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Abstract

While changing the style of a text automatically, text style transfer tasks require preserving style-
irrelevant contents, which is challenging. Automatic evaluation of text transfer systems uses various
metrics, but it is not practical due to the absence of a single gold standard. For purposes of assessing
the performance of several text style systems and choosing suitable metrics when human evaluation is
not available by checking correlations, an expert evaluation on the output generated by several text style
transfer systems is conducted.
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1 Introduction

Text style transfer is a task in natural language generation, which intends to change the style of text but keep
the style-independent content unchanged. Based on different styles, such as formality, polarity, offensive, po-
liteness, there are various specific text style transfer tasks [43, 26, 9, 32]. The development of automatic text
style transfer is motivated by personalized intelligent writing assistants and other natural language processing
tasks, such as paraphrasing, summarization, and style-specific machine translation, as normally it has high
investments for humans to conduct these tasks.

Traditional methods of text style transfer usually require pre-defined templates for expressions of styles,
expressions with the same meaning but in different styles, and domain-specific knowledge, which constrains
the general application as constructions of the templates are time-consuming and needs to be done whenever
a new domain or a new style is given. Trying to address the problems of the traditional approaches, neural
network-based text transfer systems have been proposed in recent years. They can be categorized into two
kinds in general, supervised systems and unsupervised systems. There are three methods to establish a su-
pervised system, multi-tasking, inference techniques, and data augmentation [16]. Due to the lack of parallel
data, unsupervised systems are popular as references are not needed. There are also three approaches, in
general, to construct unsupervised systems, disentanglement, prototype editing, and synthetic data construc-
tion [16].

Despite the fact that the interest in automatic text style transfer is growing, the lack of standardized eval-
uation is a problem. Based on a survey of neural-based text style transfer [16], three most commonly used
criteria for style transfer quality are transferred style strength, semantic preservation, and fluency. Transferred
style strength indicates the amount that fits the target style in the output sentence. Semantic preservation
assesses how well the output sentence maintains the style-independent information of the source sentence.
Fluency measures the possibility that the output sentence could have been written by a native speaker.
Similar criteria are defined in [35]. There are two ways to conduct the evaluation, automatic evaluation, and
human evaluation. For automatic evaluation, it is common to use content-based automatic metrics and style
classifiers. To assess content preservation, both system output sentences and references are fed to content-
based metrics, both source sentences, and human references can be used as references. There are various
content-based automatic metrics established on different methodologies, for instance, BLEU [40], METEOR
[2] and ROUGE [29] are n-gram matching based, BERTScore [51] is embedding based, BLEURT [45] and
COMET [44] are neural-based. To assess style strength, one can feed system output sentences to style clas-
sifiers to get the amount that fits the target style. Even though automatic evaluation is reproducible and
easy to accomplish, it is not flexible, and not all of the automatic metrics achieve promising results compared
to human judgments at segment-level (sentence-level) [31]. Human evaluation is more flexible compared to
automatic evaluation, one reason is that it can either provide an overall score or separate scores for each
criterion. Rating and ranking are two methods frequently used. Different annotators (domain experts and
crowd workers) are suggested to use [47]. It can be seen that human evaluation tends to be expensive as the
need of domain experts and it is also challenging to be reproduced.

In this project, one particular text style transfer task is performed in the experiment, namely formality
transfer. It is desired to change the formality of a sentence but preserve its meaning. For instance, given
a formal sentence ”How are you doing?”, one possible transformation can be ”what’s up, dude?”, which
expresses the same meaning but informally. There is a similar task, polarity swap, which aims to change
the polarity of a sentence but keep the theme. If “The food is bland here.” is provided, then one suitable
output for polarity swap would be “The food is delicious here.”. Although the theme for these two sentences,
remarks on food, is preserved, the meanings are changed, which is different from formality transfer.

We mainly focus on which automatic metrics best correlate with human judgment in the task of formal-
ity transfer. Three questions are investigated:

RQ1: Which aspects of human assessment (content preservation, style strength, fluency) correlate best
with which metrics?

RQ2: What is a feasible, implementable setting for human evaluation of generated text, also with respect
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to observations in the current literature?
RQ3: According to human assessment, which of the existing text style transfer system works best?

According to the research questions, we first set up a human (expert) evaluation for formality transfer
using outputs generated by various style transfer systems and corresponding reference sentences. Second,
different automatic metrics are employed on the same sentences evaluated by human annotators. Third, both
segment-level correlations and system-level correlations are shown between human evaluation and automatic
evaluation.

We organize the remainder of the thesis as follows: common evaluation approaches for natural language
generation and translation, categorization and introduction of neural text style transfer systems are intro-
duced in section 2. Task definition, the dataset, automatic metrics used, methodology of human evaluation
and correlation are presented in section 3. Results and answers to the research questions are shown in section
4. Section 5 concludes this thesis.

2 Related Work

In this section, common evaluation methods of both automatic evaluation and human evaluation are studied
in 2.1, several text style transfer systems and 2 models are introduced in 2.2.

2.1 Evaluation Approaches

2.1.1 Human evaluation

Two common human evaluation methods are direct assessments and relative assessments, both of them can
evaluate either the overall quality or some quality criteria of generated sentences. For direct assessments,
system output sentences are shown to the annotators one at a time, and either the overall quality or some
quality criteria of generated sentences are judged compared to the corresponding source sentence or reference
sentence by, for example, rating. The scales for direct assessments can be discrete [21, 7, 10, 38] or continuous
(specific numerical labels are not shown to the annotators) [33, 13]. Relative assessments are used to compare
system output sentences against, for example, human references, system variants and/or baselines. It can be
done by having annotators rank a set of sentences, choose some sentences they prefer, choose the best and
worst candidates or other ways to compare candidate sentences [20, 18, 36]. To address the problem that
relative assessments only provide information about the relative quality of systems compared, magnitude
estimation is combined with ranking in RankME [39]. According to Howcroft et al. [14], various quality
criterion names are used in the human evaluation of Natural Language Generation and definitions of criterion
names are not always provided among these researches, but after normalizing different quality criterion names
by using given definitions or relevant information, it is found that usefulness for task/information need,
grammaticality, quality of outputs, understandability, and correctness of outputs relative to input (content)
are the most frequently used criteria. It also indicates a problem of human evaluation of this area, there
is no common standard of which criteria to use, in fact, there is no standardized procedure in general. For
text style transfer, it is confirmed from a recent study that the lack of standardization and specification of
human evaluation protocols are current problems as well [3]. One solution to this problem is to use evaluation
platforms, such as GEM [12]. For annotators, experts and crowd workers are two commonly used types in
research in which backgrounds of annotators are specified. For data selection of human evaluation in text
style transfer tasks, it is shown that data are usually randomly selected and the regular size of instances
evaluated per system is 100 [3].

2.1.2 Automatic evaluation

Both overall quality and separate quality criteria of text style transfer systems can be assessed automatically.
Moreover, the most frequent criteria are content preservation, style strength and fluency. It is prevalent
to calculate the mean of style strength and the BLEU [40] score between system output sentences and
human-written references as the overall score of a text style transfer system [24, 30]. However, BLEU
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does not correlate very well with human evaluation, and not all existing style transfer datasets provide
references. Another challenge is the absence of a single gold standard for system outputs. To evaluate
content preservation, different kinds of automatic metrics can be applied to system output sentences and
related source sentences/human references. BLEU is the popular one used [30, 26, 52], while other metrics
such as BLEURT [45] and COMET [44] are effective [24, 23]. As a common method to evaluate the style
strength, a style classifier is trained to judge whether system output sentences fit the target style, and
provides the amount/probability of an output sentence fitting the target style. The style strength of the
system is calculated as the ratio of the number of output sentences classified as in the target style and the
total number of test output sentences [26, 52]. To assess fluency automatically, perplexity can be computed
by a pre-trained language model [49, 52]. However, it is suggested there is no crucial correlation between
perplexity and human ratings of fluency [35], which leaves the effectiveness of this automatic method open
for discussion.

2.2 Style transfer models and systems

2.2.1 Models

Two main pre-trained models that can be applied in style transfer tasks, namely BART [25] and GPT-2 [42],
are introduced in this section.

