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Abstract
Building automated detection tools for endoscopy procedures has been a pursued interest in the field
of machine learning to reduce the number of omitted polyps during endoscopies. Training such sys-
tems is difficult in the current landscape as the availability of medical images containing polyps is low.
This thesis attempts to solve data scarcity by synthesizing images containing polyps using generative
adversarial networks in order to augment existing polyp datasets used by detection models. The most
promising model based on StyleGAN2-Ada produced realistic images that, when augmented into the
original training set of the detector, obtained a mean average precision score of 92.13% compared to
the 92.44% obtained by the detector trained on a non-augmented dataset. Although the performance
of the model did not increase, the quality of the generated images was impressive from a realism
standpoint and promising conclusions could be drawn regarding the possibility of manipulating the
latent space and generative conditional embedding of the network to generate custom types of polyps.
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1 Introduction

Endoscopy examinations serve as a staple procedure in detecting and classifying abnormal tissue
growths. Bowel polyps (or lesions) are one of the most common types of abnormal tissue growths
that occur. There are around 1500 unique polyps from which between 71%−75% can turn to cancer.
Once they turn cancerous, polyps are referred to as adenomatous polyps [1]. The timely detection of
such growths in patients is crucial as it affords the patient the opportunity to seek medical treatment
and increases the chances of survival and quality of life. Though medical practitioners are trained
to spot abnormal growths using endoscopes, some omissions can involuntarily happen during the
procedure. The effect of said omissions, whether it be from a lack of attentiveness, distractions in the
procedure room, or the difficult nature of the texture and shape of the abnormality, can significantly
impact the health of the patient since cancer left untreated can evolve and potentially spread. In
the past, several assistive systems have been developed to detect the presence of lesions in real-
time endoscopy procedures and have proven their efficacy by reducing the omission rates of medical
practitioners [2, 3].

Although the detection rate of cancerous lesions has increased with the introduction of automated
detection systems [4], several technical and operational challenges persist within the usage of the
systems during the endoscopy procedure. The following challenges need to be solved to successfully
implement a robust detection system.

Firstly, the medium through which current automated detection systems highlight the lesion is
visually, on the endoscope’s camera feed, through the creation of a box at the lesion’s location, and
the generation of a sound to alert the endoscopist that a lesion has been detected. Since medical
systems skew to minimize the number of false negatives, the system is very sensitive. Because of this,
as reported by clinicians, the system will generally report an abundance of false positives. This has
the effect of decreasing the attentiveness of the endoscopist towards the system as the alerts coming
from the system get discarded and true positives pass under the veil of false positives. A solution to
this problem is to increase the reliability of the detection model by both experimentally tuning the
model with an endoscopist present and introducing more examples of polyps within the training data.
We will focus on the second point in this paper.

Secondly, as seen in Figure 18, polyps come in different shapes and sizes. Certain polyps are
easier to spot than others. Endoscopists report that they themselves are inexperienced in recognizing
certain polyps that present difficult characteristics, such as a homogeneous texture with the tissue
around the polyp, the size and shape, etc. This inexperience is underlined by high missing rates
during the procedure and the inability to decide on whether to remove the polyp or perform a biopsy to
determine its nature. Due to this inexperience, assistive tools such as guidelines and flow charts have
been created for endoscopists to be used in real-time during the procedure [5]. The guidelines report
that flat and recessed lesions are more difficult to spot by an endoscopist than protruding lesions.
This partially explains the inexperience of endoscopists as lower detection rates for recessed and flat
lesions also mean that there are fewer examples of them to learn from. This has implications for the
medical practitioner and engineers tasked with building automated detection systems as there will be a
lower presence of such lesions in the data. Because of this, the missing rate of flat or recessed lesions
is expected to be larger compared to protruding lesions and class imbalance in the data needs to be
solved. Since there is a lack of images of recessed and flat polyps, generating the images ourselves
could potentially solve the class imbalance problem and increase the performance of the detection
model.

Thirdly, successfully building a system that learns to detect lesions in real-time implies that there
is sufficient data to represent the distribution of the population of lesions to a degree that the system
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will be able to generalize on new, never seen before lesions, from a wide degree of angles and a
range of different lesion types. However, a comprehensive survey [6], which focused on aggregating
datasets that contain images or films taken during endoscopies, found that there is a great imbalance
in the availability of such data. Generally, there is a wide range of images taken during endoscopies to
be found, but there is a lack of images that actually contain lesions - at least in the public domain. It is
evident thus that creating a robust detection system, that operates in a manner tailored to the medical
practitioner, is challenging. The system needs to be able to catch protruding lesions, but also flat
and recessed lesions, in real-time. Moreover, the availability of training data is scarce which further
increases the difficulty of the challenge.

This paper attempts to solve the problem of data scarcity through data synthesis. Because existing
training sets lack high-quality data of images containing lesions, the target scope of this paper will be
to i) determine whether the synthesis of images containing lesions is viable, from a subjective stand-
point, using state-of-the-art generative techniques and ii) whether the inclusion of synthetic images in
the original training sets of the detection models will see an increase in detection performance. The
paper will also include a comprehensive comparison between the images of the generative models
from both a subjective ”realism” standpoint, but more importantly an objective evaluation metric that
will measure the relative increase in detection performance of the detection model after it has been
trained on synthesized images. Finally, the winning generative model will be the one that increases
the performance of detection models the most.

1.1 Research Question
To summarize, this thesis focuses on the following problems:

Q1. Is it possible to synthesize subjectively realistic images of lesions using generative ad-
versarial networks?

Q2. Can the performance of lesion detection models be increased through data augmentation
using synthetic data generated by generative adversarial networks?
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2 Background Literature
The formulation of the main research question should be interpreted as solving a data synthesis prob-
lem. Considerations towards solving this problem are present in this section. Formal concepts pertain-
ing to the generative models will be given as well as other practical considerations of model building.
As the literature is presented, it will be deliberated with the medical context in mind as the end prod-
uct operates in a medical environment. Following the theoretical framework, an experimental pipeline
entailing the required steps of determining the optimal model will be given which will showcase the
data flow from the very beginning of the training process to determining the effect of synthetic data
on the performance of the detection models.

2.1 Theoretical Framework
A set of critical concepts required to understand the methodology used will be explained in the fol-
lowing subsections. Then, a formal description of the artificial intelligence techniques that were used
will follow.

The problem of detecting a phenomenon that occurs within the physical space of reality has been
studied within the field of artificial intelligence extensively. Generally, two schools of thought have
been researched that can solve the problem of detection: rule-based methodologies and machine
learning methodologies. Said differently: deterministic approaches and probabilistic approaches.
Both approaches have their appropriate applications and one should consider them for the problem at
hand.

2.1.1 Detection

In the context of detection, rule-based methods define a set of rules which, when fulfilled, a phe-
nomenon is detected. These rules can be of the form

i f < condition > then < resolution > (1)

and are typically chained together to form a conjunction of rules which, when satisfied, alert the user
of the system that something has been detected. Such systems are optimally used whenever the nature
of the phenomenon that is of interest behaves in a deterministic manner or under some natural law
that can be modeled. Attempting to find a set of rules that captures a non-deterministic process is
one approach for which scientists have coined the expression ”attempting to model the world”. If
one takes the battered example of predicting the outcome of a coin flip and decides to solve it using
a rule-based approach, one would need to consider the physical rules that act upon the coin and the
environment in which it exists. The coin’s paint is modeled, the weight, the size, its initial angle, the
force of the flip, the wind friction, etc. Given perfect knowledge, one could build a system that could
perfectly predict the outcome of a coin flip. However, information gathering is noisy and perfect
knowledge of a phenomenon is seldom obtainable.

