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Abstract

In this research, I have examined two methods of including detailed balance in the oth-

erwise temperature-agnostic Numerical Integration of the Schrödinger Equation (NISE)

method of quantum mechanical population. These methods are compared to the Hierar-

chical Equations of Motion (HEOM), a ‘gold standard’ in quantum dynamics. The models

studied are Frenkel exciton Hamiltonians with dynamic disorder given by overdamped

Brownian harmonic oscillator coordinates. These models include subsystems of the Fenna-

Matthews-Olson (FMO) complex, the LH2 complex and the amide I and II modes, along

with numerous artificial systems. While not always reproducing the HEOM results closely,

both methods provide an improvement on the NISE results, especially in the regime of

small (or slowly-fluctuating) dynamic disorder. The computationally favourable scaling

of these two methods will hopefully allow for the cheap computation of two-dimensional

electronic spectra (2DES) and allow meaningful comparison to experimental results.





Contents

Contents i

1 General Introduction 1

1.1 Light harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Quantum biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Multiscale modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Modelling optical spectra . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Focusing on quantum dynamics . . . . . . . . . . . . . . . . . . . . 6

1.4 Semi-classical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Hierarchical Equations of Motion . . . . . . . . . . . . . . . . . . . 8

1.4.2 Surface hopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.3 Numerical Integration of the Schrödinger Equation . . . . . . . . . 10

1.4.4 Previously proposed solutions . . . . . . . . . . . . . . . . . . . . . 12

1.4.5 New proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The Schrödinger Equation and Detailed Balance 17

2.1 Quantum dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Numerical Integration of the Schrödinger Equation . . . . . . . . . 18

2.2 Exciton Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 The Displaced Harmonic Oscillator Model . . . . . . . . . . . . . . 19

2.2.2 Overdamped Brownian oscillators and the Langevin equation . . . . 22

2.2.3 Energy levels and parameter regimes of a dimer . . . . . . . . . . . 25

2.3 Detailed balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Rate equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



ii CONTENTS

2.3.3 Population dynamics of a two-level system . . . . . . . . . . . . . . 34

2.3.4 A thermal correction to the population dynamics . . . . . . . . . . 35

2.3.5 A symmetrical thermal correction . . . . . . . . . . . . . . . . . . . 37

2.3.6 The recovery of high-temperature results . . . . . . . . . . . . . . . 37

2.3.7 Alternative thermal corrections . . . . . . . . . . . . . . . . . . . . 39

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Results 41

3.1 Reproducing the plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 High-temperature limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Intermediate temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 The FMO complex . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 The LH2 complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 The amide I and II bands . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Limitations of the perturbative approach . . . . . . . . . . . . . . . . . . . 54

3.5 Larger-scale systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 A dimer disguised as a trimer . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 One step further: an equilateral trimer . . . . . . . . . . . . . . . . 59

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.1 On the relevance of basis . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.2 Computational artifacts . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.3 Computational cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Conclusion 63

4.1 Interpretation of the results . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 The next steps for NISE-DB . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 The future in semi-classical models . . . . . . . . . . . . . . . . . . . . . . 65

5 Contributions 67

6 Acknowledgement 69

A Mathematical proofs and derivations 71

A.1 Solving the Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2 Fermi’s Golden Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.3 The adiabatic theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



CONTENTS iii

A.3.1 An alternative nonadiabatic coupling . . . . . . . . . . . . . . . . . 76

A.3.2 An extension of Fermi’s Golden Rule . . . . . . . . . . . . . . . . . 77

A.4 Equivalence of nonadiabatic couplings . . . . . . . . . . . . . . . . . . . . . 77

A.5 Semi-classical time-correlation functions . . . . . . . . . . . . . . . . . . . 78

B Explanation of the computational tools 83

B.1 File structure and building . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.2 Generating the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.3 The NISE input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.4 The tutorial files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.5 The ‘swaps’ routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 87



iv CONTENTS



Conventions

In this work, we make use of Dirac notation to denote our wavefunctions, operators and

expectation values, similar to most other modern works in quantum mechanics [2, 3]. Our

conventions do not stray far from those outlined in those works, and the reader is referred

there for a more thorough discussion of quantum mechanics.

