

jijj

Building potential energy surfaces of heteroaromatic

compounds using neural networks

Second Research Project

November 5, 2021

Author:

Joël Benninga

Supervisors:

prof. dr. Shirin Faraji

Albert Thie, MSc

Zernike Institute for Advanced Materials

Theoretical and Computational Chemistry group

i

ABSTRACT

Machine learning is on its way to revolutionize the field of computational chemistry. In recent years

it has made remarkable progress in many areas due to advances in the development of machine

learning algorithms and improved hardware resources. Applications of machine learning in the field

of computational chemistry include molecular dynamics, Monte Carlo simulations, and more

specifically in drug design and material screening. The goal of this research project is to explore the

application of machine learning for the building of potential energy surfaces of heteroaromatic

compounds, as prerequisite for excited-state quantum dynamics. The potential energy surface is the

most basic quantity to describe a chemical system, and determines all of its properties. Although

quantum mechanical methods exist to accurately calculate potential energy surfaces, these are

computationally expensive. Therefore, neural networks – a class of machine learning algorithms –

have recently emerged as a promising alternative for the construction of potential energy surfaces.

In this project, three neural networks are optimized by grid search, trained on surface hopping

dynamics simulations, and finally applied to predict potential energy surfaces of pyrazine, pyrrole

and furan. Grid search allows the selection of optimized neural networks, which are subsequently

trained with the goal of obtaining a training loss below 0.1 eV. This goal is only achieved for the

pyrazine neural network, although the pyrrole and furan neural networks are not far off. Finally, the

performance of the trained neural networks is assessed using test datasets, i.e. surface hopping

simulations that are not evaluated in training. Overall, the three models have a test error, i.e. a mean

prediction error on the testing dataset, below 1 eV. The pyrazine model is the most accurate, and

the pyrrole model the least, which has a significant bias towards underprediction.

This research can be continued by improving the accuracy of the neural networks. The most

progress would likely be made with hyperparameter tuning. Another approach would be to increase

the size of the datasets of both training and testing data. Neural network training on more data should

lead to an increase in prediction accuracy. A validation step during the training phase could prove

beneficial as well. The research can also be expanded upon by investigating other heteroaromatic

molecules, such as thiophene or indole.

In conclusion, machine learning appears to be a very useful and accurate tool for the building of

potential energy surfaces of heteroaromatic compounds. The application of neural networks for

electronic energy calculations would save a significant amount of computational time, meaning that

research could be conducted much faster, at lower cost.

ii

PREFACE

This research project was carried out at the University of Groningen within the Theoretical and

Computational Chemistry group between May and October 2021. I wish to thank prof. dr. Shirin

Faraji for her supervision and for giving me the opportunity to conduct this research project in her

group. I also want to thank Albert Thie for guiding me throughout this project, and Max Menger for

helping with PySurf. Lastly, I want to thank all group members for the interesting talks and

discussions.

Hardenberg, 18th of October, 2021

Joël Benninga

iii

Contents

ABSTRACT ... I

PREFACE... II

1 INTRODUCTION ... 1

1.1 Neural networks ... 1

1.2 Construction of potential energy surfaces with neural networks ... 4

1.3 Goal ... 6

2 COMPUTATIONAL DETAILS ... 8

2.1 Electronic structure calculations ... 8

2.2 Surface hopping simulations .. 8

2.3 Neural networks ... 8

3 RESULTS AND DISCUSSION .. 10

3.1 Grid search .. 10

3.2 Model training .. 12

3.3 Model testing ... 14

4 CONCLUSION AND OUTLOOK ... 17

5 REFERENCES .. 19

6 SUPPORTING INFORMATION ... 23

6.1 Neural network ... 23

6.2 Grid search results ... 24

1

1 INTRODUCTION

Machine learning is emerging as the next big leap in computational chemistry. In recent years it has

made remarkable progress in many areas due to advances in the development of machine learning

algorithms and improved hardware resources.1 Applications of machine learning in the field of

computational chemistry include molecular dynamics2, Monte Carlo simulations3, and more

specifically in drug design and material screening.4

Under certain conditions, such as sufficient training data, machine learning algorithms can predict

physicochemical properties many orders of magnitude faster than traditional computational

chemistry methods, without loss of accuracy.1 These properties include Potential Energy Surfaces