The field of machine learning spawned as an alternative approach to world modeling a non-
deterministic process. Instead of integrating as many elements that partially explain the phenomenon
in the form of rules, machine learning attempts to generalize the underlying distribution of a genera-
tive process from a population sample to the actual population. It attempts to understand the influence
of random components of the phenomenon which are present in the physical world but not in the
data. These random components are named hidden variables or latent variables [7]. Moreover, ma-
chine learning also approximates the true distribution of the phenomenon from training samples that
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typically do not contain the full expected range of values of each component of the full population.
At its core, the detection model used in this paper is based on a machine learning subset of models
called neural networks. Images taken during endoscopies are inserted into the model and are then bro-
ken down by subsequent layers in the neural network to extract features. Given the immense scope
of detecting a polyp that can take 1500 different shapes, having an automatic way of representing the
different features of the polyp is the only feasible approach. The neural network model is based on
the YOLO4 [8] deep neural network architecture.

2.1.2 Types of Learning

Three main paradigms of learning can be distinguished in the literature: supervised, unsupervised,
and reinforcement learning. Although the task of detecting a polyp in an image can be represented
in all three paradigms, the most fitting one for tackling detection in images is, at the time of writing,
supervised learning. Intuitively, the model is presented with two components: images that contain
polyps and labels that tell the models where the polyp resides within the image. An iterative process
begins during which the model adjusts its internal state to the finite set of images and labels in the
hopes that the model generalizes to new never-before-seen images.

2.1.3 Supervised learning

Given a sample x from a population p with classes c1,c2, . . . ,cn ∈C, we define a supervised learning
model M with parameters θ. The model maximizes p(c|x,θ) where p(c|x,θ) is read as the probability
of class c given a sample x and model parameters θ. c is shorthand for cn given that the class of x is n.
A prototypical mapping between samples and classes is learned by adjusting the model parameters θ

iteratively over the training period of the model. θ folds in the shape of the distribution of the samples
xn. The purpose is to obtain a model M with parameters θ that can capture the real distribution
only from population samples. The supervised approach allows the model to learn the structural
similarities, differences, and features between all samples x of different classes without manually
coding any rules ourselves.

2.2 Generative Methods

Typically, much like other supervised machine learning models, generative methods capture distri-
butions from samples fed into them as training data. Unlike other machine learning models, these
distributions are learned to generate new samples from the same distribution. The methods include
Boltzmann machines, deep belief networks, directed generative nets, autoencoders, and generative
adversarial networks among others. This paper focused on the application of generative adversarial
networks. For an introductory overview of generative techniques refer to Chapter 20 [9].

2.2.1 Generative Adversarial Networks

A Generative Adversarial Network (GAN) is a model composed of two submodels: a discrimina-
tor (D) and a generator (G). In the context of generating synthetic images, each submodel has its
purpose. G generates synthetic images by drawing samples from a latent space of arbitrary dimen-
sionality. D distinguishes between real images and synthetic images. With increasing epochs, the
generator becomes better at fooling the discriminator. Originally, the training process continued un-
til the discriminator reached a coin flip loss - showcasing its inability to distinguish between real and
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Figure 1: GAN architecture where Z is an n−dimensional noise variable that is used to generate
samples and C are the optional image class labels. Image is taken from [10].

synthetic images. Other stopping criteria were developed in previous years that proved to obtain better
results concerning the network’s ability to generate samples closer to the actual distribution [9].

Formally, given data x and the generator’s distribution pg, a prior on input noise variables pz(Z)
is defined. Then, a mapping to data space is represented as G(z;θg), where G is a differentiable
function represented by a multilayer perceptron (MLP) with parameters θd [11]. The discriminator’s
distribution, also represented by a multilayer perceptron, is defined as D(x;θd) which outputs a scalar.
D(x) outputs the probability that x came from the real data distribution and not pg. As D is trained,
the probability of correctly distinguishing between samples drawn from G or real data increases. As
G is trained simultaneously, it minimizes log(1−D(G(z))). This adversarial relationship is defined
as a two-player min-max game with value function V (G,D)[11]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]. (2)

Instead of training G to minimize log(1−D(G(z))), the model is tweaked to maximize log(D(G(z))).
This has been found to obtain stronger gradients during the initial training phases [11, 9]. Sensitive
to the direction of the gradients is the crucial learning synchronicity of D and G. The conjoined ad-
versarial model must improve the gradients of both submodels simultaneously during training as to
avoid mode collapse by oversampling the same sample from z. This translates to training D for one
or more epochs, then the generator for one or more epochs, etc. The generated images become nega-
tive examples and are fed into the discriminator as such. Conversely, the discriminator penalizes the
generator for producing images that cannot fool it.

2.2.2 Performance Criteria

Monitoring the performance of a generative model is also different from a regular supervised model.
The loss of a generative adversarial network does not correlate well with its performance as the loss is
computed in an adversarial context where the discriminator gets worse at distinguishing real images
from synthetic ones. As such, a decrease in loss does not equate with an increase in image quality.
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In the literature, similarity metrics are the most common form of evaluating the performance
of generative techniques. Similarity metrics compare the statistical distance between a fake image
and a real image. The intuition behind this is that a lower similarity score will correspond with a
realistic image since the score represents different statistical properties of the image. If the statistical
difference between the two images is low, the low score will highlight a large structural similitude
between the two sets of images. The Fréchet Inception Distance (FID) is one such metric that relies
on the prediction of the inception during training. It computes the statistical difference between fake
and real images by using the mean and standard deviation of the two [12]. Moreover, it is a valid
method of determining not only the image quality of the generated images but also the variety of
generated images [12, 13, 14].

FID = |µ−µw|2 + tr(Σ+Σw−2(ΣΣw)
1/2). (3)

The Fréchet inception distance will be used as an objective quantifier to a subjective question. In
determining how realistic an image generated by any method is, the structural similitude between real
and fake images will be judged using the FID score and a ranking of the models will be generated
based on this score.

2.2.3 Latent Space

The mechanism used to generate new samples will differ from one generative method to the next. For
GANs, a probability distribution is learned through modeling a latent space. A GAN then synthesizes
data by drawing samples from said latent space. The latent space is defined initially as an arbitrary
n−dimensional vector where n ∈ N. The number of dimensions depends on the complexity of the
problem that the model attempts to learn. During training, samples are learnt and reduced into this
latent space where the proximity of two points showcases how semantically similar those two points
are. As the network evolves, samples at different coordinates in the latent space will correspond to
different features found in the training data.

To exemplify this point, in Figure 35, consider a set of synthetic images of polyps produced in
this paper in which we see a linear interpolation between two n−dimensional vectors that are next
to each other in the latent space z. Top left (0, 0) and bottom right (3, 3) are the vectors and linear
interpolations are synthesized between them. As samples are drawn closer to (0, 0), the weight of (0,
0) is stronger and thus has a bigger impact on the output of the photo than (3, 3). Qualitatively, one
can interpret this as manipulating significant features that make up the underlying distribution of a
colon tract that contains polyps.
Linearly interpolating between two vectors in the latent space z is one of many strategies viable for
manipulating the type of image G can generate. The true power comes from being able to play around
with different vectors in z to distinguish which vectors influence which parts in the generated image.
Having control over the different features allows for tuning the way the resulting image will look like.

2.2.4 Conditional GAN

Given a dataset X a GAN will learn to shape the latent space of the underlying distribution of X and
generate samples from that space. Although it is possible to manipulate from which vector in the
latent space the sample is drawn from, the distribution learned by the network will conform to the
distribution of all samples x1,x2, . . .xn ∈ X regardless of the classes of the members of X . As such,
class distinctions are not enforced by any means in the learning process which causes class blending.
Class blending arises when the model captures the underlying distribution of two or more samples
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belonging to the population but with distinct classes. In certain applications, class blending proves
to be a useful feature of GANs [15]. To generate realistic polyps, however, it may lead to polyps
that borrow anatomical structures from different classes. The erroneous nature of this process can be
subdued in two ways:

1. Manually manipulate the vectors in the latent space to determine which ones are responsible
for which structural elements present in the images.

