

Single cell techniques to reveal clonal heterogeneity in acute myeloid leukemia

Colloquium Esther Homan S2890801 Master Biomedical Sciences First supervisor: Prof. dr. J.J. Schuringa econd supervisor: Dr. V. van den Boom

Outline

Outline

Introduction acute myeloid leukemia (AML)

- Cancer: abnormal blood cells in the bone marrow
- Blood and bone marrow tests to diagnose
- 5-year **survival**: 15-70%
- Elderly

Introduction acute myeloid leukemia (AML)

St. Jude Children's Research Hospital, 2021

https://cancer.osu.edu/for-patients-and-caregivers/learn-about-cancers-and-treatments/cancers-conditions-and-treatment/cancer-types/acute-myeloid-leukemia

Outline

- First line treatment = Chemotherapy
- Bone marrow/stem cell transplantation
- Immunotherapy

- First line treatment = Chemotherapy
- Bone marrow/stem cell transplantation
- Immunotherapy

Intrathecal chemotherapy

- First line treatment = Chemotherapy
- Bone marrow/stem cell transplantation
- Immunotherapy

- First line treatment = Chemotherapy
- Bone marrow/stem cell transplantation
- Immunotherapy

Targeted therapy drug: Gemtuzumab Ozogamicin (Mylotarg)

- First line treatment = Chemotherapy
- Bone marrow/stem cell transplantation
- Immunotherapy

- First line treatment = Chemotherapy
- Bone marrow/stem cell transplantation
- Immunotherapy
- Overall surival ~70% but still ~30% of patients experience relapse

Somatic mutations AML

Clonal hematopoiesis (CH)

Premalignant clonal state induced by somatic mutations in hematopoietic stem cells.

- Timing and order during clonal evolution (population based)
- First acquisition of CH mutation(s): such as DNMT3A, TET2, ASXL1 and JAK2.
- Second acquisition additional mutation(s): such as IDH1/2, NPM1, RAS, FLT3, TP53.

- First line treatment = Chemotherapy
- Bone marrow/stem cell transplantation
- Immunotherapy
- Overall surival ~70% but still ~30% of patients experience relapse
- Bulk sequencing already suggests clonal heterogeneity

Aim of this colloquium

Main question: How can clonal heterogeneity in AML be mapped at the cell biological level?

Additional questions:

- What are the sequential events that progress to AML?
- What are the differences between the AML subclones?
- How does the environment of the cells change the fitness of the clones?

Outline

Next-generation sequencing at single-cell level

Characterization of clonal heterogeneity

Contribution to acute myeloid leukemia **progression and relapse.**

Specific combination of mutations promote clonal dominance.

Significant **challenge** in development of new effective therapies **for treatment**. Improbability of 'one size fits all'.

Distribution subclones variation under the **pressure of immune response.**

Pressure of conventional chemotherapy drugs or targeted **therapies.**

Small number of mutated genes in AML.

Single-cell level: statements

Clonal heterogeneity:

- 1. Not static entity
- 2. Changes as consequence of treatment

Outline

Types of single-cell techniques

Method name	Data type
Single-cell RNA sequencing (scRNA-seq)	mRNA
CITE-seq and REAP-seq	mRNA + cell surface protein
Single-cell DNA sequencing (scDNA-seq)	Whole genome
TARGET-seq	mRNA + genome

Types of single-cell techniques

Method name	Data type
Single-cell RNA sequencing (scRNA-seq)	mRNA
CITE-seq and REAP-seq	mRNA + cell surface protein
Single-cell DNA sequencing (scDNA-seq)	Whole genome
TARGET-seq	Transcriptome + genome

Single-cell RNA sequencing

scRNA-seq

PROS

01

Different cell types

Better analyses and understanding of different cell types in BM samples

02

Transcriptional heterogeneity Better analyses and understanding of clonal evolution and tumor heterogeneity

Specific detection

CONS

Only detection of small part of the transcript, due to small amount of available material

