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Abstract

In the field of object recognition much is gained by the use of convolutional neural
networks (CNNs). Research into deeper networks has revealed untold successes,
as well as unforeseen issues. Ensembles of deep CNNs are being used to further
improve performance, while the issues with vanishing gradients have been tackled
by the use of deep supervision. In this work a novel architecture is proposed
which combines these techniques. Using ResNet34 and DenseNet121 as base
variants, a Multiple Heads (MH) adaptation attempts to improve performance
and solve issues. Further work on the weights (α) in the MH variant leads to use
of the Hedge Back Propagation (HBP) algorithm in the HBP and Thaw model
variants. Experiments on CIFAR10 and the Naturalis Papilionidae datasets show
the use of MH variants improves over base networks in one of the experimental
settings. The application of HBP does not further improve the performance of
the MH variant, but leads to interesting observations resulting in a multitude of
directions for future work.
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Chapter 1

Introduction

Image classification is a task that has seen numerous solutions, with differing,
but increasing, amounts of success. The number of applications is equally large,
and growing. Due to all this interest in image classification, improvements have
been made at a rapid pace. The task can be defined as using a system of rules
to automatically label an image with the correct class label in a specific set
of images. From this definition it can be seen that attempts to solve image
classification can be performed simply by hand, by flow-chart, by more complex
mathematical analysis, and ultimately by automated pattern recognition.

The biggest breakthrough in image classification in the last decades has been
with the introduction of the convolutional neural network (CNN) [Lecun et al., 1998]
and its first show of force [Krizhevsky et al., 2012]. CNNs have been the go-to
system of rules applied to image classification. While this narrows the range of
solutions to the task, these models have shown to be very effective. Additionally,
this choice of solution in no way narrows the immensely broad applications for
this task. These applications include object classification by cameras on an
autonomous robot for scene understanding [Ye et al., 2017], medical imaging
to determine the health of a tissue [Gertych et al., 2019], fine-grained animal
classification to aid in determining biodiversity [Marre et al., 2020], and so on.

With the success of AlexNet [Krizhevsky et al., 2012] came the increased
attention by the scientific community that led to numerous improvements to
the first functional CNN. While many of these improvements were developed
to incrementally increase the effectiveness of a model, some improvements were
more drastic, both in structural impact as well as necessity. Most notable
has been the effort to train ever deeper CNNs which introduced the vanishing
gradient problem.

The vanishing gradient problem occurs when CNNs are made consistently
deeper, meaning they consist of more layers. In general terms, the problem occurs
when models are so deep that any information used to train the network is lost
during backpropagation. Due to this, the earlier layers of a network do not receive
any information from which they can learn. The solution to this problem has
seen many forms, from mathematical adjustments such as a different activation
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function [Xu et al., 2015], to structural solutions such as adjusting the con-
nections between shallow and deep layers [He et al., 2016, Huang et al., 2017b].
The most impactful structural change to accommodate for this problem has
been the use of auxiliary heads [Szegedy et al., 2015], a technique more generally
known as deep supervision [Wang et al., 2015, Lee et al., 2015]. The addition
of auxiliary heads allows shallow layers to be trained more directly, allowing
more information to be learned by these layers. It has shown to be effective in
training deep neural networks that would otherwise be untrainable.

A second, large, structural change used to improve results beyond incremental
advances has been ensemble learning. This technique uses a group, or ensemble,
of effective models and combines their output to produce its final prediction
[Dietterich, 2000]. Using multiple models trained on similar data can produce an
ensemble where each individual model’s bias towards local minima or specific over-
represented classes is negated by the combined output of the group. However, an
ensemble in the naive sense requires training multiple models which, obviously,
requires more time and computing power. To reduce these negative effects
of using an ensemble, several methods try to reuse parts of the model in the
ensemble [Minetto et al., 2019, Huang et al., 2017a].

In this work, several novel model structures and a corresponding training algo-
rithm are introduced, adapted from work in online deep learning [Sahoo et al., 2018].
These novel structures use the auxiliary heads as seen in deep supervision
[Szegedy et al., 2015, Wang et al., 2015, Lee et al., 2015]. In contrast to these
techniques, the multiple heads (MH) are kept active during inference, resulting
in a model that is an ensemble of itself and shallower versions of itself. In
addition to this new model structure, the technique of hedge backpropagation
(HBP) [Sahoo et al., 2018] is adapted to convolutional neural networks. This
technique then allows the model to learn the weight of each head during training,
resulting in two additional model structures. The models using MH without
HBP are named MHResNet34 and MHDenseNet121, based on ResNet34 and
DenseNet121 respectively. The models using HBP are named HBPResNet34 and
HBPDenseNet121. Finally, a hybrid implementation of MH and HBP results in
ThawResNet34 and ThawDenseNet121.

1.1 Research Questions

The development of the model structures described in Chapter 1 and their effec-
tiveness compared to the base models is the core of this work. This comparison
can be made in several steps, each represented by a separate research question:

1. Does a model with auxiliary heads perform better than the base model?

2. Do the auxiliary heads increase performance when active during inference,
in contrast to only using auxiliary heads during training?

3. Does the hedge backpropagation (HBP) algorithm successfully optimize
weights between output layers of a model with multiple heads?
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4. Does freezing the weights assigned to classifiers in the model at the start
of training influence the performance of the model? Does this significantly
differ from the MH or HBP models?

5. Do the behaviours of these models change when using differing amounts of
data?

1.2 Thesis Structure

This section has given a very brief summary of the goals of this work. In
Chapter 2, each topic mentioned in this summary will be more fully put into
its scientific context. Chapter 3 will then introduce the new additions of this
work formally, together with the data used. To measure the effectiveness of
these methods, a multitude of experiments was set up, described in Chapter 4.
The experimental results are shown in Chapter 5, together with the statistical
analysis. Finally, Chapter 6 will answer the research questions, along with other
relevant conclusions, before listing suggestions for future research.
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Chapter 2

Theoretical background

2.1 Deep Learning

The origins of Deep Learning (DL) can be traced back all the way to the Rosen-
blatt perceptron [Rosenblatt, 1958]. This mathematical operation is nothing
more than a weighted sum of inputs, producing an output of 1 if this sum
crosses a threshold and 0 otherwise. This operation, in addition to a function to
update the weights, is the basis of the artificial neuron. Several adaptations and
extensions made to the perceptron have produced the earliest neural network
models called Multi-Layer Perceptrons (MLPs). These adaptations are stacking
the perceptrons in layers, using a more complex update algorithm, and using
non-linear activation of the individual neurons.

2.1.1 Neural Networks

The effectiveness of neural networks lies in its power to update weights of
multiple layers of neurons with non-linear activations by determining each
neurons contribution to the output. The usefulness of these models is in the use
of non-linear activations. By stacking non-linear activations, a neural network
as simple as an MLP can be used as an universal function approximator.

To train a neural network for a specific task an iterative procedure is applied
of alternating between forward and backward passes. The forward passes feed
the network, or model, a set of inputs to which the network then connects an
output, e.g. a class label. The backward passes calculate the error between the
output and the desired label and update the weights of each layer according to
this error in a process called backpropagation [Rumelhart et al., 1986]. Finally,
the iterative process of updating the weights in the direction that minimizes
error is done by a gradient descent algorithm. The necessity for labeled samples
makes training a neural network a supervised learning task.
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Backpropagation

The technique of backpropagation [Rumelhart et al., 1986], which allows net-
works with more than a single layer to train the weights connected to non-output
layers, is a cornerstone of neural networks. The use of chained partial derivatives
allows information about the gradient used by gradient descent to flow backward
through the model, starting at the output layer. This allows a single error
calculation in the final layer to affect all weights in the model.

2.1.2 Convolutional Layers

A big leap forward in using neural networks for image processing has been made
through the development of Convolutional Neural Networks [Krizhevsky et al., 2012,
Simonyan and Zisserman, 2015]. These networks, as the name suggests, use con-
volutions, built into seperate layers called convolutional layers. These layers use
feature maps to detect features in localized areas of their input, giving them
the possibility of detecting spatial relations between input values (pixels). This
allows much more relevant information to be extracted from images. Additionally,
applying filters, or kernels, to these localized areas allows for weight sharing,
since a single kernel has identical weights regardless of which patch of the input
it is currently applying the filter to. These two factors allow for more information
retention with less parameters, greatly increasing performance on image-based
data, where spatial relations are relevant.

Multiple stacked convolutional layers can turn lower level features, such as
lines and shapes, into higher level features such as facial features, windows in a
building, or legs of an animal. Together with intermittent pooling layers, these
features are effectively combined to correctly identify an entire object by adding
numerous features together into a single output. The final output of features is
then used by a conventional (set of) layer(s) to correctly label the input.

2.1.3 Vanishing Gradient Problem and Solutions

Initial attempts to improve CNNs frequently led to increases in the number of con-
volutional layers, with 2 layer in LeNet [Lecun et al., 1998], 5 layers in AlexNet
[Krizhevsky et al., 2012], and 16 in VGG19 [Simonyan and Zisserman, 2015].
Attempts to go larger ran into issues with backpropagation. This issue was coined
the vanishing gradient problem [Hochreiter, 1991, Kolen and Kremer, 2001].

The vanishing gradient problem describes the inability for significantly deep
neural networks to learn any significant patterns in their early layers. This is
caused by the process of chaining partial derivatives. If we assume the activation
function of each layer has gradient < 0, 1 >, such as with the sigmoid activation
(Equation 2.1) or hyperbolic tangent activation (Equation 2.2), the gradient gi
of layer i will be gi =< 0, 1 >i due to the chained nature of backpropagation.
The more these gradients approach 0, the quicker the value for gi approaches
0. A layer with gradient 0 will not update its weights and therefore not learn
anything. If this happens later in the learning process, the route to an optimal
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solution is stifled. However, if this happens much earlier, the early layers will be
untrained and will be, at best, useless, and might even be detrimental by acting
as a filter applying noise to the input.

σ(x) =
1

1 + ex
(2.1)

tanh(x) =
ex − e−x

ex + e−x
(2.2)

An initial, and intuitive, response to this problem is to replace the activation
function with one that does not exhibit this behaviour. The current standard
for this is the rectified linear unit (ReLU) activation. This activation, described
by Equation 2.3, provides a gradient that is either 1 or 0, removing the situation
of arbitrarily small gradients being multiplied and vanishing.

ReLU(x) = max(0, x) (2.3)

Another solution is to increase the connection between the output layer
and early convolutional layers in the network. These connections are generally
called skip connections, as they skip one or more layers of the model. These
skip connections ensure information from earlier layers reaches the final output
and thus impacts the gradient for these early layers, negating the devastating
effect of the vanishing gradient problem. Skip connections come in two variants:
additive connections, leading to ResNet variants [He et al., 2016], where the
input of a block of layers is added to the output of that block, and concatenated
connections, resulting in DenseNet variants [Huang et al., 2017b], where the
features of previous blocks are added to the output of the current block as a
combined input to the next block. Both these variants and their workings are
further explained in Section 3.2.

