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Abstract
The building and construction sector is responsible for 36% of the total energy usage and for 39% of
energy/process related emissions. A large part of this energy is used by heating, ventilating and air
conditioning (HVAC) systems that regulate a building’s indoor climate. Most of the HVAC systems
however are still using classic control systems, which leaves room for improvement in the form of
lowered emissions and decreased energy usage. Although many solutions are already proposed in the
literature, the proposed solutions fail to transfer to the real world HVAC systems.

This thesis aims at developing smart HVAC controllers that can be used at scale. The proposed
controllers achieve this by deriving the control solely from data. First a Neural Twin of the pro-
cess is learned. This can be seen as a simulator of the process, learned from the data using a GRU
encoder-decoder neural network. The results show that the Neural Twin framework is able to simulate
several distinct processes with an average absolute error close to 0.2 ◦C for all processes, even when
predicting many hours ahead. The Neural Twin is used to develop two different control algorithms.

The first algorithm learns a control policy for a process using a neural network. The network
is trained using Proximal Policy Optimization (PPO) by gathering experience from the simulated
environment provided by the Neural Twin.

The second algorithm performs Model Predictive Control (MPC) using the Neural Twin at real time
during control. It uses the Neural Twin to choose an optimal control sequence, given a set of possible
control sequences. It selects the optimal control sequence based on the horizon, which is usually a
few hours ahead. Both control algorithms are inspected in several environments and for one of those
environments the controllers are tested on a physical room.

The results show that the control algorithms are able to handle a wide variety of different processes,
without manual tuning. The controllers achieve improved performance compared to the conventional
control algorithms, which were manually tuned, mainly in terms of energy usage. It is estimated that
the proposed controllers can lead to a 5% - 40% decrease in effective energy usage, while retaining
the thermal comfort and stability. The controller trained using reinforcement learning showed the best
performance. From the results it is concluded that the control methods pose an attractive alternative
compared to conventional controllers.
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1 Introduction

1.1 Problem description and goals
Within a building the indoor climate is often actively regulated. This regulation is performed by
Heating, Ventilating and Air Conditioning (HVAC) systems. There are various motivations for indoor
climate regulation such as providing thermal comfort for occupants of the building, maintaining good
conditions in greenhouses for growing crops or storing wares which require certain climate conditions.

According to the National Human Activity Pattern Survey, a person spends approximately 87% of
their time indoors [1]. Furthermore, several studies have already shown the negative impact of poor
indoor climate conditions, which can cause health issues and decreased productivity for occupants
of the building (also known as the Sick Building Syndrome (SBS)) [2] [3] [4]. For these reasons,
maximizing the quality of the indoor climate is desirable.

In general, regulating the indoor climate in buildings results in both energy costs and carbon dioxide
emissions. Obviously it is desirable to reduce both of these as much as possible. This is one of the
main goals of the International Energy Agency (IEA) organization, whose goal it is to shape a world
with secure and sustainable energy. IEA provides analyses of energy consumption and carbon dioxide
emissions globally and for specific countries. In their (at the time of writing) most recent report they
claimed the following: ”The buildings and construction sector should be a primary target for green
house gasses (GHG) emissions mitigation efforts, as it accounted for 36% of final energy use and 39%
of energy- and process-related emissions in 2018.” ([5] p. 12). The same report showed that 30% of
the process related energy is used by buildings alone and 28% of the energy-related carbon dioxide
emissions come from buildings. Furthermore it is expected that the energy demand of buildings over
the next 30 years will increase further with 50% [6].

The goals above pose a conflict, as regulating the indoor climate causes always increases energy
demand (compared to simply not regulating the indoor climate). This means that in the end a tradeoff
has to be made between the quality of the indoor climate regulation and the energy consumption.
Recent studies show that currently it is often possible to use machine learning approaches in order to
improve on the current control policies with respect to both goals [7] [8] [9] [10] [11].

1.2 Possible improvements
Several actions can improve the energy performance of buildings, and in order to achieve optimal
energy performance a building should invest in multiple actions. Two straightforward actions one can
take are:

1. Improve the insulation of the building (for an example see [12]). This results in less energy loss
which means less energy is needed to maintain the building’s indoor climate.

2. Improve the energy management of a building, i.e. improving the current HVAC system of the
building. One way of achieving this is by taking advantage of the sensor data of a building in
order to optimize its control policies.

This study focuses on the latter by developing a method to improve the energy management of
buildings, mainly due to the reason that changing the software which runs a building is easier than re-
building parts of a building (which is required when improving insulation). This makes this approach
more practical and generalizable. However, in the end both approaches can lead to a significant de-
crease in energy costs.
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1.3 Building characteristics
A building’s indoor climate can be regulated in many ways. For example, one can use a radiator as
shown in Figure 1 to heat up a room. One can run hot water (heated by a boiler, located somewhere
else in the building) through the radiator, after which it will slowly heat up the room.

Figure 1: Example of a heater (radiator), a factor
that can control the room temperature.

How fast a radiator heats up a room is depen-
dent on many factors, most of which can be mea-
sured using sensors. For example, the tempera-
ture of the water as it leaves the boiler can be
measured using a temperature sensor. Further-
more, it is common that there is a valve which
controls how much of the hot water is used for
the water flowing through the radiator. This way,
one can control the process of heating the room.

However, almost every process is unique, and
in order to optimally control the process, one
needs to know something about this process. For
example; how fast does the room temperature re-
act on a change in position of the valve? How
much time does it take to increase the room tem-
perature with 1 ◦C? As this differs for all pro-
cesses, one needs different control policies for
all of them in order to control them optimally.

The method presented in this study relies
solely on data acquired from sensors. Before data of sensors can be gathered, it is required to setup
a network of sensors describing the building and letting them communicate according to a protocol,
such that data can be stored in a database. Several protocols exist to provide guidelines about how
this data should be communicated. The data used in this study was gathered according to the Modbus
and BACnet guidelines. The precise workings/principles of these guidelines are not relevant for this
study, but can be found in [13], [14]. The data was stored using Climatics1, from which the data was
retrieved using its Application Programming Interface (API). An example of sensor data from a valve
sensor and a corresponding room air temperature sensor over time is shown in Figure 2.

The sensors measure characteristics of (parts of) a building by logging values at a regular interval.
The logged values of all sensors of a building at a specific time t then effectively describe the state
of the building at that time. Storing this data essentially means gathering a descriptive data set of
the building, capturing the relations of the different processes of the building (and possibly external
factors such as weather conditions). Some examples of sensors in buildings are:

1. Temperature sensors measuring the air temperature of a room, the outside air temperature or
the supply (exit) temperature of a boiler.

2. Feedback sensors, measuring the control value of certain equipment, such as how much % a
valve is open or a binary value for on/off controllers.

3. Pressure sensors, measuring relative pressure in Pascal.

4. Flow sensors, which measure the volume of water passing the sensor every second.

5. CO2 sensors, which measure the concentration of the air in PPM.

1https://climatics.nl
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Figure 2: An example of sensor data over time. The black line corresponds to the room air temperature
in ◦C of a sports hall, and the blue line corresponds to the valve position in %, showing how much hot
water from the boiler was send into the radiator. The orange line denotes the setpoint of the room. A
clear relationship between the sensors can be identified; when the valve opens, the temperature rises.
Furthermore, it can be seen that the room air temperature is influenced by external factors as well (the
weather conditions in this case).
The figure was taken from https://climatics.nl/.

https://climatics.nl/
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A data set with sensor values over time shows the result of the dynamical system of that particular
building. The dynamics of a building are in general quite complex to model accurately, as it depends
on many varying factors such as weather conditions, volume of the room, location of the room within
the building, physical properties of the walls and occupancy of certain zones in the building. Man-
ual construction of such a model is possible, however, and there are multiple simulation programs
available for this. Examples of such programs are EnergyPlus [15], TRNSYS [16] and WUFI [17].
Although these programs facilitate the modeling of buildings, they still require a user to specify the
complete building in a configuration, which for complex buildings takes time and is error prone.
Furthermore, from an industrial/practical point of view, this is not a scalable approach when many
buildings have to be put into production. This study aims at finding a scalable approach using only the
data available from the sensors of a building to find an optimal control policy. A detailed description
of the data used in this study can be found in Section 3.

1.4 System identification and learning of control policies
Extracting the parameters that determine the dynamics of a system using measured data is called
system identification. Part of this study aims at learning a model which approximates these dynamics.
Much research has already been devoted to performing system identification using machine learning
(for more details the reader is referred to Section 2). The model should be reliable enough such that
control policies can be learned and evaluated on it. When the model approximates the actual dynamics
close enough, it is expected that the learned control policies will also be able to control the process in
real life. This way, control policies can be learned from the data alone. This has two main advantages.
First, this approach does not require the time consuming setup of simulation software. Second, this
approach will be scalable as long as enough data is available from the process.

1.5 Research questions and contributions
To summarize, this study aims at answering the following research questions:

• Can a reliable simulator, which captures the underlying system dynamics of a building be
trained, solely from historical sensor data?

• Given such a simulator, is it possible to use this simulator in order to train a model to exert a
control policy π which improves the control performance as compared to classic control?

The contributions of this study are:

• Introducing a scalable approach for learning control policies, based on data alone;

• Inspecting the performance and reliability of system identification using machine learning, for
four different simulated environments;

• Demonstrating the performance of the learned control policy π for an actual physical room.

1.6 Thesis Outline
The remainder of this thesis is structured as follows. Section 2 describes the relevant theoretical
background needed for the rest of the study. General concepts are introduced here as well as previous
literature related to this study. Section 3 describes the details of the methods and design choices for
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the system identification models and the learning algorithms used for finding optimal control policies.
Section 4 describes the setup of the experiments performed in this study. Section 5 presents the results
of the experiments and in Section 6 these results are interpreted and a conclusion is drawn.
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2 Theoretical Background

In this section, the theoretical background for this study is given. First, a very basic introduction is
given concerning the general concepts which are needed to understand the methods used in this study.
Then, previous literature is presented on which this study is based.

2.1 Control systems

The process of indoor climate regulation can be viewed as a control system. A control system aims
at controlling a certain process variable (PV) such that it reaches and maintains a given value, often
called the setpoint (SP). In a control system, the PV is dependent on one or more factors, some of
which can be controlled. The algorithm that determines the values of controllable factors in order to
control the PV will be called the control policy in this study.

A concrete example of an indoor climate control system can be the following: A room has a certain
temperature, which will be the PV. The room has a certain setpoint, i.e. the desired temperature of the
room (for example 21◦C). The room temperature is influenced by a heating component (for example
a radiator as shown in Figure 1). This heating component has a temperature which is influenced by
a valve, which determines the amount of hot water coming from the boiler that flows through the
radiator. This valve has a control value (CV), often ranging from 0% to 100%. By controlling the
valve, one influences the room temperature. Of course, in a realistic setting the room temperature is
furthermore influenced by the combination of the outside temperature, the insulation of the room, the
size of the windows, the material of the walls, the number of occupants in the room, and many more
factors.

From this the following question arises: How can one optimally control the room temperature?
Note that the term optimally leaves room for defining how a control system behaves optimally. In this
study (as introduced in Section 1) a trade-off will be made between energy efficiency and quality of
the indoor climate. Furthermore, the optimality of a control policy can vary in different use cases.
For example, for humans working indoor a comfortable temperature lies (depending on the region)
between 18-24◦C [18]. For controlling greenhouses, depending on the crops, this variation may be
much higher, but certain other aspects may weigh more heavily, such as the average temperature over
a day.

2.2 Types of control systems

Two types of common control systems exist: open-loop control systems and closed-loop control
systems.

2.2.1 Open-loop control systems

In open-loop control systems (also known as non-feedback systems), the control value is determined
independent of the process value. A simple example of an open-loop control system is an on/off boiler
which simply turns on at 06:00 AM and turns off at 08:00 PM. The process value (the temperature
of the water leaving the boiler) is not used in determining the control value. A schematic view of an
open-loop control system is shown in Figure 3a.
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(a) Schematic view of an open-loop control system.

(b) Schematic view of a closed-loop control system.

Figure 3: This figure shows two common types of control systems. Figure 3a shows an open-loop
control system whereas Figure 3b shows a closed-loop control system.

2.2.2 Closed-loop control systems

In closed-loop control systems (also known as feedback systems), the control value is dependent on
the value of the process value and its relation to the setpoint. A simple example of an closed-loop
control system is an on/off boiler which turns on if the process value is a certain value x ◦C below
setpoint, and turns off if the process value is x ◦C above setpoint. This control policy is often called
dead-band control. A schematic view of an closed-loop control system is shown in Figure 3b. The
feedback must have a negative sign somewhere in the loop in order to guarantee convergence to a
desired set point of the process value (negative feedback). Positive feedback would be undesirable,
because it would create a divergence or oscillating avalanche in the process value.

2.3 Examples of classic control policies

Dead-band controller A very simple control policy is the dead-band controller. This control policy
is mostly used for on/off controllers. As described above, one specifies a (not necessarily symmetric)
’band’ around the setpoint. In mechanical thermostats the dead band is realized through hysteresis,
i.e., the switch-on moment being at a lower temperature than the switch-off moment. Whenever the
PV falls below the band, the controller will turn on. Whenever the PV exceeds the band, the controller
will turn off. An advantage of the dead-band controller is that it is very simple to implement. A
disadvantage is that it can not easily be adapted for continuous control, which is often encountered in
realistic building control settings.
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PID controller The proportional-integral-derivative (PID) controller is one of the most popular
controllers today, together with its more simpler versions: the P and PI controllers. The PID controller
is an old concept (first formally introduced in 1922 [19]) but one that is still widely adopted due to its
robustness and stability (that is, when tuned correctly). A PID controller produces new control values
based on the error term e(t), i.e. the difference between the current temperature and the setpoint. The
control value u(t) is then given by:

u(t) = Kpe(t)+Ki

∫ t

0
e(t ′)dt ′+Kd

de(t)
dt

(1)

The three parameters Kp, Ki and Kd determine the behaviour of the control policy. The proportional
term, Kp times e(t), allows a system to react proportionally to an observed error: Larger errors should
give rise to larger corrections. The integral term with coefficient Ki integrates (averages) the error
over time, yielding a low-pass effect. The derivative term with coefficient Kd allows, conversely, for
a faster response if the rate of change in the error signal is high. In control, the goal is to find optimal
values for the three coefficients, such that the response is proportional, smoothed, but fast enough.