(PES)5, excited states6, forces7, spectroscopic quantities8, and reaction pathways.9 The PES is the

most basic quantity to describe a chemical system, and determines all its properties. It is defined as

a function that yields the potential energy of a molecular system with respect to its atomic

coordinates. Information about the PES can be obtained by solving the Schrödinger equation. Many

Quantum Mechanical (QM) methods exist to very accurately solve this equation. However, due to

the high computational costs only the most efficient methods, such as Density Functional Theory

(DFT)10 can be used. Therefore, Neural Networks (NN), a class of machine learning algorithms, have

recently emerged as a promising alternative for the construction of PESs.11

1.1 Neural networks

Although inspired by neurons in the brain, NNs in machine learning are far from the reality of how

the brain works. NNs consist of layers of computational functions called neurons that are connected

to other neurons in other layers. Starting from an initial input layer that receives the data, each layer’s

output is the subsequent layer’s input.12

One type of NN that is relevant for the construction of PESs is a feed-forward NN (Figure 1). In this

example the NN is composed of four layers. Between the input and output layers are two additional

ones, often referred to as hidden layers. The input layer consists of four neurons, each associated

with an atomic coordinate. These neurons are all connected to the neurons in the first hidden layer

by weight parameters, portrayed as arrows. Weight parameters, or weights, are values which

represent the stored knowledge of the NN. Weights are used to calculate the values associated with

neurons in the hidden layers and output layer. First, the output of the first hidden layer is calculated,

which then serves as input for the second. Finally, the output of the second hidden layer is

transformed to potential energy in the neuron of the output layer. The potential energy obtained from

2

the NN can then be compared with the corresponding energy from QM calculations. The goal of the

so-called training process is to minimize this difference.11,12

Figure 1: An example of a feed-forward neural network transforming the four atomic coordinates (G1 to G4) to energy (E)
by passing through two hidden layers. The neurons in each layer are connected to neurons in adjacent layers by weight
parameters (a). Figure reproduced from reference 11.

The NN training process is based on solving an optimization problem in which the NN model weights

are constantly modified to find a solution that is in good accordance with the training data. First, the

NN ‘predicts’ the output in a forward pass. Then the error, i.e. the difference between prediction and

observation, propagates back through the NN in a backward pass, where the NN weights are

updated to minimize this error. After training, the NN can be used as a black box that takes molecular

coordinates as input, and provides potential energy as output.12

The training process is iterative and a stochastic gradient descent algorithm, such as Adam13 is

typically used. First, the total error, E, is computed with

𝐸 =

1

2
∑ ∑(𝑦𝑗 − 𝑡𝑗)

2

𝑗𝑝

 (1)

where p is an index over input-output pairs, j is an index over output neurons, y is the predicted

output and t is the target output. To minimize E by gradient descent, the partial derivative of E with

respect to each weight in the NN is required. This is simply the sum of the partial derivatives for each

3

of the input-output pairs. For a given pair, the partial derivatives of the error with respect to each

weight is computed in the backward pass. The backward pass starts by calculating ∂E / ∂y for each

output neuron. Differentiating equation (1) for a given input-output pair gives

 𝜕𝐸

𝜕𝑦𝑗
= 𝑦𝑗 − 𝑡𝑗 (2)

Then the chain rule can be applied to calculate ∂E / ∂x

 𝜕𝐸

𝜕𝑥𝑗
=

𝜕𝐸

𝜕𝑦𝑗
∙

𝑑𝑦𝑗

𝑑𝑥𝑗
 (3)

Here xj reflects the total input value of the neurons in the penultimate layer to an output neuron, and

dy / dx depends on the type of activation function14 used in the NN. Equation (3) can be used to

determine how a change in the neurons in this layer will affect the error. Since the total input, xj, is a

linear function of the weights per

 𝑥𝑗 = ∑ 𝑦𝑖𝑤𝑗𝑖

𝑖

 (4)

where wji is a weight from xj to yi, it is possible to compute how the error will be affected by changing

the weights, with

 𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑥𝑗
∙

𝜕𝑥𝑗

𝜕𝑤𝑗𝑖

 =

𝜕𝐸

𝜕𝑥𝑗
∙ 𝑦𝑖 (5)

For the output of the ith neuron, the contribution to ∂E / ∂yi resulting from the effect of i on j is