Occasionally, we will use the quantum mechanical density matrix formalism described

in Ref. 2. Important are the definition of populations and coherences. Note that these

definitions are independent of basis, but that their physical meanings are not.

Definition 1. Population: A diagonal component of the density matrix, denoting the prob-

ability of finding the system in the corresponding basis state.

Definition 2. Coherence: An off-diagonal component of the density matrix, denoting a

phase relation between two basis states.

Our operators and wavefunctions are embedded in an N -dimensional Hilbert space,

where N indicates the number of possible states our system Nm molecules can be in. We

shall consider N = Nm for our excitonic Hamiltonians, due to the fact that both the ground

state and higher-order excited states are inaccessible on short timescales. In more technical

language, our systems live on a single-exciton manifold.

Throughout this work, reference will be made to Numerical Integration of the Schrödinger

Equation (NISE), according to conventions established in Ref. 4, which is another name

for the Ehrenfest method without quantum feedback on the bath, according to conventions

in Ref. 5.

Definition 3. Local basis: A basis composed of vectors or fuctions corresponding to indi-

vidual chromophores. Also called ‘site basis’.

Definition 4. Average eigenbasis: A basis composed of vectors corresponding to the eigen-

states of the average (or ideal) Hamiltonian.

v
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Definition 5. Adiabatic basis: A basis composed of time-dependent vectors corresponding

to the instantaneous eigenstates of the Hamiltonian.



Chapter 1

General Introduction

In this chapter, we will be talking about the main motivations behind this work. The first

section will cover the need for research into natural and artificial light harvestings from

a societal standpoint. The second section will cover the recent developments in quantum

biology. The third section is a brief introduction to the multiscale modelling paradigm

through which light harvesting systems are studied computationally. The fourth section

will cover the theoretical methods used to describe exciton transport in biological systems,

their benefits and drawbacks, and the proposed solutions to some of their drawbacks.

1.1 Light harvesting

A significant and pressing problem of our time is the transition to clean and abundant

energy. With energy consumption, and the associated production of CO2, rising quickly,

it is imperative that renewable energy sources are developed. Of all renewable energy

sources, solar energy takes the largest exploitable share by far [6, 7], and thus it will have

to play a large role in the energy transition. For aeons, it has played the deciding role in

the production of biochemical organic matter [8]. Although very little is known about the

origins of photosynthesis, there is suggestive evidence that photosynthetic organisms were

already present between 3.5 and 3.2 billion years ago [9]. Modern human research into

light harvesting, however, only started slightly less than two centuries ago, with Alexandre

Becquerel discovering the photovoltaic effect [10]. Research into photovoltaics has yielded

systems that are much more efficient than natural light-harvesting in plants when consider-

ing annual yield [11]. One of the reasons for this is that plants must be robust and protect

their biological systems against variations in light intensity, and especially high light ex-
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posure [12–14]. However, there are bacteria that have significantly higher photosynthetic

efficiency than plants [15], though the definitions of efficiency vary slightly between Refs.

11 and 15.

As an example, let us consider Rhodospirillum (Rsp.) photometricum, a purple bac-

terium whose light-harvesting complexes manage to capture light even in the most low-light

conditions imaginable [6,16]. The pathway from photonic to chemical energy starts at chro-

mophores (light-harvesting molecules) arranged into so-called ‘antenna systems’, which are

excited by incoming photons. From these antennae, the excitation energy transport (EET)

takes this excitation to the photosynthetic reaction centre (RC), where it is converted to

a long-lived charge-separated state. This provides the potential energy needed for the

formation of complex biological molecules.

In Rsp. photometricum, the bacteriochlorophyll chromophores are grouped into two

complexes: LH1 (chromophores surrounding the reaction centre) and LH2 (the ‘antennae’).