Although the PID controller is relatively simple, determining the optimal value of the weights of
three terms in order to achieve ’optimal’ behaviour is difficult. Even worse, when the three terms
are not properly balanced, the system might not even stabilize and have a tendency to oscillate. Sev-
eral methods have been developed in order to determine proper PID parameters such as the Ziegler-
Nichols method which aims at Quarter-Amplitude Damping (QAD) of the process value [20]. This
is achieved by extracting certain process characteristics (for example the deadtime of a process, the
time it takes for the process to react to a step jump in the control value). Other PID tuning methods
are for example the Cohen Coon method [21] or Lambda tuning [22]. Cohen Coon works also by
extracting the same process characteristics, but is more suited for large time delay systems (where the
process value reacts relatively slow to the control value). Lambda tuning is a method which can be
used for systems in which overshoot is very costly. It yields slow behaviour and uses no derivative
term (Kd = 0).

In general, the PID controller allows for robust control once one has found proper parameter values.
Tuning methods exist but these still do not provide a general solution and manual tuning often is still
desirable. Another disadvantage of PID controllers is that they are reactive, in a sense that there the
PID controller will never look ahead at what will happen, which means the control is always lagging.
Furthermore, the parameters of a PID controller are static, and often in different seasons during the
year, different behaviour is required, which means that the controller needs to be tuned again.

2.4 Model-Predictive Control

A more sophisticated and still upcoming branch of control policies is Model-Predictive Control
(MPC). Although these types of controllers outperform classic controllers, they are less widely adapted
as they require a model of the process, which is often hard to obtain. However, when available, the
model is used to plan a trajectory τ for a fixed number of time steps ahead. It will try to optimize
the τ over this horizon h according to a certain cost function, which needs to be designed manually.
The advantage of these types of control is that they use information of the system in order to plan
ahead, making it able to handle non-linear control systems well. Of course, the performance of the
MPC depends on the quality of the underlying model and the length of the horizon over which the
trajectory is optimized. Two examples of how to utilize MPC are given below.
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2.4.1 Random-Sampling Shooting Method

One way to utilize MPC is to use the random-sampling shooting method [23]. This generates K
sequences of control values for the given horizon h. For all these sequences the resulting trajectory
is predicted using the model. Then for all these trajectories the cost is calculated and the first action
of the control sequence with the lowest cost is executed. This process repeats for every time step.
An advantage of this approach is that it requires no extra knowledge besides the model (which still
can be the bottleneck). A disadvantage of this approach is that it is computationally demanding,
although one could argue that this is irrelevant when new control values are not needed that often
(once every 10 minutes for example). Furthermore, as it is randomized, one needs to make sure that
enough sequences are generated, as too few control sequences will almost inevitably lead to poor
performance. As a result, it is impossible to guarantee a certain degree of performance, other than by
evaluation. An application of this approach to the control of robotics can be found in [24].

2.4.2 Genetic Algorithms

Another approach is to use a Genetic Algorithm (GA). The population will consist of a list where
every element is sequence of control values for the upcoming timesteps (a member equals a sequence
of control values). The fitness of the members (control sequences) in the population can then be
determined by predicting the corresponding trajectories and their cost. The lower the cost, the higher
the fitness of the member. Then, the next population is generated based on the fitness scores of the
members of the previous population, together with mutation and crossover. This process can continue
until the new control values are required. Then the first action of the member/control sequence with
the highest fitness score is executed. Although in this way an optimization procedure takes place, it is
still hard to determine whether or not the found control values are optimal. An example of the usage
of GA for MPC to provide smart control of HVAC systems can be found in [25].

Naturally, the optimization of the control sequences can also be done using other optimization
techniques such as Particle-Swarm Optimization [26], Simulated Annealing [27] or Bee-Colony Op-
timization [28].

2.5 Performance of control

As described in Section 1, there are two conflicting goals that determine the performance of a control
system. Note that the weighting of these two goals can vary over time, as during the night in a regular
office comfort maximization should not be weighted as much as during the day. Lastly, a different but
related goal is described as well, regarding the stability of control.

2.5.1 Energy minimization

The first goal is to minimize the energy used during control. The energy used can vary for differ-
ent processes, as it might be the case that one building provides its hot water supply using a boiler
for which the gas consumption can be measured, whereas another building might use a heat pump
for which the electricity usage should be measured. Sensors that measure the energy usage of the
system were not present in the buildings of this study, but it is relatively easy to find a measurement
proportional to the energy usage which can then be used to minimize.
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Figure 4: This figure shows the accepted area in terms of temperature and humidity in terms of
thermal comfort as provided by the ASHRAE standards [29]. It links the PMV and PPD to a specific
spot within the blue shaded area. The reader is invited to play around with the different factors on
the website to see how it influences the PMV and PPD. This figure is taken directly from the site
https://comfort.cbe.berkeley.edu/.

2.5.2 Comfort maximization

The second goal is to maximize the comfort of the occupants in the building. This goal is harder to
measure, although much research has been devoted to this specific goal. The main question is: how
can one measure objectively the performance of indoor climate regulation with respect to occupant
comfort?

One well known model for measuring this quantitavely is by determining the Predicted Mean Vote
(PMV), and deriving the Percentage of People Dissatisfied (PPD) from it. The Predicted Mean Vote
was developed by Fanger and introduced in [30]. The PMV estimates the average vote of persons
about the temperature of a room. It is a number ranging from -3 to 3 where -3 represents cold and 3
represent warm (note that the number itself does not imply anything yet about whether the temperature
is too cold/hot). From the PMV, the PPD can be determined, which represents the estimated % of
people which would be (thermally) dissatisfied, given the PMV. Often, ASHRAE standards [29] are

https://comfort.cbe.berkeley.edu/
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then consulted to infer reasonable bounds for these values, see Figure 4.
The PMV is calculated using the following factors:

1. Dry-bulb air temperature in ◦C.

2. Mean radiant temperature in ◦C.

3. Relative air speed in m/s (caused by body movement).

4. Relative humidity in %.

5. The metabolic rate, a number proportional to the physical activity of occupants.

6. Clothing insulation of occupants.

The PPD is then calculated using a predefined distribution over the PMV. The exact calculations for
the PMV and PPD can be found in [29].

Other comfort models exist as well such as the adaptive ASHRAE comfort model. This method
yields acceptable bands for the inside air temperature taking the running average of the outside tem-
perature into account.

Although these metrics are well studied, it remains the case that many aspects of such models are
either based on assumptions or otherwise hard to measure factors, such as the clothing insulation.
Even though there exist ASHRAE approved methods for estimating (under certain conditions) the
clothing insulation based on the outside temperature [31], one can imagine a situation where an in-
dividual with its own office deviates from these clothing conditions, and prefers a somewhat hotter
environment. In such a case, the person will be dissatisfied when optimizing for such thermal comfort
models.

Therefore, this study will refrain from placing such assumptions on the occupants of buildings, and
assumes that the control of rooms will be regulated with setpoints, which can then be determined by
the occupants themselves in order to optimize their thermal comfort. In that case, the goal of opti-
mizing thermal comfort will align with the goal of tracking the given setpoint as closely as possible.
This comes at the cost of requiring occupants of the building (or the building managers) to determine
setpoints for rooms at specific times.

2.5.3 Stability

This goal is related to the physical constraints a system have. For example, a valve operates in the
physical worlds. Without these valves, control is not possible. The more stable a control policy is, the
longer the lifetime of such a valve. Furthermore, if a control policy is more stable, this means that it
will be more predictable as well, and as a result the building’s control system as a whole will be more
stable if all of the sub processes are stabler as well. Hence, having a stable controller is desirable.
Another way of expressing this is by ’roughness’ of control, i.e. how rough does the valve open and
close over time in order to reach its goal.

2.6 System identification
The process of (nonlinear) system identification can be described as the process of building mathe-
matical models of a specific dynamical system. The mathematical models are build using measured
data. In this study this data is gathered by the sensors placed in a building. In theory, creating a model
based on first principles (using known equations) is possible, but in general yields highly complex



Chapter 2 THEORETICAL BACKGROUND 17

Figure 5: Architecture of a multilayer perceptron with n inputs an 2 outputs, with a single hidden
layer of m neurons. The circles represent neurons and the lines represent weights.

models. Often building such a model is too time consuming. However, the advantage of such a model
would be that one will be able to understand the dynamical system in full detail. Therefore these
models are often called white-box models.

A different approach is to make (almost) no prior assumptions about the form of the model, and
infer it solely from the data. Articial Neural Networks (ANN) can be used for this purpose. They learn
a function mapping inputs to outputs, and in the form of system identification this would mean that
it receives the current state of the system as input and predicts the next state of the system. The use
of ANNs for system identification has already been studied extensively and the idea of using ANNs
as nonlinear function approximators for this purpose was already introduced in the previous century
[32] [33]. Recent deep learning advances has motivated researches to apply these techniques with
the same purpose [34] [35] [36] [37] [38]. A recent survey covering and supporting the use of neural
networks for nonlinear system identification is given in [39].

2.7 Artificial Neural Networks
The models used in this study to perform system identification are called Artificial Neural Networks
(ANNs). ANNs have received much attention during the past decades, as they are widely applicable
and with large amounts of data they have proven to be able to perform tasks with high (sometimes
even superhuman) performance.

One of the attractive properties of ANNs is that they are universal approximators, as already shown
in 1989 by [40]. Informally, the theorem in [40] states that an ANN with a single layer with a
sigmoidal activation function can approximate any function f that is well behaved arbitrarily well,
as long as it has enough neurons. Over the years, many different types of architectures have proven
empirically to work best for different types of problems.

2.7.1 Multilayer perceptron

One of the simplest and most straightforward architectures is the Multilayer Perceptron (MLP), which
maps vectors to vectors. An MLP consists of a certain number of so called hidden layers, which are
connected by weights (represented as matrices). An example schematic of an MLP with input vector
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x∈Rn, output vector y∈R2 and a single hidden layer with m neurons is shown in Figure 5. The lines
connecting the neurons are the weight matrices, which means that this network consists of two weight
matrices: W ih, connecting the input layer with the hidden layer and W ho, connecting the hidden layer
with the output layer.

One of the key parts in the expressive power of neural networks is the nonlinear activation function
used in the layers. Examples of such activation functions are the sigmoid function σ = 1/(1+ e−x),
the tanh function or the rectified linear activation function ReLU(x) = max(0,x). The operations for
activation functions are applied element-wise.

Note: For simplicity, this text will omit biases, which can be used to introduce affine transfor-
mations between layers. Biases can simply be applied by adding an extra neuron at every layer
(introducing an extra dimension) whose value will always be 1. Then the extra weight can scale this
in order to learn an affine transformation.

More formally, an MLP can be described as a function consisting of weight multiplications and
activation functions. Suppose the network of Figure 5 uses the sigmoid function as activation function
for the hidden layer, and no activation function for the output layer. Then the network can be written
down as a function f :

ŷ = f (x) =W ho ·σ(W ih ·x) (2)

The network acts as a nonlinear mapping f : Rn → R2. The weight matrices can be thought of
as mappings as well. A ’deep’ neural network (where ’deep’ means several hidden layers) therefore
transforms the input vector through many different ’spaces’, before reaching a space from which a
final inference can be made, yielding y.

In order to train an MLP, a certain metric is needed which evaluates how ’good’ a prediction of the
MLP is. Suppose our MLP has K hidden layers. Furthermore, Suppose we have a data set D of size
N consisting of pairs (xi,yi) for i = 1,2, . . . ,N, where xi ∈ Rn is an input vector for which the target
vector is given by yi ∈ R2. Furthermore we denote the parameters (the weights) of the network as θ

and the MLP as fθ. Then the ultimate goal is to minimize the empirical risk based on the data set D:

Remp( fθ) =
1
N ∑

i=1,...,N
L(yi, ŷi) (3)

L(ŷ,yi) represents the loss function, which determines the error of a prediction. A standard loss
function is the mean squared error (MSE) which is defined as:

MSEi = (yi− ŷi)
2 (4)

Then, the empirical risk becomes:

Remp( fθ) =
1
N ∑

i=1,...,N
(yi− ŷi)

2 (5)

ANNs are optimized by an iterative training procedure, using gradient descent. During the training
procedure, the parameters of the network are updated as follows:

θ
t+1 = θ

t−α∇Remp( fθ) (6)

This means that the gradient is obtained by averaging the gradients for all input-output pairs in the
data, and this gradient is used to perform a step update. However, this requires a pass through the
complete data set in order to obtain this estimate of the gradient, and for large data sets this yields
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slow training. Therefore, the gradient is often estimated using stochastic gradient descent, which
simply uses the gradient of a single example, sampled randomly from D . Although this allows for
more and faster updates, the convergence is more noisy. Another alternative is to use minibatches,
where a random minibatch is selected of a certain size (for example 32 input-output pairs), which is
used to estimate the gradient. As more examples are used for an update, the updates are often more
stable and representative for the data set, yielding more stable convergence.

For the purpose of explaining the training process, here the gradient of the empirical risk will be
used, with the mean squared error loss function. This gradient can be expressed as:

∇Remp( fθ) = ∇(
1
N ∑

i=1,...,N
(yi− fθ(xi))

2) =
1
N ∑

i=1,...,N
∇(yi− ŷi)

2 (7)

In order to perform the weight update, one needs the partial derivative with respect to every individ-
ual parameter in the network. Due to the convenient structure of an MLP, these partial derivatives can
be calculated efficiently using the backpropagation algorithm [41]. The backpropagation algorithm
calculates the error for the output layer and then backpropagates this error through the network.

The partial derivative of the loss with respect to a specific weight connecting neuron i from layer
k−1 to neuron j from layer k is given by (using the chain rule of calculus)

∂L(y, ŷ)
∂wk

ji
=

∂L(y, ŷ)
∂xk

j

∂xk
j

∂ak
j

∂ak
j

∂wk
ji
, (8)

where xk
j denotes the output activation of neuron j in layer k and ak

j denotes the potential of the neu-

ron, the value the neuron received before passing it through the activation function.
∂xk

j

∂ak
j

corresponds

to the derivative of the activation function, and
∂ak

j

∂wk
ji

will simply be xk−1
i .

Now let us define:

δ
k
j =

∂L(y, ŷ)
∂xk

j

∂xk
j

∂ak
j

(9)

During backpropagation, first the error of the output layer is calculated. For the output layer, xk
j

corresponds to y j. For simplicity, let us assume we have linear output neurons. Then for the output
layer:

δ
K =

∂L(y, ŷ)
∂ŷ

ŷ
∂aK =

∂(y− ŷ)2

∂ŷ
·1 =−2(y− ŷ) (10)

Then, for every hidden layer k, the error is propagated back through the network using the error of
the next layer as follows (again, using the chain rule). This is recursively defined as

δ
k = δ

k+1 ∂ak+1

∂xk
∂xk

∂ak (11)

where ∂ak+1

∂xk is represented by the weights W k connecting those two layers and ∂xk

∂ak is the derivative
of the activation function of layer k.