BART It is an autoencoder built with a sequence-to-sequence model for eliminating noises of text. For
implementation, it is a sequence-to-sequence model that combines two transformers, with an encoder and a
decoder. The input of the bidirectional encoder is the original text depraved with noises. Afterward, tokens
of the original text are fed to the left-to-right auto-regressive decoder, with a mask hiding the future tokens
that need to be predicted. Moreover, the return states of the bidirectional encoder served as the initial
state of the auto-regressive decoder, so the decoder gained information about how to predict. Within the
auto-regressive decoder, tokens can be predicted based on past predictions, therefore, the decoder can be
easily used for text generation. The probability to generate the original text can then be computed with the
auto-regressive decoder. In addition, on the pre-training for the encoder, different kinds of noise approaches
can be applied, which leads to one advantage of BART, it does not have limitations on noising schemes,
any text corruptions can be used. For illustration, token masking, token deletion, text infilling, sentence
permutation and document rotation. BART is made to minimize the cross-entropy between the original text
and the output of the auto-regressive decoder. In some text style transfer systems, both encoder and decoder
of BART are used as a single decoder.

GPT-2 Generative Pretrained Transformer 2 is a large language model designed to predict the next to-
ken given the preceding text. It is built on Transformer [48] architecture and it can be seen as a stack
of Transformer decoder (without encoder-decoder self-attention layer) blocks. The number of Transformer
decoder blocks is one of the main distinguishing factors between the four different GPT-2 model sizes (small,
medium, large and extra large), the other two factors are the number of parameters and model dimension.
Pre-layer normalization is applied in each sub-block (masked self-attention block and feed-forward neural
network block) of the decoders. Basically, everything is increased compared to GPT [41], in GPT-2, the
vocabulary is 50257, context size is 1052 tokens and the batch size is 512. More importantly, it is trained
on massive data. It uses the dataset WebText, which has the text of 45 million web links of Reddit with at
least 3 Karma (a score in Reddit). GPT-2 provides the possibility to have a promising performance by using
WebText, as it contains a huge amount of natural languages in various domains and contexts.

2.2.2 Systems

Several neural-network-based style transfer systems are presented in this section. As mentioned in the intro-
duction, large amounts of parallel data are required to train the style transfer systems for supervised learning,
but there is not enough data to use. Researchers in this area address the problem in different ways, either
by “creating” more parallel data or doing it in unsupervised ways.
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NMT-Combined [43] Due to the size of parallel data is not big enough to train the Neural Machine Trans-
lation (NMT) models, additional synthetic sentence pairs need to be created. One suggested way is to get
more sentences using the Phrase-based machine translation (PBMT) model given extra source sentences.
The other proposed way is to apply back-translation of the PBMT model given some target sentences from
Grammarly’s Yahoo Answers Formality Corpus (GYAFC).

Bi-Directional Formality Transfer [37] It is a joined neural machine translation model that is able to
transfer both from informal to formal and from formal to informal. To train the model, sentence pairs of
each transfer direction are jointed and each source sentence is assigned a tag in the beginning to indicate its
target style (〈F 〉 shows the target style is formal and 〈I〉 is for informal). In addition, Byte-pair encoding is
applied to the joint source and target data and their word embeddings are bound. Moreover, three methods
are used to improve the model performance. First, to increase the size of training data, the train set of
both Entertainment & Music and Family & Relationships in Grammarly’s Yahoo Answers Formality Corpus
(GYAFC) [43] are combined and used to train the model. Second, four randomly seeded models trained on
the combined dataset are used in ensemble decoding. Third, sentence pairs from French to English trans-
lation tasks that have a close domain or topic of GYAFC are augmented to train the model. As the target
sentences of translation tasks are in English and they have similar topics and styles as the training data
used for formality transfer, it is hypothesized adding these bilingual data would help and it is verified by the
evaluation results.

Lai’s[24, 23] Although fine-tuning the above pre-trained models achieve decent results on content preser-
vation, adding style classification reward and BLEU score reward improves the style strength and content
preservation for formality transfer task [24].

For a satisfactory output sentence, the style is contrasting to the style of the source sentence, so substantial
change in style is rewarded. To quantify the method, confidence of the pre-trained style classifier TextCNN
[19] is used. Given the sentence with target style y, the confidence of y in style s (formal or informal) is
defined as p(s|y) = softmax(TextCNN(y, θ)), where θ are parameters of the classifier TextCNN. Then the
style classification reward is calculated as Rstyletarget = λstyle(p(starget|y)− p(ssource|y)), where λstyle is the
weight for style classification reward, starget is the target style and ssource is the style of the source sentence.
However, for the GPT-2 based model, apart from generating a sentence in the target style, it also produces
a sentence x

′
without style change but possibly with word change. Therefore, the reward to the source

sentenced needs to be added as well, and it is computed as Rstylesource
= λstyle(p(ssource|x′)− p(starget|x′)).

Except for style strength, content preservation serves as an essential criterion. The automatic metric BLEU
is introduced in section 2.1.1. To boost content preservation for formality transfer, BLEU score reward is
proposed [24]. It is defined as Rbleu = λbleu(bleu(y′, y) − bleu(ys, y)), where λbleu is the weight for BLUE
score reward, y is the reference sentence, y′ is the generated sentence in target style getting by maximizing
the distribution of model outputs at each time step and ys is sampled from the distribution of model outputs
at each decoding time step as usual.

Policy gradient method is applied for policy optimization, and the two rewards defined above are used
for the estimate of advantage in policy gradient, which indicates if the policy action is better than expected.
When the BLEU score reward is used, the policy gradient for both BART-based model and GPT-2 based
model are the same, E[Rbleu∗∇φ log(P (ys|x;φ))], where E is the expectation, ∇φ is the gradient with respect
to φ and phi are parameters of the model. When the style classification reward is used, for BART-based
model, the policy gradient is defined as E[Rstyle ∗ ∇φ log(P (ys|x;φ))]. For GPT-2 based model, the policy
gradient is

E[Rstylesource
∗ ∇φ log(P (yssource|x;φ))] + E[Rstyletarget

∗ ∇φ log(P (ystarget|x, x′;φ))]

Large amounts of parallel data of text style transfer can be used to train the systems to achieve remarkable
results in content preservation, but they are not always available as they are task-variant and it is not easy
to obtain the natural parallel data for some tasks. It is suggested to use other data for further pre-training
[23]. For formality transfer, paraphrase data is used (specifically the dataset PARABANK 2 [15], as there
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is a sufficient amount of paraphrase data and formality transfer can be seen as one way of paraphrasing[23].
Apart from using all sentence pairs in PARABANK 2, the ones which have more opposite style are chosen,
and forms a subset defined as Dsubset = {(a, b) | (p(s1|a)+p(s2|b))/2 > σ}, where (a, b) is a sentence pair and
σ is the threshold. For polarity transfer, as the meaning is changed, it cannot be seen as paraphrasing, hence
it would not be appropriate to use paraphrase data. To solve this problem, synthetic pairs are introduced.
To generate synthetic pairs, first, the sentiment scores of words in Sentiwordnet [1] is used to get the polarity
of a word in a sentence. Second, sentences containing only one polarity word from YELP [27] are chosen as
source sentences. Third, the polarity word is replaced by its antonym in Wordnet [34] and the new sentence
is served as an output sentence.

In the training phase, iterative back-translation is applied after further pre-training. There are two models,
each of which corresponds to one transfer direction. Although the data is non-parallel in the beginning, the
input and output of one model can be used to supervise the training of the other model. To generate good
results in content preservation and style strength for the models, corresponding rewards similar to the ones in
the supervised system in [24] is used. There are two kinds of rewards as well, one for style strength and one
for content preservation. Since only BART is used in this unsupervised system, the reward of style strength
is Rstyle = λstyle(p(starget|y′)− p(ssource|y′)). For the supervised system mentioned above, BLEU is used for

content preservation reward, the same is applied Rbleu = λbleu(BLEU(y
′

si , x)−BLEU(yssi , x)) as the source
sentence of the opposite model is used to train the model and yssi is sampled from the distribution of model
outputs at each decoding time step with the target style si. Apart from BLEU, a learnable automatic metric
BLEURT [45] can be also used in content preservation reward, Rbleurt = λbleurt(BLEURT (yssi , x)). The
policy gradient method is again used for policy optimization, and policy gradients are the same as defined in
the supervised system in [24]. Then the model using iterative-back translation and all the rewards with the
data set Dsubset achieves the best result for formality transfer.