Research has shown that bacteria adapted to low-light conditions contain significantly more

LH2 complexes, meaning a larger area which is able to receive light. A diagram of this

phenomenon, taken from Ref. 16, is shown in Fig. 1.1. In such situations, excitation

energy must travel for a long time before reaching a reaction centre, and efficient EET is

a prerequisite for the viability of photosynthetic energy production [17].

If we want to learn from nature and facilitate our transition to cleaner energy, we

must look at these systems and find the factors that contribute to their efficiency of light-

harvesting and EET. For this, we need physical (and computational) models. This brings

us to the motivation behind this study: the development of computationally cheap and

accurate methods of simulating EET in light-harvesting systems.

1.2 Quantum biology

Recent research has uncovered a wealth of new possibilities for the field of quantum biol-

ogy [18]: the supposed measurement of long-lived quantum coherences in biological systems

such as light harvesting systems has become a recent interest for many researchers. Re-

search suggests the discovery of such coherences in cryogenic environments (77K) in the

Fenna-Matthews-Olson (FMO) complex of the green sulphur bacterium (GSB) Chlorobium

tepidium [19] and in the purple bacterium Rhodobacter sphaeroides [20], but more recent

research has also provided suggestive evidence of coherences surviving at timescales of

longer than 100 fs at ambient temperatures in the FMO complex of C. tepidium [21], long
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Figure 1.1: The dependence of the concentration of reaction centres against LH2 an-

tennae on light intensity, as determined by computational modelling. The density of LH2

complexes (orange circles) with respect to the number of LH1 complexes with reaction

centres (bigger red circles) is displayed in the top-left corner of each subfigure. (A) and

(B) represent biological systems adapted to high-light conditions, with only (B) observed

experimentally. (C) and (D) show systems adapted to low-light conditions, with only (C)

observed experimentally. Reprinted with permission from Ref. 16.
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enough to have an effect on EET.

However, these long-lived coherences can actually be explained by the coupling between

electronic and vibrational states, which does not have such a clear-cut connection to EET.

This can produce long-lived oscillations (so-called ‘quantum beats’) in optical spectra [22–

24]. Neglecting this coupling in a model falsely suggests that oscillations due to electronic

coherence are the only possible source of these quantum beats.

A reason that can explain the confusion, is given in Ref. 24, and boils down to the

different language used between theory and experiment. In order to understand properly

what is meant by coherences, the reader is firstly referred to the Conventions laid out

at the beginning of this work. The technical definition of a coherence is an off-diagonal

element of the quantum mechanical density matrix. However, due to a free choice of basis,

there is no single physical explanation of a coherence that describes what happens in a

biological system. As mentioned in Ref. 24, defining the coherences specifically in the

average eigenbasis, has the most relevance to optical experiments. This is associated with

the excitonic picture [25–27]: instead of a single molecule being excited, this excitation is

shared in a coherent superposition of multiple chromophores. More in-depth discussion of

the coherences and different bases is given in Chapter 2.

1.3 Multiscale modelling

Given the large number of possible structural configurations of organic molecules in ag-

gregates, we need a way to translate molecular structure into optical properties. This is

a highly non-trivial problem, since current experimental techniques are not able to re-

solve such structure at molecular level. To validate which structures contribute to the

optical properties observed in these aggregates, we must rely on the multiscale modelling

paradigm [28]. This combines several types of modelling. Firstly, experimental constraints

provide initial structures for our aggregates. These structures are assessed with a Frenkel

exciton model without dynamic disorder. Any structures that do not provide a reasonable

explanation of experimental spectra will be discarded, and we will continue with those

structures that do. After this, molecular dynamics (MD) simulations and electrostatic cal-

culations on the molecular level provide time-dependent trajectories (including dynamic

disorder) of the Frenkel exciton Hamiltonian. Finally, using these time-dependent Hamil-

tonians, more accurate optical spectra are modelled. A flowchart of the methodology is

presented in Fig. 1.2.
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Construct possible structures
based on experimental

constraints

Agreement with
experiment?

Model optical spectra with
ideal Frenkel Hamiltonian

Perform MD simulations to
find time evolution of

structure 

Reasonable

Bad

Calculate Hamiltonian from
electrostatic interactions at

atomic level

Model optical spectra with
Frenkel Hamiltonian including

disorder

Agreement with
experiment?