2. Embed the class yi alongside sample xi in the input layer of the network.

The former process leads to extraneous amounts of manual labor as, depending on the complexity of
the task, the latent space may be responsible for manipulating 1024 or more dimensions. Determining
which combinations of operations within this space cause which anatomical alterations in the polyps
are a computationally intensive mapping that can be avoided through the advent of Conditional GANs
(CGAN) [16].

The latter option is what defines the conditional part of a conditional generative adversarial net-
work. During training, a class label is embedded alongside the input to capture the class of the input.
In doing so, a CGAN is capable of selectively generating samples belonging to different classes in a
controlled manner.

To generate a synthetic dataset to be used in a detection model, CGAN can be used to create the
ground truth labels of the location of the polyps. The ground truth is embedded in the input layer of
the CGAN as four numbers: (x0,y0)(x1,y1) representing the top left and bottom right points of the
rectangle enclosing the desired location of the synthesized polyp. In using this representation, each
drawn sample from the latent space will include the desired location of the polyp, avoiding not only
a strenuous manual labeling process but also enabling great flexibility to the range of images that we
can generate.

2.2.5 Common Issues with GANs

The advent of GANs has allowed for a decrease in computational complexity compared to other
generative models. However, several problems arise:

• Mode collapse refers to the inability of G to produce a large variety of examples as G overfits
on a particular type of example that manages to fool D. Since G maximizes log(D(G(z)))
and the generated example manages to fool D, G will produce only that example with small
variations early in the training (see Figure ?? in Appendix for an example of mode collapse in
our problem).

• Vanishing gradients in the generator are common whenever the discriminator is highly per-
formant. To solve this problem, random noise can be added to the labels of D at each training
step.

2.3 State of the Art

Following the introduction of GANs by Ian Goodfellow in 2014, NVIDIA has been a pioneer in
building models that perform to a photo-realistic capacity. Undoubtedly, these models constitute the
current state of the art and will thus be presented in this section.
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Figure 2: The architecture of Progressive Growing Generative Adversarial Networks (PGGAN). The
network starts with a low image resolution and iteratively doubles the resolution during training,
resulting in more learning stability and finer details. Figure is taken from [18].

2.3.1 PGGAN

High-resolution images are difficult to generate as the discriminator becomes better at distinguishing
real images from fake images since there is more information present in the image that can be ex-
tracted into features. Learning stability is decreased on higher image resolutions because of this fact
[17]. Moreover, larger images require smaller minibatches due to memory constraints, further de-
creasing learning instability [18]. Progressive Growing Generative Adversarial Networks (PGGAN)
have been introduced to solve the stability and memory issues in synthesizing high-resolution images.

PGGAN grows both the discriminator and the generator as training progresses. The network starts
with a low-resolution image to learn large-scale structures and iteratively increases the resolution of
both the discriminator and the generator according to Figure 2. The intuition behind this is that lower
resolution images are easier for the generator to fool the discriminator and, as higher-resolution layers
are added, more details are introduced into the synthesized images. Multi-Adversarial Networks
(MAN) inspired this approach by using multiple discriminators for different spatial resolutions [19].

Aside from finer details and stable learning, PGGAN achieves higher variation in the synthesized
images using minibatch discrimination [20]. Instead of computing feature statistics from single im-
ages, they are computed across different minibatches, enforcing the minibatches across the layers to
be statistically similar. A minibatch layer is added towards the end of the discriminator to achieve a
mapping between input activation and an array of statistics [18].

Whenever the image resolution is doubled, the model ensures that the transition fades in new
layers smoothly as to preserve the gradients and not incur exaggerated landscape jumps. Figure 3
showcases transitioning from 16x16 images to 32x32. As new higher-resolution layers are added in
step (b), the lower resolution ones are kept. The weight α of the higher-resolution block increases
linearly from 0 to 1. As training progresses, the stability conferred from going from lower-resolution
images to higher-resolution images allows for the creation of images with fine details and variation.
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Figure 3: Phases of doubling the image resolution during training. Figure is taken from [18].

2.3.2 StyleGAN2

As an extension of PGGAN and subsequently StyleGAN, StyleGAN2 introduces the idea of manip-
ulating the style of samples drawn from the latent space using an unconventional generative archi-
tecture. As opposed to feeding the latent codes z ∈ Z into the input of the network only, StyleGAN
introduces a mapping network f which transforms the input latent codes Z into intermediate latent
codes w ∈W [13]. In doing so, the latent codes can be manipulated through various affine transfor-
mations to systematically affect the style of the generated sample at different layers throughout the
network via adaptive instance normalization. Contrast this to having to pick one latent code z that
conforms to the desired style and the power of this idea is highlighted: desired styles of classes along
with the latent space Z can be applied to any latent code z drawn from the landscape. This allows for
greater flexibility in the range of styles the network can produce. It also stabilizes learning as in order
to learn n latent codes z in m different styles, the network no longer needs to fold across an m× n
configuration of latent codes. This results in the intermediate space W being less entangled than the
input space Z. Additionally, the affine transformations allow for the ability to produce samples of
different styles by borrowing the mapped transformations from one latent code to the next.

A detailed overview of the architecture of the network can be inspected in Figure 4. For this paper,
StyleGAN2 presented two sought-after properties for the generative task. Firstly, StyleGAN2 reduces
the likelihood of learning a distribution that is typical of mode collapse, compared to conventional
architectures, as minimizing the adversarial score of one of the models is circumvented through the
use of intermediate affine transformations. Secondly, StyleGAN2 produces high-fidelity images, void
of major artifacts that were present in previous iterations of the model, by changing the instance
normalization procedure with demodulation applied to all weights associated with each convolutional
layer [13].

Another major modification done to StyleGAN2 compared to its predecessors is the fact that the
architecture remains fixed as learning progresses. PGGAN introduced the idea of adding layers to
the network progressively during training. The advantages of this technique were quickly established
in the literature as the technique allowed for a more stable learning experience for the network and
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Figure 4: Architecture changes from StyleGAN to StyleGAN2. The grey blocks are ”style” blocks
and encompass a different combination of operations depending on the architecture. The break-
through between the initial iteration of StyleGAN and StyleGAN2 was situating the bias and noise
(B) outside of the style block. This approach obtains more predictable results compared to having to
apply bias and noise within the style block [13]. Image taken from [13].

the convergence towards more realistic images. This was primarily because low-resolution layers
promoted the learning of low-level features and, as higher resolution layers were added, the network
could learn more high abstract concepts because it had a solid basis of low-level features.

One of the downsides of modifying the architecture during training is that the synthesized images
had artifacts that were observed to be occurring systematically because of the progressive increases in
resolution during training. The most occurring artifacts were objects being stuck at certain locations
in the image that were learned during the initial phases of the learning process. When synthesizing
human faces, the low-level features of the eyes would be learned to be placed in a certain location
in the image and that location would not change as newer layers were added. Since the output of
the network changes each time a new layer is added, layers that are in-between the output and the
input of the network have high frequencies which compromise the shift-invariance property of the
whole network [21]. In a face generation example, Whenever higher-level features were added, the
low-level features of the eyes would appear to be floating or detached from the face which contained
other higher-level features. Figure 5 shows the wrongful orientation of a person’s teeth as the camera
rotates around the face.

StyleGAN2 introduces a different approach to adding layers progressively to the network during
training. The new method is based on the contributions of [22] which introduced MSG-GAN, a net-
work that has as many discriminators and generators as the number of times the image was upsampled
or downsampled. The output of a generator for a given resolution would be matched to its correspond-
ing discriminator that accepted images of the same image resolution. Skip connections allowed for
the network’s architecture to remain fixed during training while the benefits of reaping features from
different resolutions remained by propagating the activation maps of each resolution layer further into
the network. The design of MSG-GAN was adapted to include residual connections and, instead of
matching n discriminators and n generators to one another via skip connections, StyleGAN2 simply
sums up the upsampled contribution of each generator. Each discriminator then receives the scaled-
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Figure 5: Example of common artifact produced by progressively-growing GANs. The orientation
of the person’s teeth does not change as the orientation of the head is rotated away from the camera.
Image taken from [13].

down version of its preceding discriminator that produces images of a maximum set resolution. In this
way, StyleGAN2 saw improved FID and PPL scores compared to progressively-growing architectures
and the artifacts that were belonging to these networks were removed.