Lastly, the best model is used to generate synthetic pairs which can be used to supervise the training of
the original BART model with all rewards. The source sentences are randomly chosen in GYAFC (for for-
mality transfer) and YELP (for polarity swap), which constitute synthetic pairs with the output sentences
generated by the best model. Then the synthetic pairs are used to fine-tune the original BART with all
rewards. The new learned model has the best performance for the polarity swap task.

DualRL[30] DualRL is a dual reinforcement learning system that performs text style transfer employing
two sequence-to-sequence mapping models, rewards, annealing pseudo teacher-forcing and synthetic sentence
pairs. A forward model f with parameter θ and a backward model g with parameter φ are pre-trained using
synthetic sentence pairs output by a template-based baseline [26]. In addition, two rewards are utilized. One
reward is for changing style and a pre-trained binary style classifier [19] is used to evaluate the style strength.
Given a source sentence x, a candidate sentence (system output) y and the target style s, the reward for
changing style is Rstyle = P (s|y;ϕ) where ϕ is the training parameters of the style classifier. For content
preservation, we would like to see if the candidate sentence preserves the meaning of the source sentence,
so the reward of content preservation is Rcontent = P (x|y;φ) where phi is the training parameter of the
backward model. Then the two rewards are combined to get an overall reward using harmonic mean, and it
is R = (1 + β2)

Rcontent∗Rstyle

β2∗Rcontent+Rstyle
where β is a weight. For policy optimization, the policy gradient method is

applied and the overall reward is used to estimate the advantage in policy gradient. The expectation of the
overall reward E[R] would be maximized and its gradient is

∇θE[R] =
∑
k

Rk∇θ log(P (yk|x; θ))P (yk|x; θ) (1)

where yk is the kth generated sentence (output of model f) and Rk is the overall reward of yk.

Moreover, Annealing pseudo teacher-forcing is applied in DualRL. In the beginning, the initial iteration
interval p0 is set. For each iteration i, firstly the model fθ is trained. θ is updated using equation (1), if
the current iteration is a new start of the iteration interval, next generate a synthetic sentence pair using
the models fθ and gφ updated by the last iteration i− 1, then use the synthetic sentence pair to train fθ by
maximum likelihood estimation. It follows to train gφ in a similar fashion. Lastly to update the iteration
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interval p = min(p0 ∗ r
i
d , pmax) where r is the increase rate, d is the increase gap, pmax is the maximum

iteration interval, and then go the next iteration and repeat the whole process.

StyIns[50] Given the source style si, target style sj , ΦiN (a set of N sentences with style si), ΦjN (a set
of N sentences with style sj), source sentence x with style si and x /∈ ΦiN , the generator G would output a
sentence y with style sj . G is composed of three parts, a style encoder, a source encoder and a decoder with

attention mechanism. The style instances with target style ΦjN are input into the style encoder to model a

style space p(z|ΦjN ), where z is a learned variable to express a style. For a source encoder, the input is a
source sentence and the output is a sequence of corresponding hidden states. The hidden states and z are
then given to the decoder.

Three kinds of loss are computed and optimized to train the generator G. First, the reconstruction loss
Lrecon = − logPG(x|x,ΦiN ), is the loss for the generator G to reconstruct the source sentence given the
corresponding style instances. Second, the cycle consistency loss, Lcycle = − logPG(x|y,ΦiN ), where y is the

output of generator G given style instances ΦjN . Third, the adversarial style loss Lstyle = − logPC(j|y), where
C is a style classifier. Furthermore, the style classifier C is trained by optimizing the loss LC = −[logpC(i|x)+
log pC(i|x′)+log pC(M+1|y)], where x′ is the output of the generatorG given x, ΦiN andM+1 is a class of gen-
erated fake. If a reference sentence is available, then the supervised loss can be employed to train the generator
G as well, Lsuper = −α∗Eq(z|y′,Φj

N )[log p(y′|z, x)+log p(z|ΦjN )−log q(z|y′,ΦiN )]+β∗Eq(z|Φj
N )[− log p(y′|z, x)],

where α and β are the scaling parameters set in the learning process.

Zhou’s[53] Two stages are established for transferring text style in an unsupervised way. Stage 1 builds
an attentional sequence-to-sequence model which is able to re-predict style relevance for words. Stage 2
extends the model built on stage 1 to generate sentences using style relevance.

The basic model of stage 1 is a sequence-to-sequence model having one encoder and one decoder with attention
mechanism. Both the encoder and the decoder are forward Gated Recurrent Unit (GRU) networks. A source
sentence X with words xi is fed to the encoder, and it outputs a sequence of hidden states. The last hidden
state in the output of encoder is then fed to the decoder, and it predicts probabilities. The objective function

of the model is L = Lrecon+Lrelev. The sentence reconstruction loss is Lrecon(θ) = −
∑|X̄|
i=1 logP (xi|x<i, X̄),

where θ is the parameters of the model and X̄ is an variation of X with some words randomly being replaced.

The style relevance restoration loss Lrelev(θ, φ) = 1
|X|

∑|X|
i=1(λi − λ̂i)2, where φ is the parameters used to get

λ̂i, λi is the style relevance of the i-th word in the input sentence, and λ̂i is the style relevance of the i-th
output word. λ̂i = vTλ tanh(Wλh

d
i−1), where hdi−1 is the previous decoder hidden state, vλ and Wλ form the

φ in Lrelev. To get λi, layer-wise relevance propagation is used to pre-train a TextCNN style classifier [19].
λi = tanh(µ|r(xi)|), where µ is a scaling factor, r(xi) is the style relevance score and is calculated as the sum
of relevance score of neurons at the 0-th layer.

At stage 2, the decoder of the model on stage 1 is extended with a neural style component to update
the decoder hidden state to better generate output words considering their target style relevance. The up-
dated decoder hidden state ĥdj = hdj + λ̂j ∗ 4hdj , where hdj is the decoder hidden state on stage 1, λ̂j is the

style relevance of the j-th output word and 4hdj is the modification to hdj . hdj = GRU(e(yj−1), ĥdj−1, cj),

ĥdj = f(e(yj−1), ĥdj−1, st;ϕ), where GRU is Gated Recurrent Unit, e(yj−1) is the embedding vector of the
previous output word yj−1, cj is the context vector and is calculated as the weighted sum of all hidden
states of the words in the corresponding input sentence, and f is the multi-layer perception function with
parameter ϕ. The objective function used to fine-tune the extended model is L2 = Lst+αLyλ+βLcp+γLfm,
where Lst is the style transfer loss, Lyλ is the style relevance consistence loss, Lcp is the content preservation
loss, Lfm is the fluency loss and α, β, γ are weighting factors. Each loss term would be introduced now
in details. The style transfer loss is used to measure how well the output sentence fits the target style,
and it is computed as Lst(θ, φ, ϕ) = −E(X,s)∼D(log p(st|G(Y ))), where X is the source sentence with style
s, D is the train set, st is the target style and G(Y ) is the output sentence according to gumbel-softmax
distribution. The style relevance consistency loss shows if the predicted style relevance of the output words
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are the same as output of the classifier, Lyλ(θ, φ) = 1
|Y |

∑|Y |
j=1(λj − λ̂j)2, where |Y | is the number of words

in the sentence Y . The content preservation loss indicates to what extent the output sentence remain the

same meaning as the source sentence, Lcp(θ, φ, ϕ) = (
∑|X|
i (1 − |λi|)e(xi) −

∑|Y |
j (1 − |λj |)e(yj))

2. Lastly,
the fluency modelling loss is used to show if the model is able to generate fluent sentences. A bidirectional
Gated Recurrent Unit based language model is pre-trained using sentences with target style and then used
in calculating the fluency modelling loss. Lfm = (Lfm f + Lfm b)/2, where fluency modelling loss in the

forward direction Lfm f (θ, φ, ϕ) =
∑|Y |
j=1 P(∗|y<j , X)T log(Pf (∗|y<j)), and Lfm b is the fluency modelling

loss in the back direction and is computed in a similar way.

