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Abstract

This thesis will be about the branch of mathematics known as extreme
value statistics. The partial maximum of sequences of random variables
will be considered and the generalized extreme value theorem will be used
to study the nature of extreme values of such sequences of random vari-
ables. Sequences of independent and dependent random variables will be
considered. The sequences of dependent random variables will be gener-
ated using certain iterative maps which have some interesting properties.
The statistics of the extreme values of dependent sequences will be com-
pared to the statistics of the extreme values of independent sequences. It
will be investigated how the statistics of the extreme values of the depen-
dent sequence depend on the way in which the sequence is generated. The
block maximum method will be used to study the statistics of extreme
values. It will be investigated in which cases the results of the block max-
imum method converge to the correct value and in some cases this exact
value will be calculated analytically.

2



Contents

1 Introduction 4

2 Theoretical background 5
2.1 Generalized extreme value theorem . . . . . . . . . . . . . . . . . 5
2.2 Block maximum method . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Peaks over threshold method . . . . . . . . . . . . . . . . . . . . 11
2.4 Deterministic dynamical systems . . . . . . . . . . . . . . . . . . 12

3 Case studies 18
3.1 The rotation map . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The beta map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 The cusp map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 The logistic map . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 The Newton map . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Conclusion 38

3



1 Introduction

Extreme value statistics is a field of mathematics which revolves around the sta-
tistical behaviour of extreme values. Extreme value statistics is a very important
branch of mathematics because it leads to a deeper understanding of statistics
and probability but also because of the many real life applications where one
could be interested in extreme values. These applications could be the weather,
geology, finance and many more. It is of course crucial for society to have an
understanding of the nature of extreme events in these real life applications.
If we consider the weather as an application of extreme value statistics then
extreme events could for instance be strong winds or heavy rainfall. Extreme
events of the geology of earth could then be earthquakes and tornadoes. The
knowledge of how often these things can happen and how extreme they can be is
a useful tool for designing safe cities. Having a good understanding of extreme
events in finance can be crucial for preventing financial crises from happening.
These are only a few of the examples of the real life applications of extreme
value statistics but these examples already give an idea of the importance of
studying extreme value statistics.

The future can not be predicted which is due to the fact that the data of ex-
treme events in the future for which we are interested in the extremes is random.
However by studying available data and making use of the knowledge of extreme
value statistics, accurate estimations on the amount at which extreme events
happen and the intensity of such extreme events can be made. The data can be
of different kinds for different applications. For instance all the randomness of
certain aspects in which we are interested in could be independent of previous
data or certain connections can exist between the different values. The weather
tomorrow is random because it can not be predicted with certainty, however it
does depend on the weather that it is today.

The generalized extreme value theorem can be used to investigate the sta-
tistical behaviour of extreme values [5]. The generalized extreme value theorem
can be applied when the random variables are independent but under certain
conditions it can also be applied to dependent random variables [6]. It is however
often difficult to check whether these conditions hold for specific cases of depen-
dent random variables. In this thesis multiple different sequences of dependent
random variables will be considered and compared to sequences of independent
random variables to check if the generalized extreme value theorem applies to
these dependent random variables.
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2 Theoretical background

2.1 Generalized extreme value theorem

The probability and intensity of extreme values of random events are important
to analyse because of the real life applications described earlier. To analyse
the probability and intensity of extreme events we need to have data from the
field in which we are analysing the extreme values. If for instance one wants to
analyse the extreme events of the weather to forecast storms, data is needed of
humidity, temperature and many more aspects of the weather. The data can
be considered as random variables. The measurements of the data can then be
considered as the realisations of those random variables.

Assume that there is no limit on the amount of measurements that can be
made and therefore there is also no limit on the amount of random variables.
Also assume that each of these infinite random variables X1, X2, . . . are inde-
pendent of each other and that they are all identically distributed. To analyse
the properties of extreme values of this sequence let us consider the partial max-
imum of this sequence of random variables. The partial maximum is defined to
be the following:

Definition 1. Let X1, X2, . . . be random variables. The partial maximum of
order n of this sequence of random variables is defined by:

Mn = max{X1, X2, . . . , Xn}. (1)

While this partial maximum is only one maximum out of a finite amount of
random variables, it will be useful later to calculate the probability and inten-
sity of extreme values of this sequence. Because the individual Xi are random
and not predetermined, the partial maximum will also be a random variable.

For the goal of analysing the probability and intensity of extreme values of
the sequence X1, X2, . . . we are in particular interested in the limit of the partial
maximum as n approaches infinity. If for example all the random variables Xi

are uniformly distributed on the interval (0, 1) and that they are all independent
of the other random variables. This means that each random variable will have
a realised value somewhere on the interval (0, 1) and the uniform distribution
means that each number in that interval will have an equal likelihood of being
the realised value of any of the random variables. The realised value of any
of the random variables has no influence on the values that the other random
variables will obtain since they are all independently distributed. This means
that for any random variable Xi the following cumulative density function holds:

P
(
Xi < z

)
= z ∀z ∈ (0, 1).
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This function can be used to calculate the cumulative density function of
the partial maxima Mn:

P
(
Mn < z

)
= P

(
X1 < z,X2 < z,X3 < z, . . . ,Xn < z

)
.

Because each Xi is independent from the other random variables the probability
on the right can be written as a product of the individual probabilities

P
(
Mn < z

)
= P

(
X1 < z

)
P
(
X2 < z

)
. . . P

(
Xn < z

)
.

Because each random variable is identically distributed this can easily be trans-
formed to the following.

P
(
Mn < z

)
=
(
P
(
X1 < z

))n
= zn.

The limit of this function when n goes to infinity is a discontinuous function:

P
(
Mn < z

)
=

{
1, for z = 1
0, otherwise

}
.

This is called a degenerate probability distribution because it can not be
considered as a standard probability distribution.