 𝜕𝐸

𝜕𝑥𝑗
∙

𝜕𝑥𝑗

𝜕𝑦𝑖
=

𝜕𝐸

𝜕𝑥𝑗
∙ 𝑤𝑗𝑖 (6)

Taking into account all connections between output neuron yi and input neurons xj, computing ∂E /

∂yi is possible with

 𝜕𝐸

𝜕𝑦𝑖
= ∑

𝜕𝐸

𝜕𝑥𝑗
𝑤𝑗𝑖

𝑗

 (7)

Now ∂E / ∂y can be computed for any neuron in the penultimate layer when given ∂E / ∂y for all

output neurons. This procedure can be repeated to compute the term for earlier layers, while

4

simultaneously computing ∂E / ∂w. Finally, gradient descent can be used to change each weight by

an amount proportional to ∂E / ∂w15

∆𝑤 = −𝛼

𝜕𝐸

𝜕𝑤
 (8)

where the learning rate, α, is typically a value between 0 and 1.

A commonly used algorithm for stochastic gradient descent is Adam. Adam is an adaptive gradient

descent algorithm, meaning that it computes individual learning rates for each weight of the NN.

Adam uses momentum by taking into consideration exponentially weighted averages of gradients to

converge towards minima more rapidly and avoid local minima.13

1.2 Construction of potential energy surfaces with neural networks

In literature there have been quite some reports on utilising NNs for the construction of PESs. For

example, Smith et al. demonstrated how a deep NN trained on DFT calculations can learn an

accurate and transferable potential for organic molecules. Their NN, which was named ANAKIN-ME

(Accurate NeurAl networK engINe for Molecular Energies) or ANI-1 for short, was trained on a data

set of small organic molecules of up to eight heavy atoms. They then showed its applicability to much

larger systems of 10-24 heavy atoms, including well known drug molecules (Figure 2). The ANI-1

potential correctly predicts the stability of these structures and captures the large conformational

changes. Additionally, the NN accurately produced the shape and the smoothness of the PESs

corresponding to bond stretching, angle bending, and dihedral rotations. Furthermore, the ANI-1

proved to be more accurate against the reference DFT level of theory than DFTB and PM6, two of

the most widely used semi-empirical QM methods.5

5

Figure 2: One-dimensional potential surface scans generated from DFT, the ANI-1 potential, and two popular semi-
empirical methods, DFTB and PM6. The atoms used to produce the scan coordinate are labelled in the images of the
molecules in every subplot. Each figure also lists the RMSE, in the legend, for each method compared to the DFT potential
surface. Figure reproduced from reference 5.

Several NNs have been developed to improve upon ANI-1. The ANI-1x potential outperformed ANI-

1 on multiple benchmarks, while using only a quarter of the initial data. Additionally, ANI-1ccx

predicted a variety of organic properties for isolated organic molecules more accurately than DFT.16

Their most recent NN, ANI-2x, was an extension of ANI-1x incorporating three additional atomic

elements: S, F, and Cl.17

NNs have also been used for the construction of PESs for chemical reactions. For instance, Liu et

al. used the Permutation Invariant Polynomial-NN (PIP-NN)18 method to produce a PES for the

6

reaction OH + HO2 → H2O + O2. The PES was fitted with a two-hidden layer PIP-NN to 108,000

CCSD(T)19 energies with a Root Mean Square Error (rmse) of 12.6 meV.20

Zhang and co-workers used the fundamental invariant (FI)21 NN method to construct a PES for the

reactions H + H2O2 → H2 + HO2 and H + H2O2 → OH + H2O. The PES was fitted with a two-hidden

layer FI-NN to roughly 114,000 CCSD(T) energies with an rmse of 5.7 meV, using 26 FIs as input

vector.22

Prediction of spectroscopic properties with NNs has been done as well. Allouche et al. developed

NNs to reproduce the PESs and dipole mapping of 11 polycyclic aromatic hydrocarbons. Three

different NNs composed of two hidden layers of 15, 20, and 30 neurons per layer were trained by

using a database including around 8,900 B3LYP23/N07D24 energies with an rmse of 0.4-0.7 meV.