Style-Transformer [6] It employs the Transformer model [48] on the style transfer tasks. Given a source
sentence x, the Transformer encoder outputs a sequence of states h. Then using h and the given tar-
get style s, the Transformer decoder predicts the probability of the output sentence y auto-regressively,
pθ(y|x, s) =

∏
t=1 pθ(yt|z, y<t), pθ(yt|z, y<t) = softmax(dt), where θ is the parameter of the Transformer

model and dt is the output logit vector of the Transformer decoder at timestep t.

For output sentences of the Transformer model, to get better control of their style, the discriminator network
is established. Two discriminators are chosen. First, the conditional discriminator, whose inputs are a sen-
tence x and a style s, and the output is whether the given sentence fits the given style (c=1 indicates yes),
the loss function used in training is −pφ(c|x, s). Second is multi-class discriminator, which takes a sentence x
as the input and it is assigned to a specific class, the corresponding loss function is −pφ(c|x). The parameter
φ is updated by minimizing the loss function.

Style-Transformer is an unsupervised approach, it addresses the problem of lacking reference sentences using
self reconstruction, cycle reconstruction and style controlling. For self reconstruction, the input sentence x
and its style s are fed into the model and the model tries to reconstruct the input sentence. The reference in
this case are simply the input sentence. The loss function Lself (θ) = −pθ(y = x|x, s), where y is the output
of the model given x and s. For cycle reconstruction, the output sentence ŷ of the model given the source
sentence x and the style s is fed to the model as an input to rebuild the sentence x. The model is learned
to minimize the loss Lcycle(θ) = −pθ(y = x|ŷ, s). For both self reconstruction and cycle reconstruction, the
reference sentence is simply the source sentence x. Moreover, for cycle reconstruction, it makes the model to
learn content preservation. The style controlling loss is used to maximize the probability of style ŝ, given ŷ
to the discriminator. If the conditional discriminator is used, Lstyle(θ) = −pφ(c = 1|ŷ, ŝ). If the multi-class
discriminator is applied, Lstyle(θ) = −pθ(c = ŝ|ŷ). Then Lself , Lcycle and Lstyle are added and used to
update the parameter θ of the transformer model.

DGST [28] As another unsupervised system, DGST has two transformers (f and g) in order to achieve
cycle reconstruction. A sentence x with style sx is given to f , and f outputs a sentence y′ with style sy.
A sentence y with style sy is fed to g to get a sentence x′ with style sx. It is then practicable with cycle
reconstruction, given a source sentence to f to get an output sentence, then feed it to g to obtain a recon-
struction of the source sentence. The loss function used to train DGST is L = Lcf + Lcg + Lsf + Lsg, where
Lcf and Lcg impose the system to preserve content from source sentences, Lsf and Lsg enforce a style change.
For preserving content, f and g are trained to denoise using neighbourhood sampling. A neighbourhood
of a sentence y N(y, γ), is a set of sentences containing y and all its noisified sentences with noise inten-
sity γ. γ determines the proportion of words modified in the original sentence. Lcf = Eŷ∼N(y,γ)D(y||f(ŷ)),
where ŷ is sampled from N(y, γ), D(y||f(ŷ)) is the Hamming distance or Levenshtein distance between
y and f(ŷ). Similarly, Lcg = Ex̂∼N(x,γ)D(x||g(x̂)). For style change, Lsf = Ex̂′∼N(g(y),γ)D(y||f(x̂′)) and
Lsg = Eŷ′∼N(f(x),γ)D(x||g(ŷ′)).

DelRetri [27] In this system, the words used as style markers are removed from the source sentence, a
sentence with target style markers and similar content of the source sentence is retrieved from a corpus, then
the remaining part of the source sentence and the one retrieved are fed into a neural model to generate the
final output sentence.

The first step is deleting. S is the set of possible styles, for the sake of deleting style markers, they are
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identified first. The salience of a marker m with respect to style s ∈ S, is defined as salience(m, s) =
λ+count(m,Ds)

λ+
∑

s′∈S,s′ 6=s count(m,Ds′ )
, where λ is the smoothing parameter, Ds is the set of sentences with style s in the

corpus and count(m,Ds) is the number of occurrences of m in Ds. m is a marker if salience(m, s) > γ, where
γ is a threshold. Given the source sentence x with style ssrc, marker(x, ssrc) is the set of all style mark-
ers in x, content(x, ssrc) is the remaining sequence of words after removing all markers in marker(x, ssrc)
from x. For the second step, to have more knowledge of what markers of the target style should be added,
the sentence xtgt with the target style and having the closest content with the source sentence is retrieved.
xtgt = arg minx′∈Dstgt

d(content(x, ssrc), content(x
′, stgt)), where d is a distance metric that can be applied to

compare two sentences, such as Euclidean distance. The third step is generating the output sentence. Given
content(x, ssrc) and marker(xtgt, stgt) to a recurrent neural network, it generates a sentence y with style stgt
by selecting a place to insert the style markers and adjusting function words to achieve better fluency. As
another unsupervised method, for training the neural network, self reconstruction and denoising are applied.
The network is trained to minimize the loss L(θ) =

∑
(x,ssrc∈D) log p(x|content(x, ssrc),marker′(x, ssrc); θ),

where marker′(x, ssrc) is noisified marker(x, ssrc) by randomly changing each marker independently with
probability 10% and θ is the parameter of the neural network used.

3 Methods

In this section, first of all, the definition of formality transfer and the dataset used to get source sentences
are introduced in 3.1. Content-based metrics and style classifiers used in the experiment are investigated in
3.2. In 3.3, formulations of the expert evaluation are shown in detail. Finally, two correlation methods used
are presented in 3.4.

3.1 Task and dataset

Formality transfer Define S = {“formal”, “informal”}, given a source sentence with style s ∈ S, the
task is to generate a sentence with style s′ ∈ S, s′ 6= s but preserve the meaning of the source sentence.
There are four examples in Table 1.

For formality transfer, Grammarly’s Yahoo Answers Formality Corpus (GYAFC) [43] is used. It selects
sentences from two domains Entertainment & Music and Family & Relationships in the question-answering
forum, Yahoo Answers, as informal sentences. Then, crowd workers are required to rewrite those informal
sentences to formal style (one rewrite for each informal sentence), and the resulting sentence pairs configure
the GYAFC train set. For the tune set and test set, human experts are involved. For the informal to for-
mal direction, four rewritten sentences in the formal style written by experts are collected for each informal
sentence and served as references. For the formal to informal direction, three rewritten sentences in informal
style written by experts are collected for each formal rewrite from the informal to formal direction. Then the
three rewritten sentences and the initial informal sentence are composed to be references.

For the evaluation set up in this project, 80 sentences are randomly selected from GYAFC train set with
domain Family & Relationships as source sentences. Among these sentences, half of them are formal and
half are informal.

Style transfer direction Original sentence Transformed sentence
informal → formal it all depends on when ur ready. It all depends on when you are ready.
informal → formal The Best of Luck to ya! I wish you the best of luck.
formal → informal In my opinion, they do. I myself think that they do.
formal → informal You can save money with respect to flowers. a big savings area is flowers.

Table 1: Examples of formality transfer
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3.2 Automatic Evaluation

To evaluate the quality of style transfer systems, it is intuitive that humans can judge the output sentences
of systems. However, designing and conducting human evaluation experiments are expensive and can be
latent, it is not practical to have a human evaluation as a routine of evaluation for text style transfer in
general. Automatic evaluation is thus needed, several metrics are established to automatically compare the
output sentences of style transfer systems and the corresponding source sentences or human references, in
order to assess the performance of systems for content preservation. Automatic evaluation is cheap and fast
compared to human evaluation, as it does not have a time-consuming setup process. This section focuses on
7 content-based metrics and 2 style classifiers used in this project, content-based metrics are categorized in
Table 2.