Insufficient Good
Validated structure 

Figure 1.2: A flowchart of the multiscale modelling methodology, inspired by Ref. 28.
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1.3.1 Modelling optical spectra

Interpretation of optical experiments is key to determining the validity of particular models

of light harvesting. Two methods of studying light harvesting systems are two-dimensional

electronic and infrared spectroscopy (2DES [29] and 2DIR [30], respectively), while more

methods are being developed and studied, such as fluorescence-detected two-dimensional

electronic spectroscopy [31]. With any theoretical model, we must ask ourselves how well

it is able to predict experimental data. For this, computational spectroscopy is necessary.

However, this work will not focus on that particular part of the multiscale modelling

workflow.

1.3.2 Focusing on quantum dynamics

From experiment, molecular dynamics (MD) simulations and electrostatic calculations, it

might become evident that the system can be modelled with simpler parameters, allowing

us to skip the MD simulations and electrostatic calculations altogether. Provided that the

bath fluctuates quickly enough, we can model the diagonal elements of the Hamiltonian as

overdamped Brownian harmonic oscillators. This allows us to quickly generate many bath

trajectories and start optical modelling, thus circumventing the laborious MD step.

The eventual goal of this research is to validate a new method of simulating quantum

dynamics in open quantum systems, as discussed in Section 1.4. To test this, we will

compare the results of a quantum dynamics simulation to the results given by the Hierar-

chical Equations of Motion (HEOM), a purported ‘gold standard’ of quantum dynamics.

Since similar quantum dynamics yield similar optical spectra, this research will not cover

the optical modelling step, and instead compare the quantum dynamics between different

methods. This research method is shown in the flowchart in Fig. 1.3.

The quantum dynamics that will be simulated are waiting-time or population time

dynamics, corresponding to t2 of the 2D optical experiments [30]. This means that the

density matrix will start out in a population, after which coherences will form that cause

oscillations in population.

1.4 Semi-classical methods

Theoretical models suggest that long-lived quantum coherences in light harvesting systems

are responsible for their efficiency [32]. To study the implications of these statements, it is
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Perform MD simulations to
find time evolution of

structure

Calculate Hamiltonian from
electrostatic interactions at

atomic level

Model population transfer
using Frenkel Hamiltonian
including dynamic disorder

Use realistic overdamped
Brownian harmonic oscillator

parameters

Agreement with HEOM?Method suitable for
parameter regime

Method not suitable
for parameter regime

Yes No

Figure 1.3: The flowchart according to which this research is done. The agreement

betweeen different models of quantum mechanical population transfer is used as a metric

to decide whether a new semi-classical method is able to describe a particular system.
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useful to view light harvesting systems as open quantum systems. This view distinguishes

a system consisting of an arbitrary number of states connected to a bath, whose quantum

mechanical properties are of less interest (because, for instance, they do not display strong

absorptive qualities). Due to the loss of information about the bath, the system itself loses

its coherence: after a certain amount of time, it is no longer in a pure quantum state [2].

A question that arises from this, is how quantum coherences can survive for a significantly

long timescale, i.e. have a noticeable effect on EET. Ref. 32 provides a possible answer,

suggesting that adding dynamic disorder to the system, a result of bath fluctuations, can

improve exciton diffusion, rather than impede it. In fact, theoretical research [33, 34]

suggests the existence of a so-called ‘quantum Goldilocks effect’, which states that exciton

diffusion is optimised where the relative strengths of the excitonic coupling, static and

dynamic disorder are in the same ballpark.

A physically exact model of a light-harvesting system would consider all degrees of

freedom (system and bath) as quantum mehanical. However, this would become compu-

tationally intractable very quickly, because the bath contains a staggeringly large number

of phonon modes. Instead, a choice is usually made to work with a so-called semi-classical

method : only a select few degrees of freedom are computed quantum mechanically, while

the rest are modelled stochastically or through other means.

