
Convolutional Recurrent Neural Network:
IMU-based Locomotion Intent and Gait Phase

Prediction for Transfemoral Amputees
Master Research Project

Daniel Marcos Mazón (s3734277)

September 14, 2021

Internal Supervisor(s): Prof. Dr. Raffaella Carloni (Artificial Intelligence, University of Groningen)
Second Supervisor: Prof. Dr. Lambert Schomaker (Artificial Intelligence, University of Groningen)

Third Supervisor: Marc Groefsema, MSc (Artificial Intelligence, University of Groningen)

Artificial Intelligence
University of Groningen, The Netherlands

Abstract

This paper focuses on the design of deep neural network architectures for the real-time pre-
diction of locomotion modes, transitions and gait phases for ten healthy subjects and one os-
seointegrated transfemoral amputee by using inertial measurement units (IMU). Different neu-
ral network configurations are investigated by combining convolutional and recurrent layers. As
input to the networks, the frequency aspect in the form of a spectrogram, of one IMU (located
in the thigh) or two IMUs (located in both the thigh and the shank) are used. The system is
able to predict seven different locomotion modes (sitting, standing, walking, ramp ascent and
descent, stair ascent and descent), transitions among this locomotion modes and the gait phases
corresponding to each of the locomotion modes. The results show that a system composed of
CNN + LSTM networks is able to predict user intention with a mean F1-score of 0.893 and
0.910 for the healthy subjects, and 0.921 and 0.947 for the amputee subject, using one and two
IMUs respectively with a 5-fold cross-validation.

Acknowledgement

I would like to thank Prof. Dr. Raffaella Carloni and Prof. Dr. Lambert Schomaker for the trust they
put on me for doing this project as well as for their supervision and contribution. I would also like
to thank Marc Groefsema, MSc for his more than useful input and help on the development of this
project.

Special thanks to Prof. Dr. Hermie Hermens (Roessingh Research and Development, Enschede,
The Netherlands) for the data of the osseointegrated amputee contained in the MyLeg dataset, which
is part of the European Commission’s Horizon 2020 MyLeg Project.

The author would like to also thank Blair Hu, Elliott J. Rouse and Levi J. Hargrove for the cre-
ation and publication of the EN-ABL3S dataset.

Lastly, I would like to thank my family and my friends for the support given during the university
years.

Contents

1 Introduction 1
1.1 Motor Intent Recognition . 1
1.2 Research Question . 2
1.3 Scientific Relevance for Artificial Intelligence . 2

2 Theoretical Framework 5
2.1 Neural Networks . 5

2.1.1 Convolutional Neural Networks . 5
2.1.2 Recurrent Neural Networks . 6
2.1.3 Convolutional Recurrent Neural Networks 10

2.2 Movement prediction and recognition . 10

3 Materials 16
3.1 Data-set . 16

3.1.1 EN-ABL3S Dataset . 16
3.1.2 My-Leg Dataset . 17

3.2 Data Processing . 18
3.2.1 Sequence extraction . 18
3.2.2 Image encoding . 19

4 Methods 23
4.1 System Architecture . 23
4.2 Convolutional Neural Network . 25
4.3 Convolutional Recurrent Neural Network . 26
4.4 Evaluation: Performance Metric . 26
4.5 Hyperparameters . 27

4.5.1 Learning Rate . 27
4.5.2 Optimizer . 27
4.5.3 Loss Function . 28
4.5.4 Class Weighting . 28
4.5.5 Epochs . 28
4.5.6 Early Stopping . 28

4.6 Experimental Setting . 28

i

5 Results 31
5.1 Individual Network Optimization . 31
5.2 EN-ABL3S Subject Dependent . 33
5.3 EN-ABL3S Subject Independent . 33
5.4 MyLeg Subject Dependent . 34
5.5 MyLeg + EN-ABL3S Subject Independent . 34
5.6 Running Time . 36

6 Discussion 40
6.1 EN-ABL3S Subject Dependent . 40
6.2 EN-ABL3S Subject Independent . 40
6.3 MyLeg Subject Dependent . 41
6.4 EN-ABL3S + MyLeg Scenario . 41
6.5 Comparison to State-of-the-art . 41
6.6 Limitations and Future Outlook . 42

6.6.1 Transition extraction and dataset structure 42
6.6.2 Real-time Implementation . 43
6.6.3 Clinical Requirements . 43

7 Conclusions 45

A Re-labelling of Original Data 51
A.1 Transition Re-labelling . 51
A.2 Gait Phases Re-labelling . 51

B Spectrogram Algorithm 52

C Confusion Matrices for Individual Network Optimization 54

ii

List of Figures

1 Convolutional Neural Network Architecture . 5
2 Convolutional Process Example . 7
3 Unfolded RNN architecture . 7
4 Information flow in an LSTM cell. 8
5 LSTM forget gate . 8
6 LSTM input gate . 9
7 Update of the old state in an LSTM cell . 9
8 LSTM output gate . 10
9 GRU cell architecture . 10
10 Convolutional Recurrent Neural Network Architecture 11
11 Locomotion modes and corresponding gait phases. 17
12 Sequence extraction diagram. 19
13 Spectrogram vs Mel Spectrogram . 21
14 Proposed multi-level architecture. 24
15 Example of classification of a given sequence. 25
16 CNN architecture. 26
17 CNN + GRU architecture. 26
18 CNN + LSTM architecture. 27
19 Results for level 1 . 31
20 Results on individual analysis of level 2 . 32
21 Confusion matrix for EN-ABL3s subject dependent on level 2A 35
22 Confusion matrix for EN-ABL3s subject dependent on level 2B 36
23 Confusion matrix for MyLeg subject dependent scenario 37

iii

List of Tables

1 State of the art overview . 14
2 Locomotion modes and transition samples count for En-ABL3S. 19
3 Gait Phases sample count for EN-ABL3S dataset. 20
4 Locomotion modes and transition samples count for MyLeg dataset. 21
5 Grid search results . 33
6 Results subject dependent scenario for EN-ABL3S 33
7 Results subject independent scenario for EN-ABL3S 34
8 Results subject dependent scenario for MyLeg . 34
9 MyLeg + EN-ABL3S Subject Independent scenario (1) 38
10 MyLeg + EN-ABL3S Subject Independent scenario (10) 38
11 Running Time . 38

iv

v

1 Introduction

1.1 Motor Intent Recognition

In recent years there has been a growing interest in the field of robotic prosthesis, with the aim of
improving their efficiency and, ultimately, the quality of life of amputee people that are bound to use
them. In this research specifically, we focus on the control of a robotic transfemoral prosthesis and
its ability to correctly predict the user’s locomotion mode intentions and gait phase with the use of
deep learning techniques.

We aim at improving the physical capabilities of amputee people in their daily life, but there are
many challenges that need to be overcome to reach this goal. As with any machine, there is a com-
putational load from the gathering of input as well as the calculation of the results. In order for the
user not to perceive any lag in the response of the prosthesis and, therefore, to reduce the discomfort
of using it, we need to predict the locomotion intention within 300 ms [1]. This way, changing be-
tween different locomotion modes can be made in a smooth way without the user taking notice. We
pretend to achieve this low computation cost by looking for efficient network architectures as well
as proper data preprocessing.

Another challenge we face is replicating the daily locomotion activities that happen in real life,
such as walking, ramp ascent and descent or going upstairs and downstairs. Some studies only fo-
cus on one type of locomotion activity or recreate said activity using tools such as treadmills [2],
which do not quite resemble the real life aspect of these activities. Replicating daily life activities
also includes the transitions between different locomotion modes, such as going from walking to
downstairs or going upstairs to walking. With this aim, some researches have found solutions that
involves the user changing manually between modes [3] with the use of a key fob or some other
kind of command. This of course imposes yet another burden for the cognitive load of the user that
should be avoided.

With all this into account, in this project we will develop a method for the efficient prediction of
user locomotion intention, both for locomotion modes as well as transitions between them, as well
prediction of the gait phases of the movement. We will investigate what kind of input data describes
better the movement of the user in terms of real-time classification, how many measurement units
are necessary to achieve proper prediction accuracy or which network architecture fits better our
purpose.

1

1.2 Research Question

The main objective of this project is to create a control architecture for the robotic transfemoral
prosthesis so it is capable of predicting the user locomotion intention, that is, stating with as much
detail as possible which is the next action of the user given the current information of the movement.
For that, we will predict not only the locomotion mode or transition in which the user currently is,
but also the gait phase of the leg. Knowing the gait phase can add important information for the
control of the prosthesis, as it can better adapt to the movement.

We will test whether the system’s performance drops when using one single IMU (inertial mea-
surement unit) placed on the upper leg with respect to using 2 IMUs located on both the upper and
lower leg.