Categorization Automatic metric

N-gram matching based
BLEU

METEOR
ROUGE

Embedding based
BERTScore

WMD

Learnable
BLEURT
COMET

Table 2: Automatic metrics used in this project

3.2.1 Content-based metrics

n-gram matching metrics have been widely applied. The number of consecutive sequences of n words occurs
in both output of the transfer system and the reference provided by humans is counted and the fraction
is calculated. There are considerable automatic metrics that fall in this category, three of them would be
introduced and used in the experiments.

BLEU As one of the first automatic metrics which correlates with human evaluation relatively high, BLEU
is applied universally [40]. The foundation of BLEU is the precision measure, which in unigram, is calculated
by dividing the number of words in system output that also occur in the reference by the total number of
words in system output. In addition, to avoid unreasonable high precision caused by multiple occurrences of
the same word in system output that also occurs in a reference, the maximum count in a reference for the
word is taken if its count is larger than the maximum count in the reference. BLEU is not only computed
for unigram (n = 1), but also for n = 2, 3, 4. In general, each element of an n-gram in the reference can
be paired at most once. Moreover, to accommodate test corpora that contain more than one sentence, the
number of matched n-gram pairs is summed for each sentence in the corpus and is divided by the number of
n-grams for all output sentences of a system. As mentioned before, BLEU is calculated for different n-gram
sizes. The precision values of different n-gram sizes are associated using geometric averages. Another point
is that BLEU enforces a brevity penalty factor for short output sentences of a system.

METEOR To develop further on BLEU and strengthen some weaknesses of it, METEOR is introduced
[2]. It focuses on the lexical level and uses unigrams only. It first restricts the number of matches of each
unigram in a sentence such that every unigram of one candidate/reference sentence can match to at most one
unigram of the corresponding reference/candidate sentence. Next, it has four methods to match unigrams of
a candidate sentence and unigrams of a reference: exact matching of the surface forms, match after stemming
and synonyms mapping. However, the latter two methods require external resources such as a stemmer and
a synonyms lexicon. In addition, the mapping set with minimum total unigram mapping crosses is chosen.
Then it computes the unigram precision (P1) as the ratio of the number of words in a candidate sentence
that matched to words in the reference and the total number of words in the candidate sentence, unigram
recall (R1) as the same numerator of P1 but denominator being the total number of words in the reference.
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Moreover, the harmonic mean of P1 and R1 with parameter α, Fmean = P1R1

αP1∗(1−α)R1
. Penalty is also defined,

as β( cm )γ , where c is the number of consecutive matches that are in the same order as in both candidate and
reference, m is the total number of matches, β and γ are parameters. Above all, METEOR is calculated as
Fmean ∗ (1− Penalty).

ROUGE It is originally designed as an automatic metric for evaluating summarization of text documents[29].
But it can be used to assess text style transfer tasks as the outputs are also text. Unlike BLEU, the keystone
of ROUGE is the recall measure. There are four variations of ROUGE based on diverse modifications of re-
call. However, only ROUGE-N and ROUGE-L are introduced here as ROUGE-1, ROUGE-2 and ROUGE-L
are used in the experiment. ROUGE-N is computed as the number of n-grams in the reference that also occur
in the candidate divided by the total number of n-grams in the reference. It is often applied to uni-grams (n
= 1) and bi-grams (n = 2). If there are several references for one candidate sentence, the ROUGE-N score
for the candidate and each of the references is calculated and the maximum value is set as the score of the
candidate. ROUGE-L is the Longest Common Sub-sequence (LCS) based F-measure. If we have a candidate

c with length lc and a reference r with length lr, then the LCS based precision P is LCS(c,r)
lc

, the LCS based

recall R is LCS(c,r)
lr

and the LCS based F-measure (ROUGE-L) is (1+β2)∗P∗R
R+β2∗P , where β is a positive real

factor. In addition, the jackknifing resampling is applied in implementing ROUGE. It sequentially leaves out
one reference from the given references and selects the maximum ROUGE score from the candidate and the
left references, then takes the average of the maximum scores as the result.

One main pitfall of n-gram based automatic metrics, especially bad for text style transfer tasks, is that
it is challenging to evaluate paraphrases sturdy. Owing to the fact that an output sentence of a text style
transfer system can be regarded as a poor result since its surface form is distinct from the surface form of
the reference, even if the output sentence is semantically correct. Another disadvantage is that n-gram based
automatic metrics cannot get the distant dependencies in a sentence, and they do not observe the ordering
adjustments that change the content of the sentence.

BERTScore It addresses the two disadvantages of n-gram based automatic metrics mentioned above. It uses
contextual embedding to generate the vector representation for each token in a sentence [51]. The advantage
of applying contextual embedding is that different vector representations can be provided for the same word
in different sentences if the contexts are various. The main model used to generate the contextual embedding
is BERT [8]. Moreover, cosine similarity is used to compute the similarity between two tokens. For the
sake of clarification, suppose there is a reference sentence x which contains tokens x1, x2, ... and a candidate
sentence y with tokens y1, y2, .... The cosine similarity between two tokens x1 and y1 is x1

>y1, where x1

is the normalized vector representation for a and y1 is the normalized vector representation for b. To get
BERTScore recall, first match each token of the reference sentence to the token in the candidate sentence
which achieves the maximum cosine similarity,

Recallbertscore =
1

|x|
∑
xi∈x

max
yj∈y

xi
Tyj

BERTScore precision is calculated similarly, but first match each token of the candidate sentence to the token
in the reference that would give the maximum cosine similarity,

Precisionbertscore =
1

|y|
∑
yj∈y

max
xi∈x

xi
Tyj

. On top of that, the inverse document frequency is incorporated to BERTScore as importance weighting
and a baseline rescaling is used for readability.

WMD [22] The Word Mover’s Distance is introduced as another embedding based automatic approach
to measure the dissimilarity between two text documents (two sentences). It is defined as the minimum cu-
mulative cost required to move all words from the normalized bag of word representation of one document d
to the normalized bag of word representation of another document d

′
, minT≥0

∑
i,j Tijc(i, j), with two con-

straints, ∀i(
∑
j Tij = di) and ∀j(

∑
i Tij = d

′

j), where c(i, j) is the Euclidean distance between the vector of
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word i and the vector of word j in the word2vec embedding space, T is a flow matrix, Tij ≥ 0 is how much of

word i travels to word j, di is the normalized frequency of i in d and d
′

j is the normalized frequency of j in d
′
.

BLEURT BERT [8] is used in the quality evaluation of BLEURT [45], on top of the regular BERT pre-
training, additional pre-training on synthetic data is applied. To anticipate more variations that Natural Lan-
guage Generation systems may output for better learning of BLEURT, rather than using existing datasets,
synthetic sentences pairs are produced by using mask-filling, back translation and randomly dropping out
words. Mask-filling is used to get variants in lexical level, firstly two maskings are applied, either mask
some tokens randomly or mask tokens that are adjoining sequences, then BERT is used to fill in the masked
tokens in the incomplete sentence. Back translation is chosen to get variants in sentence level, as it provides
paraphrases. For back translation, an English sentence is translated to another language, then it is trans-
lated back to English. The method of randomly dropping out words is used to simulate possible noises or
omissions that could be generated by NLG systems. After getting the synthetic sentence pairs, each pair is
assigned a set of pre-training signals {τt}, where τt is the target vector of a pre-training task t and there
are 9 pre-training tasks. For each pre-training task, the corresponding pre-training signal and loss type are
shown in the following:

Pre-training task Pre-training signals Loss type
BLEU τBLEU Regression

ROUGE τROUGE = (τROUGE precision, τROUGE recall, τROUGE Fscore) Regression
BERTScore τBS = (τBS precision, τBS recall, τBS Fscore) Regression

Backtranslation Likelyhood τen−fr,y|y′ , τen−fr,y′|y, τen−de,y|y′ , τen−de,y′|y Regression
Entailment τentail = (τentail, τcontradict, τneutral) Classification

Backtranslation flag τbt flag Classification

For BLEU, ROUGE and BERTScore, the pre-training signals are the corresponding automatic metric scores
(with precision, recall and f-score used for the ROUGE and BERTScore). For backtranslation likelyhood,

French and German are used, and the pre-training signal τen−fr,y|y′ = logP (y|y′)
|y| , where y is the refer-

ence sentence, y′ is the candidate sentence / system output sentence, |y| is the number of tokens in y and
P (y|y′) = Pfr→en(y|y∗fr), y∗fr = arg maxPen→fr(yfr|y). For entailment, the pre-training signal is composed
by three probabilities, entail, contradict and neutral. For backtranslation flag, the signal is a boolean sug-
gesting whether a synthetic sentences is made by applying backtranslation.