Infrared (IR) frequencies and intensities were predicted using the trained NNs. Overall, they found

that the NN predictions lead to good agreement with IR fundamental frequencies both simulated by

DFT and obtained in experiments.25

1.3 Goal

Heteroaromatic compounds, which share structural similarities with polycyclic aromatic

hydrocarbons, are invaluable building blocks for pharmaceutical and synthetic chemistry and

materials science.26 These compounds contain heteroatoms (e.g. O, N) within the aromatic ring

structure. The goal of this research project is to explore the application of NNs for the building of

PESs of three heteroaromatic compounds: pyrazine, pyrrole, and furan (Figure 3). The main reasons

for selecting these molecules, from a computational point of view, are 1) the PESs of these molecules

are already available using highly accurate electronic structure methods, and 2) full quantum excited-

state dynamics are available that make the benchmarking and validation aspects of the NNs feasible.

Figure 3: Chemical structures of heteroaromatic compounds, 1: pyrazine, 2: pyrrole, 3: furan.

7

In the next chapter the computational details are described. In Chapter 3 the results can be found

followed by the conclusion, discussion and outlook in Chapter 4. The references are listed in Chapter

5, and the report ends with the supporting information in Chapter 6.

8

2 COMPUTATIONAL DETAILS

All computations were performed on the Nieuwpoort or Theochem high-performance computing

clusters on compute nodes equipped with 2 CPUs with 14 cores each, 1 TB disk and 128 GB

RAM.

2.1 Electronic structure calculations

Optimized electronic structures of the heteroaromatic compounds were calculated in order to perform

trajectory surface hopping simulations27 with the PySurf framework.28 The equilibrium geometry of

pyrazine, its frequencies and normal mode displacements were obtained by applying DFT for the

ground state and time-dependent DFT29 for the excited states using the B3LYP functional23 and

Pople’s 6-31G* basis set30, as implemented in the Q-Chem program package.31 For pyrrole and

furan the MP2 functional32 and aug-cc-pVDZ basis set33 were used to perform the same calculations.

For these compounds the surface hopping simulations failed to converge more often at the B3LYP/6-

31G* level of theory.

2.2 Surface hopping simulations

The PySurf framework26 was used to simulate standard non-adiabatic surface hopping dynamics.

This was done by propagating 100 trajectories – whose initial geometry and velocity were based on

a Wigner sampling algorithm34 – for 100 fs with a time step of 0.5 fs. The second excited adiabatic

state of the models was chosen as initial state for the trajectories. At each point along the trajectories

the energies and gradients of each state were stored in the database, along with their respective

geometries.

2.3 Neural networks

The NNs were constructed using the PyTorch framework35. As an example, the architecture of the

NN used for furan is presented in the supporting information (Chapter 6.1, Figure 10). The NN is

essentially a class consisting of several modules. It is defined by subclassing ‘nn.Module’, which is

the base class for all NN modules. The NN layers are initialized in ‘__init__’, which sets up the

structure of the NN. The operations performed on the data are implemented in the ‘forward’ method.

The ‘nn.Flatten’ layer converts input into a contiguous array. Thereafter, the data is passed through

9

the modules within ‘nn.Sequential’ sequentially. The ‘nn.Linear’ module applies a linear

transformation on the input, whereas ‘nn.ReLU’ applies the rectified linear unit function, which

introduces a cut-off function at 0. The NN in this example contains three hidden layers of 80 neurons,

as seen by the ‘nn.Linear(80, 80)’ line, repeated thrice.

The models were trained using a mean squared error loss function, along with the Adam13

optimization algorithm. The training function can be found in the supporting information (Chapter 6.1,

Figure 11). A loop was used to call the training function over a specified number of iterations

(epochs). In a single epoch, the model made predictions on the full training dataset in batches of 64,

and the error was propagated back to adjust the model’s parameters.

10

3 RESULTS AND DISCUSSION

In this chapter the results concerning the grid search, training, and testing of the models are reported.

Finally, the prediction accuracy of these models is described.

The first step of the project was to simulate surface hopping dynamics by propagating trajectories

along PESs. Figure 4 shows the PESs of pyrazine as functions of time of a single trajectory. For

each molecule, i.e. pyrazine, pyrrole and furan, 100 trajectories were propagated, with the goal of

using 90 for training the NNs, and the remaining 10 for testing. However, due to convergence failures

in the dynamics simulations of pyrrole and furan, 44 training trajectories and five testing trajectories

were produced for the former, while this was 77:9 for the latter.