2.3.3 StyleGAN2-Ada

The last and most promising model to be considered for the generation task is an extension of Style-
GAN2, namely StyleGAN2-Ada. This version of the model attempts to reduce the likelihood of over-
fitting whenever the network trains with a low amount of data. The major trick lies in the addition of
a large number of affine image augmentation techniques.

We begin by defining a corruption process c that can be applied to a set of images x. An augmen-
tation technique is said to be non-leaking if its corruption process c can be invertible across the data
distribution of x. The purpose of image augmentation techniques, at their very core, is to introduce
variance in the original data space as a means towards combating overfitting by covering a larger pos-
sible data space during training. Instead of evaluating the discriminator on an augmented data set of
both real images and images produced by the augmentation process, StyleGAN2-Ada’s discriminator
is evaluated only on augmented images which result from applying non-leaking c’s to x. The same is
done to the generator during training [23].

The list of non-leaking augmentations that were designed can be consulted in the original paper
[23].
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3 Methods

Three different generative adversarial networks architectures were used to synthesize images of polyps:
a baseline GAN1, PGGAN [18], and StyleGAN2-Ada [23]. From these selected candidate models,
only the most promising will be chosen to augment the detection model’s training dataset. The can-
didate models were compared using the Fréchet inception distance (FID) score. The most promising
candidate model was the one that obtained the best FID score. Due to time and computational con-
straints, other model architectures were not able to be tested, however suggestions of such architec-
tures are given in the discussion section of the paper.

3.1 Technical Implementational Challenges
The development of a generative model of synthetic images requires sufficient representative training
images. As previously mentioned, a survey of existing datasets in the public domain containing
images with polyps has found that there is a scarcity of training data available, limiting the number of
usable training images to only 1196.

Since the images have to be annotated with the location of the generated polyp, it is not sufficient
to only solve a generative problem, but a data labeling one as well. The detection model gets fed
images that contain polyps at a specified location. The locations are manually annotated by medical
practitioners. As the network generates new synthetic images, they should label the images with
the location of the polyp to avoid manual annotation. A conditional GAN [16] version of the most
promising model was developed to generate ground truth labels of the position of the polyp alongside
the image.

Preferably, synthesized images should include examples of polyps that occur infrequently in exist-
ing data sets in order to most accurately represent the actual distribution of polyps [4]. To accomplish
this, a list of underrepresented polyps and challenging angles will be compiled and the generation
of said polyps seen from different angles will be synthesized by manipulating the latent space of the
generative adversarial networks across the z-vector.

Finally, practical considerations on the computational complexity of the task were taken as the
state-of-the-art methods presented in this work take input images that must be at least 416x416 in res-
olution. Though the neural networks used are embarrassingly parallelizable [24], conducting several
parameter sweeps and hyperparameter optimizations across several experiments imposes an impracti-
cal computational limitation. All models were trained on a machine equipped with a single NVIDIA
V100 GPU.

3.2 Model Comparison
An initial subjective evaluation of non-candidate models was conducted after 10 intervals of 100
epochs. Models that generated seemingly random images were discarded. In the most recent years
in the literature, the Fréchet inception distance similarity metric was used as the golden standard for
evaluating the performance of GANs. Models that were kept were compared using the FID score.
To answer the research question of the paper, the FID score of each model was used to determine a
ranking amongst the candidate models. Then, the main research question was answered by judging
the relative increase of the detection model’s performance after including its synthetic images in the
training sets. Ranking them and choosing only the best model to augment the training set of the
detection model is a practical way of going about things since, as mentioned before, the FID gives
both an indication of image quality and image variety. Meaning that expensive compute power and
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Figure 6: Three random example images taken from the Kvasir-SEG dataset. The images exhibited
present protruding polyps; the predominant type of polyp present in this dataset.

time should be put to use in either devising models that obtain higher FID scores or testing only the
best-performing model.

3.3 Data
The dataset used to train the generative networks consisted of 1196 images taken during endoscopies
that contained at least one polyp photographed under white light imaging. Images within endoscopies
that do not contain polyps were omitted as currently there is an imbalance in polyps datasets concern-
ing the number of images that contain polyps versus those that do not. Since the sole interest of the
output of the generative model is images that have at least one polyp in them, removing the images
that do not contain a polyp makes sense from a machine learning perspective.

3.3.1 Data Collection

The data collection process focused on merging publicly available datasets that matched several crite-
ria. Firstly, the datasets needed to provide ground truth labels with the location in the polyp. Secondly,
the images must be frames that taken during endoscopy procedures that contain at least one polyp.
Finally, the data labeling procedure between one dataset and the next should be similar enough to the
point where the variability of the data labeling is not significantly different than the other as to not
compromise the consistency of labels between datasets.
The following table summarizes the public datasets that were used:

dataset n samples bias resolution GT
Kvasir-SEG 1000 0/1000 332x487 to 1920x1072 Mask + BB
ETIS-Larib 196 0/196 1225 × 966 Mask

Table 1: resolution: image resolutions found in the samples. bias: amount of healthy/polyp images.
GT: ground truth. Mask: pixel-level segmentation of the polyp. BB: bounding box.

The data collection process resulted in 1196 images of varying resolutions from two datasets.
The data labeling process was analyzed for both and, variables such as whether the data labeling
team could zoom in on the images, how long they could spend to draw the bounding box, and what
to include in the bounding box were the same in both. Controlling these variables is important as
the resulting data would be consistent between datasets. The downside however is that being this

https://datasets.simula.no/kvasir/#data-collection
https://polyp.grand-challenge.org/EtisLarib/
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Figure 7: Three random example images taken from the ETIS-Larib dataset. The second and third
images showcase polyps that are flat against the tissue; a more difficult type of polyp to detect.

restrictive reduces the number of images that are available and thus decreases the amount of data that
can be used for the models. Another downside is the homogeneity present in the data as 80.3% of the
data comes from one single dataset of polyps that are homogeneous in texture and shape.

Of particular note is the fact that the two datasets containing 1196 images were used to train the
generative networks to generate images and then the detection model was tested on the same dataset
with and without synthetic images present in the training split. This is the manner in which the
second research question was tested. The detection model used was YOLOv5 in its small weights
configuration.

3.3.2 Data Preprocessing

Each image from the dataset was resized to a minimum resolution of 416x416, the minimum accept-
able image resolution for the detection model. Some models generated 512x512 images, a fact that is
explicitly stated for experiments where this is true. The images were normalized such that each pixel
value is in the range [-1 1]. Non-destructive affine image augmentation techniques were applied to
the original datasets: rotations +-15°, horizontal and vertical flips. For the automated data labeling
process, image augmentations that changed the orientation of the image were accounted for when
computing the coordinates of the bounding box that defined the location of the generated polyp.

In StyleGAN2-Ada, built-in affine image augmentations were applied to the original data sets in
place of our existing affine transformations [23]. This resulted in a corruption process pipeline that
was experimentally found to significantly increase the variability and quality of images [23].

3.3.3 Data Labelling

The training sets contain the location of the polyp represented as either a bounding box defined by a
pair of two coordinates (top left corner and bottom right corner) or as a segmentation map defining
the topology of the polyp as can be seen in Figure 8. The location of the polyp was used during
the training process as a feature extraction method to crop the polyp and feed it into the generative
methods.

3.4 Models

The present paper analyzed the potential of three separate architectures: a baseline GAN, PGGAN,
and StyleGAN2-Ada. Within each architecture, several parameter configurations were tried to deter-
mine their influence on the resulting images.