To avoid the problem of arriving at a degenerate probability distribution
for the limit of the partial maximum we can make use of sequences of normal-
ising constants an and bn for which an(Mn − bn) has a proper nondegenerate
probability distribution. Such sequences of normalising constants can be found
for partial maxima of independent and identically distributed random variables
under rather general conditions. Also in this case such normalising constants
can be found.

P
(
an(Mn − bn) < z

)
= P

(
Mn − bn <

z

an

)
= P

(
Mn < bn +

z

an

)
=

(
bn +

z

an

)n
.

(2)

When one chooses an = n and bn = 1 the limit of this probability distribution
equals the function exp(z). Nondegenerate probability distributions for the limit
of a rescaled partial maximum can be found for sequences of random variables
following a different probability distribution. This is described in the generalized
extreme value theorem.
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Generalized Extreme Value Theorem. Let X1, X2, . . . be independent and
identically distributed random variables and let Mn = max{X1, X2, . . . , Xn} de-
note the n’th partial maximum. If there exist two sequences an and bn such that
the limit of the rescaled partial maximum an(Mn− bn) has some nondegenerate
distribution G:

lim
n→∞

P (an(Mn − bn) ≤ z) = G(z)

then G is of the form

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ}
.

G is called a generalized extreme value (GEV) distribution. GEV distribu-
tions have 3 parameters for location, scale and parameter shape (µ, σ, ξ).

For the proof of this theorem the reader is referred to [5].

The generalized extreme value distribution is a family of functions which con-
tains the Gumbel, Fréchet and Weibull distributions. The generalized extreme
value distribution suits one of these 3 distributions depending only on the pa-
rameter shape: [9]

• ξ < 0, corresponds to the Weibull distribution.

• ξ = 0, corresponds to the Gumbel distribution.

• ξ > 0, corresponds to the Fréchet distribution.

The values of the three parameters depend on the distribution of the individual
X ′is and on the values of the sequences an and bn. In some cases multiple dif-
ferent sequences an and bn are possible. In general different values of an and bn
correspond to different values of the location and scale parameter, however the
parameter shape will remain the same [1]. For our goal of modelling extreme
values the parameter shape is much more important than the location or scale
parameters since the parameter shape shows the shape of the tail of the distri-
bution which is related to the probability and intensity of extreme values [1].
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The generalized extreme value theorem can be extended to the case where the
random variables Xi are not independent [6]. When the sequence of dependent
and identically distributed random variables satisfies some necessary conditions,
the limit of the partial maximum which is rescaled by some sequences an and bn
will also follow a generalized extreme value distribution. The conditions for the
generalized extreme value theorem to apply to a dependent sequence of random
variables are:

• The correlation between the random variables Xi converge to zero suffi-
ciently fast.

• Exceedances of the realisations of the random variables Xi over certain
thresholds are not clustering too much.

This gives an idea of the conditions that dependent sequences of random vari-
ables need to satisfy for the limit of the rescaled partial maximum to follow a
generalized extreme value distribution.

These conditions are of course not very precisely formulated. Describing the
exact conditions will take too much space and will therefore not be done here.
When one is interested in learning the exact conditions the reader is referred
to [6]. The fact that the generalized extreme value theorem can be extended
to cases where the random variables are dependent is very useful for real life
applications because data in real life is often not completely independent. If
the weather today is rainy and cold then the weather of tomorrow will likely be
similar.

2.2 Block maximum method

Given a certain probability density function, it is not immediately obvious how
one should calculate the values of the three parameters. For some probability
density functions it can be done analytically, however this can be very difficult
and time consuming for more complicated probability density functions. An
analytical approach to calculate the tail parameter of the generalized extreme
value distribution for random variables distributed according to the uniform
distribution on the interval (0, 1) is given in the previous chapter. It was shown
that the generalized extreme value distribution in this case equals

G(z) = exp {z}.

This corresponds to the values µ = −1, σ = 1 and ξ = −1.
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When one wants to find out the value of the tail parameter of the generalized
extreme value distribution of the limit of the partial maximum of random vari-
ables following a different probability distribution one first has to find sequences
an and bn such that the limit of the partial maximum has a nondegenerate dis-
tribution, and then one can calculate the tail parameter. However the way to
find this tail parameter will be different for every probability density function
that the individual random variables follow. In the case where the random
variables follow the uniform distribution on the interval (0, 1) this was not too
difficult, but for more complicated probability density functions it will be much
more difficult.

In real life applications the probability density functions will be much more
complicated than the uniform distribution and the probability density functions
will also be different for any real life application. It is not efficient and some-
times even not possible to have to find a way to calculate the tail parameter for
every real life application where one could be interested in the probability and
intensity of extreme values. This is why general methods have been developed
to estimate the value of the tail parameter of the generalized extreme value
distribution of the limit of the partial maximum of independent and identically
distributed random variables.

The method that we will focus our attention on is called the block maximum
method. The block maximum method works as follows: given the probability
density function which the independent and identically distributed random vari-
ables follow, generate a large amount of realisations of these random variables.
Given the sequence of realisations of the random variables the following maxima
will be calculated:

B1 = max{x1, x2, . . . , xm}
B2 = max{xm+1, xm+2, . . . , x2m}

...

Bk = max{x(k−1)m+1, x(k−1)m+2, . . . , xkm}

(3)

The sequence of the realisations is divided into k blocks of length m. Then
the block maximum method will only consider the maximum value in each of
the blocks. Using these maxima of each block the block maximum method will
calculate the maximum likelihood estimator of the tail parameter of the corre-
sponding generalized extreme value distribution.
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The maximum likelihood estimator of a random variable is the value of this
variable for which the likelihood of the observed realisation is maximized. When
a certain outcome of a random process which depends on the value of a ran-
dom variable is known and fixed, The likelihood of this outcome given a certain
value of this random variable can be considered as a function of the random vari-
able. The maximum likelihood estimator of this random variable is the value
for which this function is maximized. So when the true value of the random
variable equals this maximum likelihood estimator, then the likelihood of the
observed outcome having occurred is greater than it would be for any other
value of the random variable.

