of the PSD that is shown in figs 4.6 and 4.7. We selected this
frequency range since for higher and lower frequencies the fit does not match the
experimental data.
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Figure 4.6: Compressed experimental double-sided PSD SV V for the horizontal x (red) and
vertical y (green) motion modes. The black line corresponds to fits of eq(3.5) to the experimental
data through least squares methods.
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Figure 4.7: decompressed xperimental double-sided PSD SV V for the horizontal x (orange) and
vertical y(blue) motion modes. The black line corresponds to fits of eq(3.5) to the experimental
data through least squares methods.

The procedure is followed as in section 4.1.1 obtaining the calibration factors.
For the compressed case we get:

cx = 19.4± 5.9
bit

µm
, cy = 19.5± 5.9

bit

µm
. (4.4)

While for the decompressed case:

cx = 8.3± 2.5
bit

µm
, cy = 10.4± 3.2.

bit

µm
. (4.5)

For comparison we plot them together in fig 4.8. We can appreciate that the
signal of compressed PSDs is greater due to the intensity of the laser. A higher
stiffness of the optical potential requires a higher intensity of the laser and viceversa.
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Figure 4.8: Experimental double-sided PSD SV V for the horizontal x (orange and red) and
vertical y(blue and green) motion modes. At each of the modes the compressed (red,green) are
plotted together with the decompressed cases in order to facilitate its comparison. The black line
corresponds to fits of eq(3.5) to the experimental data through least squares methods.

We obtain the following results shown in table 4.2 for the compressed case:

Parameter x y
f0 (kHz) 123.98± 0.37 116.12± 0.42
g (kHz) 38.14± 0.91 37.94± 0.90

A× 103 (bit2) 902± 14 702± 13
R (nm) 71.60 71.94
m (fg) 2.8± 1.0 2.9± 1.1
c ( bit

µm
) 19.4± 5.9 19.5± 5.9

C ( bit2

µm2fg
) [Eq. (3.10)] 132.21 132.21

Table 4.2: Obtained parameters and errors for a compressed particle. From the fit f0, g and
A. From this parameters the systematic errors of the calibration factors and the mass have been
calculated as explained in section 3.3.1
.

And the following results shown in table 4.3 for the decompressed case:
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Parameter x y
f0 (kHz) 90.45± 0.47 82.66± 0.38
g (kHz) 45.82± 0.90 37.19± 0.94

A× 103 (bit2) 438.1± 6.9 702.2± 5.1
R (nm) 63.69 74.39
m (fg) 2.00± 0.74 3.2± 1.2
c ( bit

µm
) 8.3± 2.5 10.4± 3.2

C ( bit2

µm2fg
) [Eq. (3.10)] 34.16 34.16

Table 4.3: Obtained parameters and errors for a decompressed particle. From the fit f0, g and
A. From this parameters the systematic errors of the calibration factors and the mass have been
calculated as explained in section 3.3.1
.

Notice again that the mass values are compatible with the mass provided by the
manufacturer m = 2.83 ± 0.14 fg for both the compressed and decompressed cases
and for both motion modes. Furthermore the obtained pressures from the fit are
also compatible with the value obtained with the pressure gauge: P = 10.0 ± 1.0
mbar.

4.2.2 Compressed and decompressed position and velocity

In order to compress/decompress the particle, the intensity of the laser is increased
in the compressed cycles while decreased in the decompressed cycles. Every com-
pression cycle follows a decompressed one and viceversa. This is done supplying to
the EOM a square wave with period of 10 kHz that is created with the function
generator. The function generator does not produce a totally clean square wave
function and therefore some manipulation of the data is necessary to avoid this ef-
fect and confuse it with the relaxation dynamics. In fig 4.9 we show the generated
function in black together with the selected position data (blue and green) to analyze
the evolution of the variance of the position distribution.
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Figure 4.9: Example of selected cuts for the analysis of the decompressed (blue) and compressed
(green) vertical position traces of a levitated particle at a pressure of 10 mbar. In black we show
the generated function at the times at which it affect the motion of the particle Notice that the
vertical axes applies only for the position traces while the generated function is included only to
illustrate the times at which the data is cutted for the later treatment.