Chapter 3 METHODS 21

(a) Bounding box label. (b) Segmentation map label.

Figure 8: Ground truth representation used in training sets.

3.4.1 Baseline GAN

A baseline generative adversarial network was created to solve the synthesis task. The architecture of
the network remained fixed during training and consisted of one discriminator D and one generator G.
Within this architecture, several parameters were changed between experiments to determine the best
configuration. Table 2 shows each parameter of the GAN and hyperparameter alongside the ranges in
which they were tweaked between experiments.

3.4.2 PGGAN

PGGAN was used as one of the candidate architectures to solve the synthesis problem. Table 3 lists
the parameter sweep conducted during experiments to determine the most performant configuration
of parameters.

3.4.3 StyleGAN2-Ada

StyleGAN2-Ada was used as the final candidate model to solve the synthesis task. The adaptive dis-
criminator augmentation version of StyleGAN2 was chosen as the experiments had to be conducted
using a low number of images (1196). Table 4 lists the parameters that were swept during the experi-
ments to determine the optimal configuration.

3.4.4 Conditional SyleGAN2-Ada

The labels provided with the dataset were embedded into the input layer of the network as two co-
ordinates representing the top left and bottom right corners of the bounding box for each image.
Bounding boxes were then generated by the network and sent to the generator to specify where to
create the polyp. The network configuration is the same as StyleGAN2-Ada with the addition of this
embedding operation.

3.4.5 YOLO5 Detection Model

The YOLOv5 detector and classifier were used as the main polyp detector. The model ran for 100
epochs training on the real dataset and the augmented datasets. The performance of the model was
given by the mean average precision (mAP) obtained after 100 epochs of training using an intersection
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Param Range Description
width 128, 256, 416, 512 Image width
height 128, 256, 416, 512 Image height
l-dims 128, 256, 512, 1024 Latent dimensions
d-lr 0.0001, 0.0002, 0.0003, 0.0004, 0.0005 D learning rate
g-lr 0.0001, 0.0002, 0.0003, 0.0004, 0.0005 G learning rate
lr-step 1, 10, 100, 999999 Learning rate step
label-noise 0, 0.05 Noise added to D labels
d-filters 16, 32, 64, 128, 256, 512 Nr. of D filters
d-kernel-sizes 3, 4, 5 Size of D filters (n2)
d-strides 1, 2 D filter stride
d-n-down-blocks len(d-filters) Nr. of downsampling blocks
d-lrelu-alpha 0, 0.2 D leaky ReLU Alpha
d-dropout 0, 0.3, 0.5 Dropout probability
g-filters 16, 32, 64, 128, 256, 512 Nr. of G filters
g-kernel-sizes 3, 4, 5 Size of G filters
g-strides 1, 2 G filter stride
g-n-up-blocks len(g-filters) Nr. of upsampling blocks
g-lrelu-alpha 0 G leaky ReLU Alpha
aug True, False Whether geometric augmentations were on

Table 2: The set of parameters that were swept between experiments for the baseline model containing
discriminator D and generator G.

Param Range Description
d-lr 0.001, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005 D learning rate
g-lr 0.001, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005 G learning rate
lr-step 1, 10, 100 Learning rate step
aug True, False Whether geometric augmentations were on

Table 3: The set of parameters that were swept between experiments for PGGAN. Most parameters
were kept at the default values presented in the original paper [18]. The learning rates were adjusted to
determine whether quicker convergence could be obtained to the domain of applicability of synthetic
polyps.

Param Range Description
aug True, False Whether geoemtric augmentations were on

Table 4: All of the default values presented in the original paper [23] were preserved and used.
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over union (IoU) threshold of 0.5. Table 5 summarizes the hyperparameters used for all experiments.
Table 6 summarizes the models used during the experiments. 60%/20%/20% of real images were
split into training/validation/test sets respectively for all experiments, whilst 80%/20% of fake images
were split into training/validation sets for the experiments that included fake data.

The model with the lowest FID score also underwent a manual pruning process in which each
image was inspected and removed if it satisfied any of the following criteria:

• Area within bounding box contains artifacts

• Bounding box covers less than 50% of the polyp

• Bounding box covers the vignette edges of the image

• No polyp in the bounding box

The manual pruning process was done to determine whether feeding the model the best examples of
the best model did increase the performance of the detector. From 1000 images, 575 were pruned
from the best performing model, yielding a total number of images to use for augmentation of 425.
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Param Value
weights yolov5s.pt
lr0 0.01
lr1 0.2
momentum 0.937
weight decay 0.0005
warmup epochs 3.0
warmup momentum 0.8
warmup bias lr 0.1
box 0.05
cls 0.5
cls pw 1.0
obj 1.0
obj pw 1.0
iou t 0.22
anchor t 4.0
fl gamma 0.0
hsv h 0.015
hsv s 0.7
hsv v 0.4
degrees 0.0
translate 0.1
scale 0.5
shear 0.0
perspective 0.0
flipud 0.0
fliplr 0.5
mosaic 1.0
mixup 0.0
copy paste 0.0

Table 5: YOLOv5 hyperparameters used for detecting polyps. For a detailed description of each
parameter, consult the documentation.

https://github.com/ultralytics/yolov5
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Model Epochs Number of fakes Manual Prune
No Fakes N/A 0 N/A

StyleGAN2-Ada 2400 500 False
StyleGAN2-Ada 2400 1000 False
StyleGAN2-Ada 2400 425 True
StyleGAN2-Ada 3200 500 False
StyleGAN2-Ada 3200 1000 False

Table 6: Table of experiments conducted to determine the relative increase in detection performance.
Models were selected after running the experimental pipeline as described in section 4. model: which
model was used to synthesize fake polyps. epochs: number of epochs the model was trained for.
number of fakes: how many fake images were inserted into the real images train/val sets. man-
ual prune: whether a manual inspection of the generated images was conducted to remove images
containing artifacts.
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4 Experimental Setup

The task of generating synthetic images to be used for data augmentation was carried out in a struc-
tured data pipeline involving multiple possible permutations of candidate models, data sets, and a
variety of preprocessing methods applied to the data. All three components within this structured
data pipeline are extensively presented and discussed in the following sections. As an overarching
theme, the task of developing synthetic images to improve a detection model requires the develop-
ment of both a generative model and a detection model. The detection model used to test the detection
of polyps was YOLOv5, the latest version of the YOLO architecture [8]. YOLOv5 was picked due to
its preexisting weights which allowed to test detection performance on our limited in a relatively fast
manner compared to other detectors. It is also the architecture upon which ZiuZ’ detector is based on.
The inner workings and intricacies of YOLOv5 or Zius’ model will not be deliberated in this paper;
for details about both detectors please refer to either the original YOLO paper [8] or the authors at
Zius.

The experimental setup is branched into two approaches: data-fixed and model-fixed. In a data-
fixed setting, the models are tweaked between experiments whilst the input data for the models re-
mains the same. In model-fixed, the models stay the same whilst the data gets augmented or replaced
in some manner. Within data-fixed or model-fixed, the generative models are trained on the data and
the output is visually inspected after every 100 epochs. The inspected output consists of a 4x4 grid
containing 16 samples of generated images. Having fixed some data configuration and some model,
we refer to a (model, data) pair as a model that will run in an experiment. The model is then deter-
mined to be a candidate model or not. The process is repeated for all models configurations as seen in
Figure 9. As for the model-fixed paradigm, since data was scarce, the only model-fixed experiments
that were conducted included image augmentations of affine transformations on the original data.

The process of determining a candidate model lies in the subjective evaluation of the output
where the discriminator function that separates candidate models from non-candidate models dis-
cerns whether the output is nonsensical. Each model was trained for a minimum of 1000 epochs.
This benchmark was chosen based on empirical evidence showcasing gradient convergence within
1000 epochs.