1.4.1 Hierarchical Equations of Motion

The Hierarchical Equations of Motion (HEOM), developed by Tanimura and Kubo [35,36]

and further developed by Ishizaki and Fleming [37], are a set of non-perturbative equations

that describe the dynamics of open quantum systems. Throughout this work, we will be

using this method as a baseline, as it is considered a ‘gold standard’ in quantum dynamics.

Research has been done in comparing experimental two-dimensional electronic spectra

of the FMO complex at a temperature of 150K after a waiting time of 400 fs (Ref. 21)

to those modelled with the HEOM approach (Ref. 38), from which it becomes clear

that HEOM is able to predict certain features in the experimental spectra, such as the

cross-peaks and excited-state absorption peak. Sadly, the correspondence between the

two spectra is not perfect (their physical meanings differ), and few other studies have

been done that compare HEOM-modelled spectra to experiment. The experimental and

computational spectra can be compared in Fig. 1.4.
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(a) The 2DES experimental data for the FMO

complex. This diagram shows the sum of the

rephasing and non-rephasing parts of the 2D

spectrum, which is customary for most spec-

tra. A notable feature is the purple excited-

state absorption peak. Adapted with permis-

sion from Ref. 21.

(b) The HEOM-modelled data of the FMO

complex. This diagram shows only the rephas-

ing part of the optical spectra, as opposed to

Fig. 1.4a. Hints of an excited state absorp-

tion peak are shown in purple. Adapted with

permission from Ref. 38. © 2012, American

Chemical Society.

Figure 1.4: A comparison of experimental and computational spectra. The correspon-

dence between the two diagrams is slightly worse because Fig. 1.4b does not incorporate

the non-rephasing part of the spectrum. An important feature is that there are no bleach-

ing (positive) peaks in the upper left corner, due to correct thermalisation. A negative

peak implies excited state absorption (EA), which is present in both diagrams.
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1.4.2 Surface hopping

Surface hopping is a semi-classical method that considers the bath modes as living on

certain potential energy surfaces (PES) associated with the electronic quanta: the adiabatic

surfaces. At each point in time, the classical degrees of freedom ‘feel’ a force due to the

gradient of the PES (a Hellmann-Feynman force [3,39]) and the algorithm chooses whether

to perform a ‘hop’ between two adiabatic surfaces based on so-called nonadiabatic couplings

that will be defined in Section A.3. An implementation that is used often is Tully’s Fewest

Switches Surface Hopping (FSSH) [40].

A downside of the surface hopping algorithm is that classical and quantum degrees of

freedom must be propagated simultaneously, which proves computationally expensive for

large systems [4].

1.4.3 Numerical Integration of the Schrödinger Equation

The Numerical Integration of the Schrödinger Equation (NISE) is a semi-classical method

that treats only a few degrees of freedom quantum mechanically - those that are relevant in

the Frenkel exciton model [25,42]. It computes the dynamics of the excitonic wavefunctions,

which is then used to generate spectra such as in Figs. 1.4 and 1.5.

In principle, all bath coordinates are treated classically. As mentioned before in Section

1.3, these bath coordinates can be generated through elaborate MD simulations, or com-

puted with a Brownian oscillator model. As a result, this method is stochastic. Using only

a single trajectory for each bath coordinate means we are not sampling enough of its phase

space, leading to wobbly population dynamics. To mitigate this, we need to take enough

samples (at least 10000 is advised to smooth out the population dynamics significantly)

and take the average of their population trajectories.

The method is an approximation of the Ehrenfest method, which differs from NISE in

that the excitonic states give a feedback to the bath variables due to Hellmann-Feynman

forces, similar to the surface hopping algorithm described in Section 1.4.2 [4].

One limitation of this method is the fact that the bath coordinates are always propa-

gated on the PES of the electronic ground state [4]. This means that measurable effects

such as the Stokes shift [43] are completely neglected.