For a sample of n observations y = y1, . . . , yn, the maximum likelihood
estimators of the three parameters of the generalized extreme value distribution
are determined by maximizing the likelihood function [4]:

Ln(y|µ, σ, ξ) =

n∏
i=1

[
1

σ

(
1+ξ

yi − µ
σ

)−(1/ξ)−1]
exp

{
−

n∑
i=1

[(
1+ξ

yi − µ
σ

)−1/ξ]}
.

(4)

Because the likelihood function has positive range the logarithm of this function
can be taken. The logarithm is an increasing function which means that the val-
ues which maximize the likelihood function also maximize the logarithm of the
likelihood function. This logarithm is called the loglikelihood. The loglikelihood
is given by:

ln(y|µ, σ, ξ) = −n log(σ) +

n∑
i=1

[(
− 1

ξ
− 1

)
log(zi)− zi−1/ξ

]
, (5)

where zi = 1 + ξ(yi−µσ ). The maximum likelihood estimators of the three pa-
rameters can then be found by solving the system of equations which set the
first derivatives of this loglikelihood with respect to each parameter equal to
zero:

1

σ

n∑
i=1

[
1 + ξ − zi−1/ξ

zi

]
= 0,

− n

σ
+

1

σ

n∑
i=1

[(
1 + ξ − zi−1/ξ

zi

)(
yi − µ
σ

)]
= 0,

− 1

ξ2

n∑
i=1

[
log(zi)

(
1 + ξ − zi−1/ξ

)
−
(

1 + ξ − zi−1/ξ

zi

)
ξ

(
yi − µ
σ

)]
= 0.

(6)
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The calculations of these maximum likelihood estimators were done using a
script called gevfit.m which was written by P. Embrechts, C. Klüppelberg, and
T. Mikosch [8]. Matlab was used to run this script. Matlab is the program
used to calculate the tail parameters and to plot the graphs which are shown in
this thesis. The accuracy of the maximum likelihood estimators will of course
depend on both the amount of blocks and on the size of the blocks, this will be
further discussed in a later chapter.

When the block maximum method is used on sequences for which the gen-
eralized extreme value theorem does not apply (for instance if the random vari-
ables are dependent but do not satisfy the necessary conditions for the gener-
alized extreme value theorem to apply to dependent random variables or if the
random variables are not identically distributed) then the maximum likelihood
estimator of the tail parameter will not correspond to the real tail parameter
because that does not exist for those sequences. It is therefore still necessary
to check whether the generalized extreme value theorem applies to the random
variables one is analysing and whether the estimated value of the tail parameter
seems correct.

2.3 Peaks over threshold method

There are other methods than the block maximum method to obtain the values
of the three parameters such as the peaks over threshold method. The peaks
over threshold method focuses on the realisations of the random variables which
are exceeding some given threshold. Although there are some advantages to the
peaks over threshold method compared to the block maximum method such as
the fact that the peaks over threshold method often allows for more flexibility
since it is in some practical situations difficult to change the block size [2], It has
the problem of determining a proper threshold. There have been many stud-
ies done on finding useful thresholds but effective and stable methods have not
been found at this moment [3]. The peaks over threshold method also has the
disadvantage that in the usual practical situations the values of the three pa-
rameters are estimated with less accuracy than is the case when using the block
maximum method for the same amount of realisations of the random variables
[2]. For these reasons we will focus on the block maximum method instead of
the peaks over threshold method.
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2.4 Deterministic dynamical systems

In many real life applications such as the weather the current value gives us
the ability to calculate the values in the future. For instance the weather today
such as temperature, humidity and whether it is raining or not can be used to
predict the weather tomorrow. This same principle of course also holds for other
applications such as in finance (risks in for instance insurance) and in geology
(earthquakes or the behaviour of ocean waves). For this reason let us consider
sequences generated by the iterative map

Xi+1 = f(Xi)

for some map f . In real life applications the Xi values will often be vectors
with many parameters and the map f will be a very difficult function of those
multiple parameters. However we will focus on simple maps f which take only
one number as its input. This can seem like too much of a restriction but we
will see that even very simple maps can have very unpredictable and chaotic
outcomes.

Of course when we know the value of X0 all the other values of the Xi will
also be determined, but when X0 is treated as a random variable then all the
other X ′is will be random. X0 is treated as a random variable because in real
life applications it is impossible to know the current value with infinite precision
and given the nature of the maps we will consider even very slight differences
in initial value can lead to very big changes after only a few steps.

With the applications in mind it is not difficult to see why one would be in-
terested in the amount and severity of extreme values of the sequence generated
by the iterative map. The extreme values could for instance mean dangerous
storms, financial crises or giant ocean waves capable of destroying a city. Now
that we know why one would want to model the likelihood and severity of ex-
tremes of sequences generated by the iterative map described above we arrive at
the obvious problem that such sequences are indeed random but not necessarily
identically distributed and certainly not independent. To deal with this problem
it is important to note that for certain maps there exist invariant distributions.
This means that if the input for the map is randomly distributed according to
its invariant distribution then the output of the map will be another random
variable with the same probability distribution.
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Let us consider the beta map: f(x) = βx mod 1 which maps numbers from
the interval (0, 1) to the same interval for some value of β. It can be shown
that the uniform distribution is invariant under the beta map when β is a pos-
itive integer. This means that when X0 is distributed according to the uniform
distribution on the interval (0, 1), then X1 will also be uniformly distributed
on the interval (0, 1). Because the output of the map at any point will be the
input of the map at the next moment it can be easily seen that every random
variable Xi will be distributed with the uniform distribution on (0, 1) for all
positive integers i. The fact that the uniform distribution on (0, 1) is the invari-
ant distribution of the beta map will be proven in later in the subsection about
the beta map.

Different maps will have different invariant distributions. When we let X0

be distributed according to the invariant distribution of the map which we are
using to generate the sequence, then the random variables will of course still not
be independent since that is the point of the iterative map but at least they will
all be identically distributed. The sequence being dependent does not have to
be a problem considering the fact that the Generalized Extreme Value Theorem
also holds for dependent random variables as long as certain conditions hold.
These conditions hold for most of the maps that we will look at but it will not
be proven in this thesis that the conditions hold since that will take too much
space in this thesis.