Figure 4: Potential energy surfaces of pyrazine along a training trajectory. S0 (blue); S1 (orange); S2 (green).

3.1 Grid search

For this project, grid search was deemed to be the most appropriate method of model parameter

optimization. Therefore, for each molecule a grid search was performed consisting of 48 variations

11

of an NN. The grid searches were executed using the training trajectories of each molecule

separately. The parameters along the axes of the grid were the amount of hidden layers (1-6) and

the number of neurons (10-80) that made up the NN. The fixed parameters of the grid search were

the number of epochs (10,000) and the learning rate (10-4). Figure 5 presents the results of each grid

search, in which the loss per hidden layer and neurons is shown. The bar charts can be hard to read

for some grid points. Therefore, the precise loss can be found in the supporting information (Chapter

6.2). The parameters corresponding with the lowest loss were selected and subsequently used in

training. The selected model parameters are portrayed in Table 1.

Figure 5: Grid search results per model after 10,000 epochs at a learning rate of 10-4. (a) Pyrazine. (b) Pyrrole. (c) Furan.

12

Table 1: Model parameters as a result of the grid searches

Model Hidden layers Neurons

Pyrazine 4 80

Pyrrole 3 80

Furan 3 80

3.2 Model training

The selected models were trained with the goal of obtaining a training loss of 0.1 eV. For pyrazine

(Figure 6) this was achieved after training for 7,500 epochs. The training was completed after

100,000 epochs, resulting in a final loss of 0.09 eV.

Figure 6: Loss (eV) over 7,500 epochs corresponding to the training of the pyrazine model containing 4 hidden layers and
80 neurons.

13

For pyrrole (Figure 7) the 0.1 eV goal was almost achieved: after 100,000 epochs a final loss of 0.15

eV was obtained.

Figure 7: Loss (eV) over 100,000 epochs corresponding to the training of the pyrrole model containing 3 hidden layers and
80 neurons.

Unfortunately, the same held for the training of furan (Figure 8): a final loss of 0.39 eV was found

after training for 100,000 epochs. The training process of the three models was quite similar. At first,

a high loss is obtained, after which the loss rapidly decreases and becomes somewhat stable. In

hindsight, training with far fewer epochs would have decreased computational cost and achieved a

comparable result.

14

Figure 8: Loss (eV) over 100,000 epochs corresponding to the training of the furan model containing 3 hidden layers and
80 neurons.

3.3 Model testing

The trained models were finally used to predict the PESs of the molecular systems. While the training

was done on training trajectories obtained with the PySurf framework, the testing was done on

trajectories which the models have not ‘seen’, since the models are possibly overfitted to the training

data.36 The geometries of these testing trajectories were used to predict their corresponding

energies. Then, these values were compared to the observed values, and a test error and bias was

determined (Table 2).

15

Table 2: Test error and bias obtained by comparing observed testing data to data predicted by the models

Model Test error (eV) Bias (eV)

Pyrazine 0.23 ± 0.01 -0.01 ± 0.01

Pyrrole 0.65 ± 0.03 -0.19 ± 0.05

Furan 0.57 ± 0.02 0.03 ± 0.04

Overall, the three models had a test error below 1 eV. The test error was calculated by averaging

the absolute difference between the observed energy and the energy predicted by the model at all

data points of the testing trajectories. The bias was calculated in the same way as the test error, but

without using absolute values. The bias allows the quantification of overprediction (positive bias) and

underprediction (negative bias). The pyrazine model was most accurate. It had the smallest test error

and bias. This was not unexpected, as the model’s training produced the smallest loss. Least

accurate was the pyrrole model, which had a significant bias towards underprediction. Although the

test error of the furan model was similar to that of the pyrrole model, its bias was much closer to

zero. Still, the bias of the furan model revealed a slight overprediction.

In order to illustrate model performance, a comparison between observed PESs and PESs predicted

by the model is made in Figure 9. It can be seen that along the pyrazine trajectory (Figure 9a), the

NN was quite capable of producing an almost identical PES. Although it seems that the model tends

to overpredict, e.g. between 50-55 fs, this was not necessarily the case for other trajectories. This is

evident from the small, negative bias associated with the model.