The averaged position and velocity traces of the horizontal mode of the nanopar-
ticle are shown in fig 4.10. Notice that both the amplitudes are greater for the un-
compressed case as expected since while compressing the optical potential we restrict
the motion confining the particle.
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(a) Decompressed traces for the horizontal motion mode.
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(b) Compressed traces for the horizontal motion mode.

Figure 4.10: Averaged position and velocity for a brownian compressed/decompressed nanopar-
ticle at a pressure of 10 mbar.

Also notice that as expected the oscillations are faster for the compressed case.
This is intuitive from eq (2.5) since at compressed cycles a higher applied power is
given resulting in a higher stiffness and therefore oscillation frequency.
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4.2.3 Compressed and decompressed position distribution vari-
ance.

We take 1000 compression/decompression cycles, obtaining therefore 1000 trajecto-
ries similar to the ones shown in fig 4.10. In order to study the relaxation of the
process, we obtain the position distribution at each time making use then of these
1000 position elements and fit it to a gaussian distribution. See the fits in appendix
D. The variance of the distribution is extracted at each time and therefore its evo-
lution is analyzed. See first the evolution of the variance for the horizontal mode in
fig 4.11. We plotted in red lines the relaxation times obtained from the PSD fits:
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Figure 4.11: Time evolution of the gaussian position distribution variance for the horizontal
mode.

Notice first from figs 4.11 and 4.12 that the variance highly decreases for the
compressed case since the particle is confined reducing the amplitude of its oscilla-
tions.
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Figure 4.12: Time evolution of the gaussian position variance for the vertical mode.
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Notice as well that in both figs 4.11 and 4.12 the mean value of the variance
slightly increases for the decompressed cases until arriving the relaxation time while
in both compressed cases its mean value decreases. For clarity we plot its relation
compared to the equilibrium variance in a logarithmic scale in fig 4.14. We further-
more compare it with the data of section 4.1 plotting the variance evolution for a
particle in equilibrium. See fig 4.13. In this cases the mean value of the variance
does not increase or decrease.
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Figure 4.13: Time evolution of the gaussian position variance for a nanoparticle in equilibrium
for the horizontal (top) and vertical (bottom) motion modes.

In order to see the evolution of the mean value of the variance we divide it by
its equilibrium value and take the logarithmic scale obtaining:
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(a) Decompression traces for the horizontal motion mode.
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Figure 4.14: Evolution of the position distribution variance for a compressed and decompressed
nanoparticle ar a pressure of 10 mbar.

We observe that the time-evolution of the position distribution for decompressed
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cases variates its mean value a 7% from the beginning to the expected relaxation
time. Furthermore the compressed variance variates a 10%. The lower variation of
the variance at equilibrium being of less than 5% indicates that there might be signs
of the relaxation of the distribution variance. Nevertheless, it is too early to confirm
the relaxation due to the small variations.

4.2.4 Phase space

We first show the phase space for the horizontal and vertical modes of a nanoparticle
in equilibrium. Fig 4.15 shows that the position distributions are within the limits
of the waist of the laser being them of wx = 687 nm and wy = 542 nm for the setup
of J. Gieseler where in his phD work he uses a MO with the same numerical aperture
as our setup.

While the horizontal mode is mostly homogeneous, the vertical mode phase space is
asymmetric, we relate this to the effect of gravity pushing the particle towards the
positive direction of our detector see fig 4.15. This indicates therefore that for our
data, we are measuring the vertical axis upside-down.

(a) Phase space of the horizontal motion mode x for a
particle in equilibrium.

(b) Phase space of the vertical motion mode y for a par-
ticle in equilibrium.

Figure 4.15: Histogram of the phase space of a brownian compressed/decompressed nanoparticle
at a pressure of 10 mbar. While the horizontal mode is mostly homogeneous.

Notice as well that the vertical mode is more restricted than the horizontal mode
showing a difference between the widths of the waste such that wx >wy. These agree
as well with the values obtained by Gieseler.

In order to check the effects of compression/decompression on the particle we plot
the 2-dimensional phase space distributions for the compressed and decompressed
cases in fig 4.16 for the horizontal mode and in fig 4.17 for the vertical mode. Notice
that as expected the compressed phase space is confined in the position distribution.
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Nevertheless, also as expected the width of the velocity distribution is not affected.
This is because there is no energy being removed from the system.