03

Cell death

The to be detected cell will die after mRNA is taken out

Cost-intense

More reagents per cell are needed, costs are 10-20 times higer than for bulk sequencing

scRNA-seq: cellular diversity in bone marrow

Types of single-cell techniques

Method name	Data type
Single-cell RNA sequencing (scRNA-seq)	mRNA
CITE-seq and REAP-seq	mRNA + cell surface protein
Single-cell DNA sequencing (scDNA-seq)	Whole genome
TARGET-seq	Transcriptome + genome

CITE-seq & REAP-seq

CITE-seq & REAP-seq

PROS

Low amount RNA Detection of protein of interest even if RNA is in low abundance

Availability antibodies More than 200 oligo-conjugated antibodies have become available

Characterization subtype

Enhancement of characterization of known subtypes and identification of the role of subsets of cell types in immune response

Cell death The to be detected cell will die after mRNA is taken out

CONS

Cost-intense

More reagents per cell are needed, costs are 10-20 times higer than for bulk sequencing

03

01

02

Antibody-oligonucleotides

Abseq + scRNAseq: reference map of the hematopoietic system

-> Explanation of cell type identities, differentiation stages and biological processes.

Types of single-cell techniques

Method name	Data type
Single-cell RNA sequencing (scRNA-seq)	mRNA
CITE-seq and REAP-seq	mRNA + cell surface protein
Single-cell DNA sequencing (scDNA-seq)	Whole genome
TARGET-seq	Transcriptome + genome

Single-cell DNA sequencing

ScDNA-seq

PROS

Identify mutations Identify true mutation co-occurrence in clonal populations

Cell death

CONS

The to be detected cell will die after DNA is taken out

Cost-intense

More reagents per cell are needed, costs are 10-20 times higer than for bulk sequencing

02

03

01

Zygosity state

Separates heterozygous and homozygous mutations from each other

Clonal heterogeneity

Provides the true measure of clonal heterogeneity and clonal architecture in a tumor.

Applications scDNA-seq

Application scDNA-seq: clonal dominance

-> Specific mutational combinations lead to competitive advantage/increased fitness.

Application scDNA-seq: relative fitness

Variant

DNMT3A P700Hfs*5

NPM1 W288Cfs*12

IDH2 R140Q

Application scDNA-seq: PDX models

In vivo!

Application scDNA-seq: PDX models

Types of single-cell techniques

Method name	Data type
Single-cell RNA sequencing (scRNA-seq)	mRNA
CITE-seq and REAP-seq	mRNA + cell surface protein
Single-cell DNA sequencing (scDNA-seq)	Whole genome
TARGET-seq	Transcriptome + genome

TARGET-seq

 Combination of mRNA and genome sequencing

TARGET-seq

PROS

01	

Transcriptome + genome Simultaneously detection of whole

transcriptomes and genomic DNA

02

Cell death

The to be detected cell will die after both DNA and mRNA is taken out

CONS

Cost-intense

More reagents per cell are needed, costs are 10-20 times higer than for bulk sequencing

Combination technique

All advantages of scRNA-seq and scDNAseq

Therapy resistance: Gilteritinib

Bulk sequencing

scDNA-seq

Relapse: PM marker expression

Leukemic clones change genetically over time, uncovered by plasma membrane (PM) marker expression.

Relapse and drug resistance

Hypotheses

- Crosstalk between the amount of space in the bone marrow niche and the amount of leukemic stem cells.
- Chemotherapy or drug therapy can eridacate the dominant subclones, but leaves the minor subclones behind which can become dominant after treatment.
- -> Microenvironment?

The microenvironment: T cell exhaustion

The microenvironment: CD8+-T/NK subsets

scRNA-seq

expressed on dysfunctional T cells

Summary

Main question: How can clonal heterogeneity in AML be mapped at the cell biological level?

-> Multiple types of single-cell techniques

-> Unravel many aspects of clonal heterogeneity

Outline

Future

- Personalized therapy
- TARGET-seq promising
- Prevention relapse
- Role of the microenvironment

Thank you!

• Questions?

Current therapies AML

Immunotherapy

AML Vaccines are being tested for humans.

Vaccination is an attractive strategy for patients who are not eligible for HSCT or who relapse following HSCT. To date, three main types of vaccines are being tested in humans for AML: peptide, granulocyte macrophage colony stimulating factor (GM-CSF), and dendritic cell (DC) vaccines.