The pyrrole (Figure 9b) and furan (Figure 9c) predictions produced a higher loss. For pyrrole a

general trend was underprediction. This is very evident for all electronic states between 65-75 fs and

93-100 fs, where relatively large deviations (~1.5 eV) from the dynamics simulations are seen.

Similar deviations appear for the furan NN, which fluctuated between overprediction and

underprediction. Most striking, perhaps, is the ground state (S0) between 70-95 fs. But also the first

excited state (S1) at 30 fs, and all states at 85 fs. Regardless, the NNs show considerable results in

reproducing PESs of surface hopping dynamics simulations.

16

Figure 9: Potential energy surfaces of pyrazine (a), pyrrole (b), and furan (c) along testing trajectories. The blue states
were produced in surface hopping simulations, whereas the red states were produced using the previously described
neural networks.

17

4 CONCLUSION AND OUTLOOK

The goal of this research project is to explore the application of machine learning for the building of

PESs of heteroaromatic compounds. Specifically, three NN models were optimized by grid search,

trained on surface hopping dynamics simulations, and finally applied to predict PESs of pyrazine,

pyrrole and furan, respectively. The surface hopping dynamics were simulated using the PySurf

software package, while the NNs were trained using the PyTorch framework.

The grid search consisted of varying two parameters – the amount of hidden layers (1-6) and the

number of neurons (10-80) – and choosing the model associated with the smallest loss. Naturally,

grid search will not lead to the optimal model, since not all conditions are considered. For example,

the optimal model might consist of seven hidden layers and 33 neurons. Moreover, the grid search

was limited to two parameters, whereas including variations on the learning rate, for instance, would

likely yield more accurate models.37 Nevertheless, a compromise had to be made between model

accuracy and computational time, and grid search was very useful given the timescale of the project.

An extensive hyperparameter optimization using a more sophisticated approach, such as simulated

annealing38, could be done in a follow-up study.

Grid search allowed the selection of optimized NNs, which were subsequently trained with the goal

of obtaining a training loss below 0.1 eV. This goal was only achieved for the pyrazine NN, although

the pyrrole and furan NNs were not far off (0.15 eV and 0.39 eV, respectively). Better results might

be achieved by increasing the amount of epochs, but most importantly by more extensive

hyperparameter optimization.

Finally, the performance of the trained NNs was assessed using testing datasets, i.e. surface

hopping simulations that were not evaluated in training. Overall, the three models had a test error

below 1 eV. The pyrazine model had the smallest test error (0.23 ± 0.01 eV) and bias (-0.01 ± 0.01

eV), and was therefore the most accurate model. The pyrrole and furan models had a test error

similar to one another (0.65 ± 0.03 eV and 0.57 ± 0.02 eV, respectively), but the pyrrole NN had a

significant bias towards underprediction (-0.19 ± 0.05 eV). Interestingly, the test error of the pyrrole

NN was much higher than its training loss when compared to the other models. This might be related

to the relatively low amount of testing trajectories for pyrrole. Although there is room for improvement,

the NNs show considerable results in reproducing PESs of surface hopping dynamics simulations.

This research can be continued by improving the accuracy of the NNs. As mentioned, the most

progress would likely be made with hyperparameter tuning. Another approach would be to increase

the size of the datasets of both training and testing data. Training on more data should lead to an

18

increase in prediction accuracy.39 A validation step during the training phase could prove beneficial

as well. The research can also be expanded upon by investigating other heteroaromatic molecules,

such as thiophene or indole.

In conclusion, machine learning appears to be a very useful and accurate tool for the building of

PESs of heteroaromatic compounds. The application of NNs for electronic energy calculations would

save a significant amount of computational time, meaning that research could be conducted much

faster, at lower cost. Machine learning, in general, has become instrumental for recent progress in

computational chemistry, and is on its way to completely revolutionize the field.

19

5 REFERENCES

[1] P.O. Dral, Quantum chemistry in the age of machine learning, J. Phys. Chem. Lett. 2020, 11,

2336.

[2] Q. Liu, D. Lu and M. Chen, Structure and dynamics of warm dense aluminum: a molecular

dynamics study with density functional theory and deep potential, J. Phys.: Condens. Matter

2020, 32, 144002.