Regardless of technique, the goal of solving the vanishing gradient problem is
to allow the training of deeper neural networks. Another technique developed for
this goal structurally changes the architecture of the model by adding additional
output layers. This area of research is known as deep supervision.

2.2 Deep Supervision

Deep supervision is the technique of adding auxiliary output branches, or aux-
iliary heads, to the model at halfway points to give earlier layers more direct
feedback [Wang et al., 2015, Lee et al., 2015]. Extending the concept of super-
vised learning, this allows the supervisor (i.e. the user with labeled data), to
provide this feedback at multiple depths.

Deep supervision has been used to train state-of-the-art models, such as
Inception [Szegedy et al., 2015] and Inception v3 [Szegedy et al., 2016]. These
models use auxiliary classifiers at predetermined points during training. At
inference time, when the model is sufficiently trained at every layer, the auxiliary
heads are disconnected, producing a feed forward network. During training,
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the auxiliary heads provide additional gradient information according to preset
weights, which are hyper-parameters to be optimized by the user.

Deep supervision has seen many developments, such as using intermediate
concepts [Li et al., 2019] and knowledge synergy [Sun et al., 2019].

With the wide use of certain popular models such as ResNet50 [He et al., 2016]
and Inception V3 [Szegedy et al., 2016], deep supervision has fallen off in use
due to the prevalence of pretrained weights. However, it is also shown that when
models are developed specifically for new tasks, and as such no pre-training is
available, use of deep supervision can greatly improve the training time and
performance of these models [Shen et al., 2020], or might even be the factor that
allows training altogether [Szegedy et al., 2016].

2.3 Ensemble Learning

While new models are continually developed and improve on the state-of-the-
art, there is no guarantee that the best performing model overall, in terms
of accuracy, performs the best in every possible case of that task. In other
words, two models of comparable architectures might be specialized in detecting
two different classes, which performing worse in the class the other model is
specialized in. To use this information as a benefit, ensemble learning has been
developed [Dietterich, 2000, Zhou et al., 2002].

While there are many ways to combine the used models into an ensemble,
the baseline remains that multiple models need to be trained for the ensem-
ble to be effective. Naturally, this puts a heavier burden on computational
resources compared to training a single model. To this end, architectures have
been developed that reuse some of the weights of the model, to reduce the
necessary resources. This has been done by weight sharing up to a certain depth
and fine-tuning only the final layers of the same model in different directions
[Minetto et al., 2019]. Alternatively, models have been trained to convergence,
while intermediate weights are saved as snapshots. These snapshots are then used
to initialize separate instances of the same model, which can then be combined
into an ensemble [Huang et al., 2017a]. These architectures show the necesity
for ensemble learning to be more efficient than the naive approach of training
many different models individually.
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Chapter 3

Methodology

While deep supervision and ensemble learning are in itself established develop-
ments, this chapter will introduce a novel method, intended to combine strengths
from both these concepts.

3.1 Hedge Algorithm

The hedge algorithm [Freund and Schapire, 1997] is an algorithm developed to
determine the proper weights to assign to each output in a system of experts in
order to obtain the best aggregated performance. The algorithm, as shown in
pseudo-code in Algorithm 1, can be used for many purposes.

Algorithm 1: Hedge Algorithm Weight (α) Updates

Data: Pair of (data, label) = (x,y)
Result: Adapted weights α
αi(0) = 1

N where N is number of experts;
t = 0;
T = number of epochs;
for t in range(T) do

for i in range(N) do
ŷi = experti(x);
li(t) = f(ŷi, y);

αi(t+ 1) = αi(t) × βli(t);

end

end

In this algorithm, α is the array of values αi, where i indicates a single
Expert. f(ŷi, y) denotes the loss function applied to prediction ŷi and true label
y. Finally, β is the discount factor, between 0 and 1, used to determine the
reduction in weight αi as a result of the loss produced by expert i. The value
for β is set in the range 0 < β < 1. A β value of <= 0 would put the weight for
that expert at or below 0, making it irrelevant. In contrast, a β value of >= 1
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would mean the weight is increasing with a higher loss value, giving the opposite
of the desired effect. In practice, however, the β value is a value close to 1, such
as 0.99, to ensure a gradual change in α.

In any environment with multiple experts with uncertainty to which experts
performs best, the hedge algorithm can be used to determine expert comparative
effectiveness. The algorithm has been used, for example, in stock trading
[Yutong and Zhao, 2015], and disease classification [Sigcha et al., 2021]. The
algorithm is specifically designed for such a system of experts to converge on a
result approximating the result of the best expert. It can be proven that the
difference in loss between the total model and the best expert decreases at the
rate of O

√
(lnN)/T , as done so in the work where the Hedge algorithm was

introduced [Freund and Schapire, 1997]. As such, given enough time, the hedge
algorithm will perform equal to a best expert, without needing the knowledge of
which expert is best beforehand.

3.1.1 Hedge Backpropagation

An ensemble of neural networks is effectively a system of experts with uncertainty
about the best performing expert. Multiple methods exist of combining model
outputs into a single system output, such as averaging or voting, a weighted
combination is the most adaptive method. To determine these weights, the
hedge algorithm can be used. Hedging produces an extra weight, or αi for each
model i to be used at inference to determine the output of the system. However,
this αi can also be used in updating the model, resulting in an additional factor
in determining learning speed, shown in Equation 3.2.

θ(t+ 1) = θ(t) − µ
δl(t)

δθ
(3.1)

θi(t+ 1) = θi(t) − αiµ
δli(t)

δθi
(3.2)

In Equation 3.2, compared to Equation 3.1, the addition of αi and the
specification of other network specific variables shows that this algorithm can
be used to update a specific network in the ensemble. In order to ensure the
functionality of the ensemble, certain concessions have been made deviating from
the pure implementation of the hedge algorithm shown in Algorithm 1. The
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additional steps can be seen in Algorithm 2.

Algorithm 2: Hedge Back Propagation Algorithm Weight (α) Updates

Data: Pair of (data, label) = (x,y)
Result: Adapted weights α
αi(0) = 1

N where N is number of experts;
t = 0;
T = number of epochs;
for t in range(T) do

for i in range(N) do
ŷi = experti(x);
li(t) = f(ŷi, y);

αi(t+ 1) = αi(t) × βli(t);
αi(t+ 1) = max(αi(t+ 1), sN )

end
α = α

sum(α)

end

The additional steps in the hedge backpropagation (HBP) algorithm provide
the α updates with two important properties. First, the αi of a specific expert
i is lower-bound to a predetermined value s, divided by number of experts N .
Second, the array of weights α is normalized at each iteration, providing any
individual αi with the upper bound shown in Equation 3.3

1 − (
s

N
× (N − 1)) (3.3)

The application of HBP is intuitive, but its usefulness is not. Simply put,
the HBP algorithm allows the best performing network in the ensemble to
train quicker and perform better, while worse performing networks will learn
slower. This causes the discrepancy between best and worst network to become
larger. When using completely individual networks in an ensemble, it would
be more cost-efficient to give up on the worse performing and slower training
networks and focus computational resources on the best network. This algorithm,
however, is specifically developed for ensemble models using shared weights. The
implementation and variations of these models are shown in Section 3.2.

Contrary to the proof of convergence by the original Hedge algorithm, HBP
can not make such claims. In this adapted algorithm, the experts, consisting
of classification and hidden layers, change throughout the hedging process.
Additionally, the hedging influences the rate of learning for each expert. Due
to these factors, the expert that may have been best at the start of training,
and would have therefore come out on top with the hedge algorithm, may be
outperformed by experts that are better optimized through the backpropagation
portion of HBP, and the corresponding α values should adjust accordingly.
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3.2 Models

3.2.1 ResNet34

ResNets [He et al., 2016], in its many variants, have been established convo-
lutional neural networks (CNNs) since their initial appearance. This type of
network uses skip connections to provide later layers with additional information
from previous layers, thereby circumventing the vanishing gradient problem. The
skip connections employed by ResNets are, as the name suggests, residual connec-
tions. These connections, mathematically speaking, are additions. This means
that the input to a block of convolutional layers is put through the block, after
which the original input is added to it in order to maintain information from the
input that may otherwise be lost. In order for the input to be structurally similar
to the output of the block, the skip connection incorporates an identity filter,
which applies only the structural changes of the block, such as downsampling,
without extracting further features. This sequence of convolutional blocks with
residual connections can be used to an arbitrary depth, since the use of residual
connections guarantees the deeper network will not have worse performance than
a more shallow version.

In this work, ResNet has been implemented using 34 layers. While deeper
ResNet models have slightly higher performance, the relative shallowness of each
of ResNet34s blocks allows for better comparison between intermediate outputs.
This concept will be further explained in Section 3.2.3. The model has an initial
convolutional layer using a kernel size of 7, a stride of 2, and a padding of 3.
This layer turns the RGB-channel input image into 64 feature maps, after which
batch normalization and a max pooling layer, with kernel size 3 and stride 2,
are applied. When this initial step is done, the block structure starts. Each of
the 4 blocks consists of a number of convolutional layers, each followed by batch
normalization. These convolutional layers use kernel size 3, a stride of 1, and a
padding of 1. The exception to this is the first layer of blocks 2, 3 and 4, which
use a stride of 2 to provide downsampling at the same moment the amount of
feature maps double. There are 6, 8, 12 and 6 convolutional layers in each block,
in that order, using 64, 128, 256 and 512 feature maps, respectively. After each
of these convolutional layers, batch normalization is applied. To the final layer
of block 4 average pooling is applied, after which a fully connected layer is used
to provide a classification output. It is important to note that the rectified linear
unit (ReLU) activation is used throughout the model and that the convolutional
layers do not use a bias.

The residual connections occur every 2 convolutional layers during the block
structure. These residual connections take the input of the first of the two layers
and add this to the output of the second of the two layers. In the case of the first
set of layers of blocks 2, 3, and 4, which downsample the input, the input is first
put through a convolutional layer with kernel size 1 and stride 2 before being
added to the output of the second layer, to accommodate equal dimensions.

The initial convolutional layer, the number of convolutional layers in the block
structure and the final classification layer add up to 34 total layers, excluding
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pooling and normalization layers, giving ResNet34 its name.

3.2.2 DenseNet121

Similar to ResNet variants, DenseNet [Huang et al., 2017b] is also implemented
using skip connections to solve the vanishing gradient problem. However, in
DenseNet, the skip connections perform a concatenation. At each point between
dense blocks, the output feature maps from that block are concatenated with
feature maps produced by previous blocks. These very large amounts of feature
maps are then used as input for the next dense block. By using this process,
the information about the input data is not explicitly preserved. Rather, the
model uses lower level features throughout the stages of feature detection, adding
increasingly higher level features. As such, the final classification is made using
extracted features from multiple layers of complexity.