The output of each candidate model was then compared objectively to the real dataset the network
is trying to imitate by measuring the Fréchet inception distance of each model. The model with the
lowest FID score was deemed the winner as seen in Figure 10. That model then augmented the
detection model to determine whether a relative increase in the detection model’s performance could
be seen as described in Figure 11.

4.1 Tools and Technologies
The models were developed in either Tensorflow or PyTorch using Python 3.7. Data preprocessing
was conducted using standard data science libraries: Pandas, NumPy, CV2, SciPy. The models were
trained on the Peregrine cluster belonging to the University of Groningen on one NVIDIA V100 GPU.
Multiple GPUs were not available and this represented one of the limitations of the study.

4.2 Performance Criteria
The performance of the winning network was measured by how much the generated images improve
the performance of the detector. The detector was evaluated using the mean average precision (mAP)
metric with an intersection over union threshold (IoU) of 0.5 (4).
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Figure 9: Experimental setup for selecting candidate models from non-candidate models in a data-
fixed approach. Each model was trained for a minimum of 1000 epochs and generated 1000 images
that were then visually inspected. This inspection occurred in increments of 100 epochs to determine
the general convergence direction of the weights. If the inspection concluded that the result was non-
sensical, non-candidate models did not get promoted to candidate models. Examples of nonsensical
images of non-candidate models can be seen in the appendix 19.

Figure 10: All candidate models generated 1000 images that were then plugged into the pre-trained
Inception V3 network. The network produced an FID score for each set of images originating from
each model. The scores were ordered and the model with the lowest FID score was deemed the
winner.
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Figure 11: The model with the lowest FID score was deemed the winner and was tested on its ability
to improve the detection rate of the detection model after augmenting the detector’s training set with
generated images and corresponding labels. We remind the reader that the labels are also synthesized
by this network.

mAP =
∑

I
i=1 AvgP(i)

I
(4)

where i is an image, AvgP(i) is the average precision score obtained for image i and I is the number of
images. Since IoU = 0.5 the mAP@0.5 will represent the average precision obtained for each image
where the area of intersection over the area of union of the predicted bounding box and the ground
truth is above 0.5.

Sets of generated images that manage to increase the mAP obtained by the detector with no aug-
mentations will positively answer the research question of this paper.
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5 Results
The relative increase in performance for the winning candidate model is reported at the end of this
section. Images of non-candidate models are presented in the conducted order of the experiments as
meaningful insights of the parameter space could be drawn from running these experiments. The FID
scores of the candidate models were computed and reported.

5.1 Images

5.1.1 Baseline GAN

The following table showcases the different configurations used for training the baseline GAN. The
parameter sweep from these experiments yielded non-candidate models but also showcased promising
interactions between parameters.

aug k-size depth l-dim res id epochs change from previous ref
False [4 3] 2 128 128x128 1 1000 baseline 19
False [4 3] 2 256 128x128 2 1000 double ldims 20
False [4 3] 2 512 128x128 3 1000 quadruple ldims 21
True [4 3] 2 128 128x128 4 1000 image augmentations 22
True [4 3] 2 128 416x416 5 1000 desired resolution 23
True [4 4 3] 3 128 416x416 6 1000 increase k-size 24
True [4 3] 2 512 416x416 7 1000 increase ldims 25
True [4 4 3] 3 512 416x416 8 1000 increase k-size 26
True [4 4 3] 3 512 416x416 9 2000 increase epochs 27

Table 7: Examples of baseline GAN non-candidate models. Aug: whether image augmentations are
applied to the training set. k-size: the size of the discriminator kernels ordered from input to output.
depth: number of hidden layers used on the discriminator. l-dim: number of latent dimensions used
to represent the latent space. res: output resolution. id: corresponding image id in the appendix.
change from previous: what was changed from the previous experiment. The reasoning behind
each change is included in the appendix for every corresponding experiment. ref: link to image in
appendix.

Firstly, affine image augmentation operations were found to be a crucial addition as the number
of images fed into the network from the original datasets is only 1200. For experiments where image
augmentation was turned off, the network converged into mode collapse as is most prominently seen
in Figures 19 and 20. As such, image augmentation proved to be crucial in order to avoid mode
collapse and for the models to converge to promising results.

Secondly, increasing the image resolution but keeping the number of hidden layers in the discrim-
inator fixed did not translate in qualitatively similar results between one resolution and the next. Since
the discriminator shifts a number of kernels of a particular size across the image, the features needed
to capture the intrinsic characteristics of a polyp will be scaled. As such, modifying the number of
layers as well as their size was a crucial requirement when increasing resolution.

Thirdly, the number of latent dimensions was shown empirically to depend on the image resolu-
tion. The higher the number, the more complex features could be represented in the space. When
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increasing the resolution, the granularity of the features propagated changes As such, modifications
not only at the level of the kernels need to be made, but also to the number of latent dimensions used
to represent the data. As a rule of thumb, the higher the resolution the higher the number of latent
dimensions required for an appropriate representation.

The candidate model was determined after numerous experimentation, the nature of which resem-
bling that exhibited in Table 7. The candidate model configuration can be seen in Table 8.

Param Value
aug True
k-size [3 3 3 3 3]
depth 5
l-dim 512
d-lr [0.0005 0.0004 0.0002 0.0001]
d-filters [32 64 128 256 512]
d-strides [2 2 2 2 2]
d-lrelu-alpha 0.1
d-dropout-p 0
g-lr [0.0005 0.0004 0.0002 0.0001]
g-filters [512 256 128 64 32]
g-strides [2 2 2 2 2]
g-lrelu-alpha 0.1
lr-steps [1 10 100 999999]
res 512x512
epochs 7900

Table 8: Best-performing baseline GAN configuration yielding the baseline GAN candidate model.

5.1.2 PGGAN

The results of the best-performing model based on PGGAN can be inspected in Figure 30. Since
PGGAN incrementally adds layers of increasing resolutions during training, it became infeasible to
continue training after 9220 epochs on our current hardware, so no other results could be obtained.

Param Value
g-lr 0.001
d-lr 0.001
lr-step 1
aug True

Table 9: Best-performing PGGAN configuration yielding the PGGAN candidate model.
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5.1.3 StyleGAN2-Ada

The results of the best-performing model based on StyleGAN2-Ada can be inspected in Figures 31,
32, and 34. The images were created using the same model after 2400 epochs and 3200 epochs of
training respectively. These epoch checkpoints were selected based on the observation that GANs
tend to become worse as training progresses after a certain point. As such, both models were used to
generate images as a subjective distinction between the two could not be made.

5.2 FID Scores
The most promising candidate models from each architecture were compared head-to-head concern-
ing their FID scores. The results of the FID computation can be seen in Table 10. Out of the three
candidate models, StyleGAN2-Ada had the lowest inception score, meaning that it produced the most
realistic and varied images of the three candidate models. During the comparison, we noticed that
the model’s performance degraded as training progressed. This effect can be seen by the higher FID
score obtained at 3200 epochs compared to 2400 epochs.

Although the FID of 3200 epochs was higher, both the 2400 and 3200 epoch models were used to
test the augmentation hypothesis as the outputs of both models were indistinguishable to the human
eye.

Model Epochs FID Manual prune
Baseline GAN 7900 191.30 False

PGGAN 9220 93.71 False
StyleGAN2-Ada 3200 72.49 False
StyleGAN2-Ada 2400 62.11 False
StyleGAN2-Ada 2400 51.03 True

Table 10: FID scores obtained for implemented models. Manual prune refers to whether the gen-
erated images were then manually inspected to remove images that contained artifacts. The winning
model of all architectures is StyleGAN2-Ada after 2400 epochs of training and manual pruning.

5.3 Conditional StyleGAN2-Ada
StyleGAN2-Ada was tuned to embed the desired location of the polyp in the input layers. Figure 12
shows examples of generated images where the polyp should be placed in the bounding box.