(a) Decompressed phase space of the horizontal motion
mode x.

(b) Compressed phase space of the horizontal motion
mode x.

Figure 4.16: Histogram of the phase space of a brownian compressed/decompressed nanoparticle
at a pressure of 10 mbar.

Notice second that the compression/decompression cycles have deformed the
mostly homogeneous phase space for the horizontal motion mode. Furthermore the
cycles have suppressed the effect of gravity on the vertical motion mode, see fig 4.17.

(a) Decompressed phase space of the vertical motion mode
y.

(b) Compressed phase space of the vertical motion mode
y.

Figure 4.17: Histogram of the phase space of a brownian compressed/decompressed nanoparticle
at a pressure of 10 mbar.

Due to the necessity of averaging out of 10 values to obtain the velocities, we do
not contain enough points to check the evolution of the phase space through time.
Nevertheless, this would be an interesting study in the future in order to compare
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the results of our compression/decompression cycles with the theory of squeezing as
Vovrosh [49].
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Chapter 5

Conclusions

The first steps towards the acceleration on the relaxataion to equilibrium of a levi-
tated particle have been taken.

First of all, we fulfilled our first goal measuring the relaxation time of an opti-
cally trapped nanosphere at 10 mbar, with an error of less than 2% with respect
to its value. Furthermore we obtained compatible values of the relaxation time for
a fit of the MSD and showed, at times shorter than the relaxation time, ballistic
brownian motion for the first time in the group. The position and velocity for the
horizontal and vertical modes of the nanoparticle at equilibrium have been observed
at scales of the order and shorter of the relaxation time.

Second, we tracked the position and velocity of a nanoparticle on time-scales shorter
than the relaxation time observing a priori the non-equilibrium dynamics of a
nanoparticle circulating within two distinct equilibrium states. We did this for com-
pression/decompression cycles, creating two states with different constant stiffness
of the optical potential. We observed the time-evolution of the position distribution,
obtaining variations of its mean value around 10% that occurred before the obtained
relaxation time from the PSD fits. The lower variation of the variance at equilib-
rium of 5% indicates that there might be signs of the relaxation of the distribution
variance. Nevertheless, it is too early to confirm the relaxation without further test
that confirm this hypothesis.

Furthermore, as planned, we have looked into the possibilities to implement modu-
lations externally to our levitated particle. We studied how the modulations result
in the center of mass dynamics of the particle (see sections 2.5 and 2.3.3) finding
interesting applications related to shortcuts and heat engines (main motivation of
this master thesis), detection systems and studies of non-linearities of the optical
potential see section 2.5.3.

In addition the mass and the calibration factor of an optically trapped nanosphere
at 10 mbar has been experimentally obtained with error of 35% and 30% respec-
tively. The large errors suggest that in the future the track of the energy evolution
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on the transitory dynamics between equilibrium states would be quantitatively more
precise since the error of the mass is avoided (see section 3.3.1).

We also observed experimentally the two-dimensional histogram of the phase space
of the nanoparticle corroborating that the motion occurs within the expected limits
of the widths of the laser waist wx = 687 nm and wy = 542 nm.

In the future it would be of help to observe the relaxation at lower pressures since
longer relaxation times would be obtained and we could observe more oscillations
of the nanoparticle per compression/decompression cycle.

We can conclude that we are now in a good position to take the very same steps as
given in this work but changing the stiffness through ESE techniques in the tran-
sition between two equilibrium states. We are therefore a step closer to pursue
the first acceleration to date of the relaxation towards equilibrium of a levitated
nanoparticle.

66



Appendix A

PhD proposal

The proposal hereby presented builds upon my work as part of two different re-
search projects. At the University of Groningen, I worked with Steven Hoekstra,
whose group optically levitates silica nanospheres in a strongly focused beam that is
externally modulated. At the Universidad Complutense de Madrid, I collaborated
with Ignacio A. Martínez who is building protocols to explore shortcuts of relaxation
processes and studying colloidal heat engines. Based on these works two goals are
presented for this proposal: On the one hand the first experimental implementation
of a shortcut on the relaxation to equilibrium of a levitated nanosphere. On the
other hand the first construction to date of a heat engine with levitated nanoparti-
cles.