In this work, the smallest version of DenseNet is used, namely DenseNet121.
Similar to the argumentation for ResNet34, this allows for more shallow dense
blocks, making the distance between intermediate outputs smaller. The function
of this will be explained further in Section 3.2.3. The model has an initial
convolutional layer using a kernel size of 7, a stride of 2, and a padding of 3.
This layer turns the RGB-channel input image into 64 feature maps, after which
batch normalization and a max pooling layer, with kernel size 3 and stride 2, are
applied. There is a 4-block structure, similar to ResNet, however these blocks,
named dense blocks, function significantly differently. A dense block consists
of a specific number of dense layers, with DenseNet121 using 6, 12, 24, and 16
dense layers. Each dense layer consists of a batch normalization layer, a 1 × 1
convolution, a second batch normalization layer, and a 3 × 3 convolution with
padding 1.

The number of feature maps are determined by the concatenating procedure
of DenseNet. This means that the first dense layer of dense block 1 will receive
the base 64 feature maps. Then, each dense layer will add to this an amount of
features equal to the expansion rate, which is 32. These additional features are
concatenated with the input features and used as input for the next dense layer.
After the final dense layer of the first dense block, there will be 64 + 6× 32 = 256
feature maps. After a dense block, a transition layer is used to prepare these
concatenated features for the next denseblock. The transition layer consists of
batch normalization, followed by a 1 × 1 convolutional layer with an output
amount of feature maps equal to half the input features. Finally, an adaptive
average pool layer with a kernel size of 2 and stride of 2 provides the downsampling
needed for the next dense block. The structure of these dense blocks, in addition
to the transition layers provide 128 feature maps as input to block 2, 256 feature
maps as input to block 3, and 512 feature maps as input to block 4.

Dense block 4 will output 1024 feature maps. After these are produced, a
final batch normalization is applied before a fully connected layer provides the
classification output. As with ResNet, all layers use ReLU activation and no
bias.

DenseNet121 derives its name from the total number of convolutional layers
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from the initial convolution (1), dense blocks (116), and transitional layers (3),
combined with the fully connected layer (1), for a total of 121 layers.

3.2.3 Multiple Heads Variants

Using ResNet34 and DenseNet121 as a base, the first novel design is a deep
CNN using multiple heads. These models are named MHResNet34 and MH-
DenseNet121. The structure of these models is shown in Figures 3.1 and 3.2 for
flow of data in training and inference, respectively.

These figures show the existence of 3 classifiers. In the literature these would
be defined as a classifier head, together with 2 auxiliary heads. However, since
the models in this work use all classifier heads equally, the term auxiliary is not
used, as it implies lesser importance. In contrast to models such as Inception
[Szegedy et al., 2015, Szegedy et al., 2016], where the auxiliary heads are used
for training and subsequently disregarded at inference, these models keep all
classifiers active at training, validation, and inference.

Having three active classifiers at inference time effectively makes the model
an ensemble with no added convolutional layers. The classifiers are implemented
as a single fully connected layer, using the features of blocks 2, 3 or 4 as input
and using the number of classes as output size. As shown in Table 3.1, the
addition of these layers adds negligible amounts of additional model parameters.
More specifically, the multiple heads variants have 0.3% and 0.02% additional
parameters compared to ResNet34 and DenseNet121, respectively.

To produce the MH variant from existing models such as ResNet34 and
DenseNet 121, two fully connected layers are attached at the end of blocks 2
and 3 in addition to the fully connected layer attached to block 4. In order
for each classifier to function similarly to the final classifier, adaptive average
pooling is applied before attaching the fully connected layers at the same step in
each block, which means after the final batch normalization for that block in
ResNet34 and before the transition layer for that block in DenseNet121.

As a prelude to the HBP algorithm, the MH variant uses the value of α in
both the forward and backward pass. However, α is not yet adapted using the
hedge update step. Instead, α is set at an equal value for each classifier. This
means each classifier contributes equally to the final classification.

During the backward pass, α is used to update the weights of the model.
This is done for each classifier individually, where each classifier’s loss only
impacts the layers leading up to that classifier. As such, the loss of classifier 1
is backpropagated through the initial convolutional layer, blocks 1 and 2, and
classifier 1, updating their weights. The loss of classifier 2 affects the initial
convolutional layer, blocks 1 through 3, and classifier 2. Finally, the loss of
classifier 3 is used to update the weights of the initial convolutional layer, blocks
1 through 4, and classifier 3, which is the same path of backpropagation as in
the original network.

The additional classifiers are nothing more than fully connected layers connect-
ing output features to class predictions. As such, no large amount of additional
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Table 3.1: Number of trainable model parameters of all model variants on the
CIFAR10 dataset (10 output classes)

Model Parameters
ResNet34 21289802
MHResNet34 21294962
HBPResNet34 21294965
ThawResNet34 21294965
DenseNet121 6964106
MHDenseNet121 6986290
HBPDenseNet121 6986293
ThawDenseNet121 6986293

parameters is needed, as shown in table 3.1.

3.2.4 HBP Variants

Using the MH model variants with full HBP, with both backpropagation and α
updates, produces the HBP model variants. These model variants are identical
to the MH variants at initialization. During training, however, the α values are
made adaptable, resulting in a model that can learn to use the best parts of
the ensemble most effectively. In other words, using the description provided
in Section 3.1.1, this allows the best performing classifier to have the biggest
impact on shared model weights. Contrary to using HBP in an ensemble without
weight sharing, the discrepancy between classifiers will not become an issue in
the same manner, as each classifier benefits from the others’ learning.

The effect of HBP to train all model weights simultaneously only works in one
direction. If classifier 3 performs best, all blocks will learn from this, regardless
of the performance of classifiers 1 and 2. However, if classifier 1 or 2 perform
best, and α for classifier 3 drops very low, convolutional block 4 will be excluded
from learning. To negate this effect a hyper-parameter s was introduced. As
explained in section 3.1.1, this values determines both lower and upper bound
of the network. Due to a lower bound for α, no classifier will ever be fully
disconnected from learning, along with the attached convolutional blocks.

3.2.5 Thawing HBP Variants

During development, a possible downside of adapting α throughout the entire
training process was exposed. If at any point during training a single classifier
would outperform the others, for that classifier α would go up dramatically, while
α would diminish to the lower bound for all other classifiers. If this happened too
early in training, the resulting behaviour would be a complete focus of the model
on a single classifier. This problem was somewhat solved with the introduction
of the s parameter. However, a different solution was also implemented. In the
Thawing model variants, the lower bound s is not defined by a single value, but
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Figure 3.1: Abstract model structure for all models with multiple classifiers (MH-
variants, HBP-variants, Thaw-variants). Data flow represents loss by individual
classifiers, which is used to update separate parts of the network.
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Figure 3.2: Abstract model structure for all models with multiple classifiers (MH-
variants, HBP-variants, Thaw-variants). Data flow represents shows combined
final output, used to determine accuracy of the model.
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rather scaled over time according to Equation 3.4

s = θ × γt (3.4)

Equation 3.4 introduces 2 additional hyper-parameters, namely base value
θ and discount factor γ. Additionally, t represents the epoch. Assuming θ > 1
and 0 < γ < 1 produces a thawing effect. At t = 0, s will be larger than 1,
which negates any attempts to update the models α, as described in Section
3.1.1. The discount factor will lower s over time, allowing α to be updated after
a set amount of time. In effect, the model gradually shifts from a MH variant to
a HBP variant. To make sure the same issues do not arise as described for HBP
variants, and to ensure the behaviour resembles HBP variants after thawing, the
s is itself lower bound to a predetermined value identical to HBP variants.

3.3 Data

To test the effectiveness of each of these model variants, two classification datasets
were used, each with their own purpose. CIFAR10 [Krizhevsky, 2009] provides an
opportunity to train from scratch with a reasonable timeframe, since the dataset
is simplistic, with a limited number of output classes and large inter-class differ-
ences. In contrast the Papilionidae dataset [Naturalis Biodiversity Center, 2021]
provided by Naturalis is significantly more complex, with a larger amount of
classes and very subtle inter-class differences. This allows for the use of transfer
learning for fine-grained classification, effectively testing the models on two
comparable, but distinct, tasks.

3.3.1 CIFAR10

The CIFAR10 dataset contains 60000 images, spread over 10 classes. The class
spread is even, with 6000 images per class. The dataset is initially split up into
50000 train images and 10000 test images. The 10 classes are made up for 4
distinct vehicle types (airplane, car, ship, truck) and 6 distinct animal types
(bird, cat, deer, dog, frog, horse). The dataset creators claim no overlap between
classes, specifically for classes that could be ambiguous such as car and truck.
The images are 32 by 32 pixels and in color.

3.3.2 Naturalis Papilionidae

The Papilionidae dataset provided by Naturalis contains 8243 images of butterflies.
These images are labeled with many different attributes such as origin, date of
collection, and who identified them. The most important labels, however, are
genus, species and subspecies. Using these labels as class labels, the dataset can
be used for increasingly difficult fine-grained classification, with 11, 79 and 112
classes, respectively. For this work, the subspecies label, with 112 classes, is
used. The color images are of differing size and range from 400 to 800 pixels in
either dimension. The dataset contains a csv file for all relevant labeling data.
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Figure 3.3: Two examples from the Papilionidae dataset. The left image is of
the class Papilionidae-Papilio-demodocus-demodocus. The image on the right is
of the class Papilionidae-Papilio-lormieri

However, there are more entries than images provided. As such, the csv file
needs to be filtered to exclude all entries without a corresponding image.
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Chapter 4

Experimental Setup

Using the models and data described in Chapter 3, the research questions from
Section 1.1 will be answered using several experiments. To allow for reproduction
of results, all steps of preprocessing, data augmentation, and hyper parameter
optimization will be described in this chapter.

4.1 Preprocessing

In order to prepare the data for optimal use in a convolutional neural network
several simple steps are taken. First, the data is resized to 224 by 224 pixels,
which is considered optimal input size [He et al., 2016, Huang et al., 2017b]f for
ResNets and DenseNets. Second, the image RGB channels are rescaled to a range
of 0 to 1, instead of 0 to 255. Third, the images are normalized, meaning that,
for each color channel, the mean is subtracted before dividing by the standard
deviation. Third, the labels are produced. For CIFAR10, a dataset readily
available in the PyTorch framework [Paszke et al., 2019], the labels are ready
made integer values from 0 to 9. For the Papilionidae dataset, the labels are
taken from the class infra species entry of the csv file. These are then encoded
from string values to integers ranging from 0 to 111.

4.1.1 Data Augmentation

The application of data augmentation to produce a more generalizable model
is standard practice. The augmentation is readily available in the PyTorch
framework [Paszke et al., 2019], allowing for quick implementation. The aug-
mentations used are: horizontal flip with a random chance of 0.5, rotation with a
range of -20 to 20 degrees, a color jitter transformation with ranges for brightness,
contrast, saturation, and hue all set to [0.8, 1.2] of current values, and an affine
transformation with shear in the x-axis with a range of -10 to 10 degrees in the
RGB channels.

These augmentations are applied continuously. Whenever a batch is selected
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for training, all augmentations are applied with their corresponding ranges. This
means that it is statistically highly unlikely that the same variation of the same
image is seen twice.