This table shows some maps with their invariant distributions:

Interval I
map f : I → I Density ρ of

the invariant
distributions

[0, 1) Rotation map f(x) = ω + x mod 1, ω ∈ R 1
[0, 1) Doubling map f(x) = 2x mod 1 1
[0, 1] Tent map f(x) = 1− |2x− 1| 1
[0, 1) Beta map f(x) = βx mod 1, β ∈ Z>1 1

[−1, 1] Cusp map f(x) = 1− 2
√
|x| (1− x)/2

[0, 1] Logistic map f(x) = 4x(1− x) 1/(π
√
x(1− x))

R Newton map f(x) = 1
2 (x− 1

x ) 1/(π(1 + x2))

13



Figure 1: Sequence generated by the doubling map.

Sequences generated by the different maps shown in this table all have dif-
ferent properties. Sequences generated by the doubling map (figure 1) or the
tent map (figure 2) oscillate between small and large values. The same is true
for the beta map when β is relatively small but for larger β the values of the
sequence seem more independent (figure 3). Sequences generated by the cusp
map (figure 4) slowly grow until it hits a point at which it will fall down again.
The smaller any value is the slower the growth at that point as can be seen in
the graph below. The logistic map (figure 5) also has its sequences oscillate just
like the doubling map or the tent map, however it oscillates in a different way,
namely the farther away any point is from 0, 1, or 0.75 the more it jumps at
the next point. The Newton map (figure 6) generates a sequence of numbers
in all of R. Most of the realisations lie somewhere close to 0 but sometimes it
makes a big jump after which it will again return to 0. In the sequences shown
below the starting random variable X0 is distributed according to the invariant
distribution of the map which generates the sequence.
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Figure 2: Sequence generated by the tent map.

Figure 3: Sequence generated by the beta map with β = 3.
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Figure 4: Sequence generated by the cusp map.

Figure 5: Sequence generated by the logistic map.
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Figure 6: Sequence generated by the Newton map.

It can be seen that sequences generated by the doubling map (figure 1) or
tent map (figure 2) will at some point reach 0 after which it will never reach
another number. This is not because of the nature of the map but because
of a limitation in the calculation software. Matlab is used for plotting these
graphs and when a random number is generated in Matlab only a finite number
of decimals is generated in base 2. This means that after it has been multi-
plied by an even number often enough the number will be treated as an integer
which is mapped to 0. This same problem applies to the beta map when β is
an even number. Therefore we will restrict to the case when β is an odd number.

It is not easy to check for each of these maps if the conditions hold for the
generalized extreme value theorem to be applied to dependent sequences. This is
why we will apply the block maximum method to dependent sequences generated
by each of these maps and compare the results with that of the independent
sequences following the invariant distributions of these iterative maps. This
way the dependent sequences follow the same distribution as their respective
independent sequences and if the dependent sequences satisfy the conditions for
the generalized extreme value theorem to be applied to dependent sequences
then the results are expected to be similar for the dependent and independent
case. Checking if the results for the dependent and independent case are similar
is a useful test to help find out which maps do and which do not satisfy the
necessary conditions of the generalized extreme value theorem.
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3 Case studies

The block maximum method can be used on sequences of random variables to
calculate the maximum likelihood estimator of the tail parameter of the general-
ized extreme value distribution which the limit of the rescaled partial maximum
will follow. The value that the block maximum method provides is therefore
just an estimator of the value in which we are interested. For many real life ap-
plications it is of course important to obtain an estimator of the tail parameter
which is as close to the true value as possible, since more accurate estimations
give more insight into the likelihood and intensity of extreme values. The more
is known about the amount of extreme storms and its intensity the better soci-
ety can prepare for it. More data means that the block maximum method will
likely make a better approximation of the tail parameter.

The block maximum method distributes all the data into different blocks
which all have the same amount of data. Therefore more data could mean that
each block still has the same amount of data but that there will be more blocks,
or it could mean that the amount of blocks remain the same but each block will
receive more data. It could also be somewhere in between where there will be
more blocks which also all have more data. We will focus on the case where the
number of blocks remain the same but the length of the blocks is flexible. This
way we can find out if the estimated values converge for larger block lengths
and if it converges to the expected value.
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Figure 7: Sequence generated by the rotation map with ω = 0.278498218867048.

3.1 The rotation map

The rotation map is an iterative map as is described in the previous chapter
which is as follows

f(x) = x+ ω mod 1

The uniform distribution on the interval (0, 1) is the invariant distribution for
this map.

Lemma 1. The uniform distribution on the interval (0, 1) is the invariant dis-
tribution of the rotation map described by f(x) = x+ ω mod 1

Proof. Let Xi be distributed according to the uniform distribution on the in-
terval (0, 1) and let Xi+1 = f(Xi) where f(x) is the rotation map. then

P
(
Xi+1 < z

)
= P

(
Xi + ω mod 1 < z

)
= P

(
Xi mod 1 < z − ω

)
+ P

(
Xi mod 1 > 1− ω

)
= (z − ω) + ω

= z.

Therefore Xi+1 is also distributed according to the uniform distribution on the
interval (0, 1) which proves that the uniform distribution on (0, 1) is the invariant
distribution of the rotation map.
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Figure 8: Sequence generated by the rotation map with ω = 0.485375648722841.

Figure 9: Sequence generated by the rotation map with ω = 0.905791937075619.
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Figure 10: Sequence generated by the rotation map with ω = 2/3.

The rotation map seems similar to the beta map but it behaves rather differ-
ently. The only difference between these two maps is that instead of multiplying
the rotation map adds the values together. The maps even have the same in-
variant distribution. However whereas the beta map generates sequences rather
similarly for different values of β, the rotation map is very dependent on the
value of ω. When ω is an integer every element in the sequence generated by the
rotation map will be the same since we are only looking at the decimal numbers.
In this case it obviously does not make much sense to try to model the partial
maxima since Mn = X0 for every n ∈ N . For other values of ω there is more
randomness but there can still be some weird sequences generated by it.