Previous projects
As part of my master project I took part in an experimental effort to levitate
nanoparticles in the group of Steven Hoekstra. The initiative aims for using them as
mechanical resonators, since they are very sensitive inertial and vibration sensors.
We worked on the optimization of the system in order to read out the dynamics and
the relaxation of the nanosphere when we modulate its optical potential in time.
For that matter I worked on an improvement of the sensitivity when reading out the
effect of the modulation on the behaviour of the nanosphere. I studied the founda-
tions to pursue the first experimental implementation of a shortcut on the relaxation
to equilibrium of a levitated particle in vacuum. For that purpose, I measured the
relaxation time of the system and tracked the motion of the particle at longer and
shorter time-scales than this time measuring ballistic brownian motion. Finally I
observed signs of relaxation towards equilibrium by compression and expansion of
the optical potential stiffness. In addition I perfomed experiments at different pres-
sures and with different modulations as well as treated and analyzed the obtained
data with Python.

In parallel at UCM the group of J.R.M. Parrondo studies the use of strategies
reminiscent to the theory of shortcuts to adiabaticity [17,41]. I joined the group in
2019 where, with Ignacio A. Martínez we studied these strategies to accelerate the
thermalization of fluids that contain optically trapped micron-sized beads with the
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purpose of studying critical Casimir forces.

While Ignacio. A. Martinez works with particles inmersed in fluids to study the
overdamped regime, levitated nanospheres can explore the underdamped regime.
Both experiments are characterized by the Langevin equation where a brownian
particle is trapped with optical tweezers and its motion is driven by a white noise.
In this context, a change of the control parameters of the system would upset the
state variables that define a particular thermodynamical state. This is the induction
of a transition from one state to another.

PhD project
1. The first objective of the PhD proposal lies in an intriguing overlap between
both of the projects above exposed. Protocols related to the theory of shortcuts to
adiabaticity that were tested by Ignacio A. Martinez [17] in the overdamped regime
need to be tested in the underdamped regime [20]. This regime can be explored by
levitated nanospheres in high vacuum [15]. Through an inverse engineering the ther-
malization can be shortcutted in the compression or decompression of a harmonic
oscillator from an angular frequency Ωi to Ωf , getting an exact scaling solution of
the underdamped Fokker-Planck equation.

This part of the project can be achieved within the first year of PhD. Study of
theory related to references [17, 20] (3-4 months). Measuring the relaxation for dif-
ferent modulated functions (4 months). Maintenance of the experimental setup (2-3
months). Wrapping up the project (2 months).

By implementing such protocols we would be able to control the state of a lev-
itated nanosphere on unprecedented timescales reaching equilibrium hundreds of
times faster than the natural equilibrium rate. Furthermore, the realization of a
shortcut has direct applications in the design of efficient nanothermal engines, in
the driving of mesoscopic chemical or biological processes and in sensing experi-
ments.

2. The second objective is related to one of the applications of shortcuts to adia-
baticity. They can help us improve the efficiency of nanothermal engines optimising
their design [41]. Ignacio A. Martinez explored stochastic heat engines in the over-
damped regime [28] developing together with J.M.R. Parrondo a Carnot engine [29]
.There are theoretical proposals for the underdamped regime that are of interest to
be tested with levitated nanospheres [26,27].

A colloidal stochastic heat engine converts heat flow into mechanical work oper-
ating under a cyclic process. The cycle contains two isothermal processes where
there is a variation of the potential to extract or implement work and two adiabatic
processes with an instantaneous reduction/increase in temperature, see figure A.1.
While compression and expansion is achieved by increasing and decreasing the po-
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Figure A.1: Stochastic heat engine cycle. Obtained from reference [11]

tential of the harmonic potential that traps the nanospheres, heating and cooling is
done by changing the effective temperature of the center of motion particle.

This part of the project can be achieved in the remaining time of the PhD, lasting
between 2 and 3 years. Study of theory related to references [26–29] (6-8 months).
Testing isothermal processes (4-5 months ), Testing adiabatic processes (4-5 months
). Testing full cycles (4-6 months). Maintenance of the setup (4-5 months). Wrap-
ping up the project (4 months).