4.2 Hyper Parameter Optimization

The models require hyperparameter optimization on multiple aspects. Some
values have been copied from the original implementation of the networks, such
as loss function, activation function, and optimizer. Others required manual
optimization due to the distinct changes in model structure. Early in development,
there was a strong indication that the variant networks worked better with a
learning rate that was significantly higher than that of networks with a single
classifier. Due to this, the learning rates are set to 0.01 for DenseNet121 and
ResNet34, and 0.1 for all variant networks. It makes intuitive sense to use these
higher learning rates, as the use of α in HBP means all losses used to calculate
weight updates are multiplied by a factor smaller than 1.

Of further interest are the hyperparameters introduces specifically by the
HBP algorithm, both in its pure form and the thawing variant. First, the value
s is introduced as a lower bound for α. Tables 4.1 and 4.2 show the results for
different s-values for HBPResNet34 and DenseNet121, respectively. Here, we
see 2 different patterns. For HBPResNet34 there is a small upward trend in
mean accuracy with an increasing value s, with the best performance found at
s = 1.0. In contrast, for DenseNet34, a value of s = 0.50 performs best. What
this shows is an indication that for ResNet34 variants, the MH model simply
performs better than the HBP model, since s = 1.0 for HBPResNet34 makes the
model identical in behaviour to MHResNet34, due to the outcome of Equation
3.3 for the upper bound and s

N , both being 0.33. With the value of 0.5 for
s being a suitable choice for HBPDenseNet121 and the desire to experiment
with HBPResNet34 as a distinct model from MHResNet34 throughout other
experiments, the s value for all HBP and Thaw models has been set to 0.5.

Table 4.1: Hyper parameter optimization on s: Results for HBPResNet34 on
the CIFAR10 dataset, using 10% (4500) training images.

s-value Fold 1 Fold 2 Fold 3 Fold 4 Mean
0.00 72.3 72.0 73.9 73.5 72.9
0.25 74.2 73.6 73.6 74.0 73.9
0.50 75.9 75.5 75.0 72.5 74.7
0.75 76.4 75.0 76.0 76.4 76.0
1.00 76.0 75.7 76.5 76.7 76.2

Second, the combination of θ and γ used in thawing variants is explored.
Table 4.3 shows what values used for θ and γ lead to which thawing behavior.
The results for each of these combinations are shown in Table 4.4 and 4.5, for
ThawResnet34 and ThawDenseNet121, respectively. For ThawResNet34, the
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Table 4.2: Hyper parameter optimization on s: Results for HBPDenseNet121 on
the CIFAR10 dataset, using 10% (4500) training images.

s-value Fold 1 Fold 2 Fold 3 Fold 4 Mean
0.00 73.9 72.0 73.4 73.9 73.3
0.25 75.5 74.4 75.2 75.4 75.1
0.50 76.5 74.4 74.9 76.4 75.5
0.75 75.7 74.7 75.8 75.7 75.5
1.0 75.0 74.3 74.8 75.3 74.9

parameters leading to the shortest frozen periods ((θ = 1.5, γ = 0.95), (θ = 3.0,
γ = 0.95)) have sub-optimal results. The other behaviours, with longer periods of
frozen α, have marginally better performance. This leads to a similar conclusion
as for the s parameter, where a longer frozen time has better performance,
because it more closely resembles MHResNet34. For ThawDenseNet121, the
shorter freezing times marginally outperform longer freezing times, with top
performance for (θ = 3.0, γ = 0.95). Similar to the argumentation used for
s, these values are used for both ThawResNet34 and ThawDenseNet121, to
allow a clear distinction between ThawResNet34 and MHResNet34 in further
experiments.

Table 4.3: Thawing behaviour in epochs depending on θ and γ values. Column
< 1.0 notes when α becomes changeable as it drops below the 1.0 threshold.
Column < 0.5 notes when the thawing process is complete, as s is still lower
bound to 0.5 as with regular HBP models.

θ γ < 1.0 < 0.5
1.5 0.98 21 55
1.5 0.95 8 22
3.0 0.95 22 35
10.0 0.95 45 59
150 0.90 45 55

Table 4.4: Hyper parameter optimization on θ/γ: Results for ThawResNet34
on the CIFAR10 dataset, using 10% (4500) training images. Acc shows final
validation accuracy, t shows epoch of convergence.

Parameters Fold 1 Fold 2 Fold 3 Fold 4 Mean
θ γ Acc t Acc t Acc t Acc t Acc t

1.5 0.98 75.1 88 75.1 86 75.6 123 74.0 80 75.0 94.25
1.5 0.95 76.2 127 74.0 75 74.0 83 74.6 83 74.7 92
3.0 0.95 73.5 69 73.8 135 76.4 97 74.8 102 74.6 100.75
10.0 0.95 76.0 94 75.0 73 76.0 113 74.7 72 75.4 88
150.0 0.90 76.9 108 75.2 75 74.9 88 76.6 116 75.9 96.75
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Table 4.5: Hyper parameter optimization on θ/γ: Results for ThawDenseNet121
on the CIFAR10 dataset, using 10% (4500) training images. Acc shows final
validation accuracy, t shows epoch of convergence.

Parameters Fold 1 Fold 2 Fold 3 Fold 4 Mean
θ γ Acc t Acc t Acc t Acc t Acc t

1.5 0.98 75.9 119 73.8 83 75.6 80 73.9 69 74.8 87.75
1.5 0.95 75.6 100 75.2 102 76.0 92 75.3 91 75.5 96.25
3.0 0.95 75.2 95 75.5 121 75.8 87 77.7 105 76.1 102
10.0 0.95 75.5 71 77.1 150 73.3 127 75.8 106 75.4 113.5
150.0 0.90 75.9 77 73.5 106 75.3 82 75.9 83 75.2 87

For all these hyper parameter sweeps, a shortened version of k-folds cross-
validation is applied. For each fold, a different validation set is selected, consisting
of 10% of the training data. After selecting a validation set, 10% is taken from
the remaining data and used for training. This is then repeated for 4 folds. This
reduced cross-validation is used to give a broader sense of optimal parameters
without significantly high computing costs in the hyper parameter optimization
stage.

4.3 Experimental settings

The effectiveness of the models will be evaluated using three distinct experimental
settings. These are:

• Trained from scratch on the CIFAR10 dataset.

• Trained from scratch on the Papilionidae dataset.

• Fine-tuned on the Papilionidae dataset, using pretrained weights from
ImageNet.

For all these settings, the same procedure is used. K-folds cross-validation is
used with k = 5. First, the data is shuffled after which 10% of the data is taken
as validation. Of the remaining 90% of data, a percentage of training images is
used. For each setting and each fold, the amount of data used to train is 5%,
10%, 20%, 50% and 100%, to allow for comparison of methods with differing
amounts of data.

In total, each of the three experimental setting requires 5 different segments
of data, with 5 folds per data split, for a total of 75 training/validation ex-
periments per model. Applying these to all 8 models produces a total of 600
training/validation experiments.

4.3.1 Early Stopping

In order to counteract stagnation in training the model, two measures are
implemented. First is a learning rate schedule. This schedule divides the
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learning rate with a factor 10 if validation accuracy has not improved for 5
epochs. This allows the model to search broadly at first, with a high learning
rate, and eventually search more gradually to reach an optimum. In addition, to
avoid overtraining, early stopping is used to cut off training when the validation
accuracy has not improved for 20 epochs.

4.4 Specifications

4.4.1 Hardware

The hardware used to run the experiments and produce results is provided by
the HPC center of the university of Groningen. The cluster, named Peregrine,
provides high performance CPU and GPU nodes, which are very effective for
large parallelizable operations, such as neural network optimization. The GPU
nodes consist of a virtualized Intel Xeon Gold 6150 CPU and a NVIDIA V100
GPU. Using this hardware, the experiments ran for approximately 5 days per
model per experimental setting, for all folds and data splits.

4.4.2 Software

The models and all data processing is implemented using Python 3.6 and PyTorch
1.6 [Paszke et al., 2019]. Code is stored on github and available on request.
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Chapter 5

Results

In this chapter the results of the proposed experiments are presented. These
results are analyzed in a variety of ways, in order to provide the insights needed
to answer the research questions. To reiterate, the research questions of this
work are:

1. Does a model with multiple heads perform better than the base model?

2. Do the additional heads increase performance when active during inference,
in contrast to only using additional heads during training?

3. Does the hedge backpropagation (HBP) algorithm successfully optimize
weights between output layers of a model with multiple heads?

4. Does freezing the weights between output layers of the model at the start
of training influence the performance of the model? Does this significantly
differ from the MH or HBP models?

5. Do the behaviours of these models change when using differing amounts of
data?

The raw data of all experimental settings is shown in Tables 7.1 to 7.15.
These tables show the validation accuracy at time of convergence with early
stopping. Since the folds for each experiment are non-randomly split for all
models and settings, the individual fold results, as well as the mean of the 5
folds, can be compared for further analysis.
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Table 5.1: Results on CIFAR10 for all models, with different numbers of training
samples. Shown is the mean and standard deviation for each test scenario. The
best performing model variant per number of samples is shown in bold.

Model 5% 10% 20% 50% 100%
ResNet34 62.1 1.013 72.2 0.888 79.1 0.542 87.2 0.242 91.3 0.233

MHResNet34 66.5 1.323 75.9 0.492 82.1 0.816 89.2 0.531 92.3 0.264
HBPResNet34 64.8 1.825 75.3 1.070 82.6 0.508 88.8 0.603 92.7 0.331
ThawResNet34 66.3 2.307 75.9 1.126 82.1 0.294 89.0 0.777 92.7 0.219

Densenet121 63.7 1.132 72.3 1.689 79.8 0.723 87.6 0.534 91.5 0.185
MHDenseNet121 66.1 1.338 75.2 1.216 83.0 0.306 89.1 0.456 92.8 0.141
HBPDenseNet121 64.6 1.588 74.8 1.538 82.8 0.540 88.8 0.791 93.0 0.141
ThawDenseNet121 64.1 1.579 75.6 0.801 82.8 0.496 89.2 0.500 92.8 0.417

Table 5.2: Results on Papilionidae for all models without transfer learning, with
different numbers of training samples. Shown is the mean and standard deviation
for each test scenario. The best performing model variant per number of samples
is shown in bold.

Model 5% 10% 20% 50% 100%
ResNet34 81.2 2.039 85.1 1.487 88.6 1.529 90.9 1.346 92.5 0.508

MHResNet34 76.8 5.200 82.3 4.960 88.4 1.245 91.0 1.385 92.5 0.891
HBPResNet34 80.1 1.713 84.6 1.240 88.0 1.422 90.8 1.391 92.3 0.774
ThawResNet34 81.0 2.715 84.4 2.066 89.0 0.865 90.6 1.357 92.6 0.723

Densenet121 81.8 1.608 84.9 1.662 89.0 1.260 91.0 0.980 93.2 0.540
MHDenseNet121 81.5 1.066 84.3 2.397 89.0 1.188 90.8 1.261 92.6 1.019
HBPDenseNet121 82.1 0.989 85.7 1.488 88.8 1.340 91.6 0.974 92.8 0.776
ThawDenseNet121 82.7 1.109 84.5 1.392 87.6 1.198 90.7 1.366 93.0 0.668

Table 5.3: Results on Papilionidae for all models with transfer learning, with
different numbers of training samples. Shown is the mean and standard deviation
for each test scenario. The best performing model variant per number of samples
is shown in bold.