In general, the partial derivatives for a specific weight wk
ji of can then be calculated with:
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Figure 6: Example of a hidden neuron of an RNN. The unit accepts new inputs at a new timestep
(the arrows coming from the left), and combines them with its previous state, denoted by the circular
arrow.

∂wk
ji = δ

k
j

∂ak
j

∂wk
ji
= δ

k
jx

k−1
i (12)

This procedure is repeated for all layers and for the input layer the values xk−1 are the same as the
inputs provided by the data set.

Considering this, there are forward passes in which input is fed to the neural network which yields
predictions, and there are backward passes, in which partial derivatives for all weights are calculated.

When all input-output pairs in the data set are used exactly one time each in order to perform
updates, this is considered an epoch. Several epochs of training (thus multiple passes through the data
set) are usually required in order to obtain good performance.

2.7.2 Recurrent Neural Networks

The MLP structure allows for a clean and convenient structure for most simple input-output pairs.
However, how well it will perform on a problem is also dependent on the nature of the problem.
Suppose for example the goal is to train a neural network that maps the state of a room to the temper-
ature of the room at t + 1, where a state st is defined by the values of all sensors at time t related to
that room (and additionally some external factors such as weather conditions might be provided). To
learn such a mapping, the information provided at time t by all the sensors might not be enough, as
previous states (st−n, . . . ,st−1) might also have an influence on st+1, meaning that if only (st , st+1) is
given as input-output pair, the neural network would not have enough information to form an accurate
prediction. Instead, a number of sequential inputs st−n, . . . ,st should be given when predicting st+1.
Especially for processes with a large time-delay (under which for example room temperatures) this is
important.

One could argue that a way to solve this is to concatenate all state vectors into a single state vector ŝt
(which then contains information of previous states as well) and use this to predict st+1. In regression
form this is often called window-based regression. However, then the question arises how many states
in advance should be included, which might vary from process to process. It also might lead to many
weights which effectively describe the same relation between two factors but at different time steps,
which do not necessarily need to vary, and thus the same weight need to be learned many times.
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Figure 7: An RNN network rolled out over time. It shows a sequence of inputs and a sequence of
outputs, and how the hidden state is carried through time.

Another alternative is to introduce some form of memory in the network which carries over infor-
mation from previous inputs to the current input. Networks that do this are called Recurrent Neural
Networks (RNNs). In such a network, next to weights connecting neurons from one layer to the next
layer, there are also recurring weights, which connect the hidden neurons of a layer with themselves.
An example of a hidden unit is given in Figure 6. These recurring connections represent the memory
structure of the network, and its memory is often referred to as the ’hidden state’ or ’internal state’.
The hidden state needs to be initialized at the begin of a sequence, and often it is initialized as the
zero vector 0. It allows the network to remember (a part of) the activation of the hidden layer during
the previous input. Thus, it introduces a time component in the neural network.

Suppose the same network structure as in Figure 5 is used, but now recurrent connections for the
hidden neurons are added. The neural network is then parameterized by the weight matrices W ih, W ho

and the recurrent weights W hh.
More formally, this network is presented as a function fθ parameterized by the weights θ. The

hidden state ht of a hidden layer in an RNN at time t is given by the previous output activation of that
layer at t− 1. This hidden state is multiplied by W hh and added to the input of the next time step.
Thus, the output of the neural network, given input xt can be written down as:

ŷ = fθ(xt) =W ho ·σ(W ih ·xt +W hh ·ht−1) (13)

Performing backpropagation for RNNs is very similar to the derivation of backpropagation for the
MLP given above. It can be helpful to think of ’rolling out’ the network over time, such as in Figure
7. As the loss of the network now depends on multiple timesteps, the loss of a predicted sequence can
be expressed as:

L(y, ŷ) =
1
T ∑

t=0,...,T
l(yt , ŷt) (14)

Calculating the derivative with respect to this loss is mostly the same as for a MLP, except for
the partial derivative of recurrent weights. Their partial derivatives depend on both W hh and ht−1,
where ht−1 is again dependent on W hh. Therefore, patterns from previous inputs in the sequence are
learned in order to affect the predictions at later timesteps. In practice however, for long sequences
propagating a gradient through a network can cause the problem of vanishing/exploding gradients
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[42]. Research has shown that vanilla RNNs, as described above, have problems learning long-term
dependencies due to this problem. In order to solve this, several alternatives which preserve a memory
over longer input sequences have been proposed.

2.7.3 Long Short-Term Memory networks

A solution to the vanishing/exploding gradient problem was already proposed in 1997 [43]. This study
introduced a Long Short-Term Memory (LSTM) network architecture, in which a constant error flow
is provided for the memory of the network, often called the cell state. LSTM networks are designed
specifically such that the cell state, which contains the memory of the sequence, is updated in a way
such that the error flows back without causing the vanishing or exploding of gradients. It does so
by introducing certain gates. The core component of an LSTM cell is the cell state Ct . This cell
state is updated every timestep according to a sequence of operations. The following will present the
architecture of the LSTM cell, already including a forget gate, which was not originally presented in
[43] but suggested 2 years later in [44].

1. When a new input arrives, first the LSTM layer determines which parts of the cell state are
forgotten. In the equation below, ft will hold for every unit in the cell state a number between 0
and 1 which states how much should be remembered of that unit:

ft = σ(W f · [ht−1,xt ]+b f ) (15)

2. Then, it is determined which parts of the inputs are added to the cell state, and their correspond-
ing values:

it = σ(W i · [ht−1,xt ]+bi) (16)

Ĉt = tanh(WC · [ht−1,xt ]+bC) (17)

3. Now the cell state can be updated as follows:

Ct = ft�Ct−1 + it�Ĉt (18)

4. With the updated cell state, a new output (and hidden state) can be generated. The part of the
cell state that will be output is based on the current input and hidden state:

ot = σ(W o · [ht−1,xt ]+bo) (19)

5. The final output and the new hidden state of the LSTM cell is then given by:

ht = ot� tanh(Ct) (20)

In the following years, several alternatives and improvements were suggested and experimented
with, such as forget gates [44] and peephole connections [45]. A large scale study has shown that the
most critical components of the LSTM cell are the forget and output gates [46].
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Figure 8: A schematic view of an GRU.

2.7.4 Gated Recurrent Units

In 2014, an alternative architecture closely related to the LSTM was introduced, called the Gated
Recurrent Unit (GRU) [47]. The architecture retains the most important concepts of the LSTM, but
requires less parameters and while showing comparable performance [48]. An GRU does not hold a
cell state like the LSTM does, but operates only using a hidden state ht . It combines the input and
forget gate. For a GRU, every input the following steps are performed:

1. Determine which values of the hidden state to pass through to potentially add to the new hidden
state, called the reset gate:

rt = σ(W r · [ht−1,xt ]) (21)

2. Determine what to update in this timestep, the update gate:

zt = σ(W z · [ht−1,xt ]) (22)

3. Then, the hidden state is updated according to:

ht = zt�ht−1 +(1− zt)� tanh(W h · [rt�ht−1,xt ]) (23)

As can be seen, a GRU model has fewer parameters than an LSTM model, while obtaining compa-
rable performance. For this reason, GRU networks will be used in this study. A schematic view of an
GRU is shown in Figure 8.
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Figure 9: A schematic view of an Encoder-Decoder model.

2.7.5 Encoder-Decoder Models

Although a network based on GRU units allows one to incorporate memory in the network, it cannot
handle certain scenarios in its current form. Suppose the goal is to predict the trajectory of cer-
tain process values of a building n timesteps ahead at time t, given a number of past observations h
(known as sequence-to-sequence prediction). Available are all observations of sensor values of the
past {ot−h, . . . ,ot−1,ot}. Only a part of these observational values can be modelled and predicted,
whereas others cannot, as they are provided by external processes (for example weather conditions or
room occupation). The process values to predict, for example room temperatures, are dependent on
these external variables. This means that for future timesteps, no input for external variables is avail-
able during future timesteps, and the network that is used to feed past observations cannot be used
for recurrent predictions in future timesteps. One can still model this using neural networks by using
an Encoder-Decoder architecture. Furthermore this architecture allows to predict target sequences of
arbitrary length, regardless the length of the input sequence.

Encoder-Decoder models were first introduced in the context of machine translation, where the
target sequence (the translated sentence) might be of a different length then the input sequence (the
sentence in the original language) [47] [49]. Encoder-Decoder architectures consist of two networks:
an encoder and a decoder. The main idea is to first encode the input sequence word by word using
the encoder (in the papers LSTMs were used). Then the cell state and hidden state of the encoder are
used as initial hidden state and initial cell state of the decoder network, which are LSTMs with the
same memory size as the encoder network. Then first a ’Start Of Sentence’ (SOS) token is fed to the
decoder, marking the start of the target sequence. The decoder then predicts the first output, which
will also be its own input for the next timestep. This repeats until an ’End Of Sentence’ (EOS) token is
produced by the network, marking the end of the prediction sequence. During training, instead of its
own outputs sometimes the original target tokens are fed to the decoder in order to speed up training.
This is called teacher forcing. Of course, during inference these target tokens are not available, so
then the output of the decoder at time t will be the input for the decoder at time t +1.

Encoder-Decoders can just as well be constructed using GRUs. The main difference then lies in
that now only the hidden state is passed as the initial state to the decoder, and the rest remains the
same. A schematic view of an Encoder-Decoder network is shown in Figure 9.

Many other types of architectures have been studied extensively such as Convolutional Neural
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Networks (CNNs) [50], Bidirectional Recurrent Neural Networks [51] and neural networks equipped
with attention mechanisms allowing the networks to focus on specific parts of the input at different
times during prediction [52]. In this study, only GRUs and MLPs will be used.

2.8 Reinforcement learning

Reinforcement Learning (RL) deals with an agent learning how to handle sequential decision-making
tasks. As opposed to supervised learning, often there is no clear target is available (such as ground
truth classes or actions). Instead, the agent interacts with an environment, gathers experience, and
then tries to learn from this experience. The environment is equipped with a reward function, which
tells the agent how well it is currently doing. How this agent acts influences the environment, and
thus which states will be visited. The experiences that are gathered tell the agent something about
its actions. For example if an agent is in state st and takes action at , it might receive a high reward
corresponding with the next state st+1. Then, in the future, selecting this action in this state should
be more likely than other actions, as it yielded a high reward. Reinforcement Learning deals with
automating the process of learning which actions to select in which state, in order to maximize the
rewards it gets. Rewards are experienced in episodes. Sometimes the problem has episodes which
can terminate, such as a game of chess which is finished after some time. Other problems such as
regulating a building’s environment are continuing, meaning an episode never ends. A schematic
view of an agent interacting with the environment is shown in Figure 10. Formally, Reinforcement
Learning is formulated as a Markov decision process (MDP).

2.8.1 Markov Decision Process

An MDP is defined by the tuple < S ,A ,P(),R ()> where:

• S is a set containing all possible states. Elements of the set will be denoted as st , where t
represents the timestep.

• A is a set containing all possible actions. Elements of the set will be denoted as at , where t
represents the timestep.

Figure 10: An agent that interacts with an environment through actions.
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• P() is the state transition function, and expresses the probability of a next state given the current
state and an action: P(st+1|st ,at).

• R () is the reward function, yielding a number: R (st ,at ,st+1).

An MDP yields trajectories τ, which consist of a sequence of states and actions:

{s0,a0,s1,a1, . . . ,aT−1,sT}

The function that determines what will be the next state is the transition function. Important to
notice is that it is defined as P(st+1|st ,at), which expresses the Markov property. Formally the Markov
property means:

P(st+1|s0,a0,s1,a1, . . . ,st ,at) = P(st+1|st ,at) (24)

This states that only the current state and action have an influence on which state will be encoun-
tered next. The transition function expresses an probability distribution over next states, and hence
allows the environment to be stochastic. Generally, the transition function and the reward function
are not known for the agent at the start of training.

Furthermore, it should be noted that the next state depends on the action, meaning the agent has
influence on the upcoming states, and hence on the reward that comes with those states. How an
agent selects its actions is represented by a policy which maps states to actions, hence π : st 7→ at . The
policy may be stochastic, meaning the probability of an certain action can be written as π(at |st) and
sampled actions as a∼ π.

2.8.2 Learning Objective

As every state action pair comes with an reward, the return of an episode is defined as follows (note
that R 6= R ):

R(τ) = r0 + γr1 + γ
2r2 + · · ·+ γ

T rT =
T

∑
t=0

γ
trt (25)

γ is called the discount factor, and is required such that the expectation of the return given a policy π

is bounded for problems with an infinite time horizon. Furthermore it influences how an agent weighs
rewards from future states. γ is set somewhere between 0 and 1, where a value of 0 means that at time
t only the next reward matters to the agent. rt simply denotes the reward received at timestep t in the
episode.

The goal of the agent is then to maximize the expected value of the return of a trajectory τ:

J(τ) = Eτ∼π[R(τ)] (26)

Note here that the trajectory τ is generated by a specific policy π, which makes sense since the agents
actions generate the new states and hence the trajectory. Therefore, the agent should modify its policy
such that the expected return is maximized. It is expressed as an expectation as the initial states might
differ when starting trajectories.

With this information two learnable functions can be derived, called value functions:

V π(s) = Es0=s,τ∼π[R(τ)] (27)

Qπ(s,a) = Es0=s,a0=a,τ∼π[R(τ)] (28)
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Intuitively they mean: the total return the agent expects to receive when it starts in state s (and for
Qπ(s,a) when it starts with action a) and from there acts according to policy π. Note that the two
functions are closely related. For example Qπ(s,a) can be expressed as:

Qπ(s,a) = Es0=s,a0=a,τ∼π[r0 +V π(s1)] (29)

The latter is often used as target during training. With this equation, targets on which a value network
can learn can be generated for every tuple (st ,at ,st+1). The network parameterized by θ then tries to
minimize the following loss function:

L(θ) =
1
2
(Qθ(st ,at)− Q̂(st ,at))

2 (30)

where Q̂(st ,at) is calculated in a manner similar to 29 (many variations exist).

2.8.3 Types of Algorithms

With these building blocks, learning algorithms can be distinguished in the following classes.