When ω is some rational number p
q for some integers p and q, after q steps the

sequence begins again: Xq = p
q +Xq−1 mod 1 = p

q + p
q +Xq−2 mod 1. Repeating

this argument one obtains Xq = q pq +X0 mod 1 = p+X0 mod 1 = X0. When
n is sufficiently large the partial maximum Mn will be equal to the maximum of
the loop and afterwards the partial maximum will never increase again. There is
still some randomness to the limit of the partial maximum since the maximum
of the loop depends on the value of X0 but the sequences that are generated in
this case are clearly not behaving similarly to sequences of independent random
variables which are distributed uniformly on the interval (0, 1).
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Figure 11: Histogram of the estimated tail parameter values for a sample of
random uniform values of omega.

The conditions of the Generalized Extreme Value Theorem are not satisfied
for sequences generated by the rotation map. Namely the correlations between
the random variables do not converge to zero. This means that the block max-
imum method will not give good results for the estimation of the parameters
because the estimated values of the parameters will depend heavily on the value
of ω that is used. This map can therefore not be used to model the tail param-
eter of the generalized extreme value distribution for sequences of independent
random variables distributed uniformly on the interval (0, 1). This can be seen
in 12.

The histogram of figure 11 shows the estimated values of the tail parameters
for 200 sequences generated by the rotation map, all with a different random
value of ω. The values were estimated using the block maximum method with a
block length of 200 and an amount of 1000 blocks. Because the random values
of ω were generated with a finite number of decimals they are technically all ra-
tional numbers however for practical purposes, because the amount of decimals
that were generated was so large, they can be regarded as irrational numbers.

The histogram of figure 11 shows that the block maximum method estimates
the tail parameters for all of the sequences to be smaller than −0.3. However
when one generates sequences with the rotation map for rational values of ω
with a small denominator, the values of the tail parameters are estimated to be
very close to 0 and almost always bigger than −0.3. All values of ω will cause
the uniform distribution on (0, 1) to be the invariant distribution of the rotation
map, but all values of ω will also cause the block maximum method to estimate
very different tail parameters based on the value of ω.
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Figure 12: Estimated value of the tail parameter for different blocklengths.

Figure 12 plots the estimated value of the tail parameter against the length
of the blocks where the amount of blocks is fixed to equal 1000. 20 different
graphs of the estimated value of the tail parameter for different blocklengths
were created. The blue line in figure 12 represents the average value of those 20
different graphs for that given blocklength and the vertical black lines show the
95% confidence interval of the maximum likelihood estimator of the tail parame-
ter. Each sequence of random variables is generated by the rotation map with a
value of ω = 1

2

√
2. It can be seen that the estimated value of the tail parameter

depends heavily on the length of the blocks and it is obvious that the estimation
does not converge to any single value. The fact that this is true for the average
of 20 different graphs shows that the estimated value of the tail parameter never
converges when using sequences generated by the rotation map and that this is
not simply a bad result happening once. This shows that the generalized ex-
treme value theorem does not apply to sequences generated by the rotation map.

The actual tail parameter for independent sequences generated by the uni-
form distribution on (0, 1) equals −1 which was calculated in 2. However only
few of the dependent sequences generated by the rotation map will cause the
block maximum method to estimate the tail parameter to equal −1. This all
shows that the rescaled limit of the partial maximum of dependent sequences
generated by the rotation map does not follow a generalized extreme value dis-
tribution. The block maximum method therefore does not work for this specific
case.
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3.2 The beta map

The beta map is an iterative map which was described in an earlier section. The
beta map is defined as follows:

f(x) = βx mod 1.

It was discussed in an earlier section that the uniform distribution on the interval
(0, 1) is the invariant distribution of the beta map, this will now be proven:

Lemma 2. The uniform distribution on the interval (0, 1) is the invariant dis-
tribution of the beta map described by f(x) = βx mod 1

Proof. Let X0 be a random variable which is uniformly distributed on the in-
terval (0, 1) and let X1 = f(X0) where f is the beta map.

P
(
X1 < z

)
= P

(
βX0 mod 1 < z

)
=

β−1∑
k=0

P
(k
β
< X0 <

k + z

β

)
=

β−1∑
k=0

z

β

= z.

(7)

Therefore X1 is also distributed according to the uniform distribution on the
interval (0, 1).

The program Matlab was used to generate sequences of dependent random
variables generated by the beta map. Matlab generates random numbers with
only a finite amount of decimals in base 2. This has the unfortunate effect that
after a sufficient amount of multiplication of this randomly generated number
with an even number, No decimals in base 2 will remain and the resulting num-
ber will be an integer. Any integer mod 1 will equal 0 and 0 will be mapped to
itself under the beta map. This means that after sufficient iterations with the
beta map when β is an even number any randomly generated number will reach
the value zero after which it will never reach another value.

Such a sequence which only has a finite amount of nonzero elements is not
useful for our purpose of analysing the properties of extreme values of random
sequences. For this reason we will focus on the case when β = 3. This removes
the problem of arriving at a never ending sequence of zeros. The beta map does
not have similar problems to the ones in the case of the rotation map, it will
not generate periodic sequences. For this reason the estimated value of the tail
parameter using the block maximum method will behave more appropriately as
it can be seen that for this value of β the estimated value of the tail parameter
converges when the blocklength increases.
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Figure 13: Estimated value of the tail parameter using the beta map for different
blocklengths.