Model 5% 10% 20% 50% 100%
ResNet34 86.3 1.108 88.7 1.192 90.4 0.910 92.5 0.849 94.3 0.584

MHResNet34 82.3 2.098 83.6 2.199 87.8 2.294 91.3 1.078 93.5 0.686
HBPResNet34 80.7 1.578 82.8 2.701 87.6 1.216 90.5 1.371 92.7 1.040
ThawResNet34 83.8 1.579 83.4 2.345 88.8 1.345 91.6 0.988 93.7 0.711

Densenet121 86.9 1.083 89.0 1.111 90.3 1.240 93.0 0.674 94.5 0.540
MHDenseNet121 86.2 1.243 87.8 1.347 90.3 1.391 92.8 0.582 94.7 0.462
HBPDenseNet121 86.0 0.999 87.5 1.212 90.3 1.246 92.2 1.060 94.1 0.449
ThawDenseNet121 85.6 0.806 88.3 1.508 90.3 1.185 92.7 0.812 94.6 0.341
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5.1 Does a model with multiple heads perform
better than the base model?

The comparison of base models, i.e. ResNet34 and DenseNet121, and the
MH variants, i.e. MHResNet34 and MHDenseNet121, is done by performing
a pairwise t-test using the full experimental results as shown in Tables 7.1 to
7.15. The results of these t-tests are shown in Tables 5.4 and 5.5. These tests
are performed on the full range of experiments and on each experimental setting
individually.

The t-tests show that both MHResNet34 and MHDenseNet121 outperform
their respective base variants with an increase of roughly 2.3% in accuracy.
Tables 5.4 and 5.5 also show that these increase are not universal. For the
experiments performed on the Papilionidae dataset, both with and without
transfer learning, the difference in performance is either insignificant, or in favor
of the base variant. These statistical findings can be verified from Tables 5.1,
5.2, and 5.3, where MH variants score higher than base variants in 10 out of 10
scenarios with CIFAR10, whereas the MH variants perform worse or equal in
other settings.

This shows that the addition of multiple heads to the network base variants
can increase performance, but only in specific circumstances.

Table 5.4: Comparison of mean performance across all data splits and folds
between ResNet34 and MHResNet34. A pairwise t-test is used to determine a
significant difference in means, where difference is defined as mean of MHResnet34
- mean of ResNet34. A positive difference means MHResNet34 outperforms
Resnet34, and vice versa. The resulting p-value relates to the null hypothesis
that ResNet34 and MHResNet34 are not significantly different.

Experiment p-value Diff. in means
All 0.278 -0.448

CIFAR10 <0.0001 2.316
Papilionidae, untrained 0.074 -1.436
Papilionidae, pretrained <0.0001 -2.744

5.1.1 Why does the difference in performance on CIFAR10
not translate to Papilionidae, both with and without
transfer learning?

From Tables 5.4 and 5.5, it is clear that there is a noticeable increase in perfor-
mance between MH variants and base networks specifically for experiments on
CIFAR10. However, this does not translate to experiments on the Papilionidae
dataset, both with and without transfer learning. To identify possible causes
for this discrepency, Figures 5.1 through 5.6 show a comparison of MH variants
and base networks. Accuracy, training loss, and validation loss are plotted over
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Table 5.5: Comparison of mean performance across all data splits and folds
between DenseNet121 and MHDenseNet121. A pairwise t-test is used to de-
termine a significant difference in means, where difference is defined as mean
of MHDenseNet121 - mean of DenseNet121. A positive difference means MH-
DenseNet121 outperforms DenseNet121, and vice versa. The resulting p-value
relates to the null hypothesis that DenseNet121 and MHDenseNet121 are not
significantly different.

Experiment p-value Diff. in means
All 0.0155 0.00524

CIFAR10 <0.0001 2.32
Papilionidae, untrained 0.301 -0.332
Papilionidae, pretrained 0.0048 -0.412

the entire training sequence. These figures show that on CIFAR10, Figures 5.1
and 5.2, the training loss for both models approaches 0 as the number of epochs
increases. However, it does so more gradually for the MH variants. This allows
the MH variants to update weights more gradually, whereas the base models
are cut off from training sooner due to early stopping to prevent overfitting.
In other words, a claim could be made that the additional classifiers provide a
regularizing effect that allows the model to generalize better, resulting in better
performance.

Figure 5.1: Validation accuracy, training loss, and validation loss of ResNet34
and MHResNet34 on CIFAR10.
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Figure 5.2: Validation accuracy, training loss, and validation loss of DenseNet121
and MHDenseNet121 on CIFAR10.

Figure 5.3: Validation accuracy, training loss, and validation loss of ResNet34
and MHResNet34 on Papilionidae, untrained.
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Figure 5.4: Validation accuracy, training loss, and validation loss of DenseNet121
and MHDenseNet121 on Papilionidae, untrained.

Figure 5.5: Validation accuracy, training loss, and validation loss of ResNet34
and MHResNet34 on Papilionidae, pretrained.
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Figure 5.6: Validation accuracy, training loss, and validation loss of DenseNet121
and MHDenseNet121 on Papilionidae, pretrained.

5.2 Do the additional heads increase performance
when active during inference?

Assuming the increase in performance as fact, which shows from the experiments
on CIFAR10 in research question 1, the follow-up question arises of whether
this increase in performance is due to support from the additional classifiers
during training or whether the additional classifiers increase performance when
used during inference. To explore this, a comparison can be made between the
output of classifier 3, and the combined weighted output of the model as a whole.
Figures 5.7 through 5.12 show the curve of the validation accuracy throughout
training for a single experimental run for each of the three experimental settings.

For Figures 5.7 and 5.8, the combined output of the model is higher than the
output of classifier 3 for large portions of the training process, albeit by a small
amount. This effect is more distinct for MHResNet34 than for MHDenseNet121.
This does not hold for Papilionidae, both with and without transfer learning, as
shown in Figures 5.9 through 5.12.

This minor, yet noticeable, increase in performance of the combination model
over classifier 3 means that keeping classifiers 1 and 2 intact during inference
and combining the outputs of all classifiers does contribute to a higher accuracy
for the total model. In deep supervision, the auxiliary heads (e.g. classifiers 1
and 2), are disabled on inference and so these results show that this decision is
not universally optimal.

The pattern does not persist in experiments on Papilionidae. This is explain-
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Figure 5.7: Results for MHResNet34 for individual classifiers on 20% of training
data for CIFAR10. Shown is the validation accuracy over all training epochs for
each individual classifier and the combined weighted output.

able, due to the fact that for these experiments, the base models performed
better than any MH variant. As such, it is understandable that a MH variant is
optimal when approaching the base model as closely as possible, which means
that the final classifier will be trained fully, neglecting classifiers 1 and 2.
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Figure 5.8: Results for MHDenseNet121 for individual classifiers on 20% of
training data for CIFAR10. Shown is the validation accuracy over all training
epochs for each individual classifier and the combined weighted output.

Figure 5.9: Results for MHResNet34 for individual classifiers on 20% of training
data for Papilionidae, untrained. Shown is the validation accuracy over all
training epochs for each individual classifier and the combined weighted output.
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Figure 5.10: Results for MHDenseNet121 for individual classifiers on 20% of
training data for Papilionidae, untrained. Shown is the validation accuracy
over all training epochs for each individual classifier and the combined weighted
output.

Figure 5.11: Results for MHResNet34 for individual classifiers on 20% of training
data for Papilionidae, pretrained. Shown is the validation accuracy over all
training epochs for each individual classifier and the combined weighted output.
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Figure 5.12: Results for MHDenseNet121 for individual classifiers on 20% of
training data for Papilionidae, pretrained. Shown is the validation accuracy
over all training epochs for each individual classifier and the combined weighted
output.

5.3 Does the hedge backpropagation (HBP) al-
gorithm successfully optimize weights between
output layers of a model with multiple heads?

To determine the effectiveness of the HBP algorithm in optimizing the use of
multiple classifiers, the performance of the HBP variants in relation to the MH
variants is analyzed. This is done by comparing performance in each individual
experiment as well as the total of all experiments. Comparison is done using a
pairwise t-test, with the same argumentation as in Section 5.1.

An example of HBP behavior is shown in Figures 5.13 through 5.18. In these
figures, the α and validation accuracies of each individual classifier, as well as
the combined model, are plotted over time.

Neither numerical nor graphical results show a significant improvement from
the use of HBP, compared to the MH variants. From these results it follows
that HBP does not contribute positively to the ensemble structure introduced
with the MH variants. Additionally, the Figures show the α values reach the
boundary values without fail. In each case, α3, which corresponds with classifier
3, reaches the maximum, while the others reach the minimum. This can mean
one of two things. First, the third classifier is favored in each case, because
the encoder structure of the network lends itself most optimally for the third
classifier. In other words, the third classifier has the best performance in each
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case and thus the highest α value. This effect can be further emphasized by the
iterative training scheme. In contrast, the hedge algorithm is initially used for
online learning, using each case once. Due to the iterative nature of the training
scheme, a favored classifier will be pushed to the maximum boundary value by
continually performing best. A second explanation for the extremes in α values
is the interaction between model weight updates and α updates. A classifier
favored at the start of training will train quicker, reaching a better performance
earlier. As a consequence of this, the α values will be pushed more in favor of
this better performing classifier, allowing it to train more effectively, repeating
the process.

Table 5.6: Comparison of mean performance across all data splits and folds
between MHResNet34 and HBPResNet34. A pairwise t-test is used to deter-
mine a significant difference in means, where difference is defined as mean of
HBPResnet34 - mean of MHResNet34. A positive difference means HBPRes-
Net34 outperforms MHResnet34, and vice versa. The resulting p-value relates
to the null hypothesis that MHResNet34 and HBPResNet34 are not significantly
different.

Experiment p-value Diff. in means
All 0.772 -0.085

CIFAR10 0.174 -0.392
Papilionidae, untrained 0.188 0.952
Papilionidae, pretrained 0.049 -0.816

Table 5.7: Comparison of mean performance across all data splits and folds
between MHDenseNet121 and HBPDenseNet121. A pairwise t-test is used to
determine a significant difference in means, where difference is defined as mean
of HBPDenseNet121 - mean of MHDenseNet121. A positive difference means
HBPDenseNet121 outperforms MHDenseNet121, and vice versa. The resulting p-
value relates to the null hypothesis that MHDenseNet121 and HBPDenseNet121
are not significantly different.

Experiment p-value Diff. in means
All 0.596 -0.081

CIFAR10 0.115 -0.488
Papilionidae, untrained 0.071 0.560

Papiolionidae, pretrianed 0.011 -0.316
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Figure 5.13: Results for HBPResNet34 for individual classifiers on 20% of training
data for CIFAR10. Shown is the validation accuracy over all training epochs for
each individual classifier and the combined weighted output.

Figure 5.14: Results for HBPDenseNet121 for individual classifiers on 20% of
training data for CIFAR10. Shown is the validation accuracy over all training
epochs for each individual classifier and the combined weighted output.
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Figure 5.15: Results for HBPResNet34 for individual classifiers on 20% of
training data for Papilionidae, untrained. Shown is the validation accuracy
over all training epochs for each individual classifier and the combined weighted
output.