Policy-Based Algorithms These algorithms learn only the policy π, directly from experience. An
advantage of policy-based algorithms is that they try to optimize the objective directly (maximizing
J(τ)). One of the first policy-based algorithms is REINFORCE [53], which still forms the basis for
many of the algorithms developed in later years.

Value-Based Algorithms These algorithms try to learn one of the value functions V π(s) or Qπ(s,a).
When such a value function is learned correctly, a policy can be constructed from it. This is easy
especially for Qπ(s,a), as then one can simply take the action a in state s which maximizes that
function. For V π(s) this is less trivial, as this function does not contain information about actions.
Hence, often simply Qπ(s,a) is learned. Examples of value-based algorithms are SARSA [54] and
Deep Q-Networks (DQN) [55].

Model-Based Algorithms These algorithms try to learn (or use, if available) a model of the envi-
ronment’s transition function. If this function is known, the agent can use it to predict and plan the
optimal trajectory for some timesteps ahead. This can then be done without actually executing the
actions. Examples of such algorithms are Monte Carlo Tree Search (MCTS) as used in AlphaGo [56]
and iterative Linear Quadratic Regulators (iLQR) [57].

Combined Algorithms Algorithms in this family combine algorithms described above. Actor-
Critic algorithms are known to learn both a policy and a value function. In such algorithms, the
policy (actor) learns from the value function (critic) instead of only from the rewards observed in
the corresponding trajectory. Examples of Actor-Critic algorithms are Proximal Policy Optimization
(PPO) [58] and Soft Actor-Critic (SAC) [59].

2.8.4 On-Policy and Off-Policy Algorithms

An important distinction that can be made between algorithms is whether they are on-policy or off-
policy. The difference between on-policy and off-policy algorithms lies in their use of data. On-policy
algorithms can only make use of data/experience gathered with the policy that is being updated. Thus,
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when an updated is performed, new experiences must be gathered and old experiences are discarded.
The result is that on-policy algorithms have a low sample efficiency. Off-policy algorithms however,
can use experiences generated by any policy, making them much more sample efficient. This can
impact the choice of the algorithm, as in some environments it is costly to gather experience, hence
an off-policy algorithm would be preferable in that case.

2.8.5 Deep Reinforcement Learning

One might have already noted that the value functions and the policies are both simply functions,
meaning that they can be approximated using a neural network. This means that the value functions
and the policy will be parameterized by all the weights θ of the neural network. The input-output
pairs needed to train a neural network will be constructed when gathering experience. From here on,
the techniques described above can be used to train the neural network.

2.8.6 Difficulties Of Reinforcement Learning

Since there is often no ground truth on how to act optimally in an environment, the agent needs to
explore the state-action space by itself. These spaces can be extremely large, meaning the agent can
never visit all state-action pairs (let alone multiple times) in some environments. This is where the
generalization of neural networks plays an important role, where the hope is that the learned functions
generalize to unseen states.

As the policy is always changing, some previously learned information might no longer be correct.
However, if an agent always acts deterministically in a state, this might mean that it will never explore
another action in that state. Most of the time it is desirable that the agent takes the action it thinks is
best, but this might be wrong, and hence it is important to build in an exploration component, such
that the agent does not get stuck in locally optimal policies. This is called the exploration versus
exploitation tradeoff. Good exploration is required to let the agent explore the state-action space
enough, exploitation is required to let the agent act optimally.

Another difficulty of RL, already touched upon lightly, is the data generation process. The data
distribution from which data is generated constantly changes (as the policy changes), and sometimes
of the training data and targets are based on bootstrapping, using current estimates as part of the target
value.

2.8.7 REINFORCE

The REINFORCE algorithm [53] on itself is not stable enough to solve complex problems. However,
it still forms the basis for most of the algorithms developed later. For this reason, its core concept
will be discussed briefly here. REINFORCE aims at optimizing the policy by estimating its gradient
(in order to maximize the objective). Remember that the objective is to maximize the returns given a
certain policy π parameterized by θ:

J(θ) = Eτ∼πθ
[R(τ)] (31)

REINFORCE then tries to find the estimate of the gradient of the objective with respect to the param-
eters of the policy:

∇θJ(θ) = ∇θEτ∼πθ
[R(τ)] (32)
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The problem in Equation 32 is that the return is not directly dependent on θ, and it cannot be sampled.
REINFORCE derives the policy gradient in a manner such that it can be sampled:

∇θJ(θ) = ∇θEτ∼πθ
[R(τ)] (33)

= ∇θ

∫
τ

P(τ|πθ)R(τ) (34)

=
∫

τ

∇θP(τ|πθ)R(τ) (35)

=
∫

τ

P(τ|πθ)∇θP(τ|πθ)

P(τ|πθ)
R(τ) multiply by

P(τ|πθ)

P(τ|πθ)
(36)

=
∫

τ

P(τ|πθ)∇θ logP(τ|πθ)R(τ) ∇ logx =
1
x

(37)

= Eτ∼πθ
[∇θ logP(τ|πθ)R(τ)] (38)

This form allows us to sample experience and compute the gradient with respect to θ in order to
perform policy updates. REINFORCE then uses this form to iteratively sample an episode after
which it performs an policy update. In Equation 38, instead of the R(τ), sometimes a baseline is used,
such as R(τ)−V π(s0). This reduces the variance in the updates as it centers the returns, and thus high
rewards do not yield larger updates in comparison to small rewards.

2.8.8 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [58] is based on Trust Region Policy Optimization (TRPO) [60],
which optimizes the policy with one major difference in comparison to other algorithms: it constrains
the size of the policy update in terms of the Kullback-Leibler divergence between the current and
the next policy. This shields the algorithm against making steps that change a policy drastically. It
changes the objective to maximize into (this is TRPO):

J(θ) = Et

[
πθ(at |st)

πθold(at |st)
At

]
,

subject to Et
[
KL(πθold(·|st),πθ(·|st))

]
≤ δ

where θold are the current parameters, At is the advantage function: Qπθ(st ,at)−V πθ(st), KL(·, ·)
specifies the Kullback-Leibler divergence between the new and the old policy and δ is the upper
bound for the difference between the two policies during an update (the authors of [60] used δ= 0.01).
Intuitively, it makes sure no policy updates are done that change the policy too much in a single update.

PPO strives to achieve the same goal as TRPO, but using a penalty. Instead, they propose the
following objective, introducing a clip term on how much the policy can change. Following the
notation of the authors in [58], let us define the ratio rt =

πθ(at |st)
πθold (at |st)

. The clip term then limits the ratio
by which the policy can change as follows:

Jclip(θ) = Et [min(rt(θ)At ,clip(rt(θ),1− ε,1+ ε)At)] (39)

The intuitive interpretation of the new objective can be given by considering two cases. First, when At
is positive, in order to maximize the objective, πθ(at |st) should become more likely, which increases
rt . The clip term then limits how much it can increase. When At is negative, in order to maximize
the objective, πθ(at |st) should become less likely. Again, the clip term then limits how much this will
be. Furthermore, in order to encourage exploration the entropy of the policy can be added, using a
weight, to the objective. This prevents the algorithm from setting very high probabilities on certain
actions early on in training.
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2.9 Artificial Intelligence Applied To Buildings

Using ANNs for system identification was already suggested in 1990 in [61]. Through the years, as
Deep Learning techniques and more computing power came available, more research was devoted to
this subject. Some examples of system identification using applied to buildings can be found in [62]
[63] [64].

An important part of system identification for building control is indoor temperature prediction.
Although many machine learning methods have been used for this purpose (for a recent survey see
[65]), RNNs have proven to be good candidates for predicting indoor temperatures. In [66], a novel
LSTM-based approach was able to predict indoor temperatures both 5 minutes and 30 minutes in
advance, based on 2 months of data. In [67], an LSTM-based sequence-to-sequence framework was
proposed, achieving good results in predicting indoor temperatures 6 hours ahead at a 10 minute
interval.

Many research has already been done with respect to machine learning and smart building con-
trollers. Many different types of controllers were proposed under which fuzzy controllers [68] [69]
[70] and PID neural networks [71] [72]. An extensive survey of AI-assisted HVAC control is given in
[73]. Although research has shown that fuzzy controllers achieve good performance, they are based
on rules, which may be difficult to come by and vary for every system, which makes it difficult to
scale the approach.

Another way to incorporate AI into the control of buildings is by estimating heating or cooling load
in order to predict energy usage of buildings. Being able to predict the energy load of a building allows
for Demand-Response control, meaning one can adjust its control scheme to use energy when it is
least expensive. This is especially relevant for smart grid solutions. Load prediction has been done
with for example ANNs [74], Support-Vector Machines (SVMs) [75] [76] and ensemble learning
(regression trees) [77] [78]. An RL approach to this problem studied in [79] trained an agent to
tune setpoints for all zones simultaneously, based the expected energy loads. Although tested in a
simulation, they found that their approach was able to reduce energy significantly. A recent study used
an LSTM network to predict energy consumption in combination with MPC using Particle-Swarm
Optimization (PSO) to optimize the energy consumption in a demand response scenario, decreasing
the energy need by approximately 35% [80].

The recent developments in the field of Deep Reinforcement Learning (DRL) have also been ap-
plied to HVAC control. A recent survey showed the promise of these methods with respect to im-
provement of performance [81]. Although promising, the survey concluded that most DRL-based
methods are studied within a simulation setting, and gives as reason that DRL-based agents require
much time to train and real-time interactions, making online deployment hard and not desirable. Fur-
thermore it argued that model-based DRL approaches are preferred over model-free DRL approaches,
due to the related fact that model-based methods are much more sample efficient, and hence require
less training time. Another survey [82] showed that of the 77 articles that were studied:

• The majority of the DRL agents in the studies did not control the actuators of the building
directly. Instead, for example the setpoint is modelled towards a controller needs to regulate.
classic controllers still needed to track the setpoints determined by the DRL agent.

• 91% of the studies did not include previous states as inputs.

• 90% of the studies used data simulated by simulation software such as EnergyPlus.

• 83% of the studies did not include predictions as inputs.
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• Only 11% of the studies implemented and tested their approaches in an actual building. Again
it is argued that the demanding training process is one of the main causes for this.

Both surveys agree on the fact that no standardized benchmark exists for this problem, which have
advanced the research in computer vision, speech recognition and RL.

Reinforcement Learning has been applied onto many different parts of the buildings control. In
[83], the main supply temperature is determined and compared to the baseline as provided by ASHRAE,
which is based on the outside air temperature. Another study trained different Q-networks for all
zones in the building, where temperature violations were kept approximately constant, but cost of
regulating was decreased significantly [84]. In [85], 5% - 12% energy savings were achieved, also by
setting supply temperature setpoints. It made the action space discrete by letting the agent choose be-
tween five different supply temperatures. All three studies mentioned above used simulated data and
evaluated the performance using a simulator. To the best of the author’s knowledge, only one study
tried learning a DRL using an environment based on a model which learned the system dynamics of
the building [86] (hence, it did not need a simulator). Here, an LSTM was used to approximate state
transitions from state action pairs, on which an agent was trained. The agent learned to determine
optimal setpoints for three air handling units (trained separately), decreasing the energy consumption
with 27%-30% while maintaining thermal comfort.

Differences This study differentiates itself from the literature presented above by:

1. Using real data gathered from real buildings to train and evaluate on. This is more realistic
compared to data generated by a simulation program;

2. Controlling the actual actuators of the building, rather than the setpoints. Therefore, it com-
pletely substitutes classical control methods;

3. Requiring no extra metadata on the building such as location, construction or information about
the physical properties of the room. It only uses the sensor data gathered from the building, in
combination with weather data;

4. Testing the obtained controller on the actual building, validating its performance in the physical
world.
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3 Methods
This section will introduce the details of the application of the methods used to achieve the goal as
described in Section 1, using the concepts introduced in Section 2.

3.1 Data
In order to use the approach described in this study, a time series data set is needed which reveals the
dynamics of the system at interest. A constant interval is assumed, which can and should be varied for
different processes, i.e. for fast processes this interval can be 2 minutes, whereas for a slow process
(regulating a swimming pool for example) the interval can be 10 minutes. Data from Climatics is
always available at a 2 minute interval, hence it should be re-sampled when training for relatively
slow processes.

At every timestep t, all sensor values are observed, which will be denoted as the observation vector
ot . From the day a building starts logging, up until now, it will collect these observation vectors at a
fixed time interval (every 2 minutes), creating a sequence of observations {o0,o1, . . . ,oT}, where T
is the current time. It is important to note that a single observation ot does not yield the full system
state, as it will consist of temperatures and values moving in a particular direction and this direction
is not included in ot .

An observation at a specific timestep consists of the following components:

1. Values for all sensors of the building relevant for the specific process. These can be splitted into
three types of sensors:

• The sensor(s) to model. For a room this will be the sensor that measures the temperature
of the room.

• Actuator sensors. These are all the sensors which can be controlled by the system in order
to achieve the control objective. For a room this might be the valve which determines how
many hot water is let into the radiator.

• Remaining sensors. These sensors cannot be controlled and will not be modelled, but they
are relevant for the control process. As an example, this might be a supply temperature of
the water leaving the boiler, before it reaches the radiator.

2. Values for weather data. In this study, weather data is retrieved using the DarkSky API, which
provides hourly weather data. In the data set, weather data is padded (thus during an hour the
weather data remains constant). The following weather data is used:

• cloud cover, a number in the range 0−1

• humidity in %

• UV index

• wind bearing in degrees (0-360)

• wind gust

• wind speed (in m/s)

• outside air temperature

The DarkSky API allows us to retrieve forecasts for an hour ahead for all of these values.
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3. Encoded cyclic time information. Three cycles can be identified for a data set of a building:

• Day cycle, starting at 00:00 and ending at 23:59. This cycle allows the model to learn an
occupancy schedule of the building, in combination with the week cycle.

• Week cycle, starting on Monday and ending on Sunday. This allows the model to distin-
guish between weekdays and weekends.

• Year cycle, using the week number. This allows the model to learn patterns occurring in
different seasons.

All cycles are mapped to a unit circle, with the corresponding frequency. As there are 86400
seconds in a day, the data will be mapped to the unit circle using

yminutes = sin(2πx/86400)
xminutes = cos(2πx/86400)

Here, x is the relative second of that day. When using 2 minute intervals these will be multiplies
of 120. This will yield a point on the unit circle relative to the current position in the cycle. For
the week and year cycles the denominators will be 7 and 53 respectively.