5.4 YOLOv5 Detector
The mean average precision of all winning models is reported in the following graphs and Table 11.
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Figure 12: Conditional version of StyleGAN2-Ada generating polyps within the given bounding
box location. The bounding box is specified first and then ideally the polyp is generated within the
bounding box.
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Figure 13: YOLOv5 mAP comparison between no augmentations added to the training set and
500/1000 fake images added from the StyleGAN2-Ada model after 2400 epochs.

Figure 14: YOLOv5 mAP comparison between no augmentations added to the training set and
500/1000 fake images added from the StyleGAN2-Ada model after 3200 epochs.
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Figure 15: YOLOv5 mAP comparison between 500/1000 fake images from StyleGAN2-Ada after
2400 epochs and manually pruned images from the same model.

Figure 16: YOLOv5 mAP comparison between 500/1000 fake images from StyleGAN2-Ada after
3200 epochs and manually pruned images from the same model.
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Figure 17: YOLOv5 mAP comparison between no augmentations and manually pruned set of fake
images generated by StyleGAN2-Ada after 2400 epochs.

Model epoch checkpoint Number of fakes mAP Manual Prune
N/A 0 0.92448 N/A

StyleGAN2-Ada 2400 500 0.90937 False
StyleGAN2-Ada 2400 1000 0.90466 False
StyleGAN2-Ada 2400 425 0.9213 True
StyleGAN2-Ada 3200 500 0.87794 False
StyleGAN2-Ada 3200 1000 0.88195 False

Table 11: Mean average precision scores for varying degrees of augmentation obtained by YOLOv5.
StyleGAN2-Ada with manual pruning yielded the largest mAP among fake augmentation experiments
whilst no augmentation proved to yield the largest mAP overall.
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6 Discussion
We summarize the paper by providing a couple of discussion points from both medical and machine
learning perspectives to determine the current state of the systems and potential future directions
given the obtained results. A discussion of the results and an attempt to answer the proposed research
questions based on the results follow.

6.1 Research Question 1: Image Realism
The first objective of this study was to determine whether the generation of realistic synthetic polyp
images would be possible. Three networks were built and evaluated based on subjective analysis and
an objective similarity metric.

Of the three models, StyleGAN2-Ada obtained the lowest FID score, suggesting that the statistical
difference between the generated images and the original training set would be the lowest of all models
and that the generated images would be the most realistic of the three. From a subjective standpoint,
the images seen in 31 and 32 contain anatomical properties that can be observed in the real training
set such as protruding polyps, tissue, and even elements from the UI of the endoscope such as the date
of the procedure and the vignette of the camera. On the other hand, image artifacts such as shearing,
noise, and black spots can be observed in a subset of the generated examples.

It is clear that given a sufficient amount of data and the right architecture, image realism can be
obtained in synthetic endoscopy images using GANs. The results obtained using StyleGAN2-Ada
were most promising as several accounts from medical practitioners reported that they believed the
images to originate from real endoscopies. Moreover, we ran a trained polyp detection model from
ZiuZ on 30 random synthesized images generated by StyleGAN2-Ada (2400 epochs) and, for 83% of
them, the model reported the existence of a polyp with at least 22% confidence. 22% confidence was
chosen as the optimal confidence discriminator value for establishing the existence of a polyp for this
particular model.

Given the obtained results, we are happy with the degree of realism exhibited by the most promis-
ing model.

Examples of the images that managed to fool this detector as well as the bounding boxes estimated
by this detector for our generated images can be seen in Appendix section C.

From a quantitative standpoint, StyleGAN2-Ada obtained the lowest FID score; meaning that it
was the closest to being identical to the real images. However, the FID score makes sense relative to
other generative models and not as an absolute metric since it can be arbitrarily high. As the concept
of realism is subjective and inherently not quantifiable, it is not possible to unequivocally answer
the first research question from a quantitative perspective. What can be said is that StyleGAN2-Ada
generated some images that contained, what several medical practitioners claimed to be, polyps. As
such, we are happy with the obtained results. The results obtained were promising in that most of the
generated images contained polyps and, given several improvements to the experimental setup, newer
candidate models may be built to attempt to beat the current model. A benchmark has been set.

We propose the following improvements to the experimental pipeline to increase image realism
and variety:

• increasing the number of images to train on

• increasing the variety of polyps present in the dataset

• increasing the variety of angles and lighting conditions
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• improving the CGAN architecture to produce labels that cover the entirety of the polyp consis-
tently

• building different GAN architectures

6.2 Research Question 2: Detection Increase Through Synthesis
The second objective of this study was to determine whether the inclusion of synthetic images into
existing datasets improved the performance of automated polyp detection systems.

The winning generative model showed near-equal or slightly lower mAP scores during testing.
The decrease in mAP could partially be attributed to artifacts present in some of the produced images.
We showed that by manually removing problematic images, the performance of the detector trained
on the augmented set was equal to the performance of the detector trained on the non-augmented set.
Therefore, although the synthesized images did not increase the performance of the detection model,
improvements in the automated generation of endoscopy images might still lead to an increase in
mAP.

6.2.1 Automated Data Labeling

One limitation of the current model is that the generated images need to be manually inspected to
remove images that contain artifacts. More often than not, the artifact that occurs the most is a
wrongfully generated label covering the polyp only partially and including part of the background as
well. On such common occasions, images do contain high-quality polyps, but they are improperly
labeled by the conditional GAN.

At least two approaches exist for this problem:

• A binary classification method for determining whether a generated image contains an artifact
could be developed to act as a filter for the generator. The method could consist of a separate
discriminator that gets fed images that contain artifacts and images that do not and, in the same
adversarial fashion, would compete with the existing StyleGAN2-Ada generator.

• Improving the overall performance of the network to deter it from generating artifacts in the
first place would constitute an obvious solution to the problem. Seeing as the most promising
generative model that was not manually pruned was within a 2% margin of the performance of
the manually-pruned dataset, optimizing the model and including more images in its training
set could be the necessary forces it needs to surpass the baseline of 92%.

Regardless of the solution, fixing the labels and excluding background information to focus the bound-
ing box only on the polyp would shift the problem from an improper automated labeling technique to
increasing the quality of the features fed into the model.

6.2.2 Latent Space Interpolation

The second limitation is that the generated images do not contain sufficient variability for the type of
polyp that gets created. Since the generative models are trained on a relatively low set of homogeneous
images for deep learning models, synthesized images will also be homogeneous. One way to avoid
this is to manipulate the generative process in some controlled manner. Exploring the latent space
of the network to determine which vectors z influence certain properties of the polyps could yield a
mapping from vector to property. This mapping could then be used to influence the output of the
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network to match any combination of properties that the user wants. An example of manipulating the
style of a polyp using latent vector codes can be seen in Figure 35. Another form of controlling the
generation process is the addition of polyp classes as an additional embedding feature to the input
of the GAN. Should a dataset be fabricated in which each label is associated with a polyp type, an
embedding similar to the one developed for bounding boxes could be done to assert the type of polyp
to be generated.

6.3 Further Extensions
This study focused on answering two questions:

• Is it possible to synthesize realistic images of endoscopy images containing polyps?

• Would augmenting existing endoscopy training sets with synthetic endoscopy images increase
the detection performance of a detection model?

However interesting these questions are, the following ideas are possible extensions that were too
ambitious to be covered in the context of a single master thesis that could be built on top of existing
research as separate publications.

1. Investigating the plausibility of augmenting polyp datasets with selected classes of polyps. As
previously mentioned, there is a varying degree of presence of polyps pertaining to different
classes which is partially caused by the existence of different polyps in the real world. Increas-
ing the number of polyps of low-frequency polyp classes in training sets could ideally allow
for not only an increase in detection performance but an increase in classification performance
as well. As such, further research could look into the feasibility of data synthesis but from a
classification standpoint. As medical practitioners have stated, the trickier to spot polyps would
be more valuable to automatically spot than the obvious protruding ones as they are more likely
to be omitted during the endoscopy procedure. The means towards achieving this could lie in
embedding class information in conditional versions of GANs, manipulating the latent space in
a manner that would shift the style of the polyp from one type to the next.