Regarding the data we obtain from the IMU we have two different approaches. The first consists
on using the raw information coming from the accelerometer and the gyroscope inside the IMU di-
rectly into the neural network, without further processing, which can alleviate some computational
load from the whole system but might be less interpretative. On the other hand, we can compute
the spectrogram of the signals coming form the IMU and use those as input for the networks; the
frequency information contained in the spectrogram might help the network discriminate better be-
tween classes but at a higher computational cost. We will test both approaches and discussed the
results based on their performance.

To sum up, in this project we will try to answer the following research questions:

• Predict user movement by identifying locomotion modes, transitions and gait phases.

• Do the prediction in under 300ms as to not cause any discomfort to the user.

• Compare between various network architectures and number of IMUs.

1.3 Scientific Relevance for Artificial Intelligence

With this project we will try to make a contribution to the field of lower limb prosthesis. We want
to improve their efficiency, which will have a huge impact on the lives of people using them, as the
prosthesis will be able to respond faster and with more accuracy to their locomotion intentions.

2

We will be investigating movement recognition, which not only has an application on lower limb
prosthesis but on other research fields such as surveillance systems, health-care for elderly or reha-
bilitation among others. The results obtained in this project could potentially be used in these other
areas.

This project falls inside the MyLeg1 project, which is a European-funded project that aims at
developing a new generation of powered transfemoral prosthetic legs that can be intuitively operated,
sensed, and trusted as a healthy and reliable counterpart for a variety of tasks.

1http://www.myleg.eu/

3

4

2 Theoretical Framework

2.1 Neural Networks

In this section it will be explained the main neural networks architectures used in this project as well
as their main characteristics and differences among each other. It starts with convolutional neural
networks, following with recurrent neural networks, where two different types are analyzed (gated
recurrent units and long-short term memory cells), and finishing with the combination of the two in
the convolutional recurrent neural networks.

2.1.1 Convolutional Neural Networks

The first type of network we talked about in this project are convolutional neural networks. CNNs
were first introduced in [4] and, after the appearance of Alexnet from [5], the enthusiasm on them
started to rise. This type of networks combined image processing with the classification tasks of
neural networks. This type of network contain an input layer, a set of hidden layer including convo-
lutional layers that perform image filtering and help extract features from them, and an output layer.
This convolution task is done using a convolutional kernel that slides through the input, creating a
feature map that later on is used as input for the subsequent layer. An example of the architecture of
a typical convolutional neural network can be seen is Figure 1.

Figure 1: Convolutional Neural Network Architecture. From: https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

5

Convolutional Layers As said before, the convolutional layers are in charge of filtering the input
image and extracting features, that later can be used for the classification of the given input. For that
some hyperparameters must be taken into account, which are the number of kernels, the kernel size
and the stride. The values of this hyperparameters must be set artificially and vary depending on
the task or type of network. Each convolutional kernel is initialized differently so there are multiple
different feature maps.

Figure 2 shows a depiction of the convolution process. An image of size 5x5 (green matrix) is
used as input to the convolutional layer. Then, a kernel of size 3x3 (yellow matrix) slides through
the image following the stride size, in this case 1, and computing the convolution. For that, the
layer performs an element-wise multiplication between the image and the kernel and the sum of the
remaining elements is the convolved feature that is added to the final feature map.

Pooling Layer After the convolutional layer there is usually a pooling layer, whose purpose is to
reduce the dimensionality of the feature map and thus the computation requirement of the neural net-
work. There are two different types of pooling: max-pooling and average-pooling. In max-pooling,
the maximum value from within the kernel area is taken while in average-pooling the average of
all values withing the kernel area is considered. After this two layers, convolutional and pooling,
features are finally extracted and the network is ready for the classification.

Dense Layer The dense layers at the end of the neural network allow the learning of non-linear
combinations from the features computed by the convolutional layers. This output is flattened and
then inputed into the fully connected layer, inn which the classification will be learnt after a series
of training epochs. This part of the neural networks is usually ended with a softmax layer, which is
the main tool for classification tasks.

2.1.2 Recurrent Neural Networks

In some cases, different sequences that are inputed into the network share information between them
due to some temporal dependencies, like in fields such as speech and handwriting recognition or
movement prediction, which is the case at study in this project. For this kind of problems, recurrent
neural networks appeared since they are able to propagate previous information through all the
network, since the output of one layer depends directly on the current input as well as in all previous
inputs. In spite of this advantage, if the RNN gets too long, the vanishing gradient problem might

6

Figure 2: Result of a applying a convolution kernel of 3x3 to an input image of 5x5, obtaining
an output feature map of 3x3. From: https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

appear, by which more recent information becomes less important. Figure 3 shows the architecture
of an unfolded RNN.

Figure 3: Example of an unfolded RNN architecture, the input of the network at state st is dependent
of the previous output of state st−1 and input xt . (image from [6])

Long-Short Term Memory Cells To tackle the vanishing gradient problem, the LSTM architec-
ture appeared. It was first proposed by [7] to solve the log term dependency problem previously
discussed and in [8] it is found an explanation of the LSTM module.

As seen in Figure 4, the cell state resembles a conveyor belt by which the information that is
inputted flow through, and information is added or removed by means of some linear interactions

7

with the so called gates, namely the forget gate, the input gate and the output gate.

Figure 4: Information flowing through an LSTM cell in order to be update by the forget, input and
output gates. (image from [8])

The forget gate (Figure 5) is in charge of deciding which information must be removed from the
cell state. It is implemented with a sigmoid function that takes into account the current input xt and
previous information ht−1 and outputs 1 in order to keep the information or 0 in order to get rid of
it.

Figure 5: Forget gate architecture in an LSTM cell. (image from [8])

Figure 6 shows the second step, or second gate, which is the input gate. This refers to what kind
of information it is going to be kept in the cell state. A sigmoid functions decides which values will
be updated and a tanh layer creates the new values for the cell state.

After that, as seen in Figure 7, the old state is updated by multiplying it by ft , what needs to be
forgotten, and than it is added it ∗Ct in order to finish updating the cell value.

8

Figure 6: Input gate architecture in an LSTM cell. (image from [8])

Figure 7: Updating the previous state of the LSTM cell to the new infomration. (image from [8])

Finally, the output gate (Figure 8) decides what is going to be outputted. A sigmoid layer decides
what it is going to output and a tanh layer to output the parts that were decided.

Gated Recurrent Neural Network A variant architecture to the LSTM is the Gated Recurrent
Neural Network (GRU), first proposed in [9]. The main difference of GRU with respect to LSTM
is that now the forget gate and the input gate are combined together into an update gate that con-
trols which information should be taken into account, and the output gate now changes into a reset
gate. Figure 9 shows the architecture of the gated recurrent unit and all its gate update computations.

9

Figure 8: Output gate architecture in an LSTM cell. (image from [8])

Figure 9: Architecture of a gated recurrent unit and its gate computations. (image from [8])

2.1.3 Convolutional Recurrent Neural Networks

In this project it is made use of the so called Convolutional Recurrent Neural Networks, which are
a special type of neural network that combines the main features from convolutional networks and
recurrent networks. That is, the visual learning from CNNs and the sequence learning of RNNs. The
architecture of a convolutional recurrent neural networks, shown in Figure 10, starts with an input
layer that receives sequential images that are first process by the convolutional layer, extracting vi-
sual features. These visual features are then analyzes by the recurrent layers, which could be LSTM,
GRU or other type of recurrent cells in order to extract temporal features.

2.2 Movement prediction and recognition

Past studies have focused only on the detection of the gait phases, achieving high detection accura-
cies on it. In [11] and [12], heel strike and toe events are detected from both healthy subjects and
transfemoral amputees using a single IMU. Both studies use thresholding on the IMU signals to

10

Figure 10: Architecture of a recurrent neural network making use of LSTM cells. (image from [10])

achieve 100% and 99.78% detection accuracy respectively in both the healthy and the transfemoral
amputee subjects. In [13], six gait phases, such as loading response, mid-stance, or swing are recog-
nized. twelve healthy individuals took part and walking data was recorded by seven IMUs located
in different parts of the lower body. Raw information from the IMUs was fed into a CNN, obtaining
95.1% accuracy. In [14], two IMUs are used for gait phase detection of stroke survivors. Different
features from the sensors are extracted and Quadratic Discriminant Analysis (QDA) is used to obtain
a final accuracy of 96.5%.