3.1.1 Data format

In general, the data will be used to simulate short episodes of historical data. In order to do this, a
certain start time t is considered, which should be somewhere within the available period. Then the
input sequence will be several hours leading up to t. The target sequence will be several hours after
time t. During real-time control, t will be the current time. Note that during real-time control, the
Neural Twin can only be used to predict/simulate ahead when the network is trained in such a way
that the decoder accepts only control values and process values. This is because during control it is
unknown what the feature values will be of the other factors (room occupation or weather conditions
for example). This matters only when using the Neural Twin for MPC. When using a DRL agent, the
Neural Twin is not needed during inference, and the agent will only use values from the past timesteps
to directly produce an action. In this case, historical values can be used as inputs for the decoder, next
to the simulated control values and process values.

3.1.2 Case study: sports hall at Duurswoldhal Slochteren

The data used in this study for the real world scenario was extracted from the Duurswoldhal at
Slochteren. All sensors relevant for the sports hall were selected. This consisted of the following
sensors:

• Room air temperature in ◦C

• CO2 sensor that measures the parts per million (PPM) in the air, i.e. the concentration of the air

• Valve position in %

• Central supply temperature ◦C

• Outside air temperature in ◦C
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Figure 11: Part of the schematic for the Duurswoldhal Slochteren. The schematic shows the relevant
sensors for the ’Sporthal’ (Dutch for sports hall). Sensor 1: air temperature of the sports hall. Sensor
2: CO2 sensor, measuring parts per million (PPM), i.e. the concentration of the air. Sensor 3: valve
position for the radiator. Sensor 4: central supply temperature. Sensor 5: outside air temperature.

Data was retrieved between the period 2019-11-01 until 2021-06-01. Hourly weather data was
retrieved and aligned (using forward padding) with this data set and cyclic information was computed
and added. The data was re-sampled to have 10 minute intervals, as the process of heating a sports
hall with a radiator is fairly slow. The data set consisted of 578 days, yielding approximately 80000
observations, where every observation consisted of 17 values. A schematic of the control system can
be found in Figure 11.

3.1.3 Train-validation-test split

In order to evaluate the trained models, the data was split into three parts. 60% of the data was used
for training the Neural Twin and the DRL agent, 20% for validation and 20% for testing. In order to
make sure that no overlapping data was used in the validation or test set, Algorithm 1 was used for
sampling validation and test sets from the full data set. At first, the training set is initialized to be
the full data set. Then, it samples a random time in the train data set which will mark the beginning
of a target sequence. The complete target sequence will then be removed from the train set. This
sampling repeats until the train set is 20% smaller. Therefore, while there may be overlap between
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training examples, there will never be overlap between validation or test target sequences, either with
themselves or with examples from the training set. In total, this yielded approximately 8300 hours of
data for training, 2700 hours for validation and another 2700 hours for testing.

Algorithm 1: Sampling a subset of non-overlapping examples
Result: Dnew, non-overlapping examples for 20% of the data
Input: data set D;
initialize empty data set Dnew;
determine number of samples N of D;
while remaining samples in D > 80% of N do

sample a random start time t from D;
extract input and target sequence around t and add to Dnew;
remove all data in the target sequence from D;

end

3.1.4 Preprocessing

Before the data can be fed to a Neural Twin, it needs to be preprocessed. This is because all sensors
contain values in different ranges and their variance might vary due to its underlying nature (a valve
position can change much more quickly than a room temperature). This can make it difficult for a
neural network to adjust it weights properly. Therefore, in this study all data is normalized to the
range 0−1.

3.2 Neural Twin
The Neural Twin will be an Encoder-Decoder model based on GRUs.

In the context of control systems, Encoder-Decoder architectures can be interpreted as follows.
Both the encoder and the decoder share the same memory structure (the GRUs have same hidden
size). At every timestep the encoder receives the observation (sensor values) at that time. Over time,
the encoder will then encode the current state of the system, based on these past observations:

{ot−h, . . . ,ot−2,ot−1}

The hidden state of the encoder then contains a compact representation of the state of the system. The
hidden state is used as initial hidden state of the decoder. The output of the decoder will consist of the
process values of interest. This can be realised by placing one or several extra fully connected hidden
layers interpreting the hidden state of the decoder, which outputs the process values. However, as
opposed to the encoder input, the input of the decoder might consist of only the process and control
values of the system (excluding any external variables such as central supply temperature) depending
on the use case of the complete model.

For MPC the latter is desirable because at inference time the model will not have access to the
future values of external variables. When constructed like this, one can use the outputs of the decoder
in combination with newly generated control values to simulate a trajectory over a short horizon.

If, however, the goal of the model is to simulate the system as good as possible, one can choose
to let the input of the decoder consist of the full observation. In this case, as input for the decoder,
historical data values of these external variables can be concatenated with the output of the decoder
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Figure 12: A schematic view of an Encoder-Decoder model where the decoder model expects differ-
ent inputs then the encoder model. The black vertical line represents the split between past observa-
tions and future observations. Past observations {ot−h, . . . ,ot−2,ot−1} are fed into the encoder. Then
an initial observation ôt is fed to the decoder and from there the decoder simulates using its previous
output yt+1 and newly generated control values ut to generate output yt+2, and so on.

and generated control values. This might be desirable when one wants to train a Reinforcement
Learning agent in a simulation setting. Then, the Encoder-Decoder model will not be needed during
inference, as in that case the trained agent will take over the control (which does not require the
simulating ahead).

A schematic view of an Encoder-Decoder network in the context of a control system is given in
Figure 12. This figure shows the case where the decoder network omits external variables in its
input. If this would be added, it would mean that at every timestep historical values for these external
variables should be added.

Training scheme The Neural Twin is trained using gradient descent as described in Section 2. It
is trained for several epochs using mini batches. An important concept called teacher forcing is used
during training. Teacher forcing means that during training instead of its own output from the previous
timestep, the decoder receives the target value of the previous timestep as input. This helps speed up
convergence at the beginning of training, as in the beginning it is likely that at the end of a target
sequence the inputs for the decoder will be far from the realistic inputs when using its own outputs.
During the course of training, less teacher forcing will be used and eventually the decoder will only
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use its own outputs. Then, when teacher forcing is no longer used, the learning rate is decreased
exponentially over the remaining epochs. In order to enforce regularization, simple weight decay is
used. This forces the weights to remain smaller, which helps against overfitting. The general training
scheme can be viewed in Algorithm 2.

Algorithm 2: General training scheme of a Neural Twin
Input: data set D;
init encoder and decoder network parameterized by θ;
set number of epochs E;
set learning rate η to initial value;
for epoch in E do

for minibatch in D do
if teacher forcing then

predict sequence ŷ for the minibatch using original data for the decoder;
else

predict sequence ŷ for the minibatch using the decoder’s own output;
end
calculate the loss L(ŷ,y);
perform parameter θ update using the Adam optimizer;

end
update learning rate;

end

Simulating behaviour of the Neural Twin In this study inputs of 30 timesteps are used. For 10
minute intervals this means the encoder is fed 6 hours of data. The decoder outputs 30 timesteps
as well, meaning a the Neural Twin learns to predict 6 hours ahead. As the Neural Twin uses its
own predictions as inputs for the next prediction, errors accumulate over time, hence the Neural Twin
should not be used to simulate a process indefinitely. Instead, it is advised to use the Neural Twin for
no longer than the prediction window that was trained on (the 30 timesteps). After this, a new start
point should be determined from which the process can be simulated again.

3.3 Control Agent
The trained Neural Twin can be used as a simulator for a DRL agent that will try to learn an optimal
control policy. In this case it is desirable to provide full input to the decoder of the Neural Twin, as it
will only be used as simulator, meaning historical data can be used for the sensors other than control
actions and simulated values.

In order to learn the control of a process the following aspects should be determined:

1. What will be the observation space for the agent to learn? What will an observation consist of?

2. What will be the action space of the agent? How will the action of an agent affect the environ-
ment?

3. What will be the reward function that is used by the agent to evaluate experiences?

4. Which algorithm will be used for learning and what does the main training scheme look like?
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Figure 13: A schematic view of the policy network used by the agent. It receives as input a number
of past observations and the current setpoint spt , and outputs means µµµt and standard deviations σσσt
for every actuator of the system. The distributions describe offsets for the current actuator values.
Actions can then sampled according to at ∼N (µµµt ,σσσt).

Observations In this study, an MLP is used to parameterize the control policy learned by the agent.
These types of networks expect only a single vector as input. However, giving only the current
observation ot as input for the network will not be enough, as the network will not be able to extract
higher order movements of the system (for example is the temperature increasing or decreasing?).
Inspired by [55], where multiple frames of an Atari game were concatenated, instead of only the
current observation, the past n observations will be concatenated. In addition to this, the agent will
need to know the (preprocessed) current setpoint of the room. The setpoint will be concatenated to
the past observations and these will serve as inputs for the policy network.

Actions The output of the policy network will be an offset for the current control values. Hence, if
there is a single actuator, its current value is 50 and the output of the network is -2, the actuator’s value
will become 48. In order to perform exploration during training, the network will output a mean and
a standard deviation for every actuator of the control problem, i.e. µµµt and σσσt . During training, a value
will be sampled from the distributions formed by these outputs, i.e. at ∼N (µµµt ,σσσt). During inference,
the means will be used as actions. A schematic view of the policy network is given in Figure 13.

Reward In order for the agent to know how well it performs, it needs a reward function. The reward
function describes quantitatively how ’good’ the current state is. The reward function consists of three
parts, which need to be weighted accordingly. They account for the following three goals:

1. Thermal comfort: this part is represented by the difference in temperature and setpoint. Hence,
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the reward will be the negative of the absolute difference between these two, as the closer the
temperature is to the setpoint, the higher the reward should be:

Rthermal =−|Troom−SProom| (40)

2. Stability: this part is concerned with the stability of control. The more stable the control is,
the fewer physical actions an actuator has to make, increasing the durability of the physical
controllers in the building. Furthermore, this will make it easier to predict the behaviour of
the building, which helps when optimizing the building from the supply side. Inspired by
the Hamiltonian, the first order movement of the control values will be used. This yields the
following reward:

Rstability =−
1
M

M

∑
i=0
|ai| (41)

This makes intuitive sense: if the offsets are small, the control sequence will be more stable.
Furthermore, it allows the control of the speed of the control policy. The higher η, the slower
the control will be, as large offsets will be discouraged.

3. Energy consumption: this part is concerned with decreasing energy usage. If two control se-
quences both achieve the same reward for thermal comfort, obviously the control sequence
using the lowest amount of energy is preferred. Although at the locations energy sensors were
not present, the energy consumption is proportional to the integral of the control sequences (in
a heating scenario). Hence, keeping this integral as low as possible will yield lower energy
consumption. Assuming control values are modular and can be within the range 0%− 100%
(although easily modifiable towards other control ranges), this can be calculated by taking the
mean of the current control values:

Renergy =−
1
M

M

∑
i=0

ui (42)

The total reward function then will be:

Rtotal = Rthermal +αRstability +βRenergy (43)

Here, α and β can be used to weigh the different parts of the reward. The maximum value this
reward can be is 0, as all rewards on themselves can at most be zero. The aim of the agent is to find a
policy that maximizes this reward function.

Algorithm and Training Scheme The PPO algorithm is used to train the agent. The algorithm
expects episodes, which will be simulated using the Neural Twin. Although the control problem is in
theory infinite, the Neural Twin becomes less accurate as more time passes due to the accumulation of
error. Therefore, episodes of 6 hours are used. At the start of an episode, a random time available in
the train set is selected which acts as the start of the episode. Historical data from this point on is used
as input for the decoder during the episode. Random setpoints are generated for the episode, within
reasonable bounds of the starting point. The agent then gathers experience for a number of episodes,
and then uses these experiences to perform an update for its value and policy network according
to the PPO clip objective. The training takes place according to Algorithm 3. After training, this
yields a network that can be used to control the process. During training, the agent is evaluated by



40 Chapter 3 METHODS

Figure 14: A schematic view of the training scheme of the DRL agent. On reset (at the start of
an episode) historical data is fed to the encoder. The state of the encoder is passed to the decoder,
which starts simulating. The output of the decoder, together with historical data (weather conditions
or external factors) are fed to the agent which generates control values. These are then fed back to the
decoder which simulates the next timestep.

performing a number of episodes that start at a time which is in the validation set. The agent will act
deterministically and the mean return of the test episodes are remembered and logged over time in
order to track the progress during training.

The agent can then easily be used to control the process according to Algorithm 4. A schematic
view is given in Figure 14.
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Algorithm 3: Training a control agent using PPO
Input: Neural Twin NT ;
init policy network θπ;
init value network θV ;
set number of episodes per train step N;
set number of batches per train step B;
set number of updates per batch U ;
while episodes seen < MAX EPISODES do

for episode in range N do
reset environment;
while episode not done do

get exploration action at using θπ;
perform action in the environment using the Neural Twin;
store experience tuple 〈ot ,at ,rt ,ot+1〉;

end
end
set θπold ← θπ;
calculate advantages At ;
for update in range U do

update θπ by maximizing Jclip(θπ) using gradient descent;
update θV by minimizing J(θV ) using gradient descent;
if KL(θπold ,θπ)> δ then

break;
end

end
reset memory;

end

Algorithm 4: Controlling a process with a trained agent
Input: Control policy network parameterized by θπ;
while controlling do

observe ot from the environment;
deterministically calculate action at using θπ and ot ;
perform action in the environment;

end
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3.4 Model-Predictive Control
Once a Neural Twin is trained, it can be used to perform Model-Predictive Control (MPC). Note that
for MPC the decoder of the Neural Twin can only accept the sensors it predicts and control values
as input, as at run time future values for other sensors will not be available yet. It is advised to set
the length of the target sequences shorter in this case as fewer information is available to make good
predictions over time (for example only 1 hour ahead instead of 6 hours).

In this study, the random-sampling shooting method is used for MPC as described in the previous
section. When applied to the process of controlling a room, it generates K random action sequences
for a specific horizon h. The Neural Twin is now used to simulate ahead the process value trajectory
y for each these control sequences. For all of the trajectories the cost can be calculated, and the first
action of the action sequence a that yielded the lowest-cost trajectory will be executed. At the next
timestep, this is repeated. The actions that will be generated are same actions as for the agent, hence
the actions will denote offsets for the current control value. In this study the actions were within the
range of -50% and 50%.