Immune Checkpoint Inhibitors (ICPIs)

ICPIs have been associated with remarkable treatment outcomes in various solid tumours including NSCLC and melanoma (57). ICPIs involve the removal of immunosuppressive signals that are often used as a mechanism by cancer cells to evade immune detection. The role of these agents will become more clear from ongoing clinical trials.

Immunomodulators for Immunogenic Cell Death Induction

Immunogenic cell death (ICD) has emerged in recent years as a popular immunotherapeutic concept that is being investigated pre-cli ICD is a form of cell death wherein cancer cells, in the process of treatment-induced death, emit certain molecular signals in a specifi result in the recruitment of immune cells, presentation of tumour-specific antigens, and activation of an adaptive immune response t eradication and generation of immunological memory against future re-challenges (<u>93,94,95</u>)

Chimeric Antigen Receptor T (CAR-T) Cell Therapy

CAR-T therapy has been greatly successful in the treatment of some hematologic malignancies but this accomplishment has yet to tra are patient-derived T cells that have been genetically modified to recognize antigens expressed on the cancer cell's surface (82). The AML, however, has been much more challenging compared to that for B cell malignancies due to poor immunogenicity stemming fro of AML-specific antigens leading to the risk of generating on-target off-leukemia toxicities, and the heterogeneous biology of the dise progenitors

Variant allele frequency (VAF)

• Heterozygous vs homozygous mutations

Example

DNTM3aFLT3VAF = 0,5 (Heterozygous)VAF = 0,3

Additional mutation VAF = 0,2

COLLEGE of AMERICAN PATHOLOGISTS

Diagnosis AML

Acute Leukemia Diagnostic Journey

Based on the CAP/ASH Guideline

https://www.lls.org/leukemia/ leukemia/diagnosis

Clonal evolution in AML

- Timing and order during clonal evolution (population based)
- First acquisition of CH mutation(s): such as DNMT3A, TET2, ASXL1 and JAK2.
- Second acquisition additional mutation(s): such as IDH1/2, NPM1, RAS, FLT3, TP53.

Targeted Therapy Drugs AML

Drug	Example
FLT3 inhibitors	Gilteritinib (Xospata)
IDH inhibitors	Ivosidenib (Tibsovo)
Antibody-drug conjugate	Gemtuzumab ozogamicin (Mylotarg)
BCL-2 inhibitor	Venetoclax (Venclexta)
Hedgehog pathway inhibitor	Glasdegib (Daurismo)

Single cell

Single-cell level: statements

FIGURE 1. Clonal evolution trajectories and clonal diversity. Tree diagrams depict examples of linear (a) and branching (b-d) acute myeloid leukemia evolution trajectories. The size of each clonal node corresponds to the overall fraction of cells in the clone of the total cells sequenced. (a-c) Each tree starts with the acquisition of mutation in gene 'a'. (a) In the linear model, sequential acquisition of mutations 'b', 'c', and then 'd' in the linear evolution trajectory results in comutational cooperation as the clone size expands with new mutations. (b) In the branching model, cells from clone 'a,b' acquire two different mutations which expand to make clones 'a,b,c' and 'a,b,d' which evolve through separate clonal trajectories, and one additional branch evolves from clone 'a,b,d'. Although there are four clones in the linear model (a) and seven clones in the branching model (c) illustrating greater clonal complexity in the branching model, there is similar clonal diversity in both models as each has two codominant clones (yellow and green) that comprise the majority of each tumor. (c) Clone 'a,b,d,f' and clone 'a,b,d,e,f' are in two separate branched clonal trajectories and have acquired the same gene 'f' mutation (red) independently late in disease evolution. Clone 'a,b,d,f,g' descendent from 'a,b,d,f' also carries the gene 'f' mutation. (d) Two independent clonal trajectories are evolving in parallel from two distinct initiating mutations in 'a' and 'i' then subsequently evolving through in branched and linear trajectories, respectfully. Mutation 'e' (red) is acquired to more the other and the respective of 'created is acquired to more the other and linear trajectories, respectfully. Mutation 'e' (red) is acquired late in both trajectories.