With respect to locomotion modes and transitions classification, [15] and [16] focus on the recog-
nition of only locomotion modes. Specifically, in [15] raw data from one IMU is fed into a CNN
obtaining an overall accuracy of 87.62%. [16] uses a Recurrent Neural Network (RNN) based
on Long Short-Term Memory (LSTM) cells to achieve 96.63% recognition accuracy on multiple
locomotion activities using two IMUs located in the arm. If we take a look into the transition clas-
sification, [17] presents a multi-level architecture for both the recognition (accuracy of 99% and
96%) and prediction (accuracy of 99% and 93%) of locomotion modes and transitions respectively,

11

using features extracted from IMU data and classifying with a Support Vector Machine (SVM) on
ten able-bodied subjects. On the other hand, [18] presents a single CNN in charge of the classifica-
tion and using as input the spectrogram representation of multiple IMUs located in different parts
of the leg, achieving 7.75% overall error rate with individual error rates of 5.45% and 18.08% for
locomotion modes and transitions respectively. [19] performed a research using three IMUs and a
CNN on ten able-bodied subjects and one amputee subject to obtain 94.15% and 89.23% accuracy
respectively. In [20] it is shown how the mix of a capacitive sensing system and mechanical sensors
can improve the performance of the classification. By using IMU and a load cell, they are able to
obtain 95.8% average recognition accuracy with an SVM classifier and 94.9% accuracy with QDA
on a study with six transfemoral amputees. In [21], three able-bodied and two amputee subjects take
part in the research and an IMU and two pressure sensors are used with Hidden Markov Models
(HMM) to predict the user intention with an accuracy of 95.8%. In [22], it is shown how a network
such as Wavenet achieves a peak F1-score of 87.17% in the case of one IMU, and a peak of 97.88%
in the case of two IMUs, while using features in the time-domain with a dataset containing informa-
tion of ten able-bodied subjects, for the classification of different locomotion modes. Additionally,
[23] used time-domain and frequency-domain features to predict locomotor and transition inten-
tions. Features are inputed into a recurrent neural network to achieve a mean F1-score of 84.77%
and 93.06% with one and two IMUs respectively.

Lastly, we can find studies mixing gait phases as well as locomotion and transition classification
such as [24] and [25]. In [24] we see a similar multi-level architecture as the one presented in [17],
this time including a level for the recognition of gait phases. Three transtibial amputees took part in
the project, and data from six locomotion modes and ten transitions was obtained using two IMUs
and a load cell. The different classifications were done using a mix of QDA and thresholding on
computed features of the raw data from the sensors, obtaining 93.21% recognition accuracy with
no missing transitions. In [25], seven able-bodied subjects take part and the multi-level architecture
is repeated, this time with Linear Discriminant Linear Analysis (LDA) classifier and features com-
puted from three IMUs and pressure insoles, achieving a final accuracy of 99.71% with no missed
transitions.

In Table 1 it is presented a summary of the main contributions of machine learning and deep
learning techniques for the classification of locomotion modes, transitions and gait phases. Perfor-
mance is reported in terms of accuracy and F1-scores, IMU placement in the subject’s body, used
techniques and whether testing is done in healthy and/or impaired subjects.

12

In this study, a multi-level architecture composed by multiple neural networks to predict gait
phases as well as locomotion modes and transitions is proposed. Multiple neural networks architec-
tures such as CNN and CNN combined with LSTM and GRU layers are investigated. As inputs the
spectrogram computed from the IMU data is used, both with one IMU (placed at the thigh) and two
IMUs (placed at the thigh and shank). The system is trained to recognize seven locomotor intentions
(sitting, standing, level ground walking, stair ascent and descent and ramp ascent and descent), the
different transitions among them (twelve transitions in the EN-ABL3S dataset and nineteen transi-
tions in the MyLeg dataset) and the gait phases, which vary depending on the locomotion mode.
This study shows that a multi-level architecture made of various CNN-LSTM neural networks can
achieve a mean F1-score of 0.893 ± 0.006 using one IMU and 0.910 ± 0.007 using two IMUs with
ten healthy subjects [26], and a mean F1-score of 0.921 ± 0.006 using one IMU and 0.947 ± 0.005
using two IMUs with one osseointegrated transfemoral amputee. The main contributions of this
paper are:

• Design a multi-level architecture made of different neural networks for the prediction of loco-
motion modes, transitions and gait phases.

• Use data only available from either one IMU or two IMUs, using their frequency information
as input to the neural network architecture.

• Validate the results in two different datasets, one with ten healthy subjects and the other with
one transfemoral amputee.

• Obtain a top F1-score of 0.910 ± 0.007 with two IMUs for the healthy subjects and 0.947 ±
0.005 using two IMUs for the amputee subject with a 5-fold cross-validation.

The remainder of this paper is organized as follows. Section 3 explains the datasets that are used
in this project and the necessary methods to process the data before it can be used for the training
process, Section 4 explains the system architecture as well as the different network configurations
to be used, Section 5 present all the results obtained in the proposed experiments while Section 6
discuss these results on the scope of this study and in comparison with the current literature. Finally,
Section 7 gives a final overview of the achievements of this work.

13

Article Method Features Mean Accuracy IMU Placement Classes Subject(s)
Gait Phases Classification

[11] 2018
Thresholding
LDA, QDA 1 IMU time domain 100% Lower Leg Gait Phases

10 Healthy
5 Transfemoral Amputees

[12] 2016 Thresholding 1 IMU time domain 99.78% Lower Leg Gait Phases
4 Healthy
1 Transfemoral Amputee

[13] 2016 CNN 6 IMU time domain 95.1% Lower Leg 6 Gait Phases 12 Healthy

[14] 2018 QDA 2 IMU time domain 96.5%
Upper Leg
Lower Leg Gait Phases 3 Stroke survivors

Locomotion Modes and Transition Classification
[15] 2020 CNN 1 IMU time domain 87.62% Lower Leg 5 Locomotions 30 Healthy

[16] 2018
RNN
LSTM 2 IMU time domain 96.63% Upper Arm 5 actions 11 Healthy

[17] 2020 SVM 3 IMU time domain 96%
Upper Leg
Lower Leg

5 Locomotions
All Transitions

10 Healthy

[18] 2020 CNN
3 IMU, 2 EMG, 3 GONIO
frequency domain 1.1% (Error)

Upper Leg
Lower Leg

5 Locomotions
8 Transitions

10 Healthy

[19] 2019 CNN 3 IMU time domain
94.15%
89.23%

Upper Leg
Lower Leg

5 Locomotions
8 Transitions

10 Healthy
1 Transfemoral Amputee

[20] 2017 SVM, QDA
2 IMU, load cell
time domain

95.8% Lower Leg
5 Locomotions
8 Transitions

6 Transfemoral Amputees

[21] 2019 HMM
1 IMU 2 pressure sensor
time domain

95.8% Lower Leg 5 Locomotions
3 Healthy
2 Transfemoral Amputees

[22] 2020 Wavenet 2 IMU time domain 97.88% (F1-score)
Upper Leg
Lower Leg

7 Locomotions 10 Healthy

[23] 2021 RNN
2 IMU time domain
frequency domain

93.06% (F1-score)
Upper Leg
Lower Leg

8 Locomotions
24 Transitions

1 Transfemoral Amputee

Locomotion Modes, Transition and Gait Phases Classification

[24] 2018
QDA
Thresholding

2 IMU and load cell
time domain

93.21% Lower Leg
6 Locomotions
10 Transitions
Swing and Stance

3 Transtibial Amputees

[25] 2014 LDA
3 IMU and pressure insole
time domain

99.71%
Upper Leg
Lower Leg

6 Locomotions
10 Transitions
Swing and Stance

7 Healthy

Table 1: State of the art of for related project from previous years, divided in 3 categories: gait
classification, locomotion modes and transition classification, and locomotion modes, transition and
gait phases classification.

14

15

3 Materials

This Section presents the two datasets used in this study as well as the methods to extract the se-
quences used as input for the deep neural networks.

3.1 Data-set

3.1.1 EN-ABL3S Dataset

This dataset is a publicly available dataset called Encyclopedia of Able-bodied Bilateral Lower Limb
Locomotor Signals (EN-ABL3S) [26], which contains IMU data, both accelerometer and gyroscope
data, from ten able-bodied subjects. The data was gathered from seven males and three females with
an average age of 25.5 ± 2 years, a height of 174 ± 12 cm, and weight 70 ± 14 kg. From this dataset,
only data from the IMUs located in the thigh and the shank is used. This IMU data is sampled at
500 Hz by means of the IMUs MPU-9250 (InvenSense, San Jose, CA, USA).

The available locomotion modes are sitting (S), standing (ST), level ground walking (W), stair
ascent (SA) and descent (SD) and ramp ascent (RA) and descent (RD). Each subject was asked to
perform two types of circuit in order to record the data. Specifically, the odd trial is: S → St → W
→ SA → W → RD → W → St → S; while the even trial is: S → St → W → RA → W → SD → W
→ St → S. The stairs consist of four steps and the ramps have slopes of 10◦.