Figure 14: Estimated value of the tail parameter using independent uniformly
generated random variables for different blocklengths.
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In figure 13 the estimated value of the tail parameter can be seen for se-
quences generated by the beta map and in figure 14 the tail parameter is esti-
mated for sequences of independent uniformly distributed random variables. In
both figures 1000 blocks were used. The two figures look very similar which is
a good indication that sequences generated by the beta map satisfy the condi-
tions for the generalized extreme value theorem to apply to dependent sequences.
These sequences can therefore be used to estimate the tail parameter of the gen-
eralized extreme value distribution of the rescaled limitting partial maximum
of independent uniformly distributed random variables. In the case of the de-
pendent sequence only one random number has to be generated which is then
iterated many times in a simple map. In the case of the independent sequence
many random numbers need to be generated. Because it is quicker to calculate
the output of a simple function than it is to generate a random number, using
sequences generated by the beta map is a more efficient way of estimating the
tail parameter of a sequence of uniformly distributed random variables than
using independent random variables.

3.3 The cusp map

The cusp map is an iterative map which is defined as follows:

f(x) = 1− 2
√
|x|.

The invariant distribution for this map is the following function on the interval
[−1, 1]:

ρ(x) =
1− x

2
.

The proof that this function is the invariant distribution of the cusp map is a
bit more complicated than the similar proofs for the other maps which we have
looked at so far but it is still a fairly simple proof.
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Lemma 3. The distribution given by ρ(x) = 1−x
2 is the invariant distribution

of the cusp map given by f(x) = 1− 2
√
|x|

Proof. Let X0 be a random variable distributed according to the distribution
ρ(x) = 1−x

2 . This means that

P
(
X0 < z

)
=

∫ z

−1

1− x
2

dx

= −1

4
z2 +

1

2
z +

3

4
.

Now let X1 be defined to be f(X0) where f is the cusp map. Then

P
(
X1 < z

)
= P

(
1− 2

√
|X0| < z

)
= P

(
|X0| >

[
1− z

2

]2)
= P

(
X0 < −

[
1− z

2

]2)
+ P

(
X0 >

[
1− z

2

]2)
= −1

4
z2 +

1

2
z +

3

4

= P
(
X0 < z

)
.

X1 has therefore the same probability distribution as X0 which shows that ρ(x)
is the invariant distribution of the cusp map.

When X0 is distributed according to this invariant distribution then all the
random variables will be identically distributed. To generate a random variable
according to this distribution, one can make use of generalized inverse functions
[7].

Definition 1. For an increasing function T : R→ R with T (∞) = lim
x→−∞

T (x)

and T (∞) = lim
x→∞

T (x), the generalized inverse T− : R → [−∞,∞] of T is

defined by
T−(y) = inf {x ∈ R : T (x) ≥ y}, y ∈ R, (8)

with the convention that inf {} =∞. If T : R→ [0, 1] is a distribution function,
T− : [0, 1]→ [−∞,∞] is also called the quantile function of T .

With this definition we can make use of an important proposition.

Proposition 1. Let F be a distribution function and X ∼ F .

1. if F is continuous, F (X) ∼ U [0, 1].

2. if U ∼ U [0, 1], F−(U) ∼ F
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When the generalized inverse function of the distribution function of F is
known then we can simply generate a uniformly distributed random variable
and use it as the input for the generalized inverse function of F to generate a
random variable which is distributed according to the distribution function F .

Note that since F is an increasing function on the interval [−1, 1], the gen-
eralized inverse F− is simply the inverse function of F . Let u be the realisation
of a random variable following the uniform distribution on the interval (0, 1)
and let x = F−(u), then u = F (x) and x is the realisation of a random variable
following the distribution function F .

P
(
X < x

)
= F (x) = −1

4
x2 +

1

2
x+

3

4
= u,

− 1

4
x2 +

1

2
x+

(3

4
− u
)

= 0.

We can use the quadratic formula to calculate x as a function of u.

x = 1± 2
√

1− u,

where x must lie somewhere on the interval [−1, 1]. This means that the inverse
function of F equals:

F−(u) = 1− 2
√

1− u.

Now that we can generate random variables which follow the invariant dis-
tribution of the cusp map we can compare sequences of dependent random
variables generated by the cusp map with sequences of independent random
variables which follow the same distribution. Figures 15 and 16 show the esti-
mated value of the tail parameter for different blocklengths for the dependent
case and the independent case. In both cases 1000 blocks were used. It can be
seen that the results of the two graphs are very different. In the case where all
the random variables are independent the value of the tail parameter is esti-
mated to be close to −0.5 while in the case where the sequences are generated
with the cusp map the tail parameter is estimated to be around −1.0. Another
clear difference is the fact that in the dependent case the estimated value of
the tail parameter is not stable which seems to imply that the block maximum
method does not produce a good estimation of the tail parameter.
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Figure 15: Estimated value of the tail parameter using sequences generated by
the cusp map for different blocklengths.

Figure 16: Estimated value of the tail parameter using independent random
variables following the invariant distribution of the cusp map for different block-
lengths.
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It can be shown analytically that the tail parameter of independent sequences
of random variables distributed according to the invariant distribution of the
cusp map equals −0.5. This can be done in the same way as in equation 2:

P
(
an(Mn − bn) < z

)
= P

(
Mn <

z

an
+ bn

)
=

[
P

(
X1 <

z

an
+ bn

)]n
=

[
− 1

4

(
z

an
+ bn

)2

+
1

2

(
z

an
+ bn

)
+

3

4

]n
=

[(
− 1

4a2n

)
z2 +

(
1

2an
− bn

2an

)
z +

(
− 1

4
b2n +

1

2
bn −

1

4

)]n
.

(9)

choosing an = 1
2

√
n and bn = 1 gives:

P

(
1

2

√
n(Mn − 1) < z

)
=

[
1 +
−z2

n

]n
.

The limit of this expression when n tends to infinity equals exp{−z2}. This
corresponds to the values of the parameters µ = 1, σ = − 1

2 and ξ = − 1
2 . This

value of the tail parameter is exactly what would be expected given figure 16.
This also shows that the estimated values of the tail parameter using sequences
generated by the cusp map do not converge to the true value of the tail param-
eter for sequences of independent random variables distributed according to the
invariant distribution of the cusp map.