Figure 5.16: Results for HBPDenseNet121 for individual classifiers on 20% of
training data for Papilionidae, untrained. Shown is the validation accuracy
over all training epochs for each individual classifier and the combined weighted
output.
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Figure 5.17: Results for HBPResNet34 for individual classifiers on 20% of training
data for Papilionidae, pretrained. Shown is the validation accuracy over all
training epochs for each individual classifier and the combined weighted output.

Figure 5.18: Results for HBPDenseNet121 for individual classifiers on 20% of
training data for Papilionidae, pretrained. Shown is the validation accuracy
over all training epochs for each individual classifier and the combined weighted
output.
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5.4 Does freezing the weights assigned to clas-
sifiers in the model at the start of training
influence the performance of the model?

To determine whether postponing the use of HBP to later in the training process
by the use of a thawing approach to α, the comparison between the MH variants
and the Thaw variants is analyzed using the paired t-test. These comparisons
are similar in nature to previous comparisons, using the results of individual
experiments, as well as the combination of these experiments. The resulting
p-values are reported in Tables 5.8 and 5.9. Additionally, the behavior of thaw-
variants is shown in Figures 5.19 through 5.24. In these figures, α and validation
accuracy are plotted throughout the training process. The α values are frozen
until the 22nd epoch, as explained by table 4.3.

The addition of a thawing factor does not show improvements compared
with either MH or HBP variants. Figures 5.19 through 5.24 show that while the
approach of boundary values is delayed, the boundaries are still met consistently,
meaning that the addition of a thawing period does not solve the stability issues
of HBP.

Table 5.8: Comparison of mean performance across all data splits and folds
between MHResNet34 and HBPResNet34, and ThawResNet34. A pairwise t-test
is used to determine a significant difference in means, where difference is defined
as mean of ThawResNet34 - mean of MHResNet34 or HBPResNet34. A positive
difference means ThawResNet34 outperforms MHResnet34 or HBPResNet34, and
vice versa. The resulting p-value relates to the null hypothesis that MHResNet34
or HBPResNet34 are not significantly different to ThawResNet34.

MH HBP
Experiment p-value Diff. in means p-value Diff. in means

All 0.0178 0.61 <0.0001 4.11
CIFAR10 0.923 -0.024 0.274 0.368

Papilionidae, untrained 0.068 1.288 0.2116 0.336
Papilionidae, pretrained 0.012 0.580 0.0014 1.396
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Figure 5.19: Results for ThawResNet34 for individual classifiers on 20% of
training data for CIFAR10. Shown is the validation accuracy over all training
epochs for each individual classifier and the combined weighted output.

Figure 5.20: Results for ThawDenseNet121 for individual classifiers on 20% of
training data for CIFAR10. Shown is the validation accuracy over all training
epochs for each individual classifier and the combined weighted output.
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Figure 5.21: Results for ThawResNet34 for individual classifiers on 20% of
training data for Papilionidae, untrained. Shown is the validation accuracy
over all training epochs for each individual classifier and the combined weighted
output.

Figure 5.22: Results for ThawDenseNet121 for individual classifiers on 20%
of training data for Papilionidae, untrained. Shown is the validation accuracy
over all training epochs for each individual classifier and the combined weighted
output.
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Figure 5.23: Results for ThawResNet34 for individual classifiers on 20% of
training data for Papilionidae, pretrained. Shown is the validation accuracy
over all training epochs for each individual classifier and the combined weighted
output.

Figure 5.24: Results for ThawDenseNet121 for individual classifiers on 20% of
training data for Papilionidae, pretrained. Shown is the validation accuracy
over all training epochs for each individual classifier and the combined weighted
output.
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Table 5.9: Comparison of mean performance across all data splits and folds
between MHDenseNet121 and HBPDenseNet121, and ThawDenseNet121. A
pairwise t-test is used to determine a significant difference in means, where
difference is defined as mean of ThawDenseNet121 - mean of MHDenseNet121 or
HBPDenseNet121. A positive difference means ThawDenseNet121 outperforms
MHDenseNet121 or HBPDenseNet121, and vice versa. The resulting p-value
relates to the null hypothesis that MHDenseNet121 or HBPDenseNet121 are not
significantly different to ThawDenseNet121.

MH Thaw
Experiment p-value Diff. in means p-value Diff. in means

All 0.515 -0.104 0.877 -0.023
CIFAR10 0.282 -0.384 0.756 0.104

Papilionidae, untrained 0.763 0.092 0.0617 0.468
Papilionidae, pretrained 0.874 -0.020 0.0392 0.296

5.5 Do the behaviours of these models change
when using differing amounts of data?

Figures 5.25 through 5.27 show the performance of each model with increasing
data for each of the experimental settings. From these figures, it is clear that the
relative performance of each model does not change significantly when increasing
the amount of training data.

Figure 5.25: Mean results for all models on all folds for CIFAR10, plotted over
the amount of data used.
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Figure 5.26: Mean results for all models on all folds for Papilionidae, untrained,
plotted over the amount of data used.

Figure 5.27: Mean results for all models on all folds for Papilionidae, pretrained,
plotted over the amount of data used.
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Chapter 6

Discussion

The results, as shown in Chapter 5, show several patterns. However, these
patterns seem to be experiment specific, with the analysis on CIFAR10 differing
significantly from experiments on Papilionidae, both with and without transfer
learning. Therefore, when applicable, the research questions will be answered
with emphasis on individual experiments, rather than with more generalizable
statements. The results from Chapter 5 are summarized below, before being
further discussed.

6.1 Research Questions

Does a model with multiple heads perform better than the base
model?

From Tables 5.4 and 5.5, it shows that MH variants outperform base variants
only on CIFAR10. The follow-up question of why this difference between ex-
periments occurs leads to Figures 5.1 to 5.6, which shows the effects of the MH
variant on regularizing the training process, providing a more generalizable model.
The MH variants are able to optimize better due to a more gradual decrease
in the loss and validation accuracy, preventing the early stopping mechanism
from intervening too aggresively. These effects of more gradual learning and
subsequent performance increase for MH variants do not occur in experiments
on the Papilionidae data, both with and without transfer learning. In conclu-
sion, the use of MH variants may increase performance on classification tasks
using CNNs compared to a base version. However, this gain varies between tasks.

Do the additional heads increase performance when active during in-
ference, in contrast to only using additional heads during training?

From Figures 5.7 and 5.8, it shows that the combined weighted output of the
MH model variants slightly outperforms the third, final classifier. In established
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deep supervision techniques, the early classifiers are removed at inference time,
which is similar to looking at the performance of classifier 3 in the MH variant.
Because the combined output outperforms the third classifier in the CIFAR10
experimental setting, it shows that leaving the additional classifiers active during
inference provides a benefit. This effect was not observed for other experimental
settings, as for these the MH variant did not outperform the base variant. There
was no difference in performance between the third classifier and the combined
output in the experiments with the Papilionidae dataset, both with and without
transfer learning.

Does the hedge backpropagation (HBP) algorithm successfully opti-
mize weights between output layers of a model with multiple heads?

Tables 5.6 and 5.7 show the difference in performance between MH and
HBP variants. From these tables it is clear that the addition of HBP does not
improve the training of the architecture. The differences in performance are
either statistically insignificant, negligibly small, or in favor of the MH variant.
Additionally, Figures 5.13 through 5.18 show the development of α in each of
the experiments. While the development of α throughout training is different
based on the model and the data used, the end result is that the final classifier
reaches the upper bound for α, while all other classifiers reach the lower bound.
This indicates that α is unstable and the HBP algorithm is sub-optimal.

Does freezing the weights assigned to classifiers in the model at the
start of training influence the performance of the model? Does this
significantly differ from the MH or HBP models?

In Tables 5.8 and 5.9, the performance of the Thaw variants is compared to
both MH and HBP variants. Similar to the comparison between MH and HBP
variants, these tables show that any discernible difference in the performance of
these variants is either statistically insignificant or negligibly small. Figures 5.19
through 5.24 show the development of α in Thaw variants for all settings. From
these results it shows that the final performance of the model does not increase
compared to either MH or HBP variants for any of the experimental settings.
The effect of freezing alpha development for 22 epochs seems to have mainly a
delaying effect. The α values for the classifiers do not reach their maximum and
minimum value as quickly and in some scenarios the upper and lower bounds are
not reached at all. However, the curve does not seem to flatten yet, indicating
that the only reason for the bounds not being reached is early stopping, rather
than a stable distribution for α being reached.

Do the behaviours of these models change when using differing amounts
of data?

Shown in Figures 5.25 through 5.27 are the increases in performance per
model when training data is increased. From these figures it shows that the
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relative performance of different model variants does not change considerably
with different amounts of data. In other words, when looking at Figure 5.25,
the base variant consistently performs worse than variants with multiple heads,
regardless of amount of training data used. Similarly, there is no difference in
relative performance between variants in Figures 5.26 and 5.27. This shows no
indication that using additional classifiers in shallow parts of the model allows
the model to adapt to the unavailability of data by focusing on the optimization
of a shallower model.

6.2 Conclusions

This work shows the benefits of the Multiple Heads architecture in some, but
not all, scenarios. The established technique of deep supervision has already
been shown to improve training of certain models, and that is verified in this
work. However, an additional hypothesis arose that in some of the circumstances
where deep supervision is beneficial, keeping the additional classifiers intact
at inference time may increase model performance to some extent. With the
data provided by experiments in this work, no conclusive statements can be
made about general applicability, but specifically for the CIFAR10 setting a
significant benefit has been observed. The fact that this observation is seen in
both ResNet34 and DenseNet121 puts more weight behind it.

Unfortunately, this is where the benefits of this work stagnate. The explo-
ration of a new algorithm to determine weights between heads in the MH model
variant has been unsuccessful. Both HBP and Thaw variants show no benefits on
top off the benefits from the MH variant. Interesting to note is that the variants
using an adaptable α also do not appear to hinder the performance. This is likely
due to setting rigorous upper and lower bounds for α, as all figures show that
the bounds are consistently reached, albeit with a delay in the case of the Thaw
variants. This indicates a highly unstable system. Initially the HBP algorithm
was developed not for convolutional neural networks (CNNs), but for Multi-Layer
Perceptrons (MLPs) of significant depth [Sahoo et al., 2018]. Additionally, this
was done in the interest of online deep learning, assuming each sample would
only be viewed once. While it is unclear whether these circumstances prevent α
from reaching its upper and lower bounds, it is intuitive to see that continuous
iteration over the same data will push α to extremes as soon as a clear best
classifier establishes itself. The adaptation to CNNs was based on the idea that
earlier classifiers would be more dominant early on in training, and only diminish
in value after a period of time when the final classifier learns all the details of
the data. However, the empirical results have shown that the final classifier is
able to outperform other classifiers from the start, resulting in the α for this
classifier increasing, its training picking up more speed, which further feeds into
its superiority over the other classifiers. This becomes a feedback loop where
the final classifier will be dominant throughout all stages of the training process.