While the overdamped regime has been well explored, the underdamped regime
lacks experimental results. It is of interest to check optimal protocols for maximum
efficiency at fixed power. Can we determine optimal driving protocols for different
values of power? Could we extend the results to include feedback control? Can we
explore the quantum regime at high vacuum, and attaining Carnot efficiencies? [30]
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Appendix B

Alignment and coupling laser into
the polarization-maintaining fiber

It was necessary to increase the amount of laser power that is focused in the vacuum
chamber for two reasons:
1. A higher laser power increases the depth of the optical potential facilitating trap-
ping stability.
2. A higher amount of power raised the amount of recorded signal in the photodi-
odes improving the signal to noise ratio (SNR).
For such matter, I opened the 2nd compartment and played with the 4 mirrors and
the X,Y,Z screws of the fiber coupler.

As a result of the coupling, I obtain before the microscope objective and after the
PBS cube a power oscillating between 4 and 4.5 mW with OD 2 filter. Nevertheless,
the seal of the PM blue fiber to the fiber coupler does not properly fit. By barely
touching the fiber we decouple the light loosing a big amount of power.

Figure B.1: 2nd comparment of the experimental setup .

The procedure to increase the power was the following:
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- 1st: Connect a visible light laser from the output of the blue fiber and collimate
it with the Z screws of the fiber coupler lens - As stated before the fiber does not
connect properly to the coupler which leave the fiber too far from the fiber coupler
lens. This gives no option but to tight the Z screws as much as possible. - I slightly
damaged one of the Z screws and decided to replace it from one of the Z screws of
the fiber PAF-X15-B

- 2nd: Play with the X-Y screws of the fiber coupler. Use a visible light laser
in order to center it at the end of the SingleAxis FiberBench

- 3rd: Maximize power after the galileon telescope. Measure with OD filter af-
ter the telescope. First play changing the vertical position of both mirrors (reducing
the power with the first mirror and raising with the second or viceversa) and then
do the same with horizontal position

- 4th: Maximize power after the fiber with the other 2 mirrors following the same
technique as in the previous step. Measure with OD filter after the fiber. If nothing
is gotten first check if any light gets out making use of the CCD camera
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Appendix C

Dependence of the frequency of the
center-of-mass motion on different
parameters

We make a qualitative analysis of the FFTs signal changes while changing the po-
larization, the intensity of the laser and the pressure of the system.

(a) Horizontal mode. (b) Vertical mode. FFT changing as a function of pressure

Figure C.1: FFT changing with pressure

Notice that in fig C.1 the FFT are getting stretched for lower pressures due to
lower damping rates and therefore higher quality factors. We appreciate as well a
change on the frequency mean value of the peak. This might be most likely due to
variations of the laser power through time that might be related to the temperature
of the laser.
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(a) Horizontal mode. (b) Vertical mode.

Figure C.2: FFT changing as a function of power

Notice that in fig C.2 we change the current associated with the laser amplifier
resulting in a change of the power. notice that for higher currents and therefore
powers the frequency increases. This is due to the linear dependence of the frequency
on the stiffness and therefore on the intensity and power of the laser.

(a) Horizontal mode. (b) Vertical mode.

Figure C.3: FFT changing with polarization.

Finally notice that in fig C.3 we use the half wave plate in order to change the
polarization of the laser. The variation of the polarization affects inversely at both
motion modes as expected from the theory. This is due to that by changing the po-
larization we change the power contribution of a certain motion mode, therefore the
the power is maximum for the vertical mode at vertical polarization and viceversa,
see eqs (2.4), (2.5).
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Appendix D

Link to the python codes.

There are 4 codes:

- Nonmod-PSD-fit-MSD : where we obtain the results of section 4.1
-Cuts-Calibration and P-V-Distributions: Where we obtain the results of section
4.2.
- Cuts-Calibration-1ms : where we analyze the data for longer times (data when
creating a square wave of period of 1ms ten times longer than the results shown in
the thesis.)

https://drive.google.com/drive/folders/1uOOdLl69Z4kbNHF16Yaic2TjBLN0RaZx?usp=sharing
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