Another very important limitation of NISE is that the Schrödinger equation contains no

explicit notion of temperature - in quantum dynamics, any thermal effects come about by

considering the many vibrational quanta that can couple to the excitonic ones. Reducing
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Figure 1.5: 2D spectra for a dimer system at waiting times of 0, 1.5 ps and 15 ps, sim-

ulated with NISE (left), surface hopping (middle columns) and HEOM (right). Surface

hopping methods appear to yield the right thermalisation features, as opposed to NISE.

Reprinted with permission from Ref. 41.
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these vibrational quanta to classical degrees of freedom causes us to lose the thermal

properties that emerge in the real world. The resulting 2D spectra simulated with NISE

are compared to surface hopping and HEOM in Fig. 1.5 and to surface hopping in Fig.

1.6.

The cross-peak in the bottom right of Fig. 1.6 is highly suppressed compared to the

same cross-peak as simulated by surface hopping. Such cross-peaks occur when population

initially on the higher-energy excitonic states relaxes to the lower-energy excitonic states,

which is a thermally favoured process. The fact that the diagonal peak in the upper

right spectrum in Fig. 1.6 does not ‘migrate’ to a cross-peak over time indicates that

population relaxation is not described correctly by NISE, i.e. the Boltzmann distribution

is not reached.

A part where the computational capabilities of NISE exceed those of HEOM, is in

the form of the bath potential. HEOM, and particularly the PHI implementation by

Strümpfer [44] has been derived in the limit where the bath coordinates can be described

as overdamped Brownian harmonic oscillators. This is a reasonable assumption if the bath

fluctuations are sufficiently fast (the time-averaged phonon coordinates will follow the

Gaussian distribution thanks to the central limit theorem [45]) but it breaks down quickly

if the bath happens to be dominated by anharmonic modes. In NISE, the bath potential

can take any shape, and the semi-classical Hamiltonian can be generated by a separate

program, which means that it can be made through MD and electrostatic calculations. In

this work, however, we will stick to generating the Hamiltonian as a overdamped Brownian

oscillator, to facilitate the comparison between NISE and HEOM.

While NISE may produce computational artifacts due to bad thermalisation, its com-

putational cheapness is a main factor for consideration. As the quantum systems we study

increase in size and complexity, NISE vastly outperforms HEOM in terms of computational

time [4].

1.4.4 Previously proposed solutions

The end goal of this research is to validate multiple methods of mitigating the poor ther-

malisation that NISE provides. A few such methods have been proposed [4, 5, 46–48].

The first of these, Ref. 4, is based on a rescaling of particular nonadiabatic transitions

based on a rate equation: thermalisation is ensured by correcting the nonadiabatic cou-

plings with a thermal correction factor. However, this method does not preserve invariant

subspaces of the system’s Hilbert space, and is therefore not suited to systems larger than
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Figure 1.6: 2D spectra of the LH2 complex at waiting times 0 (top) and 250 fs (bottom)

simulated with surface hopping (left) and NISE (right). Important to note is the underrep-

resented cross-peak in the bottom right of the spectrum in the fourth panel (bottom right)

compared to that in the third (bottom left): an artifact of poor thermalisation. Reprinted

with permission from Ref. 1.
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2 chromophores.

The second, Ref. 5, uses a quantum correction factor derived in earlier work (Ref. 49,50)

and works by correcting the perturbations in average eigenbasis (scaling down perturba-

tions that transport population from low-energy excitonic states to high-energy excitonic

states and favouring EET in the opposite direction) rather than the nonadiabatic cou-

plings. This method still has a flaw, in that its high-temperature results do not correspond

to predictions with the uncorrected method. The third, Ref. 46, corrects the nonadiabatic

couplings instead. The fourth, Ref. 47, proposes a solution to the problem in Ref. 5

by introducing a wavefunction-dependent scaling in the thermal correction. Fifth, Ref. 48

provides a correction to the nonadiabatic couplings and also includes a so-called ‘coherence

penalty function’ (CPF) that drives the density matrix away from high coherences.