If the final classifier outperforms earlier classifiers, why is the MH variant then
able to outperform a base variant? What do the earlier classifiers add to improve
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the architecture? The additional classifiers appear to help in regularizing the
network. This is seen in the convergence behaviour for experiments on CIFAR10,
where the more gradual loss curve for MH variants allows the model to surpass
the base variant without interference from the early stopping mechanism. In
other words, the behaviour indicates that the MH adaptation allows the model
to avoid a local minimum that the base variant is more prone to get stuck in.

Addtionally, while both ResNets and DenseNets have their own structures to
reduce the effects of the vanishing gradient problem, the fact remains that details
from earlier layers will get lost in the final classification. The addition of earlier
classifiers, as in deep supervision, helps by giving the earlier convolutional blocks
more direct feedback on the features being extracted. As the experimental data
shows, for the models tested in this work, and with specific datasets, this helps
to keep the model more generalized at inference time.

Finally, the original work, being developed for online learning, assumed that
a system would gradually see more data and adapt to that by using the deeper
classifiers. As such, this work posited the question of whether the behavioural
comparison between different model variants would change given the amount of
data used. While this is not the same as online learning, the question is relevant
in modern deep learning research due to improvements often being contingent
on very large datasets. Having an architecture that would also function with
lower amounts of data, or outperform the base net by a larger margin compared
to using a bigger dataset, can be very beneficial. However, the empirical results
show that the relative performance of the models does not differ very much even
with an increase in data by a factor of 20 (5% data compared to 100% data).
The performance gap closes somewhat, but that is also attributable to both
base and MH variants achieving accuracies closer to 100. The reduction in error
remains similar for increasing amounts of data.

6.3 Recommendations for Future Research

The steps towards future research encompass two directions. The first is to
determine the validity of the statements in this work by expanding the field of
view. This means the models developed herein would be applied to numerous
datasets in an attempt to detect a pattern in the type of data these models can
help with or not. To broaden the field of view, a direct comparison can also be
made between the models developed in this work and other works using auxiliary
heads for deep supervision. These comparisons can focus on the added value of
the auxiliary heads both at training and inference time. Examples of this include
GoogLeNet [Szegedy et al., 2015] and Inception v3 [Szegedy et al., 2016].

Future work may also focus on expanding the techniques developed in this
work in order to address the issues inherent to HBP. This can be done by, for
example, developing a model that fully trains the weights until convergence
before adapting α. This allows each classifier to find its individual optimal
contribution before determining the amount each classifier contributes to the
weighted output. One step further would be to take this two-step training
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process and develop en n-step training process where weight adaptation and
alpha adaptation are alternated until some convergence criteria is met.

Alternatively, an architecture can be developed that functions as the reverse
of the Thaw variant. In this architecture, the alpha would be adaptable until a
certain epoch, basically prohibiting the alpha from always reaching its boundary
value by bounding it in the time domain. And a combination of thawing and
freezing α could result in a model that has a static α at the start of training,
adapts it after a preset n number of epochs before freezing α again at epoch m,
where m > n. These adaptations, however, attempt to shape α in a certain way,
and the choices and additional hyper parameters that this entails would very
closely start to resemble a MH variant with predetermined, possibly non-equal,
weights. These variants do not solve the inherent issues with HBP in that it
does not converge any other way than by reaching the preset upper and lower
bounds.

Theoretically, the HBP variants should outperform MH variants on the simple
basis that if the optimal weighted combination of classifiers is found, these should
either be better than a statically weighted ensemble or converge on the same
weights as the statically weighted ensemble. This leads to the idea that this can
be achieved if a stable method of updating α can be found. A start may be to
use the log loss instead of the real loss, such that the discrepancy between large
losses at the start and small losses at the end of training are smoothed. This
difference in size of the loss directly affects α calculation and smoothing it may
balance impact of α updates from early and late in the training process. Of
course, further algorithms can be developed which adapt α in an online fashion,
and these heavily influence the comparison between HBP and MH variants if
applied, but developing these is beyond the scope of this work.

Finally, an interesting point for future research is to revisit two of the decisions
made early in development. The first of these is the choice to use small versions
of both ResNet and DenseNet. It is argued that this would limit the space
between classifiers, i.e. by limiting the convolutional layers per block. However,
during development and testing it became clear that the opposite could be
equally interesting. By using a network with large blocks, in a similar block
structure to the architectures in this work, the classifiers are each responsible
for updating a larger portion of the network. This would increase the severity
of the vanishing gradient problem and the disconnect between early layers and
the final classification. As such, in these deeper, harder to train networks, the
impact of additional classifiers might be more noticeable than in the relatively
shallow networks used in this work.

Second, there is the decision to limit the architecture to 3 classifiers. This
decision was partly based on computational limitations and partly on early ob-
servations during development. These early observations pointed in the direction
that classifiers attached to convolutional layers before the point where the first
classifier is currently attached would only hinder performance by confusing the
purpose of these early layers. However, in combination with the previous point,
when using larger convolutional blocks, resulting in larger amounts of encoder
layers, classifiers placed between the currently used classifiers may add additional
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value without confusing early layers. To do this, the block structure as described
in Section 3.2 has to let go to some extent, but it could be interesting to explore
this nonetheless.

In closing: The pessimist might say that the architectures developed here
are of little value, adding minor performance in a limited set of circumstances.
The optimist might say that gain has been found and the search for a new and
better architecture was a success. The realist, however, will say that neither the
good nor the bad is conclusive and there is much room for further work.

50



Bibliography

[Dietterich, 2000] Dietterich, T. G. (2000). Ensemble methods in machine learn-
ing. In Multiple Classifier Systems, pages 1–15, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[Freund and Schapire, 1997] Freund, Y. and Schapire, R. E. (1997). A decision-
theoretic generalization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1):119 – 139.

[Gertych et al., 2019] Gertych, A., Swiderska-Chadaj, Z., Ma, Z., Ing, N.,
Markiewicz, T., Cierniak, S., Salemi, H., Guzman, S., Walts, A., and Knudsen,
B. (2019). Convolutional neural networks can accurately distinguish four
histologic growth patterns of lung adenocarcinoma in digital slides. Scientific
Reports, 9.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778.

[Hochreiter, 1991] Hochreiter, S. (1991). Untersuchungen zu dynamischen neu-
ronalen netzen.

[Huang et al., 2017a] Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and
Weinberger, K. Q. (2017a). Snapshot ensembles: Train 1, get m for free.
ArXiv, abs/1704.00109.

[Huang et al., 2017b] Huang, G., Liu, Z., and Weinberger, K. Q. (2017b).
Densely connected convolutional networks. 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2261–2269.

[Kolen and Kremer, 2001] Kolen, J. F. and Kremer, S. C. (2001). Gradient flow
in recurrent nets: The difficulty of learning longterm dependencies. In A Field
Guide to Dynamical Recurrent Networks, pages 237–243.

[Krizhevsky, 2009] Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. University of Toronto, pages 32–33.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural networks. In Pereira,

51



F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems, volume 25. Curran Associates, Inc.

[Lecun et al., 1998] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324.

[Lee et al., 2015] Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z. (2015).
Deeply-Supervised Nets. In Proceedings of the Eighteenth International Con-
ference on Artificial Intelligence and Statistics, volume 38 of Proceedings of
Machine Learning Research, pages 562–570.

[Li et al., 2019] Li, C., Zia, M. Z., Tran, Q.-H., Yu, X., Hager, G., and Chan-
draker, M. (2019). Deep supervision with intermediate concepts. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 41:1828–1843.

[Marre et al., 2020] Marre, G., De Almeida Braga, C., Ienco, D., Luque, S.,
Holon, F., and Deter, J. (2020). Deep convolutional neural networks to monitor
coralligenous reefs: Operationalizing biodiversity and ecological assessment.
Ecological Informatics, 59:101110.

[Minetto et al., 2019] Minetto, R., Segundo, M. P., and Sarkar, S. (2019). Hydra:
An ensemble of convolutional neural networks for geospatial land classification.
IEEE Transactions on Geoscience and Remote Sensing, 57:6530–6541.

[Naturalis Biodiversity Center, 2021] Naturalis Biodiversity Center (2021). Pa-
pilionidae specimens.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: a probabilistic model
for information storage and organization in the brain. Psychological review,
65 6:386–408.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning Representations by Back-propagating Errors. Nature,
323(6088):533–536.

[Sahoo et al., 2018] Sahoo, D., Pham, Q., Lu, J., and Hoi, S. C. H. (2018). Online
deep learning: Learning deep neural networks on the fly. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI-18, pages 2660–2666. International Joint Conferences on Artificial
Intelligence Organization.

52



[Shen et al., 2020] Shen, Z., Liu, Z., Li, J., Jiang, Y. G., Chen, Y., and Xue,
X. (2020). Object detection from scratch with deep supervision. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 42(2):398–412.

[Sigcha et al., 2021] Sigcha, L. F., Pavón, I., Costa, N., Costa, S., Gago, M.,
Arezes, P., Lopez Navarro, J. M., and Arcas, G. (2021). Automatic resting
tremor assessment in parkinson’s disease using smartwatches and multitask
convolutional neural networks. Sensors, 21:291.

[Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015). Very
deep convolutional networks for large-scale image recognition. In Bengio, Y.
and LeCun, Y., editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings.

[Sun et al., 2019] Sun, D., Yao, A., Zhou, A., and Zhao, H. (2019). Deeply-
supervised knowledge synergy. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6990–6999.

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going
deeper with convolutions. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1–9.

[Szegedy et al., 2016] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and
Wojna, Z. (2016). Rethinking the inception architecture for computer vision.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2818–2826. IEEE
Computer Society.

[Wang et al., 2015] Wang, L., Lee, C.-Y., Tu, Z., and Lazebnik, S. (2015).
Training deeper convolutional networks with deep supervision. ArXiv,
abs/1505.02496.

[Xu et al., 2015] Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical evalu-
ation of rectified activations in convolutional network. CoRR, abs/1505.00853.

[Ye et al., 2017] Ye, C., Yang, Y., Mao, R., Fermüller, C., and Aloimonos, Y.
(2017). What can i do around here? deep functional scene understanding for
cognitive robots. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 4604–4611.

[Yutong and Zhao, 2015] Yutong, S. and Zhao, H. (2015). Stock selection model
based on advanced adaboost algorithm. In 2015 7th International Conference
on Modelling, Identification and Control (ICMIC), pages 1–7.

[Zhou et al., 2002] Zhou, Z.-H., Wu, J., and Tang, W. (2002). Ensembling neural
networks: Many could be better than all. Artificial Intelligence, 137(1):239–
263.