The dataset also has information to obtain the transitions between the locomotion modes, as
well as the gait phases of each locomotion mode by means of toe off and heel strike events. Figure
11 shows the gait phases intervals for each of the locomotion modes. Gait phases intervals vary
depending on the locomotion mode they are linked to and locomotion modes such as sitting and
standing do not have gait phase information since they are static modes [27][28][29][30].

Regarding the data labelling, in the original dataset only locomotion modes are labelled. To
obtain the transitions, a 500 ms window centered at a transition point (the time step in between
two subsequent locomotion modes) is created and the samples inside are labelled according to the
transition (i.e., transition from walking to sitting is labelled as W - S). This means that for each
transition point, 250 transition samples are obtained.

16

Figure 11: Locomotion modes and corresponding gait phases.

3.1.2 My-Leg Dataset

This dataset was collected at the Roessingh Research and Development center (Enschede, The
Netherlands) on one osseointegrated transfemoral amputee subject (male, 75 years old, 84.1 kg,
186.6 cm, left-sided amputation since 45 years, osseointegration since 4 years, functional level K3),
using a 3R80 Ottobock prosthetic knee (www.ottobockus.com) and a Variflex Össur prosthetic
ankle (www.ossur.com). The data were collected from the subject by using wearable electromyo-
graphic sensors and eight IMUs as part of the Xsens MVN Link motion capture system (Xsens
Technologies B.V., The Netherlands, www.xsens.com)2. In this study, data from one IMU in the
thigh and another IMU located in the shank is used. The IMU data is sample at a frequency of 1000
Hz.

2The study, under protocol number NL67247.044.18, was evaluated and approved by the Medical Ethics Review
Commitee of the University of Twente (The Netherlands) on December 13, 2018.

17

The subject was asked to do seven different locomotion modes: sitting (S), standing (ST), level
ground walking (W), stair ascent (SA) and descent (SD) and ramp ascent (RA) and descent (RD) on
a circuit. The ramps have a slope of 10◦for three meters, and continue on with a slope of 15◦. Re-
garding the data labelling, in the original dataset only locomotion modes are labelled. To obtain the
transitions, a 500 ms window centered at a transition point (the time step in between two subsequent
locomotion modes) is created and the samples inside are labelled according to the transition (i.e.,
transition from walking to sitting is labelled as W - S). This means that for each transition point 500
transition samples are obtained.

In this dataset there is no information about the gait phases of the subject.

3.2 Data Processing

3.2.1 Sequence extraction

The inputs to the deep neural networks are sequences, conformed by sequential samples. Each
sample contains information from the IMU; in the case of one IMU it has information from one
triaxial accelerometer and one triaxial gyroscope for a total of six features, while in the case of two
IMUs there is information from two triaxial accelerometers and two triaxial gyroscopes for a total
of 12 features. The window size for the sequences is 1.3 seconds with a sliding window of 50 ms.
This means that for the EN-ABL3S dataset, a sequence contains 650 samples while, for the MyLeg
dataset, a sequence contains 1300 samples

When extracting sequences from the original labelled samples there are three different situations
that can happen. One, the extracted sequence falls completely in one locomotion mode or transition,
in which case it gets labelled as such. Two, the sequence falls in between a locomotion mode and
a transition, getting in this case the labelled of the majority of the samples contained in said se-
quence. Three, the sequence is in between a transition and a locomotion mode, in which case it gets
labelled as the locomotion mode. Figure 12 depicts an example of multiple sequence extractions.
The yellow sequences represent case one, in which the extracted sequence falls entirely into one
locomotion mode or transition and thus, it is labelled as such. Green sequences represent the second
case: the top sequence contains more samples from the walking locomotion mode and is labelled as
walking, while the bottom sequence has more samples from the transition Walking to Sitting and so
it is labelled as ’W - S’. The last case is represented by the blue sequence. Since this sequence starts
in a transition and finishes in a locomotion mode, it is labelled as the locomotion mode.

18

Regarding gait phases, only on the EN-ABL3S dataset, they are obtained following the gait cy-
cles as established in [27][28][29][30] and following the intervals shown in Figure 11.

Figure 12: Sequence extraction diagram.

Tables 2, 3 and 4 show the sequence count for each of the used locomotion modes, transitions
and gait phases for the respective datasets.

Label # of sequences Label # of sequences
S 6639 SA-W 257
W 10009 W-RD 272
RA 3284 RD-W 124
RD 3987 W-ST 531
SA 1304 ST-S 533
SD 1307 W-RA 215
ST 4424 RA-W 262

S-ST 525 W-SD 258
ST-W 128 SD-W 236
W-SA 262

Table 2: Locomotion modes and transition samples count for En-ABL3S.

3.2.2 Image encoding

Given that the human movement has a periodic nature, frequency information is extracted from the
IMU data as previously done in [22] and [23]. For that, the raw information from the IMUs is en-
coded using a spectrogram. First of all, the Short Time Fourier Transform (STFT) is computed to
obtain the frequency-domain information from time-series data.

19

Label # of sequences Label # of sequences
W1 937 RD3 682
W2 1813 RD4 981
W3 2049 RD5 1042
W4 1365 SA1 150
W5 1531 SA2 336
W6 1724 SA3 547
W7 2128 SA4 285
RA1 361 SA5 243
RA2 718 SD1 141
RA3 932 SD2 364
RA4 677 SD3 203
RA5 858 SD4 325
RD1 357 SD5 510
RD2 1049

Table 3: Number of sequences for the gait phases in the EN-ABL3S dataset when considering all
possible gait phases. W1 corresponds to gait phase 1 of walking and so on, according to figure 11.

ST FT (x[n];w,k) =
n=−∞

∑
∞

x[n]w[n− k]e− jωn (1)

After squaring the output signal, the spectrogram is modified with a non-linear scaling called mel
scale, which has already proved useful in similar classification tasks [18]. The mel scale is known
to help amplify the lower frequencies, as shown in figure 13, which is were most of the information
for human movement can be found. This scale can be computed as [31]:

2595 · log10(1+
f

700
) (2)

where 2595 is a constant value ensuring that 1000 Hz correspond to 1000 mel and 700 is the
corner frequency at which the scales changes from linear to logarithmic.

This signal is then converted into dB and normalized in the range [0, 1] so it can be processed by
the neural networks. For the calculation of the STFT, a Hann window of size 20 with an offset of 13
is used. When using the mel scale, the Hz scale is partitioned in 10 bins in order for some channels
in the mel spectrogram not to return an empty response. To implement all this process the Python
package called LibROSA [32] is used.

20

Label # of sequences Label # of sequences
S 5963 ST-RA 200

ST 4978 ST-RD 179
W 4182 W-SA 537
SA 2736 W-RA 186
SD 2225 W-S 291
RA 1612 W-SD 193
RD 2208 W-ST 147
S-W 136 SA-ST 71
S-ST 536 SA-W 521

ST-SD 474 SD-ST 77
ST-SA 71 SD-W 513
ST-S 45 RA-RD 427
ST-W 3164 RD-W 483

Table 4: Number of sequences for locomotion modes and transitions in the MyLeg dataset.

Figure 13: Initial spectrogram (left) and mel spectrogram (right) from one of the signals from the
IMUs. Higher frequencies are attenuated after the mel scaling.

21

22

4 Methods

In this Section, the overall system architectures as well as the different architectures considered for
the individual neural networks are discussed, based on the previous work done in [22] and [23]. In
the end, an overview of the experimental setting is given.

4.1 System Architecture

In this Section it is explained the system architecture that this study follows for the prediction of
locomotion modes, transitions and gait phases from the input sequences.

This study proposes a multi-level architecture as depicted in Figure 14. The input, the spectro-
gram of the input sequence, goes into a first level classification (blue box in figure 14). This first level
classifies to which locomotion mode the input sequence belongs to. It is composed of one single
neural network and here, locomotion mode and transition sequences are treated alike. This means,
for example, that sequences labelled as the walking locomotion mode, and sequences labelled as
transitions that start in walking, are labelled as walking. This level works as a pre-classification step
for the next level.

The second level is made of two parts: one in charge of classifying locomotion modes and tran-
sitions (level 2A), and another one in charge of classifying gait phases (level 2B).

Level 2A is composed of 7 different neural networks, each one in charge of a different loco-
motion mode. Depending on the result of level 1, the input sequence will go into one or another.
Locomotion modes and transitions are treated equally in level 1, but in level 2A they get classified
as either locomotion mode or one of the transitions. For example, a walking to standing transition
that was classified as walking by level 1 would be classified as W - St in level 2A. In the case of
having a walking sequence classified as walking by level 1, it would be classified as W - W by level
2A, thus making the distinction from locomotion modes and transitions.