[3] A. Pihlajamäki, J. Hämäläinen, J. Linja, P. Nieminen, S. Malola, T. Kärkkäinen and H.

Häkkinen, Monte Carlo simulations of Au38(SCH3)24 nanocluster using distance-based machine

learning methods, J. Phys. Chem. A 2020, 124, 4827.

[4] K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev and A. Walsh, Machine learning for

molecular and materials science, Nature 2018, 559, 547.

[5] J.S. Smith, O. Isayev and A.E. Roitberg, ANI-1: an extensible neural network potential with

DFT accuracy at force field computational cost, Chem. Sci. 2017, 8, 3192.

[6] J. Westermayr, M. Gastegger and P. Marquetand, Combining SchNet and SHARC: the

SchNarc machine learning approach for excited-state dynamics, J. Phys. Chem. Lett. 2020,

11, 3828.

[7] O.T. Unke and M. Meuwly, PhysNet: a neural network for predicting energies, forces, dipole

moments, and partial charges, J. Chem. Theory Comput. 2019, 15, 3678.

[8] F.M. Paruzzo, A. Hofstetter, F. Musil, S. De, M. Ceriotti and L. Emsley, Chemical shifts in

molecular solids by machine learning, Nat. Commun. 2018, 9, 4501.

[9] S. Stocker, G. Csányi, K. Reuter and J.T. Margraf, Machine learning in chemical reaction

space, Nat. Commun. 2020, 11, 5505.

[10] R.G. Parr, Density functional theory of atoms and molecules, Horizons of Quantum Chemistry

1980, 3, 5.

[11] J. Behler, Neural network potential-energy surfaces in chemistry: a tool for large-scale

simulations, Phys. Chem. Chem. Phys. 2011, 13, 17930.

[12] H. Gokcan and O. Isayev, Learning molecular potentials with neural networks, Comput. Mol.

Sci. 2021, 1564.

20

[13] D.P. Kingma and J.L Ba, Adam: a method for stochastic optimization, 2015, Published as a

conference paper at ICLR.

[14] S. Sharma, S. Sharma and A. Athaiya, Activation functions in neural networks, IJEAST 2020,

4, 310.

[15] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning representations by back-propagating

errors, Nature 1986, 323, 533.

[16] J.S. Smith et al. The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional

theory properties for molecules, Sci. Data 2020, 7, 134.

[17] C. Devereux et al. Extending the applicability of the ANI deep learning molecular potential to

sulfur and halogens, J. Chem. Theory Comput. 2020, 16, 4192.

[18] B. Jiang and H. Guo, Permutation invariant polynomial neural network approach to fitting

potential energy surfaces, J. Chem. Phys. 2013, 139, 054112.

[19] R.J. Bartlett and M. Musial, Coupled-cluster theory in quantum chemistry, Rev. Mod. Phys.

2007, 79, 291.

[20] Y. Liu, M. Bai, H. Song, D. Xie and J. Li, Anomalous kinetics of the reaction between OH and

HO2 on an accurate triplet state potential energy surface, Phys. Chem. Chem. Phys. 2019, 21,

12667.

[21] K. Shao, J. Chen, Z. Zhao and D.H. Zhang, Fitting potential energy surfaces with fundamental

invariant neural network, J. Chem. Phys. 2016, 145, 071101.

[22] X. Lu, K. Shao, B. Fu, X. Wang and D.H. Zhang, An accurate full-dimensional potential energy

surface and quasiclassical trajectory dynamics of the H + H2O2 two-channel reaction, Phys.

Chem. Chem. Phys. 2018, 20, 23095.

[23] C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula

into a functional of the electron density, Phys. Rev. B 1988, 37, 785.

[24] V. Barone, P. Cimino and E. Stendardo, Development and validation of the B3LYP/N07D

computational model for structural parameter and magnetic tensors of large free radicals, J.

Chem. Theory and Comput. 2008, 4, 751.

21

[25] G. Laurens, M. Rabary, J. Lam, D. Peláez and A.R. Allouche, Infrared spectra of neutral

polycyclic aromatic hydrocarbons based on machine learning potential energy surface and

dipole mapping, Theor. Chem. Acc. 2021, 140, 66.

[26] I.V. Seregin and V. Gevorgyan, Direct transition metal-catalyzed functionalization of

heteroaromatic compounds, Chem. Soc. Rev. 2007, 36, 1173.