53



Chapter 7

Appendix A - Full Results

Table 7.1: CIFAR10: Validation accuracy for all models on the CIFAR10 dataset
using 5% of training data. Best performing variant per base model is shown in
bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 61.3 60.6 62.5 62.9 63.3 62.1

MHResNet34 68.4 64.6 67.3 65.6 66.8 66.5
HBPResNet34 64.4 61.8 66.8 66.6 64.3 64.8
ThawResNet34 67.7 63.8 65.9 64.0 69.9 66.3

Densenet121 63.0 62.9 63.4 63.1 65.9 63.7
MHDenseNet121 66.7 67.0 67.6 63.8 65.6 66.1
HBPDenseNet121 67.2 65.4 63.5 64.5 62.6 64.6
ThawDenseNet121 62.4 64.2 62.8 66.9 64.3 64.1
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Table 7.2: CIFAR10: Validation accuracy for all models on the CIFAR10 dataset
using 10% of training data. Best performing variant per base model is shown in
bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 72.6 71.8 70.7 72.6 73.3 72.2

MHResNet34 75.5 75.5 75.6 76.3 76.7 75.9
HBPResNet34 75.5 73.9 75.2 77.1 74.6 75.3
ThawResNet34 77.5 74.0 76.3 75.8 75.9 75.9

Densenet121 73.1 69.0 73.5 72.6 73.4 72.3
MHDenseNet121 76.9 74.8 75.5 75.7 73.2 75.2
HBPDenseNet121 74.8 74.3 72.2 76.7 75.9 74.8
ThawDenseNet121 76.5 75.0 76.1 74.4 76.2 75.6

Table 7.3: CIFAR10: Validation accuracy for all models on the CIFAR10 dataset
using 20% of training data. Best performing variant per base model is shown in
bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 79.8 78.2 79.0 79.5 79.1 79.1

MHResNet34 82.1 80.7 82.1 82.5 83.2 82.1
HBPResNet34 83.1 81.9 82.8 83.2 82.2 82.6
ThawResNet34 81.7 82.6 82.2 82.0 82.2 82.1

Densenet121 78.8 79.5 79.4 80.9 80.2 79.8
MHDenseNet121 83.0 82.7 83.2 83.5 82.7 83.0
HBPDenseNet121 83.7 82.4 82.6 83.1 82.2 82.8
ThawDenseNet121 83.1 82.3 82.8 83.6 82.3 82.8

Table 7.4: CIFAR10: Validation accuracy for all models on the CIFAR10 dataset
using 50% of training data. Best performing variant per base model is shown in
bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 87.2 87.6 87.1 86.9 87.4 87.2

MHResNet34 89.6 89.0 89.8 89.4 88.3 89.2
HBPResNet34 88.4 89.2 89.3 87.8 89.3 88.8
ThawResNet34 88.3 88.7 89.6 88.2 90.2 89.0

Densenet121 86.7 87.5 88.2 87.6 88.1 87.6
MHDenseNet121 88.9 89.2 89.8 88.4 89.2 89.1
HBPDenseNet121 89.0 88.0 90.2 88.8 88.1 88.8
ThawDenseNet121 89.4 89.8 89.0 88.3 89.3 89.2
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Table 7.5: CIFAR10: Validation accuracy for all models on the CIFAR10 dataset
using 100% of training data. Best performing variant per base model is shown
in bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 91.4 90.9 91.6 91.2 91.2 91.3

MHResNet34 92.5 92.5 91.8 92.4 92.4 92.3
HBPResNet34 92.6 93.0 93.1 92.5 92.2 92.7
ThawResNet34 92.7 92.7 92.9 92.9 92.3 92.7

Densenet121 91.2 91.6 91.5 91.7 91.7 91.5
MHDenseNet121 92.7 92.8 93.0 92.6 92.9 92.8
HBPDenseNet121 92.9 93.0 93.2 92.8 93.1 93.0
ThawDenseNet121 93.5 92.7 92.9 92.8 92.2 92.8

Table 7.6: Validation accuracy for all models on the Papilionidae dataset using
5% of training data. Best performing variant per base model is shown in bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 83.7 82.2 78.4 82.5 79.2 81.2

MHResNet34 82.1 76.0 69.8 72.9 83.3 76.8
HBPResNet34 81.6 76.9 80.0 81.4 80.8 80.1
ThawResNet34 84.7 78.0 78.2 83.5 80.7 81.0

Densenet121 83.8 80.7 79.4 81.7 83.2 81.8
MHDenseNet121 82.5 82.7 81.7 80.7 79.9 81.5
HBPDenseNet121 82.6 83.5 81.8 81.9 80.5 82.1
ThawDenseNet121 84.1 81.8 82.8 83.6 81.1 82.7

Table 7.7: Validation accuracy for all models on the Papilionidae dataset using
10% of training data. Best performing variant per base model is shown in bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 87.1 84.9 85.6 85.2 82.5 85.1

MHResNet34 86.6 83.5 72.6 84.7 84.1 82.3
HBPResNet34 87.0 83.8 83.5 84.6 84.3 84.6
ThawResNet34 87.0 81.5 82.6 86.1 84.6 84.4

Densenet121 87.8 83.1 85.3 84.7 83.5 84.9
MHDenseNet121 87.7 84.1 80.4 83.6 85.5 84.3
HBPDenseNet121 87.3 84.6 85.7 87.4 83.6 85.7
ThawDenseNet121 86.5 82.4 84.0 85.5 84.3 84.5
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Table 7.8: Validation accuracy for all models on the Papilionidae dataset using
20% of training data. Best performing variant per base model is shown in bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 91.3 87.7 87.2 89.4 87.6 88.6

MHResNet34 90.3 89.0 86.7 88.7 87.5 88.4
HBPResNet34 89.8 86.3 87.8 89.5 86.7 88.0
ThawResNet34 90.3 89.2 88.2 89.4 87.9 89.0

Densenet121 90.8 88.4 87.1 89.8 88.7 89.0
MHDenseNet121 90.6 89.6 87.2 89.3 88.1 89.0
HBPDenseNet121 90.8 87.6 88.0 89.9 87.5 88.8
ThawDenseNet121 89.2 87.0 85.7 88.3 88.0 87.6

Table 7.9: Validation accuracy for all models on the Papilionidae dataset using
50% of training data. Best performing variant per base model is shown in bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 92.8 89.6 91.5 91.3 89.1 90.9

MHResNet34 92.9 89.5 90.7 92.4 89.7 91.0
HBPResNet34 92.5 91.1 89.3 91.9 89.0 90.8
ThawResNet34 92.7 89.2 89.8 91.6 89.5 90.6

Densenet121 92.5 90.1 89.9 91.7 90.8 91.0
MHDenseNet121 92.5 90.9 89.8 91.7 89.0 90.8
HBPDenseNet121 92.7 91.1 91.2 92.8 90.3 91.6
ThawDenseNet121 92.4 89.0 90.4 92.2 89.6 90.7

Table 7.10: Validation accuracy for all models on the Papilionidae dataset using
100% of training data. Best performing variant per base model is shown in bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 93.2 92.7 91.9 92.7 91.9 92.5

MHResNet34 92.9 92.1 92.4 93.8 91.1 92.5
HBPResNet34 92.7 92.5 91.7 93.3 91.1 92.3
ThawResNet34 93.4 92.3 93.0 92.8 91.3 92.6

Densenet121 93.8 92.9 93.4 93.6 92.3 93.2
MHDenseNet121 93.7 92.3 92.7 93.6 90.9 92.6
HBPDenseNet121 93.4 92.0 93.2 93.6 91.7 92.7
ThawDenseNet121 93.7 92.7 92.9 93.8 92.0 93.0
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Table 7.11: Validation accuracy for all models, pretrained on ImageNet, on the
Papilionidae dataset using 5% of training data. Best performing variant per base
model is shown in bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 87.7 86.1 84.5 87.2 86.0 86.3

MHResNet34 85.3 80.6 79.3 83.0 83.1 82.3
HBPResNet34 82.7 80.7 81.7 78.0 80.3 80.7
ThawResNet34 85.4 84.4 80.8 84.2 84.4 83.8

Densenet121 87.3 86.0 85.5 88.6 87.1 86.9
MHDenseNet121 87.4 85.0 84.6 87.7 86.4 86.2
HBPDenseNet121 87.1 85.3 84.7 87.2 85.6 86.0
ThawDenseNet121 86.5 85.0 84.4 86.4 85.6 85.6

Table 7.12: Validation accuracy for all models, pretrained on ImageNet, on the
Papilionidae dataset using 10% of training data. Best performing variant per
base model is shown in bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 90.5 88.3 87.4 89.6 87.6 88.7

MHResNet34 87.4 81.4 81.5 84.3 83.5 83.6
HBPResNet34 86.9 83.4 83.9 81.1 78.9 82.8
ThawResNet34 87.3 81.8 80.8 84.8 82.4 83.4

Densenet121 90.0 87.8 88.4 90.6 88.1 89.0
MHDenseNet121 89.6 86.6 86.6 89.2 86.8 87.8
HBPDenseNet121 89.6 86.0 86.9 87.9 87.1 87.5
ThawDenseNet121 90.5 87.6 86.3 89.6 87.7 88.3

Table 7.13: Validation accuracy for all models, pretrained on ImageNet, on the
Papilionidae dataset using 20% of training data. Best performing variant per
base model is shown in bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 92.0 90.2 89.5 90.7 89.6 90.4

MHResNet34 90.1 86.9 84.4 90.6 86.9 87.8
HBPResNet34 87.9 88.0 85.6 89.3 87.1 87.6
ThawResNet34 90.0 88.4 87.3 90.8 87.7 88.8

Densenet121 92.3 89.6 89.2 91.3 89.3 90.3
MHDenseNet121 92.5 89.6 88.6 91.2 89.5 90.3
HBPDenseNet121 92.4 90.1 89.3 90.9 88.9 90.3
ThawDenseNet121 92.1 89.7 89.2 91.3 89.2 90.3
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Table 7.14: Validation accuracy for all models, pretrained on ImageNet, on the
Papilionidae dataset using 50% of training data. Best performing variant per
base model is shown in bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 94.2 92.1 92.1 92.3 91.9 92.5

MHResNet34 93.0 90.7 90.1 92.0 90.5 91.3
HBPResNet34 92.3 89.7 89.1 92.1 89.5 90.5
ThawResNet34 92.9 91.2 90.7 92.6 90.5 91.6

Densenet121 94.1 92.7 92.9 93.4 92.1 93.0
MHDenseNet121 93.4 92.7 91.9 93.4 92.4 92.8
HBPDenseNet121 93.6 91.8 91.7 93.2 90.7 92.2
ThawDenseNet121 93.8 92.4 92.1 93.5 91.7 92.7

Table 7.15: Validation accuracy for all models, pretrained on ImageNet, on the
Papilionidae dataset using 100% of training data. Best performing variant per
base model is shown in bold.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
ResNet34 94.6 94.2 94.5 94.9 93.2 94.3

MHResNet34 94.0 93.4 93.0 94.6 92.7 93.5
HBPResNet34 93.6 91.0 93.3 93.7 92.1 92.7
ThawResNet34 94.1 93.1 94.1 94.5 92.6 93.7

Densenet121 95.1 93.8 94.5 95.1 94.0 94.5
MHDenseNet121 95.0 94.8 94.2 95.3 94.1 94.7
HBPDenseNet121 94.5 94.5 94.0 94.3 93.3 94.1
ThawDenseNet121 94.2 94.9 94.7 95.0 94.2 94.6
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