Level 2B is composed of 5 different networks, one for each locomotion mode that has gait phases
(sitting and standing are excluded here). The input sequence will go into one network or another de-
pending on the result from level 1, independently of being a locomotion mode or a transition. Note
that for the MyLeg dataset, level 2B is ignored since there are not any gait phases to be classified.

23

Figure 15 shows the process an input sequence undergoes through the system. Two input se-
quences are shown: one sequence corresponding to the walking locomotion mode with gait phase
W1 (red sequence) and another sequence corresponding to a walking to standing transition with gait
phase W6 (orange sequence). In the fist level both of them are classified as WALKING. In level 2A,
the sequences will go into the ”Walking Locomotion/Transitions Network”, being classified as W
to W (red sequence) and W to ST (orange sequence). Something similar will happen in level 2B;
both sequences will enter the ”Walking Gait Phases Network” and will be classified as W1 (red
sequence) and W6 (orange sequence).

The final results will be ”W to W - W1” for the red sequence and ”W to ST - W6” for the orange
sequence. This procedure will be repeated for any combination of locomotion mode/transition and
gait phase.

Figure 14: Proposed multi-level architecture.

24

Figure 15: Example of classification of a given sequence.

4.2 Convolutional Neural Network

The architecture for the convolutional neural network is shown in figure 16. The input to the net-
work is the mel-spectrogram image, which has size 10x50. The first two layers are convolutional
layers with kernel size of (5x5) and number of filters equal to 64 and 128, respectively. They used a
rectified linear unit and max-pooling of size (2x2). A dropout layer of value 0.25 follows. Finally,
two dense layers of sizes 512 and 256, respectively, followed by a softmax layer whose size depends
on the output of the network.

25

Figure 16: CNN architecture.

4.3 Convolutional Recurrent Neural Network

The architecture for the convolutional recurrent neural network can be seen in figure 17 for the CNN
+ GRU architecture and in figure 18 for the CNN + LSTM architecture. The input to the network
is the mel-spectrogram image, which has size 10x50. The first two layers are convolutional layers
with kernel size of (5x5) and number of filters equal to 64 and 128, respectively. Following there
are recurrent layers, which are either two GRU layers or two LSTM layers with 120 and 60 units
respectively. After that, there is a dense layer of size 30 followed by a dropout layer of value 0.25,
To finish a softmax layer whose size depends on the output of the network is used.

Figure 17: CNN + GRU architecture.

4.4 Evaluation: Performance Metric

As it can be seen in Tables 2, 3 and 4, there is some imbalance among the number of sequences
when compared with other classes. Because of this, it was preferred to use the F1-score to measure

26

Figure 18: CNN + LSTM architecture.

the performance of the deep neural networks. It can be calculated as:

F1 = 2 · precision · recall
precision+ recall

(3)

where precision= t p/(t p+ f p) and recall = t p/(t p+ f n), with t p being the number of true positive
predictions, f p the number of false positives and f n the number of false negatives.

4.5 Hyperparameters

This Section describes the main hyperparameters that were taken into consideration during the train-
ing process. The values for these hyperparameters are used as a baseline, since later on a grid search
will be conducted on each individual network to optimize their performance. Still, for the initial
analysis, base values are needed to train the network. The training is done on one computer with a
GeForce RTX 2080 SUPER, AMD Ryzen 7 3700X 8-Core Processor and 8 GB RAM.

4.5.1 Learning Rate

The learning rate is set at 0.0001. A high value for the learning rate could cause the network to never
converge while a very low learning rate could cause the network to get stuck in a local minima, thus
the chosen value.

4.5.2 Optimizer

In this research the Adaptive Moment Estimation (Adam) optimizer has been used to optimize the
gradient descent while training the network [33]. Adam computes individual adaptive learning rates

27

for different parameters.

4.5.3 Loss Function

For the loss function, it was decided to use the categorical cross-entropy.

4.5.4 Class Weighting

Since there is class imbalance in the data used for training as shown before,it si necesasry the im-
plementation of a method to counteract this effect. One way is to use a class weight function like
the one provided by the sklearn.utils module of the scikit-learn Python library [34]. This way the
network penalizes more mistakes made for the underrepresented classes, in this case the transitions,
without the need to create augmented data or vary the number of samples in the dataset.

4.5.5 Epochs

The data is presented 400 times to the networks during training to optimize data use. Even though it
is a high number of epochs, early stopping will stop the training in advance if necessary.

4.5.6 Early Stopping

Given that there is a high number of epochs, the network has the risk of overfitting. To avoid it, early
stopping is used. This technique will stop the training of the neural network if there has not been a
sufficient improvement on the validation loss for 10 epochs. The minimum difference to consider
an improvement in the validation loss is 0.001.

4.6 Experimental Setting

There are a number of steps taken in this project from the optimization of the neural networks to
obtaining the final results for each dataset in different settings. All of it is explained in the following
list:

• Train each deep neural network architecture both for one and two IMUs.

28

• Use the results from the previous step to find the best performing architecture by using a paired
t-test.

• Optimize best performing network architecture with grid search.

• Train and test on the EN-ABL3S dataset on a subject dependent basis, meaning that informa-
tion from the testing subject is included in the training process.

• Train and test on the EN-ABL3S dataset on a subject independent basis, meaning that the
training process is independent from the testing subject as it does not contain related informa-
tion.

• Train and test on the MyLeg dataset.

• Test effect of training with healthy subjects and testing on amputee subjects (En-ABL3S +
MyLeg).

• Evaluate system prediction time.

29

30

5 Results

In this Section, the above mentioned steps are executed in order to obtain all the established results.
The results are reported separately for each step and distinguishing between one and two IMUs. In
the end, this results are discussed and compared to the current literature.

5.1 Individual Network Optimization

As shown in figure 14, there are many neural networks in the final system, each one in charge of
classifying a certain subset of classes. In this step, all the different network architectures are taken
into consideration for each one of the classification problems, both for one or two IMUs. In this
step, networks are trained and tested on individual subjects from the EN-ABL3S dataset and the
final F1-score is the result of averaging individual F1-scores.

Figure 19: F1-score on different network architectures for one and two IMUs for the classification
task of level 1.

As it can seen in Figures 19 and 20, the architecture corresponding to CNN + LSTM is obtaining
the best F1-scores or is tied with the rest of the networks in most of the cases shown. Additionally,
according to a paired t-test, there are significant differences between CNN + LSTM and the other
architectures (CNN and CNN + GRU) in the ”Locomotion Modes Classification” (figure 19) with
p-values of 6.20∗10−5 and 3.47∗10−5 respectively and the ”Walking Transitions” (figure 26a) with

31

(a) Walking Transitions (b) Sitting Transitions (c) Standing Transitions (d) RA Transitions

(e) RD Transitions (f) SA Transitions (g) SD Transitions (h) Walking Gait Phases

(i) RA Gait Phases (j) RD Gait Phases (k) SA Gait Pases (l) SD Gait Phases

Figure 20: F1-score on different network architectures for one and two IMUs for the classification
tasks of level 2.

p-values of 0.001 and 0.021. For this reason, it was decided to use the CNN + LSTM architecture
for the subsequent steps, both for the hyperparameter optimization and the final results.

For the hyperparameter optimization, grid search with 5 fold cross-validation is used. The best
performing set of hyperparameters for each individual network obtained is used in future experi-
ments. Among the hyperparameters considered for the optimization it is possible to find the acti-
vation function, the learning rate, optimizer, number of hidden units and the dropout value. Table
5 shows the results from the grid search and thus, the configuration each neural network will have
during the remaining of the study.

.

32

Classification Activation Learning Rate Optimazer Hidden Units Dropout Accuracy
locomModes relu 0.001 RMSProp [32, 64, 60, 30, 15] 0.25 0.96

sTrans relu 0.001 Adam [32, 64, 60, 30, 15] 0.25 0.96
wTrans relu 0.001 Adam [32, 64, 60, 30, 15] 0.5 0.97
saTrans elu 0.001 RMSProp [64, 128, 120, 60, 30] 0.25 0.93
sdTrans elu 0.001 RMSProp [64, 128, 120, 60, 30] 0.25 0.92
raTrans elu 0.001 RMSProp [64, 128, 120, 60, 30] 0.25 0.96
rdTrans elu 0.001 RMSProp [32, 64, 60, 30, 15] 0.25 0.92
stTrans relu 0.001 Adam [32, 64, 60, 30, 15] 0.25 0.96

wGaitPĥases tanh 0.0001 Adam [64, 128, 120, 60, 30] 0.5 0.92
saGaitPĥases relu 0.001 RMSProp [64, 128, 120, 60, 30] 0.25 0.94
sdGaitPĥases tanh 0.001 RMSProp [32, 64, 60, 30, 15] 0.25 0.92
raGaitPĥases elu 0.001 Adam [32, 64, 60, 30, 15] 0.5 0.96
rdGaitPĥases tanh 0.001 Adam [64, 128, 120, 60, 30] 0.25 0.95

Table 5: Grid search results. Best hyperparameters combination for each individual network.