2. Integrating a wider range of images into the GAN should aid the network in capturing a
wider distribution that is more representative of polyps. Although the images generated by
StyleGAN2-Ada could be deemed ”realistic” from a subjective perspective, they are homoge-
neous since they originate from a latent space folded over a dataset that is also homogeneous.
Integrating images from different datasets that contain different lighting conditions, different
angles of the same polyp type, and generally as much diversity as possible would increase the
robustness of the learning process to fit a distribution akin to that of a real-world polyp.

3. Analyzing the performance of the automated labeling process created via conditional versions
of GANs by comparing the automated labels versus manual labels. The results of the automated
labeling process have shown promising bounding boxes drawn over more than half the surface
area of the polyp. However, there is much improvement to be covered concerning its accuracy.
If the automated labeling process is improved, the ground truth that the detection model uses
to extract the polyp would include a similar structure as one marked manually by a medical
expert. Minimizing the discrepancy between the two labels originating from the two mediums
will positively impact the performance of the augmentation technique.



Chapter 6 DISCUSSION 39

4. AutoML: The experiments suggest an inverse correlation between FID and mAP. This indicates
that optimizing the generative process to minimize FID could constitute a valid automated way
of improving the models. Training on better hardware could enable more experimentation in
the variety of models trained as well as allowing for automated pipelines of model selection and
hyperparameter optimization. For running generative methods, NVIDIA recommends the usage
of 8 V100 GPUs in a DGX-1 configuration, a rig that, at the time of writing, costs $149000.
If such a rig would be available, faster feedback loops to both ML practitioners and Auto ML
pipelines would enable the creation of better models in a shorter amount of time.

5. One of the biggest factors that influenced the realism and quality of the images were artifacts
that appeared in a portion of the generated images. The networks were, most of the time, apt
enough to generate images containing polyps, but on some occasions, the images contained
a wide range of artifacts. Some pertained to the image quality being corrupted by noise-like
spots and shearing. Others pertained to the label generated by CGAN being shifted, causing the
bounding box to cover less than 50% of the surface area of the polyp. Removing the artifacts
mentioned here could drastically increase the performance of the model, something that we
have seen by manually pruning images containing artifacts.

6. Labels being off of the actual polyp was detrimental in degrading the performance of the gener-
ator. Although the FID has merits in its ability to quantify realism, it might not be as important
as some measure that would quantify how accurate the generated labels are. This would imply
that we would have some form of measuring the accuracy of a bounding box within a gener-
ated polyp. However, optimizing for such a metric would yield more accurate bounding boxes
which, as we have shown, are critical to the success of the detector.
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7 Conclusion
After building three distinct generative adversarial network architectures, an automated label creation
method, and testing a wide array of augmentation configurations and latent space manipulations it is
time to answer our research questions.

7.1 Image Realism
StyleGAN2-Ada obtained the lowest FID score of all three architectures, making it the model that
should output the most similar images to the original dataset. After an inspection of the generated
images, several medical practitioners commented that the images produced by StyleGAN2-Ada ap-
peared to include realistic traits of protruding polyps. Due to the very nature of research conducted in
this paper, tackling a subjective matter such as realism is difficult and concluding whether the images
produced by our best model are realistic is near-impossible. Nevertheless, with the degree of realism
obtained we are happy to concolude on a positive note on the first research question in that the most
promising model is capable of producing images with a degree of realism that can trick medical ex-
perts. On top of that, the fact that we are capable of producing realistic images, wherever we want,
and make it look however we want, we see these achievements as proud steps in the right direction.

7.2 Detection System Performance
The best performing model obtained a score equal to that of one that did not train on an augmented
dataset. Though disheartening, we have outlined the possible causes and solutions to this phenomenon
and state that even though we have obtained a negative result to our second research question, the
realm of possibilities for improving the developed models is both extensive and exciting!
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Appendices

A Literature

Figure 18: The different shapes a polyp may have. Flat and recessed polyps present a particularly
more difficult challenge to detect because they blend easier with the walls of the tract. Image taken
from [25].
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B Generated images

B.1 Baseline Candidate Model

Figure 19: ID: 1 Baseline model showcasing mode collapse after training on 1200 images with no
image augmentation.
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Figure 20: ID: 2 Since the previous network converged to mode-collapse, one potential solution
would be to increase the number of dimensions of the latent space. Doubling the number of latent
dimensions for the baseline model to increase the representative power of the network did not yield
significantly different results. However, a step in the right direction can be observed since the images
seem to have more color in them.
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Figure 21: ID: 3 With 512 latent dimensions the network captures the concept of color more pro-
foundly. Nevertheless, changing only the number of latent dimensions for such a simple architecture
seemed to be insufficient at this point.
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Figure 22: ID: 4 Baseline model employing affine image augmentations. The simple architecture
is able to capture certain features akin to that of images taken during an endoscopy. This was the
first major breakthrough that showed that the first research question posed in this paper might have a
positive outcome.
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Figure 23: ID: 5 Baseline model outputting 416x416 images which corresponds to the desired, min-
imal resolution accepted by YOLO. At higher resolutions, the network’s performance does not carry
over as adjustments in the number of filters and their sizes have to be made to accommodate for the
change.
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Figure 24: ID: 6 Baseline model with increased kernel sizes from 3x3 to 5x5 outputting 416x416
images. An increase in kernel size did not correspond with an increase in image quality.
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Figure 25: ID:7 Baseline model with increased latent space dimensionality from 128 to 512. With a
larger number of dimensions, the generator captures more diverse features from the images compared
to previous models.
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Figure 26: ID:8 Baseline model with increased latent space dimensionality and increased k-size.
Results are similar to ID:7 in image quality and ID:6 in effect: an increase in kernel sizes from 3 to
5 does not influence the performance of the generator.
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Figure 27: ID:9 Baseline model using same config as ID: 8 but trained for 2000 epochs as opposed
to only 1000. The model seemed to have mode-collapsed into a less optimal minima compared to ID:
8.
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Figure 28: Baseline candidate model obtained after various experiments. Configuration of network
can be referenced in Table 8.
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B.2 PGGAN Candidate Model

Figure 29: Generated images by PGGAN after 9220 epochs of training.

Figure 30: Real images PGGAN is trying to imitate.
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B.3 StyleGAN2-Ada Candidate Model

Figure 31: Example of images generated by StyleGAN2-Ada after 2400 epochs.
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Figure 32: Example of images generated by StyleGAN2-Ada after 2400 epochs.
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Figure 33: Selection of images generated by StyleGAN2-Ada after 2400 epochs.

Figure 34: Selection of real images StyleGAN2-Ada is trying to imitate.
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B.4 Latent space interpolation

Figure 35: Linear interpolation between two samples drawn from the latent space z. Top left (0, 0)
and bottom right (3, 3) images are next to each other in the latent space. In-between them are linear
interpolations where the closer an image is to (0, 0) or (3, 3) the more it is influenced by the features
of said images. Images generated using conditional StyleGAN2-Ada.
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C ZiuZ detector on fakes

Figure 36: Bounding box drawn by ZiuZ’ YOLOv4 model on an image generated by StyleGAN2-
Ada after training for 2400 epochs. 0.28 was the lowest confidence obtained above 0.22 which is
considered to be the discriminator value to determine the existence of a polyp in an image. The drawn
bounding box nearly covers the entirety of the polyp.

Figure 37: High confidence scores obtained by ZiuZ’ YOLOv4 model on generated images by
StyleGAN2-Ada after training for 2400 epochs. Although the rightmost image has a 0.87 confidence
score, drawn bounding box does not contain a polyp.
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