Cost function The cost function plays the key role during control, as it determines what is the best
trajectory, and hence what will be the best control sequence. The cost function consists of the exact
same parts as the reward function for the DRL agent: optimizing for comfort, optimizing for stability
and optimizing for energy consumption. MPC however aims to minimize a cost function, thus instead
of multiplying the rewards with -1, as was done for the reward function for the DRL agent, the rewards
here will be kept strictly positive. Hence, the lower bound of the cost is simply 0. This yields the
simple cost function:

cost(u,y) =
h

∑
t=0
|yt−SPt |+α|at |+βut (44)

where SPt denotes the setpoint, yt represents the predicted temperature, at represents the action taken
and ut represents the control value. The index t here represents the offset in time, where t = 0 is the
current timestep.

The total cost of an episode will be defined as the sum of the costs obtained during that episode:

costepisode =
T

∑
t=0

costt(. . .) (45)

Note that after training a Neural Twin, no additional training is needed, and it can be used directly
for control. The complete control loop is given in Algorithm 5. However, the algorithm’s performance
is heavily dependent on the three hyperparameters λ, h and K:

1. When λ is too large, the control algorithm will simply never spend energy, which will result in
the valve always being shut. When λ is too small, the algorithm will simply not pay enough
attention to energy usage, unnecessarily using more energy than might be needed.

2. When h is too small, the controller might not foresee the influence its actions will have over
a longer time, hurting its objective in the long run. h should also not be too large, as then the
predictions of the NT might be too much off, hurting the performance (as actions do not achieve
what is expected).

3. When K is too small, only a small portion of the action space will be covered. In this case a poor
control sequence, relative to the optimal control sequence embedded somewhere in the action
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Algorithm 5: MPC with random-sampling shooting method using a Neural Twin
Input: Neural Twin NT ;
set energy cost weight λ;
set horizon h;
set number of random control sequences K;
while controlling do

generate K random control sequences u with length h;
use NT to predict trajectories y for all u;
determine the best control sequence u∗ = min

u
(cost(u,y));

execute first control action from u∗;
end

space, might be selected during control. For larger K the probability of generating a control
sequence close to the optimal sequence increases. However, also the larger K is the more
computationally expensive the control algorithm becomes. Especially for high dimensional
action spaces this might pose a challenge due to the real time constraints of control systems.

3.5 Reward vs. Cost Function
Although mentioned before, it should be noted that the reward function of the agent is the negative
of the cost function used for MPC (given that α and β are set to the same values in both equations).
Hence:

Rtotal =−1∗ cost(u,y) (46)

Therefore, both methods are optimizing for the same objective, which makes it possible to compare
their performance.

For both control algorithms, the thermal comfort part of the cost function is calculated in ◦C. The
stability part is calculated in %, hence the values for both algorithms will lie in the range of -50% and
50%. The energy part is also calculated in %, but the range for these values lie between 0% and 100%
for both algorithms.

In this study, α was set to 0.3 and β was set to 0.1. The parameters α and β could be used to enable
different ’modes’ for the control algorithms, as it lets the control algorithms focus more heavily on
certain parts of the reward. For example, when β is increased, this means that the algorithms will
focus more on lower energy consumption, and care less about the temperature violation as a result of
this.
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4 Experimental Setup

4.1 General outline

Figure 15: The general workflow of the experi-
ments for all the locations.

The ultimate goal of the study is to obtain a con-
trol policy that maximizes performance. Before
such a policy is obtained, several steps need to
be taken. For each of these steps, experiments
were conducted for a total of 4 different envi-
ronments. For every environment, the following
experiments were performed:

1. One in which the validity of Neural Twins
of an environment is verified.

2. One in which the validity of training a
DRL agent on a Neural Twin of an envi-
ronment is verified.

3. One that reveals the influence of the hy-
perparameters for MPC control.

4. One in which the two control methods are
verified, based on control on the Neural
Twin.

5. One in which the two control methods are
verified by trying them out in a physical
environment. This is done only for one en-
vironment.

Figure 15 shows the general flow of the exper-
iments for all environments.

4.2 Environments

A total of four environments is used, and every experiment except for the real world is done on each
of the environments separately. This shows that the presented methods are generalizable to different
environments with even different physical equipment without further manual tuning. The following
four environments are used in the experiments:

1. Sports hall of Duurswoldshal in Slochteren. This is the environment already described in the
previous section, and its sensors and schematic was already shown in Figure 11. Table 1 gives
an overview of the sensors used for this environment. This environment is also used for the
real world (physical) test of the controllers. This environment was chosen simply because it
was not possible to test in the real world for all environments, but the building’s owners of the
Duurswoldhal were kind enough to allow us to test this use case there.
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2. Sports hall of a gym in Hoogezand (as far as the author is aware, the building has no name).
It consists of almost exactly the same components as the Sportshal in Slochteren, except there
is no CO2 sensor in this setup. In Figure 16, the sports hall corresponds to room on the right.
Table 2 gives an overview of the sensors used for this environment. Note that the this table
is also used for the changing room environment (described next), only a different room air
temperature and different valve is used. Data was available from 2019-10-01 until 2021-06-01.

3. Changing room of the same gym in Hoogezand. Although it consists of the same sensor setup
as the sports hall, it is a completely different room, behaving differently. The changing room
corresponds to the left room in Figure 16. Table 2 gives an overview of the sensors used for
this environment, with a different room air temperature and a different valve compared to the
model for the sports hall in Hoogezand. Data was available from 2019-10-01 until 2021-06-01.

4. Central hall of the sports center Kalkwijck. It is a relatively large room, and its main difference
with the other environments is that it is regulated using an air handling unit (AHU). The total
AHU is controlled by two actuators, instead of only one (as in the other environments): one
controls how much air is let through from outside, the other controls how much the air is
heated. Figure 17 shows the schematic of the room. It includes another room (a sauna), which is
crossed out in the figure, as this room will be left out of consideration for this environment. The
schematic does not include the flow sensor and the water temperature sensor of the main water
supply (the red line leaving the figure in the bottom left corner), although these are included
within the data. Table 3 gives an overview of the sensors used for this environment. Data was
available from 2019-11-01 until 2021-06-01.

4.3 Experiments
Experiment 1: training Neural Twins

In order to inspect the performance of Neural Twins, several training trials were conducted for every
environment. Every Neural Twin consisted of the same model structure: both encoder and decoder
consisted of a single GRU layer consisting of 100 nodes. A single fully connected layer from size
100 to size 1 (as for all models there is a single output) is then stacked on top of the GRU layer of
the decoder which interprets the hidden state. The models were trained with the mean absolute error
(MAE or L1) loss function. For all models, an interval of 10 minutes was used between subsequent
timesteps. For every environment, a Neural Twin was trained 10 times, and the results show the

Role Sensor Unit #

Sensor to predict room air temperature ◦C 1
Sensor to control valve position % 2
Other sensors outside air temperature ◦C 3

central supply temperature ◦C 4
CO2 concentration PPM 5

Weather data (described previously) - 6 . . . 13

Table 1: All sensors used in the model for the sports hall of the Duurswoldhal.
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Role Sensor Unit #

Sensor to predict room air temperature ◦C 1
Sensor to control valve position % 2
Other sensors outside air temperature ◦C 3

central supply temperature ◦C 4
Weather data (described previously) - 5 . . . 12

Table 2: All sensors used in the model for the sports hall/changing room of the gym in Hoogezand.
Both models use the same conceptual sensors, but for the actual model the room air temperature and
valve differs for these models.

Role Sensor Unit #

Sensor to predict room air temperature ◦C 1
Sensor to control outside air suction valve % 2

heater valve % 3
Other sensors outside air temperature ◦C 4

supply fan binary on/off 5
exhaust fan 1 binary on/off 6
exhaust fan 2 binary on/off 7
flow main supply water m3/s 8
main supply water temperature ◦C 9

Weather data (described previously) - 10 . . . 17

Table 3: All sensors used in the model for the central hall in Kalkwijck.
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Hyperparameter Initial value Final value Scheme used

Batch size 32 - -
Epochs 30 - -

Gradient clipping 1.0 - -
Weight decay 0.01 - -

Teacher forcing chance 90% 0 % 0.9− (0.1∗ epoch)
Learning rate 0.01 0.00001 exponential decay

Table 4: Hyperparameters used when training Neural Twins.

Hyperparameter Initial value Final value Scheme used

Total number of episodes 100000 - -
Training frequency every 100 episodes - -

Number of updates per step 80 - -
γ (discount factor) 0.95 - -

ε for clipping 0.2 - -
Maximum KL divergence 0.01 - -

Entropy weight 0.01 - -
Gradient clipping 0.5 - -

Learning rate 0.01 0.0001 linear decay

Table 5: Hyperparameters used when training DRL agents.

average loss and standard deviation for these 10 trials. Ultimately, the performance on the test set will
be compared with the performance on the validation set. Table 4 shows the hyperparameters used for
all trials.

Experiment 2: training RL agents

In the same spirit, 10 trials will be carried out for every environment on which an agent is trained
using the Neural Twin (obtained earlier) of that environment. All agents have the same MLP structure
[in,128,64,32,out], hence 3 hidden layers. All layers have ReLU activation functions except for the
last layer, which has no activation function.

The mean return (Equation 25) is calculated over time, i.e. during training. This is done for
both episodes from the train set (which happens automatically during training) and episodes from
the validation set. For the episodes of the train set, the mean return of the episodes since the last
evaluation point is used. For the episodes of the validation set, 20 episodes are selected at random,
and the agent acts on them deterministically. During training the performance will suffer from the
exploration the agent performs (by selecting actions stochastically) and therefore it is expected that
the train performance can be lower than the validation performance.

Table 5 shows the hyperparameters used for all trials. The maximum KL divergence is realized by
checking during the 80 updates done every train step whether or not the new policy is diverged more
then the given maximum. If this is the case, the rest of the updates for that train step are cancelled.
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Experiment 3: MPC performance

The goal of this experiment is to inspect the influence of the hyperparameters on control performance.
The random-sampling shooting method (RSSM) is used for MPC. Recall that the two hyperparame-
ters for RSSM are the horizon h and the number of random sequences K generated at every timestep.
Hence, these two hyperparameters generate a plane of possible combinations. In order to measure
the ’cost’ of a combination of hyperparameters, the performance of the RSSM algorithm is measured
throughout 200 episodes (1200 hours) of control on the Neural Twin of that environment. The total
cost (according to Equation 45) of all episodes is averaged and remembered as ’cost’ for that specific
combination of hyperparameters. Doing this for a grid of combinations yields a surface, yielding a
visual interpretation on the effect of the two hyperparameters.

Experiment 4: Control performance experiment

The goal of this experiment is to compare the two control methods on their environment. The two
control methods were compared using the Neural Twin of that environment. For this experiment,
1000 episodes were sampled (6000 hours of control) at random from the data. All episodes were
’played’ twice: once with the trained DRL agent, once with the RSSM control method with the best
control settings (both were obtained from the previous experiments).

The performance of a control algorithm is calculated as

per f ormance =
1
N

N

∑
n=0

T

∑
t=0

r(N)
t , (47)

where N is the number of episodes, T is the number of timesteps in an episode and r(N)
t is the reward

at timestep t of episode N. In words, the performance was calculated as the average over all episodes
of the sum of the rewards for an episode. This basically yields a negative version of the total cost of
an episode as described in Equation 45, which was used for RSSM. For DRL, this corresponds to the
undiscounted return (undiscounted version of Equation 25) of an episode. As both control algorithms
optimized for this objective, they can be compared using this performance measure.

The average performance of the 1000 episodes of both control algorithms is reported for every
environment.

Furthermore the controllers are compared to the conventional controllers. For both the DRL agent
and the MPC controller, three comparisons are made with respect to the original controller (the results
will be averaged over 1000 episodes, i.e. 6000 hours):

1. Comparison in tracking of setpoint, i.e. what is the average deviation from the setpoint. For
one episode this boils down to 1

T ∑
T
t=0 |SPt− yt |.

2. Comparison in energy consumption. For this comparison an estimate will be used based on
the integral of the valve over time. For one episode the calculation will be 1

T ∑
T
t=0 ut , where ut

denotes in % the control value at time t. On itself it does not say much about absolute energy
usage, but in comparison between controllers the difference between the control values can
roughly denote the change in energy usage.

3. Comparison in stability, i.e. how ’smooth’ are the control sequences? For one episode the
calculation will be 1

T ∑
T
t=1 |ut−ut−1|.

In addition to this, the multiple spectra will be compared to each other in order to inspect both the
validity of the Neural Twin as a simulator as well as the performance of the different controllers.
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Experiment 5: Real world experiment

The goal of this experiment is to inspect the gap between simulation and the real world. Both control
methods were implemented in the real world for one environment: the sports hall of the Duurswoldhal
in Slochteren. Both methods were tested for a week on the real system, and their performance is
compared. Although the two weeks were subsequent, the comparison might still be skewed as it is
not possible to control for weather conditions. However, this experiment does yield valuable insights
about the gap from simulation to the real world for both control methods separately.

4.4 Implementation details
Data was retrieved using the Climatics API, provided by Advanced Climate Systems (ACS). This
returned logs for every sensor with a 2 minute interval. Weather data was retrieved using the DarkSky2

API.
The algorithms were implemented using Python and the open source packages PyTorch [87] and

OpenAI Gym [88]. A custom gym environment was created from the Neural Twin trained with
PyTorch. The experiments were run on a computer with an NVIDIA GeForce GTX 1060 6GB video
card. With this equipment, training a single Neural Twin took about 30 minutes and training a DRL
agent took approximately 75 minutes.

ONNX was used to transfer Neural Networks to an ARM64v8 environment which was required in
order to connect the networks with the control system of the buildings.

2https://darksky.net/forecast/40.7127,-74.0059/si12/en

https://darksky.net/forecast/40.7127,-74.0059/si12/en
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Figure 16: Schematic of the Gymzaal Jan building in Hoogezand. It consists of two rooms, which are
both modelled. The structure is fairly similar to that of the Duurswoldhal, presented in Figure 11. In
this schematic, the left room is the changing room and the room on the right is the sports hall.
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Figure 17: Schematic for the central hall in Kalkwijck. It shows the AHU and the room, as well as
a crossed out room (bottom right) which is left out of consideration for this environment. The AHU
unit combines outside air with a heater which is heated using the supply temperature coming from
boilers. Then this heated air will be blown into the room. Two ventilators on top of the room can be
used to extract air from the room. The water supply temperature and flow sensors are not present in
this figure, but are used when modeling the environment.
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5 Results

5.1 Experiment 1: Neural Twins
Figure 18 show the results for experiment 1 for all four environments. It shows the mean loss and the
deviation of the loss over 10 trials for every environment. Table 6 shows the loss on the test set (not
shown in the figure) when compared to the validation loss. It can be observed that all Neural Twins
converge to a stable point after 30 epochs. In the table it is observed that the test loss is approximately
equal to the validation loss, and in the plots it is observed that the validation loss is approximately
equal to the training loss, indicating that the Neural Twins did not overfit during training.