5.2 EN-ABL3S Subject Dependent

This experiment consists on training the system on each healthy subject from the EN-ABL3S dataset,
independently of each other, and test it on themselves. The objective is to evaluate the base perfor-
mance of the networks on a personal subject, where all data used both for training and testing belongs
to the same user. Table 6 shows the results obtained for this experiment. F1-score is obtained after
averaging the individual F1-score of the ten subjects. The scenario in which two IMUs are used
obtains the highest F1-scores with a value of 0.910± 0.007. Additionally, it obtains an F1-score
of 0.926± 0.007 in the locomotion modes and transition classification (level 2A), and F1-score of
0.945±0.007 in the gait phases classification (level 2B). The confusion matrixes for these two situ-
ations can be seen in Figures 21 and 21.

F1-score 1 IMU F1-score 2 IMUs
0.893 ± 0.006 0.910 ± 0.007

Table 6: F1.score for CNN + LSTM configuration on a subject dependent scenario. Results obtained
after averaging F1-score from 10 healthy subjects.

5.3 EN-ABL3S Subject Independent

This section tried to test the generalization capabilities of the system by testing on a novel subject.
From the EN-ABL3S dataset, nine subjects are used for training and the remaining one is used for

33

testing. After that, we retrain the network with the data from the missing subject to see how much
the network is able to improve. This process is repeated until all subjects had been used for testing
once. Table 7 shows the results obtained for this experiment. In the scenario with all gait phases
included, before retraining with the missing data the highest F1-score is obtained with two IMUs
with a value of 0.612±0.045. After retraining, the F1-score improves to 0.908±0.018.

F1-score 1 IMU F1-score 2 IMUs
Before 0.495 ± 0.032 0.612 ± 0.045
After 0.892 ± 0.015 0.908 ± 0.018

Table 7: F1-score for CNN + LSTM configuration on a subject independent scenario. Results
obtained after averaging the F1-score from 10 healthy subjects.

5.4 MyLeg Subject Dependent

In this experiment we test the system on a osseointegrated lower-limb amputee. Table 8 shows that
using two IMUs obtains the best performance with an F1-score of 0.947± 0.005. In Figure 23, it
can be seen the confusion matrix with the predictions after testing with the amputee subject.

F1-score 1 IMU F1-score 2 IMUs
0.921 ± 0.006 0.947 ± 0.005

Table 8: F1.score for CNN + LSTM configuration on a subject dependent scenario. Results obtained
from one osseointegrated lower-limb amputee.

5.5 MyLeg + EN-ABL3S Subject Independent

In this scenario, the performance of mixing healthy with amputee data is tested. Initially the system
is trained with both one healthy subject or ten healthy subjects from the EN-ABL3S dataset and
tested on the amputee data from the MyLeg dataset. After that, the system is retrained with the
amputee information and tested again too see if there is any kind of improvement. At this point,
the system is tested also on the healthy data to check the effect of retraining a the networks with
amputee data.

34

Figure 21: Confusion matrix for the EN-ABL3S subject dependent scenario on the CNN + LSTM
configuration for the locomotion modes and transitions classification (level 2A).

As seen in Table 9, when using only one EN-ABL3S subject, initial peak F1-scores are 0.240±
0.058 and 0.213± 0.043 for one and two IMUs respectively, while after retraining with amputee
data they go up to 0.873± 0.009 and 0.953± 0.007. In the case of using ten healthy subjects, as
shown in Table 10, initial peak F1-scores are 0.288±0.013 and 0.221±0.019 for one and two IMUs
respectively, while after retraining with amputee data they go up to 0.840±0.021 and 0.946±0.005.

Testing on the healthy subjects after retraining the system on the amputee data produces low
performance, as seen in Tables 9 and 10, where peak F1-scores of 0.368±0.027 and 0.335±0.008
are obtained when using two IMUs for one and ten healthy subjects respectively.

35

Figure 22: Confusion matrix for the EN-ABL3S subject dependent scenario on the CNN + LSTM
configuration for the gait phases classification (level 2B).

5.6 Running Time

Table 11 shows the average running time for the classification of one sequence, averaged over 1000
sequences, each one containing six or twelve spectrograms (one or two IMUs respectively) extracted
from 1.3 seconds of data. Both for one and two IMUs, the time necessary to perform the classifi-
cation of one sample is under 50 ms, which is the sliding window time that is set to obtain a new
sample, and is also below 300 ms, which was the maximum time allowed not to cause any discom-
fort to the user of the prosthesis.

It is worth noting that there is no clear difference between classifying samples from one IMU or

36

Figure 23: Confusion matrix for MyLeg subject dependent scenario on the CNN + LSTM configu-
ration.

from two IMUs; there is only a difference in computation time when obtaining the spectrograms,
since the amount of signals to process is double.

37

F1-score 1 IMU F1-score 2 IMUs
Before 0.240 ± 0.058 0.213 ± 0.043
After 0.873 ± 0.009 0.953 ± 0.007

EN-ABL3S 0.325 ± 0.023 0.368 ± 0.027

Table 9: 1 EN-ABL3S subject

F1-score 1 IMU F1-score 2 IMUs
Before 0.288 ± 0.013 0.221 ± 0.019
After 0.840 ± 0.021 0.946 ± 0.005

EN-ABL3S 0.239 ± 0.031 0.335 ± 0.008

Table 10: 10 EN-ABL3S subjects

Time 1 IMU [ms] Time 2 IMUs [ms]
Spectrogram 2.453 ± 0.021 4.785 ± 0.043
Classification 36.734 ± 5.612 37.091 ± 6.448

Total 39.187 ± 5.633 41.876 ± 6.491

Table 11: Running time for the prediction of one sample (averaged over a 1000 samples) when using
one and two IMUs.

38

39

6 Discussion

6.1 EN-ABL3S Subject Dependent

In the case of the EN-ABL3S dataset a peak F1-score of 0.910±0.007 when using two IMUs while
an F1-score of 0.893±0.006 for one IMU is obtained as shown in Table 6. Despite the overall good
results obtained, taking a look at the confusion matrixes shown in figure 21 and 22, it can be seen
some of the classes obtain an individual F1-score of around 0.85. This problem has to do mainly
with transitions; either with transitions not being classified correctly or locomotion mode classes that
are mistakenly taken as transitions. The reason for this behaviour could be that transitions classes
are normally the under-represented classes which, despite the fact that we use class weighting when
training the networks, they might still learn more information from the over-represented classes.

It must also be taken into account the effect of having multi-level architecture in the final overall
F1-score. One wrong classification in the first level will undoubtedly produce wrong classifications
in the subsequent levels, with the consequent drop in the final overall performance.

6.2 EN-ABL3S Subject Independent

In this experiment, the generalization ability of the system was put to the test. From the results in
table 7 it can be seen the generalization requirements are not met, since only a peak F1-score of
0.612±0.045 when using two IMUs is obtained. While it could be argued that this is a decent result
considering that there is no information whatsoever from the novel subject in the system, training
directly with the subject’s data produces far better results as seen in table 6, where a peak F1-score
of 0.910±0.007 for two IMUs is obtained.

What is more, retraining with the missing subject data after training on the other nine subjects
did not change the results significantly; from 0.893±0.006 to 0.892±0.015 in the case of one IMU
and from 0.908±0.018 to 0.910±0.007 when using two IMUs.

It could be discussed that this lack of generalization might be given by the fact that different
subjects move in different ways. Even though a locomotion mode across multiple subjects is essen-
tially the same, differences in aspects such as the speed or the range of movement of the limbs might
produce a reduction in the overall performance of the system.

40

6.3 MyLeg Subject Dependent

In the case of the MyLeg dataset, as shown in Table 8, a peak F1-score of 0.947±0.005 is obtained
when using two IMUs while an F1-score of 0.921± 0.006 for one IMU is obtained. Figure 23
shows the individual F1-scores for each of the classes from this dataset. As it happened with the
EN-ABL3S dataset, some of the classes achieve an F1-score of around 0.85, which can be attributed
to the class distribution. The main difference with respect to the EN-ABL3S dataset is that in this
time there is no classification coming from level 2B as there are no gait phases involved, which
makes the multi-level architecture be less influential in the overall F1-score.

6.4 EN-ABL3S + MyLeg Scenario

In this experiment, it was tested the influence that healthy subject data might have on the amputee
data. As seen in Tables 9 and 10, testing the amputee data on a system trained with healthy data
produces undesirable results (F1-score peaks at 0.288± 0.013 when using one IMU). This result
can be understood by realizing that healthy and amputee movements are not comparable given the
differences in locomotor capabilities between these two groups.