Since there are multiple pre-training tasks, an aggregate loss function for pre-trainging is used:

lpre−training= 1
E

E∑
e=1

K∑
k=1

γklk(τmk , τ̂
m
k )

where m is a sentence pair, E is the number of sentence pairs, K is the number of pre-traing tasks used, γk are
hyper-parameter weights obtained with grid search and lk(τmk , τ̂

m
k ) is the loss function for pre-training task k.

If k is a regression task, lk = ||τk−τ̂k||2
the dimension of τk

, τ̂k = Wτkv[CLS] + bτk where v[CLS] is the vector represen-
tation for the special classification token generated by BERT, W is the weight matrix, and b is the bias vector.

COMET [44] The pre-trained, cross-lingual encoder XLM-RoBERTa [5] is used as the encoder model.
The source sentence, reference sentence and candidate sentence are all feed to the encoder. It generates an
embedding for each token in a sentence and each layer. Instead of using only the embeddings output by the
last layer of the encoder, the pooling layer is introduced to pool the information of the most significant layer
of the encoder to an embedding for each token in a sentence. The embedding of a token x is then µExα,
where µ is a weight coefficient used for training, Ex is a vector of the embedding of token x in each layer,
namely [e(0), e(1), ..., e(m)], α is the vector of trainable normalized weight coefficient for each layer (apart from
layer 0), α = softmax([α(1), α(2), ..., α(m)]). It is also suggested to set the weight of one layer to −∞ with a
set probability to avoid overfitting. Then the average pooling is applied to the embedding of each token in
a sentence to get the sentence embedding. Therefore, the sentence embedding s for the source sentence, the
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sentence embedding r for the reference sentence and for the candidate sentence h are obtained.

For the estimator model, after getting the sentence embeddings, two element-wise product, h � s, h � r
and two absolute element-wise difference |h− s|, |h− r| are calculated. Then the four of them are concate-
nated to h and r to form a vector, namely [h, r, h� s, h� r, |h− s|, |h− r|], and it is fed to a forward neural
network, which is then trained to minimize the mean square error between predicted scores of candidate
sentences and the corresponding reference scores.

For the translation ranking model, apart from a source sentence, a reference sentence, two candidate sen-
tences are also given, where one candidate sentence has a higher ranking than the other. They are first
feed to the encoder then after the pooling layer, the corresponding sentence embeddings s, r,h+ and h−

are generated. Next, the triplet margin loss is used to optimize the embeddings, and it is computed as
max{0, d(s,h+)+ε−d(s,h−)}+max{0, d(r,h+)+ε−d(r,h−)}, where d(a,b) is the euclidean distance between
a and b, ε is the margin. Therefore, it is trained to ensure |d(s,h+)−d(s,h−)| > ε and |d(r,h+)−d(r,h−)| > ε.

3.2.2 Style classifiers

TextCNN [19] The essential parts of TextCNN (Text Convolutional Neural Networks) are the convolutional
layer and max-over-time pooling layer [4]. Suppose the source sentence has n words, each word is represented
by a k-dimensional word vector. Then it has height 1, width n and k input channels. The calculation of
TextCNN is first performed by defining multiple one-dimensional convolution kernels and applying the kernels
to calculate the convolutions on the input channels to get output channels. Next, max-over-time pooling is
applied on the output channels, the output of max-over-time pooling for each output channel is concatenated
to a vector, dropout is performed on the resulting vector for regularization. Then the processed vector is fed
to a fully connected softmax layer to generate probabilities for each class/category.

fastText [17] A sentence representation is the average of word representations for each word in the sen-
tence. Sentence representations form the hidden variables. Suppose there are N sentences in total, the
negative log-likelihood over the classes − 1

N

∑N
n=1 yn log(softmax(Wxn)) is minimized, yn is the class label

for the n-th sentence, W is the weight matrix and xn is the normalized bag of features of the n-th sentence.
It is trained by using stochastic gradient descent and the learning rate used is linearly decaying. To reduce
the computational complexity, especially for multiple-classes classifications, hierarchical softmax is applied.
In addition, instead of using bag of words as feature representations, bag of n-grams is used for efficiency.

3.3 Human evaluation

Automatic evaluation is not perfect, in order to have more reliable results, human evaluation is also conducted.

Following “Best practices for human evaluation of automatically generated text” summarized in [47], and
aspects of evaluation used in [35], instead of having an overall quality assessment, three criteria are chosen:
(1) style strength: the amount that the transformed sentence fits the target style; (2) content preservation:
the amount of content in the transformed sentence that remains unchanged compared to the corresponding
source sentence; (3) fluency: the possibility of the transformed sentence written by a native speaker. The
corresponding statements for three criteria shown to the annotators are: (1) The transformed sentence fits the
target style; (2) The content of the transformed sentence is the same as the original sentence; (3) Considering
the target style, the transformed sentence could have been written by a native speaker.

For measurement, from the results in [47], discrete Likert scales are the popular rating method used in
Natural Language Generation (NLG) evaluation (text style transfer can be considered as one kind of NLG
task), and 7-point scales have the best performance among all point scales. However, when discrete Likert
scales are compared to continuous scales with respect to the reliability of human evaluation in [39], it is shown
that continuous scales outperform discrete Likert scales. Therefore, we set up the continuous scale from 1 to
100 (numerical labels are not shown to the annotators), which is also easy to be transformed to other ranges,
such as 1 to 7, if needed. For each criteria statement mentioned in the last paragraph, a slider with a set
range is shown to the annotators, they could move the sliders to indicate how much they agree or disagree
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with the statement, then the corresponding score is collected. An example evaluation task in the interface is
shown in Figure 1. Evaluations of two transfer directions are shown alternately. Before showing the actual
evaluation tasks to the annotators, a short introduction, specific instructions to conduct the tasks, examples
of evaluation for each transfer direction (formal → informal, informal → formal) are provided.

Figure 1: Example of an evaluation

Due to the time constraint of this bachelor project, only expert evaluation is conducted and the crowd
worker evaluation for the same data is left for future work. The detailed settings are discussed as follows. For
each transfer direction, 40 source sentences for both formal and informal style from GYAFC [43] of domain
Family & Relationships are randomly chosen, thus there are in total 80 source sentences. 8 text transfer
systems from section 2.2.2 are chosen to use in evaluating text formality style, NMT-Combined [43], Bi-
Directional Formality Transfer [37], Lai’s (BART large+SC+BLEU, Trained with High-Quality
Generated Paires, IBT+SC+BLEU+BLEURT)[24, 23], DualRL[30], StyIns[50] and Zhou’s[53].
For each source sentence, the output sentence of each system and the corresponding reference sentence are
evaluated. The duplicates of output sentences from different systems are eliminated, so there are up to 9 eval-
uations for one source sentence. Due to a large number of evaluations, the task is divided into 4 sub-tasks,
each of them contains transformed sentences of 20 source sentences (10 in each transfer direction). Each
sub-task is assigned to two experts so that each sentence is evaluated twice. In total, 8 experts are needed.
We have asked 6 English native speakers and 2 non-native English speaker with a linguistics background to
perform the tasks.

3.4 Correlation

To compare human evaluation and automatic metrics, correlation analysis needs to be conducted. Two types
of correlation analysis are introduced in this section.

Segment-level correlation As a segment in text style transfer tasks (in most cases of NLG tasks) is a
sentence, segment-level correlation is the same as sentence-level correlation. Since sentence-level correlation
is more relevant for the evaluation of NLG systems [46], to investigate which aspects of human judgment
correlate best with which automatic metrics, Kendall’s Tau-like formulation (τ) [31] is applied. For both
human evaluation and automatic metrics (section 3.3), a score is assigned to a candidate-reference sentence
pair for each criterion (mentioned in section 3.4). For two candidate-reference pairs, if the score relationship
of human evaluation is consistent with the score relationship of an automatic metric, it is a concordant,

16



otherwise, it is a discordant. For instance, given two candidate-reference sentence pairs 1 and 2, the score
relationship based on human evaluation is s1 < s2, but for an automatic metric, it is s1 > s2, it is a discor-

dant. Then the Kendall’s Tau-like formulation τ = |concordant|−|discordant|
|concordant|+|discordant| , where |x| is the number of x.