(a) Sports hall, Duurswoldhal. (b) Sports hall, Hoogezand.

(c) Changing room, Hoogezand. (d) Central hall, Kalkwijck.

Figure 18: Results of the experiments for training Neural Twins for the four environments. Each plot
is constructed based on 10 trials. The solid line represents the mean and the shaded area represents
the standard deviation.
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Environment Validation loss Test loss Test error in ◦C

Sports hall, Duurswoldhal 0.0116 ± 0.0003 0.0115 ± 0.0003 0.24 ± 0.21
Sports hall, Hoogezand 0.011 ± 0.0002 0.009 ± 0.0003 0.23 ± 0.32

Changing room, Hoogezand 0.0067 ± 0.0003 0.007 ± 0.0003 0.16 ± 0.13
Central hall, Kalkwijck 0.01205 ± 0.0002 0.0118 ± 0.0003 0.20 ± 0.16

Table 6: Comparison of performance of the Neural Twin on the test set relative to the validation set
for all environments.

5.2 Experiment 2: DRL agents
Figure 19 show the results of experiment 2, where an DRL agent is trained on a Neural Twin of an
environment. The plots show the average and standard deviation of the return over time. It should
be noted that the return obtained from episodes on the validation set are in general higher compared
to the return obtained episodes on the training set. This can be explained by the fact that the returns
from the validation set do not suffer from exploration, as is the case with the returns during training.
Exploration causes the agent to take random actions based on their probability, hence sometimes
taking bad actions. It is observed that all agents converge within 100000 episodes. Furthermore it can
be observed that all agents converge at a different magnitude in terms of returns. For example, the
agent for the changing room in Hoogezand converges with a reward close to 10, whereas the agent
for the sports hall in the Duurswoldhal converges with a reward close to 12.
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(a) Sports hall, Duurswoldhal. (b) Sports hall, Hoogezand.

(c) Changing room, Hoogezand. (d) Central hall, Kalkwijck.

Figure 19: Results of the training of DRL agents for all environments. Every plot shows the average
of the return of the 10 trials, as well as the standard deviation.

5.3 Experiment 3: MPC
Figure 20 show the effects of the hyperparameters (h, the horizon, and K, the number of random
control sequences generated every timestep) on the performance of MPC when using the random
sampling shooting method. A large set of combinations of hyperparameters are all evaluated on 200
episodes, i.e. 1200 hours of control. The average episode cost (which is the same as the absolute value
of the return of an episode) is calculated and plotted. Hence, the result is a surface where low values
of the surface indicate relatively good combinations of parameters. As observed, in the figure, all four
environments yield different surfaces, and different combinations are required for all environments.
However, in general a too small horizon h leads to significant increase in the cost. The same goes for
the number of sequences K generated every timestep: if this number is too small, the performance is
relatively worse compared to larger values of K.
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(a) Sports hall, Duurswoldhal. (b) Sports hall, Hoogezand.

(c) Changing room, Hoogezand. (d) Central hall, Kalkwijck.

Figure 20: Results for the MPC experiment. The plots show the cost of the combinations of the two
hyperparameters relevant to MPC using the random sampling shooting method: the horizon h and the
number of random control sequences generated every timestep, K. The plots show the average cost of
control according to Equation 44, averaged over 1200 of hours of control, simulated using a Neural
Twin of the process.

5.4 Experiment 4: Comparison of Control
Table 7 shows the results when comparing the two methods of control. Based on Experiment 3 and
Figure 20, the following hyperparameters were used for MPC:

• Sports hall, Duurswoldhal: h = 10, K = 1000

• Sports hall, Hoogezand: h = 6, K = 700
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• Changing room, Hoogezand: h = 5, K = 1000

• Central hall, Kalkwijck: h = 3, K = 500

Figure 21 shows an example of an episode of control using both methods. The upper figure shows
the control using the DRL agent whereas the bottom figure shows the control using the MPC algo-
rithm.

Environment DRL control return MPC return

Sports hall, Duurswoldhal -14.65 -13.89
Sports hall, Hoogezand -9.99 -10.76

Changing room, Hoogezand -12.38 -13.92
Central hall, Kalkwijck -10.09 -11.17

Table 7: Comparison of control between the DRL agent and MPC using the random sampling shooting
method. 1000 episodes (6000 hours) of control were simulated using the corresponding Neural Twin,
and the mean return of these episodes are shown in this table.

Table 8 and Table 9 compare the DRL agent and the MPC controller (respectively) with the conven-
tional controller. The results are generated by comparing data from 1000 episodes with the original
data (which represents the conventional controller). For the DRL controller Table 8 shows that for
all environments the DRL controller was able to improve on energy performance, while remaining
thermal comfort (even improving it slightly). For some environments it increases the roughness of
control by a small amount (< 2%).

Environment Setpoint deviation Energy usage Roughness of control

Sports hall, Duurswoldhal -2.8% -15.4% -2.4%
Sports hall, Hoogezand -2.7% -7.46% -1.9%

Changing room, Hoogezand -3.0% -5.3% +1.5%
Central hall, Kalkwijck -3.7% -46.9% +1.7%

Table 8: Comparison of control between the DRL agent and the conventional controller for all envi-
ronments. Values denote the change in % compared to the conventional controller, i.e. based on the
historical data.

Environment Setpoint deviation Energy usage Roughness of control

Sports hall, Duurswoldhal -3.3% -17.5% -2.5%
Sports hall, Hoogezand -3.2% -5.7% -2.4%

Changing room, Hoogezand -4.8% +25.4% -1.0%
Central hall, Kalkwijck -6.1% +37.2% +2.3%

Table 9: Comparison of control between the MPC controller and the conventional controller for all
environments. Values denote the change in % compared to the conventional controller, i.e. based on
the historical data.
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(a) Example of the performance of the DRL agent during an episode in the sports hall, Duurswoldhal.

(b) Example of the performance of the MPC algorithm during an episode in the sports hall, Duurswoldhal.

Figure 21: Comparison of the performance of both control algorithm when both start in the same
situation. The upper figure shows the performance of the DRL agent, the bottom figure shows the
performance of the MPC algorithm. Values on the left of the black vertical line are historical values,
values on the right represent simulated values.

Figure 22 shows four different spectrums for the sports hall, Duurswoldhal. All spectrums are
normalized in the sense that the area under the spectrum sums to 1. The spectrums describe the
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following four scenarios:

1. The spectrum of the historical data (hence with the classic controller). This spectrum shows the
periodicity and the characteristics of the original controller.

2. The spectrum of data simulated using the Neural Twin using historical control values. The
expectation is that this spectrum matches the previous one as closely as possible.

3. The spectrum of data simulated using the Neural Twin with the DRL controller.

4. The spectrum of data simulated using the Neural Twin with the MPC controller.

These spectrums show the characteristics of the different controllers, and the comparison with real
world data. From the spectrums it is observed that the historical data shows one very clear peak,
and this peak is captured when comparing it to the spectrum of the Neural Twin with the historical
control values. In general, the two spectrums look very much alike. This shows that the Neural Twin
is able to extract the periodicity and the characteristics of the process. Furthermore it is observed that
the other scenarios all have the same peak, but this peak is less intense compared to the spectrum of
the historical data. This means that the periodicity is redistributed somewhere else. When looking
at a zoomed in version of the spectrum, it can be observed that the other spectrums show a small
peak before the large peak. Furthermore they show some more noise in the higher frequencies, which
confirms the redistribution.

5.5 Experiment 5: Real World Control
Figure 23 shows the performance of the controllers on the physical environment, the sports hall in
the Duurswoldhal. It is important to note that the figures cannot be compared one on one as opposed
to earlier (Figure 21), as now the environmental variables differed (the control happened on different
days). However, it does show that both controllers were able to reach and maintain the setpoint of
during the day. The deviation of control was around 0.2 degrees Celsius, a difference which is barely
noticeable in the sports hall.

Based on the figure, it would be safe to say that the control of the DRL agent is smoother than
the control using MPC. The MPC control values are more spiked and inconsistent (looking at and
comparing the first few hours of both days). Especially the rate of change of the valve when the room
temperature approaches the setpoint shows that the DRL controller slowly closes the valve, whereas
the MPC controller very quickly closes the valve.
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(a) Spectral analysis of the sports hall of the Duurswoldhal, for different scenarios.

(b) Spectral analysis of the sports hall of the Duurswoldhal, for different scenarios, zoomed in.

Figure 22: Spectral analysis of 4 different scenarios of the sports hall, Duurswoldhal. It shows the
spectrum for the historical data, simulated data with the Neural Twin using the original controller,
simulated data with the Neural Twin using the DRL controller and simulated with the Neural Twin
using the MPC controller.
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(a) Performance of the DRL agent on the physical room on October 14th 2021.

(b) Performance of MPC on the physical room on October 22th 2021.

Figure 23: This figure shows the performance of the two controllers on the physical environment.
These figures are not meant as a comparison between each other, as it were different days with dif-
ferent circumstances and environmental variables. The figure does show that the controllers learned
using the Neural Twin transfer to real world control quite well.
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6 Discussion

6.1 Neural Twin training

The results show that the Neural Twin is able to act as a simulator and it can be learned from data in a
stable manner. On average the prediction error is 0.2 ◦C. This is acceptable as many of the controllers
and sensors in the HVAC sector do not operate in a more precise manner. The plots in Figure 18
show that the validation loss converges to approximately the train loss, and stabilizes across multiple
runs. At the start the deviation of losses across runs is fairly high and the loss does not decrease
much. This can be explained by the chance for teacher forcing which degrades slowly over the first
10 epochs. After this a more steep decrease in loss is observed for all plots. Furthermore the test loss
is comparable to the validation loss for all Neural Twins, as observed in Table 6. This shows that they
are all generalizable to unseen data.

It is interesting to note that the Neural Twins do not all converge to the same loss. Although all
achieve a low enough loss to be usable as simulator, it is dependent on the process how precise the
Neural Twin is. This also means that for harder processes, the Neural Twin will be less reliable
compared to relatively simple processes. When the Neural Twin is used in an end-to-end setting, it
is advised to use some form of validation before using the Neural Twin as the basis for one of the
controllers. It might be interesting to find out what the minimal required loss is before a Neural Twin
is usable (this might be dependent on the type of process as well).

Furthermore, when inspecting two of the spectrums shown in Figure 22a representing the historical
data and the Neural Twin using the historical control values, it can be concluded that the Neural Twin
captures the periodicity and the characteristics of the original data. This ensures that the Neural serves
as a valid simulator for the process. It should be noted that the spectrum has not a perfect overlap,
and the peak in the spectrum of the Neural Twin is lower than the same peak in the spectrum of the
historical data. This means that the Neural Twin emphasizes another periodicity or noise somewhere
else in the spectrum.

6.2 DRL agent training

From Figure 19 it is shown that the Neural Twin can act as a simulator which an DRL agent can learn
patterns from. For each of the plots it can be seen that the agent improves itself compared to its initial
performance, and each of the agents converge. For almost all the plots the reward of the validation
episodes is higher than the reward of the train episodes. As described earlier, this can be explained by
the fact that during validation the agent is not exploring and is choosing its actions deterministically.
This logically leads to better performance compared to the reward of the training episodes, as here the
agent chooses actions based on chance, and hence might pick a bad action for the sake of exploration.

The deviation in reward across runs is minimal for all plots except for the Central hall in Kalkwijck.
One distinguishing factor of this environment is that it requires two control values (as opposed to one
control value as for the rest of the environments). Furthermore, the control system is based on an
air handling unit, which is known to be able to control at a much faster rate than a radiator (this is
also confirmed by Figure 20d, where it can be observed that the horizon has minimal influence on the
cost). These two facts combined might make the convergence less stable for this environment. This
also raises the question whether bigger problems arise when one tries to learn a control policy for
more complex control systems with more control values.

Also here it should be noted that different environments converge to different rewards. The sports
hall in Duurswoldhal converges to a reward of approximately -12.6, whereas the sports hall in Hoogezand
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converges to a reward of approximately -11. This again highlights the fact that every process is dif-
ferent, and its characteristics determine how well the agent is able to do. It might be the case that
the sports hall in the Duurswoldhal is simply harder to regulate due to its geographic orientation, in a
way such that it is highly influenced by weather conditions. Furthermore the room might be insulated
poorly in comparison to the other environments, causing the reward to be worse. When looking at
control episodes from the Duurswoldhal agent, such as shown in Figure 21a, it can be seen that the
agent has managed to control the process, however its reward is simply lower due to the environmental
constraints.

6.3 MPC hyperparameters and room characteristics

Although the intention of Figure 20 was to inspect the influence of hyperparameters on the perfor-
mance of the MPC controller, it also reveals interesting properties of the different environments.

In general it can be observed that the cost decreases when the horizon increases (at least for the
first few steps). This makes logical sense, as most processes are fairly slow; one cannot heat a room
within 10 minutes using a radiator, and more importantly, one cannot stop the increasing/decreasing
temperature in a room within 10 minutes. Hence being able to look ahead is important in order to
reduce overshoot/undershoot. One can also imagine that this only applies to a certain length. Being
able to look ahead one day might not have that much of an influence on what the controller should
do now (for some very slow processes it might though). Hence, what can be seen in the plots gives
away something about the nature of the process. For example, the controller for the sports hall in
the Duurswoldhal still benefits from increasing the horizon from 7 to 8. However, the controller for
the sports hall in Hoogezand does not benefit from the same horizon. This tells us that sports hall in
Hoogezand has a shorter regulation interval, and the regulation happens in faster cycles compared to
the Duurswoldhal. This can be caused by physical constraints such as insulation, volume of the room
and/or capacity of the controller.

Interesting to note is that the Central hall in Kalkwijck does not seem to benefit at all from an
increase in horizon at any point. As discussed before, this hall is regulated by an air handling unit,
which is able to impact the room air temperature in 10 minutes. This means that at any point during
control it can ’switch course’ from heating to cooling or the other way around. This means that the
controller does not benefit from a large horizon as is the case for the other environments which all
heat a room using a radiator.

When looking at the K parameter, it can be observed that after the initial increase to 100 sequences,
this parameter does not have much influence on the cost. It is expected that at least some sequences
are needed to generate sample space large enough such that one good action is in it, but from the
results it can be seen that there is not much difference in performance between 200 and 1000 control
sequences.