[27] M. Barbatti, Nonadiabatic dynamics with trajectory surface hopping method, Comput. Mol. Sci.

2011, 1, 620.

[28] M.F.S.J. Menger, J. Ehrmaier and S. Faraji, PySurf: a framework for database accelerated

dynamics, J. Chem. Theory Comput. 2020, 16, 7681.

[29] E.K.U. Gross and W. Kohn, Time-dependent density-functional theory, Adv. Quant. Chem.

1990, 21, 255.

[30] W.J. Hehre, R. Ditchfield and J.A. Pople, Self-consistent molecular orbital methods. XII.

Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic

molecules, J. Chem. Phys. 1972, 56, 2257.

[31] Y. Shao et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program

package, Mol. Phys. 2015, 113, 184.

[32] J.S. Binkley and J.A. Pople, Møller-Plesset theory for atomic ground state energies, Int. J.

Quantum Chem. 1975, 9, 229.

[33] T.H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms

boron through neon and hydrogen, J. Chem. Phys. 1989, 90, 1007.

[34] L. Sun and W.L. Hase, Comparisons of classical and Wigner sampling of transition state

energy levels for quasiclassical trajectory chemical dynamics simulations, J. Chem. Phys.

2010, 133, 044313.

[35] A. Paszke et al. Automatic differentiation in PyTorch, 2017, Published as a conference paper

at NIPS.

[36] S. Manzhos and T. Carrington, Neural network potential energy surfaces for small molecules

and reactions, Chem. Rev. 2021, 121, 10187.

[37] J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization, J. Mach. Learn.

Res. 2012, 13, 281.

22

[38] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing, Science

1983, 220, 671.

[39] T. Kavzoglu, Increasing the accuracy of neural network classification using refined training

data, Environ. Model. Softw. 2009, 24, 850.

23

6 SUPPORTING INFORMATION

6.1 Neural network

Figure 10: Architecture for a neural network containing three hidden layers of 80 neurons.

Figure 11: Neural network training function.

24

6.2 Grid search results

Table 3: Grid search loss (eV) of pyrazine per model after 10,000 epochs at a learning rate of 10-4

 Neurons

10 20 30 40 50 60 70 80

H
id

d
e

n
 l

a
y
e
rs

1 10.2 5.2 0.9 0.6 0.4 0.6 0.3 0.4

2 16.1 4.9 0.8 10.2 0.4 17.6 16.3 0.2

3 11.9 0.9 16.8 0.3 0.3 12.5 18.0 0.2

4 1.5 5.6 6.4 0.6 9.8 4.6 16.3 0.2

5 14.4 1.2 0.4 13.6 15.9 13.9 16.1 10.9

6 11.5 12.8 13.1 13.1 0.5 17.4 12.2 0.2

Table 4: Grid search loss (eV) of pyrrole per model after 10,000 epochs at a learning rate of 10-4

Neurons

10 20 30 40 50 60 70 80

H
id

d
e

n
 l

a
y
e
rs

1 25.1 14.1 1.9 1.8 1.5 1.4 0.9 0.8

2 44.7 32.2 2.1 1.4 1.4 0.7 0.6 0.6

3 28.5 1.9 1.8 1.6 0.9 17.4 0.7 0.5

4 3.9 14.4 2.4 26.4 36.5 0.9 0.9 25.8

5 4.3 28.5 1.6 1.3 1.1 0.9 25.7 31.0

6 38.5 28.5 41.3 1.2 28.5 1.0 44.7 14.9

25

Table 5: Grid search loss (eV) of furan per model after 10,000 epochs at a learning rate of 10-4

Neurons

10 20 30 40 50 60 70 80

H
id

d
e

n
 l

a
y
e
rs

1 6.8 60.2 4.5 3.8 2.3 2.2 2.0 1.6

2 62.1 62.6 35.5 61.5 2.6 1.7 1.5 1.4

3 33.3 5.2 62.1 60.8 2.3 1.8 90.2 1.2

4 90.2 80.7 59.6 6.4 2.3 2.1 53.0 86.0

5 6.6 61.5 3.8 2.7 2.3 90.2 2.0 52.3

6 80.7 52.3 90.2 61.5 51.6 86.0 1.5 1.3