After retraining with the amputee data, F1-score reaches 0.953± 0.007 and 0.946± 0.005 for
two IMUs when considering one and ten healthy subjects respectively, which is not a significant
increment when compared to the F1-score obtained in table 8 (0.947±0.005). This also implies that
there is no effect on pretraining the networks on a different number of subjects since the results will
most likely be the same.

In fact, this process has made the networks to forget all information related to the healthy sub-
jects as can be seen in row 3 of tables 9 and 10. Testing with healthy subjects after retraining with
the amputee subject got a peak F1-score of 0.368±0.027 and 0.335±0.008 when using two IMUs
for one and ten healthy subjects respectively.

6.5 Comparison to State-of-the-art

In this section, the results found in the literature, as shown in table 1, will be compared with the
results obtained in this project.

Regarding previous works in which they were only classifying or detecting gait phases we find

41

that most of them focus on the major gait phases of the gait cycle such as swing and stance, or in
the detection of gait events such as heel strike or toe off. In [13] they detect more in depth gait
phases suck as loading response or push-off. These project obtain impressive results that sometimes
reach 100% accuracy as in [11] and [12]. In comparison, in this project it was able able to keep an
F1-score of 0.938 for healthy subjects while considering a wide variety of locomotion modes and
transitions, with all their corresponding gait phases.

With respect to the locomotion mode and transition classification, most of the previous work
compared comparably to the results obtained in this project. Special mention to [18], they use spec-
trograms to detect locomotion modes and transitions with an error rate of 1.1% but making use of
up to 8 different sensors and no detection of gait phases whatsoever. In the case that they use only
IMUs, their error rate falls to 4.68%. In the case of [23], they obtain an F1-score of 93.06 while here
94.7 is obtaining, and their proposed method does not take into account gait phases. Also, when
using only 1 IMU, their results fall behind the ones obtained here: 92.1 against the 84.78.

Apart from that, this project has studied the generalization capabilities among healthy and am-
putee subjects, showing that there is poor generalization given the differences in locomotion gaits
among this two groups, with little to no improvement when retraining a network with amputee data
after initially training it with healthy data.

Lastly, taking a look at the locomotion modes, transitions and gait phase classification, the results
obtained in this project can compare to the ones obtained by [24] and [25], not taking into account
that they use a higher number of IMUs and pressure sensors, do not classify as many locomotion
modes and transitions, and their gait phase classification is limited to the swing and stance phases of
the movement.

6.6 Limitations and Future Outlook

6.6.1 Transition extraction and dataset structure

One of the main problems that appeared during this study is reflected in Figures 21, 22 and 23,
which is that transitions are usually wrongly classified. This might be due to the way in which tran-
sitions are extracted, which makes some transition sequences contain information about previous or
subsequent locomotion modes.

42

A more comprehensive study of the transition sequence extraction, together with the obtainment
of transition information directly from the subjects, could help improve the final performance of the
whole system as well.

6.6.2 Real-time Implementation

In order for the real user not to feel any kind of discomfort, predictions must be made approximately
in the first 300 ms. With this approach, one sequence takes around 40 ms (around 4 ms to process
the sample and 37 ms to classify the sequence), averaged over 1000 sequences, each one extracted
from 1.3 seconds of data, which no only is inside the 300 ms range but also inside the 50 ms sliding
window by which a new sequence would be ready to be processed.

On a real prosthesis, it must be taken into account that, for the experiments in this project, all
necessary neural networks were loaded into memory at once since there was no need to worry about
memory efficiency. On a real device this might not be possible and neural networks must need to
be loaded every time they are needed and discarded right after, which might increase the amount of
time necessary to process one sequence. On the other hand, in the experiments every classification
was run sequentially (level 1, then level 2A, then level 2B), so there is room for improvement in the
running time if some parallelism approaches are taken into consideration when designing the whole
system.

6.6.3 Clinical Requirements

Future research should focus on the implementation and evaluation of the proposed method on os-
seointegrated amputees in clinical trials. This research could continue from the results obtained in
the present since overall F1-score for amputee subjects reaches 0.947, plus individual classes are
mostly all the of them over 0.9, as seen in figure 23. F1-scores might improve by the addition of
new more complete data to the datasets since, as a general rule of thumb, in deep learning the more
data you have the better the final performance will be.

43

44

7 Conclusions

This paper shows the research done in the design of a system for the real-time prediction of loco-
motion modes, transitions and gait phases for both healthy and osseointegrated lower-limb amputee
subjects by using inertial measurement units (IMU). Different neural network configurations are in-
vestigated by combining convolutional and recurrent layers. As input to the networks, the frequency
aspect in the form of an spectrogram, of one IMU (located in the thigh) or two IMUs (located in
both the thigh and the shank) are used. The system is able to predict 7 different locomotion modes
(sitting, standing, walking, ramp ascent and descent, stair ascent and descent), transitions among
this locomotion modes and the gait phases corresponding to each of the locomotion modes.

The results show that a system composed of CNN + LSTM networks is able to correctly predict
user intention with a mean F1-score of 0.893± 0.006 and 0.910± 0.007 for the healthy subjects
(considering all gait phases), and 0.921± 0.006 and 0.947± 0.005 for the amputee subject (only
locomotion modes and transitions), using one and two IMUs respectively.

It has also shown that generalization capabilities for this type of classification task might be dif-
ficult to achieve given the nature of the data that is used, and that healthy and amputee data should
not be mixed since it worsens the performance of the classification. It also sets some guidelines for
future developments of similar projects.

45

46

References

[1] B. Hudgins, P. Parker, and R. N. Scott. “A new strategy for multifunction myoelectric con-
trol”. In: IEEE Transactions on Biomedical Engineering 40.1 (1993), pp. 82–94. DOI: 10.
1109/10.204774.

[2] Binbin Su, Christian Smith, and Elena Gutierrez Farewik. “Gait Phase Recognition Using
Deep Convolutional Neural Network with Inertial Measurement Units”. In: Biosensors 10.9
(2020). ISSN: 2079-6374. DOI: 10.3390/bios10090109. URL: https://www.mdpi.com/
2079-6374/10/9/109.

[3] A. J. Young and L. J. Hargrove. “A Classification Method for User-Independent Intent Recog-
nition for Transfemoral Amputees Using Powered Lower Limb Prostheses”. In: IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering 24.2 (2016), pp. 217–225. DOI:
10.1109/TNSRE.2015.2412461.

[4] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Proceedings
of the IEEE 86.11 (1998), pp. 2278–2324. DOI: 10.1109/5.726791.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks”. In: Neural Information Processing Systems 25 (Jan. 2012).
DOI: 10.1145/3065386.

[6] Yann LeCun, Y. Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature 521 (May 2015),
pp. 436–44. DOI: 10.1038/nature14539.

[7] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Compu-
tation 9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.1997.9.8.
1735. eprint: https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.
1997.9.8.1735.pdf. URL: https://doi.org/10.1162/neco.1997.9.8.1735.

[8] C. Olah. “Understanding LSTM Networks”. In: (2015). URL: https://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

[9] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation”. In: Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, Oct. 2014, pp. 1724–1734. DOI: 10.3115/v1/D14- 1179. URL: https://
aclanthology.org/D14-1179.

47

[10] Jeff Donahue et al. Long-term Recurrent Convolutional Networks for Visual Recognition and
Description. 2016. arXiv: 1411.4389 [cs.CV].

[11] E. D. Ledoux. “Inertial Sensing for Gait Event Detection and Transfemoral Prosthesis Control
Strategy”. In: IEEE Transactions on Biomedical Engineering 65.12 (2018), pp. 2704–2712.
DOI: 10.1109/TBME.2018.2813999.

[12] H. F. Maqbool et al. “Real-time gait event detection for lower limb amputees using a sin-
gle wearable sensor”. In: Proceedings of the IEEE International Conference Engineering in
Medicine. 2016, pp. 5067–5070. DOI: 10.1109/EMBC.2016.7591866.

[13] Binbin Su, Christian Smith, and Elena Gutierrez Farewik. “Gait Phase Recognition Using
Deep Convolutional Neural Network with Inertial Measurement Units”. In: Biosensors 10.9
(2020). ISSN: 2079-6374. DOI: 10.3390/bios10090109.

[14] Yu Lou et al. “IMU-Based Gait Phase Recognition for Stroke Survivors: Preliminary Re-
sults”. In: IEEE International Conference on CYBER Technology in Automation, Control,
and Intelligent Systems. 2018, pp. 802–806. DOI: 10.1109/CYBER.2018.8688103.