Also here it can be observed that all processes have their lowest cost at a different level. Again, the
sports hall in Hoogezand and the Central hall in Kalkwijck have lower cost compared to the other two
environments.

As shortly discussed earlier, the plots also show something about the characteristics of the environ-
ments. The plots suggest that the Central hall in Kalkwijck is a process in which the controller has a
short regulation interval, i.e. the controller has a direct influence on the process value. The controller
in the Sports hall in Duurswoldhal however does have a large regulation interval. More concrete, the
steepness of the surface in the h direction says something about the interval at which a controller has
influence on the process.



Chapter 6 DISCUSSION 63

6.4 Comparison of control

In Table 7, the return of both controllers are compared. From this it can be observed that except for
the Sports hall in Duurswoldhal, the DRL agent outperforms the MPC controller. When comparing
the controllers to the classic controllers of the environments, the same results arise. The first thing
to note is that both controllers retain (even slightly improve) the deviation from the setpoint, i.e. the
thermal comfort in the environments. The same holds for the roughness of the control, which stays
approximately the same compared to the classic controllers. This is important because this represents
the physical constraints of the controller. If the roughness would increase this could mean that the
lifespan of a controller might decrease significantly.

When looking at the energy usage of the controllers, it can be seen that the DRL agent improves the
energy usage for all environments. Only for the Sports hall in Duurswoldhal the decrease in energy
usage is less compared to the MPC controller. The MPC controller did not decrease the energy usage
for two of the environments, and even increased them by a significant amount.

Figure 22 shows a comparison of the spectrums for the different controllers. The general spectrum
still looks the same as the original controller, but it can be seen that the difference lies in the magnitude
of the peak. As the controllers improve upon the classic controller (whose spectrum is shown with
the historical data), it can be argued that the difference observed in the zoomed in version of the
spectrums in Figure 22b explains the improvement, where the shifted frequency distribution of the
controllers represent the change in performance.

Furthermore, Figure 21 shows a pattern that was observed by the author many times, where the
DRL agent performed ’smoother’ control compared to the MPC controller. This suggests that the
agent was able to learn an at least locally smooth function (although it can be questioned what happens
in unlikely situations with such a network). The control of the MPC controller is less smooth, and
especially for low K this will remain the case, because the control sequences from which control
values are selected are generated randomly. When K approaches infinity the control will appear more
smooth, but this will be computationally infeasible.

From the results it can be concluded that the DRL agent in general outperforms the MPC controller.

6.5 Real-world performance

In the current setup of the physical experiment it is not reliable to say anything about the comparison
of energy usage. This is because due to time restrictions only a small sample of control could be
taken for both controllers. Because every day is different, this sample will cannot be compared to the
same time but one year earlier, and the time in which the DRL agent was controlling might have had
very different environmental circumstances compared to the time in which MPC was controlling the
process. Therefore, from the results obtained in this study only conclusions will be made about the
transfer from simulated control to real world control.

When looking at the performance of both the controllers on the physical room, it can be noted
that both controllers are able to control the physical room. From this it can be concluded that the
sim-to-real gap of the Neural Twin for this environment was small enough in order to learn patterns
that transfer to the real world.

For the same reasons as described earlier, it is observed that the DRL controller shows smoother
performance compared to MPC. Smoother control is in favor of the valve, due to the physical en-
durance of the controller. The more rough control is, the shorter the lifetime of the valve before it
breaks down. Therefore, the smoother control of the DRL agent is preferred.

When inspecting the results of the physical experiment, an interesting observation was made. Fig-
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Figure 24: Almost the same plot as Figure 23a, but another part is highlighted and a few extra hours
at the left are shown.

ure 24 shows roughly the same time interval as in Figure 23a, but another part is highlighted. From
this it is directly observed that the agent is heating the room, but the setpoint officially asks for 16◦C.
This can be explained by the following: in Climatics (the building’s management system used), a user
specifies a schedule of desired temperatures. In this case, the user required a temperature of 21◦C at
06:00. This concerns a deterministic, planned form of control (cf.”open-loop”, in the Introduction).
However, if the system started heating at 06:00, it would mean the room would be cold for quite some
time before the desired temperature is reached. To solve this problem, Climatics provides an ‘startup‘
option, which calculates how early the heating process must begin such that the desired temperature
is reached in time. As a result, the setpoint jump is sent to the agent earlier. In the figure, at 00:00 the
agent already got a setpoint of 21◦C, not 16◦C, hence the agent reacts logically. This leads to visually
confusing graphs as the one in Figure 24. More importantly, it may occur that more energy is spilled
during nightly prewarming than during daytime.

However, this is a part of the system that can be optimized that was not included in this study.
Currently, the building is using energy to heat the room mostly in the night, and much less during the
day. The agent directly influences the supply side of the building, because when valves are closed, the
supply side does not really have to do much to maintain a steady supply temperature. The influence
of all rooms in a building on the building as a whole is another study on its own, not further pursued
in this study.

Although the solution works (at 06:00 the room temperature setpoint of 21◦C is reached), one might
question whether this is the most energy efficient approach. Maybe it would be more beneficial to
provide a higher supply temperature (in the figure a supply temperature of approximately 40◦C was
given) and to heat a room quicker, instead of a lower supply temperature and slower heating of the
room. This question should deserve a study on its own.
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6.6 Conclusion

This study proposed two new approaches of learning control policies for HVAC systems. Both meth-
ods are based on the concept of a Neural Twin. A Neural Twin is an encoder-decoder network that
tries to capture the underlying dynamics of a building’s process. It is trained in a supervised manner
on historical data of a process. When the Neural Twin is trained, it can be used as a simulator of the
process.

Although the Neural Twin can be used for many purposes, in this study it was used to develop two
different control policies of a process. One approach used Reinforcement Learning to learn a policy
regulating the process. The other approach used Model-Predictive Control to simulate at real time the
process a number of timesteps ahead using many different sequences of control values and selects the
best control values among them.

Both approaches have their own advantages. When using Reinforcement Learning, a policy is rep-
resented by a simple neural network. This is convenient during real time control, as a new control
value can be generated with a single forward pass. This makes it computationally inexpensive com-
pared to the presented MPC algorithm. However, this approach also is prone to exploiting weak spots
of the Neural Twin, which might work on the simulator but do not translate to the real world. An
advantage of the MPC algorithm is that it can be used as soon as a Neural Twin is obtained, and
requires no further training. However, it is dependent on the hyperparameters K and h, for which dif-
ferent settings might be required for different processes. This can hurt the scalability of this approach.
Furthermore this approach becomes exponentially more computationally expensive when the action
space (like the number of valves) increases.

The approaches were tested on four different processes. From the results it can be concluded
that the Neural Twin framework was able to learn a valid simulator for all processes (Figure 18 and
Table 6). This speaks in favor of the generalizability and scalability of the Neural Twin. The same
conclusion can be drawn from the results of the agents trained on the Neural Twins (Figure 19).
All agents show learning and converge within the given number of episodes. It also shows that not
all processes can be treated the same, as it might be the case that one process is simply harder to
regulate, causing its average return after convergence to be worse compared to another process, while
both might have reached ’optimal’ performance.

From Table 7 it can be concluded that the DRL agent performed better compared to the MPC algo-
rithm. Furthermore in Figure 21 it can be seen that the control of the DRL agent is more smooth when
compared to the control of the MPC controller. The explanation for this is that the MPC controller
generates control values at random, whereas the DRL agent actually tries to learn a function, which
is more likely to be locally smooth. However, no guarantee can be given that the agent will actually
learn a smooth control function (note that this can be controlled to some extent using the Hamiltonian
reward). As for the MPC controller, it is expected that as the number of random sequences generates
increases, the control will become more smooth, as MPC also tries to optimize based on stability
(Equation 44). Compared to the classic controllers, the DRL agent improved the performance for all
environments.

Although the results show that the control of a process can be learned automatically, it was also
observed during the test of the physical environment that this of course is not the whole story in
optimizing building performance. Next steps should include a study of the interconnection between
processes within a building in order to optimize the stability and performance of a building as a whole.
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6.7 Summary of Main Contributions
1. The study introduced a scalable and generalizable framework for learning a simulator based on

historical data only. The concept is called a Neural Twin.

2. The study presented two methods with which one can automatically (learn to) control a process
based on a Neural Twin. This study used both Reinforcement Learning and Model-Predictive
Control.

3. The study validated the control methods in a physical environment, showing that the sim-to-
real gap was small enough in order to transfer the controllers learned using a simulator to their
physical environment.

6.8 Limitations and Future Work
Although the current study presents methods on how to automatically obtain control for a process,
it still requires much time before it can be applied to a process. One needs to gather data for this
process for a variety of seasons before one can train a reliable Neural Twin. In the meantime the
building still needs to be regulated which cannot be achieved using the two methods described in this
study (both need a Neural Twin before they can be learned). Hence, one would need to use classic
control methods until enough data is available. Therefore, the approaches in this study would mainly
be applicable to buildings that already have a control system, which can then be changed to use the
methods described in this study.

As argued before, a process on its own has an influence on the process of the building as a whole.
For example, when opening and closing its valves, it disturbs the process of the boiler trying to provide
a steady supply temperature. How these processes interact with each other, and how these processes
as a whole can be optimized together, could yield a very interesting study in the future.

6.8.1 Transfer Learning

In order to use the methods on buildings from the start, it is important to transfer knowledge learned
in a previous building to the new buildings. When this is possible, one can start controlling using the
previously learned knowledge in a new environment. One could realise this by identifying rooms that
behave similarly across different buildings, and training an agent that controls multiple rooms, such
that the knowledge that is learned is more about controlling a ’type of room’ instead of controlling a
’specific room’.

6.8.2 Safety

Both control methods are based on the Neural Twin networks, which means they inherit bias learned
by the Neural Twin. Although the results are promising, it does not tell us anything about how stable
the networks will be in unexpected conditions. Furthermore, it can be quite hard to determine what
the behaviour of Neural Twin and the DRL agent will be as soon as data is encountered which falls
outside the expected (training) distribution. It would be interesting to see the behaviour of the control
algorithms under extreme conditions.
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Figure 25: Schematic view of the room in the simulation.

Appendices

A Simulation
During the development of this study, a simple simulation was constructed on which the several
methods could be verified individually. The simulation was used to debug the implementation of the
DRL training algorithm and to verify the validity of the Neural Twin acting as a simulator.

The simulation room

Figure 25 shows a schematic of the simulation room. The simulation consists of a single room with
a volume of 150m3 (10x5x3). The air temperature of the room is measured with a sensor which logs
values every 2 minutes. The air temperature of the room can be manipulated using an air handling
unit. The following assumptions are made for the sake of simplicity:

1. The ambient temperature is constant at 12 ◦C.

2. The supply air temperature of the air handling unit is assumed to be preprocessed such that it is
always at a constant temperature Tsupply = 15 ◦C.

3. The air flow provided by the air handling unit is considered to be constant at 0.083 m3 per
second (300 m3 per hour).

4. Heat is lost through the walls and the roof of the room (no heat is lost through the floor). This
corresponds to an area A of (10∗5)+2∗ (10∗5)+2∗ (5∗3) = 180 m2.
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5. The thermal transmittance (U-value) for this area is known and fixed at 0.5 W/m2K (which
corresponds to a reasonably isolated area).

A heater is placed with a capacity of 2000 W, which can be controlled by sending a control signal
between 0% and 100%. This control signal will have a linear influence on the heater. This heater can
be used to heat up the air as received from the air handling unit, which will be assumed to be constant
in both temperature and flow.

With this information, the temperature of the air after the heater can be calculated, Tin, as well as the
room air temperature Troom that follows from this. These temperatures are described by the following
equations:

Hwatt = Hmax ∗
H%
100

(48)

Where Hwatt represents the energy produced by the heater, Hmax represents the maximum capacity of
the heater and H% represents the current control signal of the heater. Then,

Tin = Tsupply +
Hwatt

φv ∗ρair ∗ cair
(49)

Where Tin represents the temperature of the air that is blown into the room, Tsupply represents the
temperature of the air before the heater (15 ◦C), φv represents the air flow (0.083 m3), ρair represents
the density of air and cair represents the thermal capacity of air.

With this, the total energy added to the room can be calculated:

Eadded = φv ∗ρair ∗ cair ∗ (Tin−Troom) (50)

Furthermore the room loses energy through its walls according to:

Elost = A∗U ∗ (Tambient−Troom) (51)

The total energy is simply the sum of those two:

Etotal = Eadded +Elost (52)

Finally, the new temperature of the room, after 120 seconds (2 minutes) will then be:

Troom = Troom +120∗ Etotal

V ∗ρair ∗ cair
, (53)

where V is the volume of the room.
Please note that this is an extremely simplified simulation of a room, and its purpose is merely to

act as a test bed on which the approaches presented in this study were validated.
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Figure 26: Lab setup used for online learning.

B Online learning
During the early stages of the project, another idea was to perform online learning, i.e. learning along
the way. Because this would disrupt the regulation of a room in the early stages of learning (because
the agent has not learned anything yet), an lab setup was created on which this concept could be
tested. Figure 26 shows the lab setup used to test online learning. It is a mini room made from thick
glass. It can be heated by turning on the lamps inside (the mini room can be made approximately 40
degrees Celsius).

Because during online learning the agent acts directly in the environment, it takes time to collect
experiences, meaning the experiences are costly. Because of this, the Soft Actor-Critic algorithm was
used during online training. The agent was given three inputs:

1. The ambient air temperature (outside the mini room).

2. The inside air temperature.

3. The modular value of how much the lamps were on (0% - 100%).

The agent was learning for approximately two weeks and the results are shown in Figure 27. From
these results it can be observed that in the beginning the agent has no control over the temperature.
However, after approximately a week the agent starts steering the temperature around the setpoint and
the longer it trains, the closer it hovers around the setpoint.
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Figure 27: Results of the real time RL algorithm. The blue line denotes the mini room air temperature
and the black line denotes the setpoint.

Although technically the experiment was successful, when thinking about the orders of magnitude
a real room is more difficult than our mini room, we concluded that using online learning (from
scratch at least) is too costly and too time consuming. The mini room reacts within two minutes on a
change in control, but a sports hall can take half an hour. Furthermore there is a much wider range of
environmental possibilities and disturbances for real rooms. Our lab setup required only 3 inputs, but
real rooms require easily 4 times as many.

From this, we estimated that learning control of a room could easily take multiple months. This is
infeasible as buildings cannot be out of control for such a long time. This is one of the reasons we
were motivated to learn a simulator (a Neural Twin) for control.
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