System-level correlation Although segment-level correlation are more significant, it is still essential to use
system-level correlation to study the performance of different systems. For a system containing n candidate

sentences, the Pearson correlation between human evaluation and a metricM is r =
∑n

i=1(Hi−H̄)(Mi−M̄)√∑n
i=1(Hi−H̄)2

√∑n
i=1(Mi−M̄)2

,

where Hi is the human evaluation score for the i-th candidate-reference pair and H̄ =
∑n

i=1Xi

n .

4 Results

4.1 RQ1

RQ1: Which aspects of human assessment (content preservation, style strength, fluency) correlate best with
which metrics?

(All correlation coefficients presented in this section are processed by taking corresponding absolute val-
ues as the focus is not whether expert assessments and metrics have positive or negative relations.) In this
part, when running content-based metrics, source sentences are first used as “references”. In this setting,
human references provided by the dataset GYAFC can be seen as outputs of another system since human
references are some of the possible variations that would be predictions of a trained system. For content
preservation, Pearson correlation coefficients between expert judgments and content-based automatic met-
rics are calculated for each system and are presented in Table 3. It can be seen not all systems correlate
best with the same metric, but after calculating the mean of all systems for each metric, BERTScore has
the highest value and BLEURT has the second highest. Moreover, segment-level correlation (Kendall’s tau)
between output sentences of all systems and each content-based metric are shown in Table 6, for content
preservation, BERTScore again correlates best.

BLEU METEOR WMD ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT COMET
BART large + SC + BLEU 0.310 0.223 0.249 0.222 0.222 0.224 0.358 0.270 0.182

Trained with High-Quality Generated Pairs 0.212 0.100 0.080 0.096 0.098 0.096 0.212 0.055 0.114
IBT + SC + BLEU + BLEURT 0.192 0.111 0.016 0.227 0.167 0.219 0.557 0.220 0.116

DURL 0.657 0.709 0.706 0.555 0.675 0.564 0.773 0.792 0.679
Bi-Directional Formality Transfer 0.204 0.139 0.229 0.165 0.195 0.165 0.187 0.142 0.063

NMT-Combined 0.226 0.171 0.199 0.217 0.247 0.200 0.497 0.359 0.158
Human references 0.316 0.037 0.318 0.378 0.313 0.363 0.495 0.307 0.09

StyIns 0.460 0.415 0.470 0.272 0.300 0.272 0.639 0.674 0.471
Zhou’s 0.644 0.544 0.600 0.408 0.464 0.408 0.755 0.652 0.470
Mean 0.358 0.272 0.318 0.282 0.298 0.279 0.497 0.385 0.261

Table 3: Pearson correlation coefficients between expert assessment for Content preservation and content-
based automatic metrics (using source sentences as references)

For style strength, system-level correlations between expert judgments and two style classifiers are com-
puted and shown in Table 4. TextCNN has a higher correlation with expert judgments than fastText in
general, it is consistent with the results of segment-level correlation for style strength in Table 6.

For fluency, system-level correlations between experts judgments and content-based automatic metrics are
given in Table 5. For 5 out of 9 systems, expert judgments correlate best with BERTScore. However, for
segment-level correlations of fluency in Table 6, COMET has the highest value. Overall, for fluency, expert
assessments have a low degree of correlation or even no correlation with content-based automatic metrics.

Next, results of using human references as references used in content-based automatic metrics are introduced.
System-level correlations between expert judgments for content preservation and metrics are shown in Table
7, BERTScore still has the highest correlation. Segment-level correlations between experts’ judgments of
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TextCNN fastText
BART large + SC + BLEU 0.401 0.287

Trained with High-Quality Generated Pairs 0.408 0.326
IBT + SC + BLEU + BLEURT 0.262 0.293

DURL 0.612 0.556
Bi-Directional Formality Transfer 0.316 0.345

NMT-Combined 0.252 0.198
Human references 0.55 0.243

StyIns 0.713 0.595
Zhou’s 0.582 0.403
Mean 0.455 0.367

Table 4: Pearson correlation coefficients between expert assessment for style and style classifiers

BLEU METEOR WMD ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT COMET
BART large + SC + BLEU 0.001 0.083 0.084 0.011 0.018 0.007 0.025 0.114 0.076

Trained with High-Quality Generated Pairs 0.029 0.025 0.008 0.055 0.061 0.055 0.083 0.080 0.044
IBT + SC + BLEU + BLEURT 0.082 0.032 0.084 0.084 0.084 0.081 0.403 0.088 0.109

DURL 0.425 0.469 0.535 0.344 0.482 0.349 0.56 0.584 0.46
Bi-Directional Formality Transfer 0.068 0.054 0.117 0.074 0.07 0.074 0.007 0.004 0.003

NMT-Combined 0.142 0.136 0.003 0.129 0.161 0.144 0.139 0.125 0.081
Human references 0.048 0.023 0.042 0.028 0.063 0.025 0.166 0.017 0.006

StyIns 0.322 0.19 0.253 0.18 0.112 0.18 0.426 0.41 0.359
Zhou’s 0.398 0.437 0.389 0.164 0.278 0.164 0.529 0.527 0.234
Mean 0.168 0.161 0.168 0.119 0.148 0.12 0.26 0.217 0.152

Table 5: Pearson correlation coefficients between expert assessment for fluency and content-based automatic
metrics (using source sentences as references)

BLEU METEOR WMD ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT COMET TextCNN fastText
Content preservation 0.344 0.275 0.268 0.225 0.229 0.223 0.443 0.391 0.160 - -

Style strength - - - - - - - - - 0.319 0.272
Fluency 0.066 0.042 0.062 0.004 0 0 0.182 0.138 0.212 - -

Table 6: Kendall’s tau between expert assessments for all output sentences generated by 9 systems (8 text
transfer systems + human references) and automatic metrics (for content-based metrics, source sentences are
used as references)

output sentences from all systems and metrics are listed in Table 9. COMET has the best segment-level
correlation for content preservation, which is different from the result of using source sentences as refer-
ences in metrics. For fluency, BERTScore has the highest system-level correlation and COMET has the
best segment-level correlation, which is consistent with the results of using source sentences as references in
metrics. Nevertheless, when using human references as references in metrics, both segment-level correlations
and system-level correlations are lower compared to using source sentences, for both content preservation
and fluency.

As it is shown that there are differences in correlations for content preservation and fluency between using
source sentences and human references as references used in content-based automatic metrics, it is natural
to take a closer look at the differences. When using human references as references in metrics, most correla-
tions are lower than the ones calculated when source sentences are used as references. Since content-based
automatic metrics have a low degree of correlations with expert judgments for fluency, only differences in
content preservation are studied. Absolute differences between Table 3 (except for Human references and
Mean) and Table 7 (except for Mean) are shown in Figure 2. For all content-based metrics, the mean corre-
lation difference varies from 0 to 0.3. Among all systems, BERTScore has the greatest difference in general
and COMET has no difference, as COMET requires both source sentence and reference to calculate. For
segment-level correlations (kendall’s tau), the general difference in content preservation is consistent that
using human references as references are lower than using source sentences, which can be seen in Figure 3.
It could be the result of only showing the source sentences in human evaluation.
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BLEU METEOR WMD ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT COMET
BART large + SC + BLEU 0.113 0.101 0.176 0.156 0.133 0.164 0.251 0.149 0.182

Trained with High-Quality Generated Pairs 0.103 0.08 0.162 0.091 0.041 0.089 0.096 0.059 0.114
IBT + SC + BLEU + BLEURT 0.021 0.059 0.12 0.066 0.034 0.06 0.138 0.053 0.116

DURL 0.5 0.709 0.413 0.368 0.297 0.351 0.629 0.643 0.679
Bi-Directional Formality Transfer 0.049 0.063 0.034 0.075 0.029 0.082 0.131 0.131 0.063