[15] Wei-Han Chen et al. “Determining motions with an IMU during level walking and slope
and stair walking”. In: Journal of Sports Sciences 38 (Oct. 2019), pp. 1–8. DOI: 10.1080/
02640414.2019.1680083.

[16] Rafael Rego Drumond et al. “PEEK - An LSTM Recurrent Network for Motion Classification
from Sparse Data”. In: Proceedings of the International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications (2018), pp. 215–222. DOI: 10.
5220/0006585202150222.

[17] J. Figueiredo et al. “Daily Locomotion Recognition and Prediction: A Kinematic Data-Based
Machine Learning Approach”. In: IEEE Access 8 (2020), pp. 33.250–33.262. DOI: 10.1109/
ACCESS.2020.2971552.

[18] U. H. Lee et al. “Image Transformation and CNNs: A Strategy for Encoding Human Loco-
motor Intent for Autonomous Wearable Robots”. In: IEEE Robotics and Automation Letters
5.4 (2020), pp. 5440–5447. DOI: 10.1109/LRA.2020.3007455.

[19] Benyue Su et al. “A CNN-Based Method for Intent Recognition Using Inertial Measurement
Units and Intelligent Lower Limb Prosthesis”. In: IEEE Transactions on Neural Systems
and Rehabilitation Engineering 27 (2019), pp. 1032–1042. DOI: 10.1109/TNSRE.2019.
2909585.

48

[20] Enhao Zheng and Qining Wang. “Noncontact Capacitive Sensing-Based Locomotion Transi-
tion Recognition for Amputees With Robotic Transtibial Prostheses”. In: IEEE Transactions
on Neural Systems and Rehabilitation Engineering 25.2 (2017), pp. 161–170. DOI: 10.1109/
TNSRE.2016.2529581.

[21] Zuojun Liu et al. “Intent pattern recognition of lower-limb motion based on mechanical sen-
sors”. In: IEEE/CAA Journal of Automatica Sinica 4.4 (2017), pp. 651–660. DOI: 10.1109/
JAS.2017.7510619.

[22] Huaitian Lu, Lambert R B Schomaker, and Raffaella Carloni. “IMU-based Deep Neural
Networks for Locomotor Intention Prediction”. In: Proceedings of the IEEE.RSJ Interna-
tional Conference on Intelligent Robots and Systems (2020), pp. 4134–4139. DOI: 10.1109/
IROS45743.2020.9341649.

[23] Julian Bruinsma and Raffaella Carloni. “IMU-Based Deep Neural Networks: Prediction of
Locomotor and Transition Intentions of an Osseointegrated Transfemoral Amputee”. In: IEEE
Transactions on Neural Systems and Rehabilitation Engineering 29 (2021), pp. 1079–1088.
DOI: 10.1109/TNSRE.2021.3086843.

[24] Dongfang Xu et al. “Real-Time On-Board Recognition of Continuous Locomotion Modes for
Amputees With Robotic Transtibial Prostheses”. In: IEEE Transactions on Neural Systems
and Rehabilitation Engineering 26.10 (2018), pp. 2015–2025. DOI: 10.1109/TNSRE.2018.
2870152.

[25] Baojun Chen, Enhao Zheng, and Qi Wang. “A Locomotion Intent Prediction System Based
on Multi-Sensor Fusion”. In: Sensors 14 (2014). DOI: 10.3390/s140712349.

[26] Blair Hu, Elliott Rouse, and Levi Hargrove. “Benchmark Datasets for Bilateral Lower-Limb
Neuromechanical Signals from Wearable Sensors during Unassisted Locomotion in Able-
Bodied Individuals”. In: Frontiers in Robotics and AI 5 (2018). ISSN: 2296-9144. DOI: 10.
3389/frobt.2018.00014.

[27] U Themes. “Gait and Posture Analysis”. In: (2019). URL: https://musculoskeletalkey.
com/gait-and-posture-analysis.

[28] Xenia Karekla and Nick Tyler. “Maintaining balance on a moving bus: The importance of
three-peak steps whilst climbing stairs”. In: Transportation Research Part A: Policy and Prac-
tice 116 (2018), pp. 339–349. DOI: 10.1016/j.tra.2018.06.020.

[29] A. McIntosh et al. “Gait dynamics on an inclined walkway.” In: Journal of biomechanics 39
(2006), pp. 2491–502.

49

[30] Amy Silder, Thor Besier, and Scott Delp. “Predicting the Metabolic Cost of Incline Walk-
ing from Muscle Activity and Walking Mechanics”. In: Journal of biomechanics 45 (2012),
pp. 1842–9. DOI: 10.1016/j.jbiomech.2012.03.032.

[31] Douglas O’Shaughnessy. Speech communication: human and machine. Addison-Wesley, 1987,
p. 150.

[32] Brian McFee et al. “librosa: Audio and Music Signal Analysis in Python”. In: 2015, pp. 18–
24. DOI: 10.25080/Majora-7b98e3ed-003.

[33] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: Inter-
national Conference on Learning Representations (2014).

[34] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12.85 (2011), pp. 2825–2830.

50

Appendix A Re-labelling of Original Data

This section covers more in depth aspects of the process of re-labelling the original data to create
the sequences that later will be used in the training and testing of the neural networks.

The original data, initially, only contained labels for the locomotion modes. In spite of this, it
contain additional information, such as toe off and heel strike events timestamps, that helped when
re-labelling the data in order to also contain labels for the transitions and the gait phases.

A.1 Transition Re-labelling

For transition re-labelling, the change point in between two different locomotion modes is used. The
previous and the subsequent 250 ms (125 samples) to the change point are re-labelled as the transi-
tion between the two locomotion modes. Figure 24 shows a depiction of the re-labelling process.

Figure 24: Transition re-labelling process.

A.2 Gait Phases Re-labelling

For labelling the gait phases, the heel strike and toe off events information is used. In the original
dataset, the timestamps of each of these events are provided so it is possible to delimit the swing and
stance phases of the corresponding leg and label them accordingly. In between a heel strike and a
toe off event there is the stance gait phase, while in between a toe off and a heel strike event there is
the swing gait phases. After this, each gait phase (swing or stance) is further divided into extra gait
phases according to the intervals shown in Figure 11. Figure 25 shows a depiction of the gait phases
relabelling process.

51

Figure 25: Gait Phases re-labelling process.

Appendix B Spectrogram Algorithm

In this appendix it is explain in depth the process of computing the spectrogram of a given sequence
as well as some code snippets are shown to illustrate this process. The code makes use of the library
librosa for all the computations related with the spectrogram.

Listing 1 shows the process of computing the spectrogram of a given time signal. This time
signal can correspond to either signal coming from the accelerometer or gyroscope in the IMUs.
Initially, the mel spectrogram is computed in term of some parameters such as the sampling rate, the
length of the FFT window or the window type. After that, the spectrogram is converted into decibels
and later on is normalized in the range [0, 1] so it can be processed by the neural networks.

1 def computeStectrogram(data):

2

3 data = data.to_numpy()

4

5 S = librosa.feature.melspectrogram(y = data , sr = 500, n_fft=20,

6 hop_length=13, n_mels = 10,

7 window=’hann’, power=2, fmax=350)

8

9 S_dB = librosa.power_to_db(S, ref = np.max)

10 melSpec = np.flip(np.flip(S_dB), axis = 1)

11 melSpec = (melSpec - np.min(melSpec))/np.ptp(melSpec)

12

13 return melSpec

Listing 1: Spectrogram calculation for a time signal.

Listing 2 shows the function to obtain all the spectrograms necessary from a sequence contain-
ing all singlas from the IMUs. For each signal, the previously explained method computeSpectro-
gram() is used to extract said spectrogram. After that, all extracted spectrograms are concatenated
together and returned to be used as input to the neural network.

52

1 def getSpectrogram(sequence):

2

3 processedSequence = []

4

5 # Number of col is 6 or 12 depending on number of IMUs

6 for col in sequence:

7 processedSequence.append(computeStectrogram(sequence[col]))

8

9 return np.asarray(processedSequence)

Listing 2: Obtain the spectrogram for every signal contained in a sequence.

53

Appendix C Confusion Matrices for Individual Network Opti-
mization

In this appendix it can be seen multiple figures showing the confusion matrixes for the performance
of individual networks after the initial training, prior to the grid search optimization, as explained in
Section 5.1.

(a) Walking Transitions (b) Sitting Transitions (c) Standing Transitions (d) RA Transitions

(e) RD Transitions (f) SA Transitions (g) SD Transitions (h) Walking Gait Phases

(i) RA Gait Phases (j) RD Gait Phases (k) SA Gait Pases (l) SD Gait Phases

Figure 26: Confusion matrix for the best performing setup on the individual network optimization
according to results in Figure 20.

54