These results can be explained when one takes a closer look at the behaviour
of the cusp map and sequences generated by it. In the figure 4 it can be seen
that sequences generated by the cusp map do not behave as if they were all
independent. When the sequence reaches a value close to −1 it tends to stick
to such small values for a long time. The periods where the sequence sticks to
small values can be arbitrarily long when the values at the start of such a pe-
riod are sufficiently small. When the block maximum method places the values
into the different blocks, there can be blocks where all the values are close to
−1 while this is near impossible in the case when all the random variables are
independent. This explains why the dependent case and the independent case
give such different results.
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The generalized extreme value theorem can be extended to the case where
the random variables are dependent but then certain conditions must hold. The
dependent sequence of random variables must behave similarly to a sequence of
independent random variables. This is clearly not the case for sequences gener-
ated by the cusp map since small values stick so much together. Therefore using
the cusp map is not a good way to estimate the tail parameter of the general-
ized extreme value distribution for sequences of independent random variables
which are all distributed according to the invariant distribution of the cusp map.

3.4 The logistic map

The logistic map is another iterative map with a different invariant distribution.
The logistic map is defined by:

f(x) = 4x(1− x).

The invariant distribution of the logistic map is given by:

ρ(x) =
1

π
√
x(1− x)

.

Lemma 4. The distribution given by ρ(x) = 1

π
√
x(1−x)

is the invariant distri-

bution of the logistic map given by f(x) = 4x(1− x).

Proof. Let X0 be a random variable distributed according to the density func-
tion ρ(x) = 1

π
√
x(1−x)

and let X1 = f(X0) where f(x) is the logistic map.

Then

P
(
X0 < z

)
=

∫ z

0

ρ(x) dx

=

∫ z

0

1

π
√
x(1− x)

dx

= 1− 2

π
arcsin

(√
1− z

)
,

and

P
(
X1 < z

)
= P

(
f(X0) < z

)
= P

(
4X0(1−X0) < z

)
= P

(
X0(1−X0) <

1

4
z
)

= P
(
−X0

2 +X0 −
1

4
z < 0

)
.
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The quadratic formula can be used to compute the intervals in which X0 must
lie for this condition to hold:

P
(
−X0

2 +X0 −
1

4
z < 0

)
= P

(
X0 <

1

2
− 1

2

√
1− z

)
+ P

(
X0 >

1

2
+

1

2

√
1− z

)
= 1− 2

π
arcsin

(√
1−

(1

2
− 1

2

√
1− z

))
+ 1−

[
1− 2

π
arcsin

(√
1−

(1

2
+

1

2

√
1− z

))]
= 1− 2

π

[
arcsin

(√
1

2
+

1

2

√
1− z

)
− arcsin

(√
1

2
− 1

2

√
1− z

)]
.

We can make use of the trigonometric identity
arcsin(x)− arcsin(y) = arcsin

(
x
√

1− y2 − y
√

1− x2
)

with x =
√

1
2 + 1

2

√
1− z and y =

√
1
2 −

1
2

√
1− z.

This leads to:

P
(
−X0

2 +X0 −
1

4
z < 0

)
= 1− 2

π
arcsin

(√
1− z

)
= P

(
X0 < z

)
X1 has the same distribution as X0 which proves that ρ(x) = 1

π
√
x(1−x)

is the

invariant distribution of the logistic map.

To generate random variables following the invariant distribution of the lo-
gistic map we need to make use of the generalised inverse again. Since F is a
cumulative density function its generalised inverse is again just its inverse.

P
(
X < x

)
= F (x),

1− 2

π
arcsin

(√
1− x

)
= u,

x = 1− sin2
(1

2
π[1− u]

)
= F−(u).

With the inverse function F− random variables following the invariant distri-
bution of the logistic map can be generated. This allows us to compare the
estimated value of the tail parameter for sequences of independent random vari-
ables with the estimated value for dependent sequences generated by the logistic
map. Figure 17 shows the estimated value of the tail parameter for dependent
sequences of random variables generated by the logistic map and figure 18 shows
the estimated value of the tail parameter for sequences of independent random
variables following the invariant distribution of the logistic map. It can be seen
that the two figures look very similar. This suggests that the logistic map satis-
fies the conditions of the generalized extreme value theorem such that rescaled
limitting partial maxima of sequences generated by the logistic map follow a
generalized extreme value distribution.
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Figure 17: Estimated value of the tail parameter using sequences generated by
the logistic map for different blocklengths.

Figure 18: Estimated value of the tail parameter using independent random
variables following the invariant distribution of the logistic map for different
blocklengths.
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3.5 The Newton map

The Newton map is an iterative map which is defined by:

F (x) =
1

2

(
x− 1

x

)
and its invariant distribution is given by:

ρ(x) =
1

π(1 + x2)
.

The Newton map is what happens when one tries to find the roots of then
function φ(x) = x2 + 1 using the Newton method. The Newton method uses

the following iterative map to estimate roots of functions: Xn+1 = Xn− f(Xn)
f(Xn)

.

When the function of which one wants to find roots is the one one described
above then the Newton method consists of the map

Xn+1 = Xn −
φ(Xn)

φ′(Xn)

=
1

2

(
Xn −

1

Xn

) (10)

which is the Newton map.

Lemma 5. The distribution given by ρ(x) = 1
π(1+x2) is the invariant distribu-

tion of the Newton map given by f(x) = 1
2 (x− 1

x )

Proof. Let X0 be distributed by the distribution function ρ(x) = 1
π(1+x2) . This

means that

P
(
X0 < z

)
=

∫ z

−∞

1

π(1 + x2)
dx

=
1

π

∫ z

−∞

1

1 + x2
dx

=
1

π

(
arctan(z) +

π

2

)
=

1

π
arctan(z) +

1

2
.

Now let X1 = f(X0) where f(x) is the Newton map.