DNMT3A, IDH1/2 RAS genes, *FLT3*

Clonal heterogeneity:

- 1. Not static entity
- 2. Changes as consequence of treatment

Epigenetic factors Mutations signaling genes

Types single-cell sequencing

Data types	Method name	Feature throughput	Data types	Method name	Feature throughput
Unimodal		Multimodal			
mRNA	Drop-seq	Whole transcriptome	Histone modifications + spatial	NA	Single locus + single modification
	InDrop	Whole transcriptome	mRNA + lineage	scGESTALT	Whole transcriptome
	10X Genomics	Whole transcriptome		ScarTrace	Whole transcriptome
	Smart-seq2	Whole transcriptome		LINNAEUS	Whole transcriptome
	MARS-seq	Whole transcriptome	Lineage + spatial	MEMOIR	NA
	CEL-seq	Whole transcriptome	mRNA + spatial	osmFISH	10-50 RNAs
	SPLiT-seq	Whole transcriptome		STARmap	20-1.000 RNAs
	sci-RNA-seq	Whole transcriptome		MERFISH	100-1,000 RNAs
Genome sequence	SNS	Whole genome		seqFish	125-250 RNAs
	SCI-seq	Whole genome	mRNA + cell surface protein	CITE-seg	Whole transcriptome + proteins
Chromatin accessibility	scATAC-seq	Whole genome		REAP-seg	Whole transcriptome + proteins
	sciATAC-seq	Whole genome	mRNA + chromatin accessibility	sci-CAR	Whole transcriptome + whole genome
	scTHS-seq	Whole genome	mRNA + DNA methylation	scM&T-seq	Whole genome
DNA methylation	scBS-seq	Whole genome	mRNA + genomic DNA	G&T-seq	Whole genome + whole transcriptome
	snmC-seq	Whole genome	mRNA + intracellular protein	NA	96 mRNAs + 38 proteins
	sci-MET	Whole genome			82 mRNAs + 75 proteins
	scRRBS	Reduced representation genome	DNA methylation + chromatin accessibility	scNOMe-seq	Whole genome
Histone modifications	scChIP-seq	Whole genome + single modification			
Chromosome conformation	scHi-C-seq	Whole genome			

CITE-seq & REAP-seq

Barcoded cellular markers help simultaneously profile mRNAs and surface proteins from individual cells.

cell type, sample, species or lineage.

Applications

Applications

Nature portfolio, 2021

Abseq + scRNAseq: reference map of the hematopoietic system

Single cell genome sequencing workflow

Application scDNA-seq: genetic landscape

Application scDNA-seq: clonal dominance

Application scDNA-seq: PDX models

Xenograft

https://www.criver.com/prod ucts-services/discoveryservices/pharmacologystudies/oncology-immunooncology-studies/oncologystudy-models/patient-derivedxenografts-pdxmodels?region=3696

Relapse

Newly diagnosed (untreated) AML

- In untreated <u>AML</u>, the disease is newly <u>diagnosed</u>. It has not been treated except to relieve signs and <u>symptoms</u> such as <u>fever</u>, bleeding, or pain, and the following are true:
- The <u>complete blood count</u> is <u>abnormal</u>.
- At least 20% of the cells in the <u>bone marrow</u> are <u>blasts</u> (leukemia cells) or there are certain <u>gene</u> changes.
- There are signs or symptoms of leukemia.

AML in remission

- In AML in <u>remission</u>, the disease has been treated and the following are true:
- The complete blood count is normal.
- Less than 5% of the cells in the bone marrow are blasts (leukemia cells).
- There are no signs or symptoms of leukemia in the brain and spinal cord or elsewhere in the body.

The microenvironment: T cell exhaustion

Guo R. et al., 2021

transcript expression pattern of memory-like CD8⁺ T-related genes

The microenvironment: T cell exhaustion

Van Galen P. et al., 2019

Future

• What do we know and what not?

- What did we learn?
- Best techniques?

• Steps for the future

The role of the microenvironment

- How can gene regulatory networks (GRN) and cell-extrinsic factors derived from bone marrow niche impact clone fitness and the trajectory of clonal diversity over time?
- Which immune cell types exist near AML, what is the immune status and molecular mechanisms of AML patient BM microenvironment?
The microenvironment: Stromal/mesenchymal cells

Immunophenotype