NMT-Combined 0.037 0.044 0.086 0.013 0.027 0.008 0.216 0.198 0.158
StyIns 0.297 0.215 0.346 0.241 0.266 0.257 0.38 0.441 0.471
Zhou’s 0.283 0.337 0.281 0.210 0.220 0.215 0.434 0.520 0.470
Mean 0.175 0.201 0.202 0.152 0.131 0.153 0.284 0.274 0.282

Table 7: Pearson correlation coefficients between expert assessment for content preservation and content-
based automatic metrics (using human references as references)

BLEU METEOR WMD ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT COMET
BART large + SC + BLEU 0.015 0.143 0.059 0.067 0.133 0.123 0.037 0.047 0.076

Trained with High-Quality Generated Pairs 0.096 0.061 0.116 0.07 0.033 0.032 0.023 0.104 0.044
IBT + SC + BLEU + BLEURT 0.07 0.107 0.133 0.091 0.088 0.113 0.187 0.042 0.109

DURL 0.283 0.469 0.238 0.193 0.176 0.177 0.398 0.366 0.46
Bi-Directional Formality Transfer 0.038 0.068 0.064 0.011 0.003 0.001 0.079 0.139 0.003

NMT-Combined 0.078 0.015 0.132 0.101 0.026 0.08 0.076 0.006 0.081
StyIns 0.19 0.2 0.248 0.222 0.258 0.225 0.282 0.192 0.359
Zhou’s 0.135 0.133 0.113 0.019 0.055 0.03 0.152 0.227 0.234
Mean 0.113 0.149 0.138 0.097 0.097 0.098 0.154 0.140 0.171

Table 8: Pearson correlation coefficients between expert assessment for fluency and content-based automatic
metrics (using human references as references)

BLEU METEOR WMD ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT COMET
Content preservation 0.144 0.15 0.129 0.135 0.125 0.142 0.227 0.221 0.237

Fluency 0.111 0.125 0.109 0.121 0.111 0.124 0.189 0.163 0.215

Table 9: Kendall’s tau between expert assessments for all output sentences generated by 8 systems and
content-based metrics (human references are used as references)

Figure 2: Differences in Pearson correlation coefficients for content preservation between using source sen-
tences and human references as references used in metrics
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Figure 3: Differences in Kendall’s tau for content preservation between using source sentences and human
references as references used in metrics

4.2 RQ2

RQ2: What is a feasible, implementable setting for human evaluation of generated text, also with respect
to observations in the current literature?

A brief introduction containing purposes, size, approximate completion time, requirements of the evalua-
tion and contact information are presented in the beginning. Next, task guidelines including task definitions,
criteria definitions For each output sentence being evaluated, the corresponding source sentence is shown
as well. Three basic criteria should be assessed at least: (1) style strength: the amount that the output
sentence fits the target style; (2) content preservation: the amount of content in the output sentence that
remains unchanged compared to the corresponding source sentence; (3) fluency: the possibility of the output
sentence written by a native speaker. From a practical point of view, it could be suitable to have an overall
evaluation as well, as it can be used to see the overall performance intuitively. Clear definitions or concrete
implementation of criteria are provided to annotators. Examples of evaluation of each transfer direction are
shown, supplementary explanations are provided as well.

For measurements, as the continuous scale is more reliable than discrete Likert scales [39], continuous scale
is implemented by, for example, using slider questions. Each criterion is equipped with a slider with labels
indicating the range of scale.

For annotators, according to Freitag et al.[11], it is not reliable to only have crowd workers evaluation,
as it has a low correlation with Multidimensional Quality Metrics based evaluation and even some automatic
metrics (embedding-based) exceed the performance of crowd workers. But as van der Lee et al. [47] suggest,
the number of participants of an evaluation should be sufficiently large, and it is not practical to get a large
number of experts to evaluate. Therefore, both small-scale expert evaluation and large-scale crowd workers
evaluation should be set in an ideal situation. The number of annotators and their backgrounds should be
included. Each generated sentence is supposed to be evaluated at least twice for qualitative analysis, relevant
Inter-annotator agreement (IAA) is reported [47].
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In our experiment, 80 source sentences are divided into 4 parts, each of them contains 20 source sentences,
the corresponding evaluations are contained in a survey, hence there are 4 surveys in total. Each survey
is sent to two experts, which results in two annotations for each system output sentence. For each survey,
Pearson’s correlation is calculated as IAA, kappa are not used as IAA since the data is continuous and not
categorical. Results in Table 10 indicate the experts understand the tasks uniformly, the guidelines are clear
and the evaluation task is reproducible to a certain degree.

Survey 1 Survey 2 Survey 4 Survey 5
Pearson’s cor 0.70 0.68 0.72 0.66

Table 10: Inter-Annotator Agreements for all surveys

4.3 RQ3

RQ3: According to human assessment, which of the existing text style transfer system works best?

As mentioned before, output sentences generated by eight text style transfer systems are evaluated by experts,
as well as the corresponding human references (which is seen as another system here). The mean values of
scores given by experts of all sentences generated by a system for each criterion are shown in Table 11. It
can be seen in Figure 4 that for content preservation, Trained with High-Quality Generated Paires [23] has
the best result. For both style and fluency, BART large + SC + BLEU [24] has the best performance. It is
interesting to see several text style transfer systems outperform humans (compared to assessment of human
references).

Content preservation Style Fluency
BART large + SC + BLEU 86.5 82.7 87.8

Trained with High-Quality Generated Pairs 92.4 76.3 83.3
IBT + SC + BLEU + BLEURT 85.2 80.1 86.0

DURL 47.6 46.7 37.9
Bi-Directional Formality Transfer 90.7 76.9 84.9

NMT-Combined 84.7 70.2 77.3
Human references 73.6 82.3 82.4

StyIns 50.5 51.1 38.6
Zhou’s 50.9 47.2 45.1

Table 11: Experts assessment scores

5 Conclusions

In this thesis, we explore the common evaluation methods of natural language generation tasks, in particu-
lar for text style transfer for both automatic evaluation and human evaluation. Several text style transfer
systems with a variety of architectures and two pre-trained models commonly used in text transfer systems
are studied. Formality transfer, as one kind of text style transfer, is the main focus of the experiment. 8
style transfer systems with either supervised methods or unsupervised methods are selected for generating
sentences of the formality transfer task. There are 3 criteria for the assessment, namely content preservation,
style and fluency. For automatic evaluation of the text transfer systems, 7 content-based metrics (ROUGE
has 3 variations, so 9 metrics in total) are used to evaluate content preservation and 2 style classifier are
applied to assess how the sentences fit the target style. Expert evaluation is conducted as well, to evaluate
the performances of not only text style transfer systems but also automatic metrics.

There are key findings of this project. First, based on expert judgments, among all text transfer systems
evaluated, Trained with High Quality Gnerated Paires [23] works best in content preservation, and the system
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Figure 4: Expert assessment for 8 text style transfer systems and human references

BART large + SC + BLEU [24] has the best performance in style and fluency. Second, except for COMET,
there are differences in correlations between using source sentences as references used in content-based met-
rics and using human references as references, for content preservation, the mean differences of 8 text style
transfer system for 8 metrics varies from 0.1 to 0.3. Third, when using source sentences as references in
content-based automatic metrics, for most of the systems, both content preservation and fluency correlate
best with BERTScore, but in segment-level, fluency correlates best with COMET. Fourth, when using human
references as references, content preservation correlates best with BERTScore in system-level and COMET
in segment-level, fluency correlates best with COMET.

A web-based interface for human evaluation of formality transfer is established, it can be reused by as-
sessing different automatic outputs and it can be transformed to evaluate other text style transfer tasks. It
provides the contribution to the setup of human evaluation of Natural Language Generation. In addition,
the number of text style transfer systems evaluated in the expert evaluation is large, which is not done in the
previous studies. One limitation of this project is that only expert evaluation is done for human evaluation
due to time constraints. Ideally, crowd worker evaluation on the same data given to the experts should
be included as well. Therefore, crowd worker evaluation on formality transfer with the same text transfer
systems and automatic metrics is left for future research.
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