P
(
X1 < z

)
= P

(1

2
(X0 −

1

X0
) < z

)
= P

(
X0 −

1

X0
< 2z

)
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In the case that X0 < 0 This means:

P
(
X0 −

1

X0
< 2z

)
= P

(
X0

2 − 1 > 2zX0

)
= P

(
X0

2 − 2zX0 − 1 > 0
)

Using the quadratic formula and our assumption that X0 < 0:

P
(
X0

2 − 2zX0 − 1 > 0
)

= P
(
X0 < z −

√
z2 + 1

)
In the case that X0 > 0:

P
(
X0 −

1

X0
< 2z

)
= P

(
X0

2 − 1 < 2zX0

)
= P

(
X0

2 − 2zX0 − 1 < 0
)

Using the quadratic formula and our assumption that X0 > 0:

P
(
X0

2 − 2zX0 − 1 < 0
)

= P
(
0 < X0 < z +

√
z2 + 1

)
combining these two distinct cases:

P
(
X0 −

1

X0
< 2z

)
= P

(
X0 < z −

√
z2 + 1

)
+ P

(
0 < X0 < z +

√
z2 + 1

)
=

1

π
arctan

(
z −

√
z2 + 1

)
+

1

2
+

1

π
arctan

(
z +

√
z2 + 1

)
+

1

2
− 1

π
arctan(0)− 1

2

=
1

π

[
arctan

(
z −

√
z2 + 1

)
+ arctan

(
z +

√
z2 + 1

)]
+

1

2
.

We can make use of the trigonometric identity
arctan(x)+arctan(y) = arctan

(
x+y
1−xy

)
with x = z−

√
z2 + 1 and y = z+

√
z2 + 1.

This leads to:

P
(
X0 −

1

X0
< 2z

)
=

1

π
arctan(z) +

1

2

= P (X0 < z)

This shows that X1 is also distributed by ρ(x) = 1
π(1+x2) which proves that this

distribution is the invariant distribution of the Newton map.
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To generate random variables which are distributed according to the invari-
ant distribution of the Newton map one again has to make use of generalised
inverses. The generalised inverse of a cumulative density distribution is simply
its inverse. Let X be distributed according to the invariant distribution of the
Newton map and let u = F (x). Then u is a uniformly distributed random
variable on the interval (0, 1).

F (x) = u,

1

π
arctan(x) +

1

2
= u,

1

π
arctan(x) = u− 1

2
,

arctan(x) = π
(
u− 1

2

)
,

x = tan
(
π
[
u− 1

2

])
= F−(u).

With this inverse function we can generate sequences of dependent random vari-
ables using the Newton map and sequences of independent random variables
following the same distribution. We can then compare the estimated value of
the tail parameter for the two different ways of generating sequences. Figure 19
shows the estimated value of the tail parameter of sequences generated by the
Newton map for different blocklengths and figure 20 shows the estimated value
of the tail parameter for independent sequences of random variables distributed
according to the invariant distribution of the Newton map. The two figures look
very similar and in both cases the estimated value of the tail parameter seems
to be close to 1. This suggests that sequences generated by the Newton map
satisfy the conditions for the generalized extreme value theorem to be applicable
to dependent sequences.

It can be seen that in both figures 19 and 20 the block maximum method
sometimes estimates a very different value for the tail parameter than expected.
This is because there is a small probability that random variables following
the invariant distribution of the Newton map will attain very big values in their
realisations. If by chance this happens often inside a block or it does not happen
at all then this can affect the outcome of the maximum likelihood estimators.
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Figure 19: Estimated value of the tail parameter using sequences generated by
the Newton map for different blocklengths.

Figure 20: Estimated value of the tail parameter using independent random
variables following the invariant distribution of the Newton map for different
blocklengths.
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4 Conclusion

The tail parameter of the generalized extreme value distribution of the limit
of the rescaled partial maximum of a sequence of random variables gives a lot
of insight into the statistical behaviour of the extreme values of the random
variables. This is what extreme value statistics is about. The problem is that
the limit of the rescaled partial maximum only follows a generalized extreme
value distribution when the random variables are independent or when addi-
tional conditions are satisfied. It is useful to estimate the tail parameter using
dependent sequences of random variables which satisfy the conditions of the
generalized extreme value theorem because dependent sequences are easier to
generate than independent sequences of random variables. This is because it is
easier to compute the output of a simple function of a given realisation than it is
to generate a random variable. Therefore it is useful to know which dependent
sequences satisfy the conditions of the generalized extreme value theorem and
which do not.

Multiple sequences of random variables have been analysed by comparing
the dependent sequences with independent sequences following the same dis-
tribution. The dependent sequences were generated using iterative maps and
the independent sequences followed the invariant distributions of these iterative
maps. The generalized extreme value theorem was applicable to the indepen-
dent random variables so comparing their results of the block maximum method
with those of the dependent random variables following the same distribution
can give a good indication whether the dependent random variables satisfy the
conditions for the generalized extreme value theorem to be applicable to depen-
dent random variables.

Dependent sequences generated by the logistic map, Newton map and beta
map when β is odd do seem to satisfy the necessary conditions of the generalized
extreme value theorem because the results of the block maximum method for se-
quences generated by those maps seem very similar to the results of independent
sequences following the same distribution. This is not the case for dependent
sequences generated by the rotation map or the cusp map. In the case of the
cusp map the block maximum method estimates completely different values of
the tail parameter when the sequence is dependent compared to when the se-
quence is independent. In the case of the rotation map the estimated values of
the tail parameter do not even converge to any value for increasing blocklengths.
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These results are not unexpected given the way in which dependent se-
quences generated by these iterative maps behave. Sequences generated by the
cusp map have consecutive random variables attain only small differences in
realisations and sequences generated by the rotation map seem very periodic.
sequences generated by the logistic map, Newton map or beta map when β is
odd seem independent even though each realisation is predetermined by the re-
alisation of the first random variable. This suggests that sequences generated
by the logistic map, Newton map or the beta map when β is odd do satisfy the
conditions for the generalized extreme value theorem to be applicable to depen-
dent sequences while sequences generated by the rotation map or cusp map do
not.
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