1.4.5 New proposals

First of all, the proposal by Aghtar et al. (Ref. 47) has not been applied to the corrections

to the nonadiabatic couplings in computational experiment, and doing so might help obtain

computational results that are close to those predicted by HEOM. This work will add a

similar wavefunction-dependent correction to this method. The method outlined in Ref. 47

will here be named NISE-DBb (NISE with detailed balance, version b), whereas the method

that corrects the nonadiabatic couplings in NISE shall be named NISE-DBa (NISE with

detailed balance, version a). In Refs. 5, 46 the methods of propagation are called bundle

of trajectories (BT) and individual trajectory (IT), respectively.

A full comparison of NISE-DBa and NISE-DBb has not been made before. Refs. 5, 46

have compared the methods without the high-temperature adjustment proposed in Ref.

47. This work will compare the two methods to NISE and HEOM in different parameter

regimes, to simulate both nature-like and artificial systems.

Lastly, populations have only been calculated in two bases: one being the local basis,

in which the highest-energy chromophore is initially excited, the other being the adiabatic

basis, in which the highest-energy instantaneous eigenstate is initially excited. It is difficult

to interpret the results of HEOM in the adiabatic basis, since the adiabatic populations

are ill-defined for that method. This is because HEOM only considers the dynamics of

the complete ensemble, i.e. it does not consider individual bath trajectories. This work

will thus also compare the results of different methods in the average eigenbasis, hopefully

giving a more well-rounded insight into the accuracy of 2D electronic spectra generated

with these methods.
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1.4.6 Summary

In summary, the two methods that will be tested and compared in this work are NISE-DB,

i.e. NISE with detailed balance. Both methods offer perturbative corrections to the NISE

method, hoping to alleviate the problem that the latter has with thermalisation. The

commonality between NISE-DBa and NISE-DBb is the fact that they treat the dynamic

disorder in an open quantum system perturbatively, and that they offer a correction such

that the dynamics will reach the Boltzmann distribution after sufficient time has passed.

Their difference is the nature of the perturbation: NISE-DBa computes the probability of

transport between adiabatic states with the derivative of the Hamiltonian or its eigenstates.

NISE-DBb, on the other hand, computes the probability of transport between average

eigenstates, and compares the Hamiltonian at each timestep to the ‘ideal’ Hamiltonian,

where dynamic disorder is averaged out.

The methods will be used to compute population dynamics: the time evolution of

the occupations of individual chromophores, average eigenstates or adiabatic states. The

methods are designed to have similarly fast computational speeds to NISE, which is one of

the fastest methods of simulating population dynamics. Next, the methods are hoped to

reproduce the more accurate dynamics (especially thermalisation) as predicted by HEOM.
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Chapter 2

The Schrödinger Equation and

Detailed Balance

In this chapter, we will be discussing the theory that underpins this research. In the

first section, we will quickly cover the NISE algorithm. The second section covers the

exciton Hamiltonians used to describe EET, the different parameter regimes that come

into play and the effects that they would have on our results. The third section is about

the recovery of the Boltzmann distribution in quantum dynamics with a semi-classical

thermal correction, both in low- and high-temperature regimes. Lastly, the fourth section

is a summary of the two methods that will be tested in this work.

2.1 Quantum dynamics

To talk about waiting-time dynamics in optical spectroscopy, we need the time-dependent

Schrödinger equation (TDSE) [3] given in Eq. (2.1).

iℏ
∂

∂t
|ψ(t)⟩ = H(t) |ψ(t)⟩ (2.1)

Indicating that the time dependence of the wavefunction |ψ(t)⟩ indicating our state at a

time t is given by a quantity which depends on the Hamiltonian H(t). This Hamiltonian

can be separated into a time-independent part, H0, and a time-dependent part, V (t). This

is particularly useful for the perturbative treatment of EET.
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2.1.1 Numerical Integration of the Schrödinger Equation

The method of NISE is based around the solution of the time-dependent Schrödinger

equation by discrete integration, where our Hamiltonian may change at every timestep.

Solving Eq. (2.1) gives us the following result:

|ψ(t+ dt)⟩ = e
− i

ℏ

t+dt∫
t

H(t
′
)dt

′

|ψ(t)⟩ (2.2)

If we go by the assumption that the HamiltonianH(t) remains roughly constant between

t and t+ dt, we can take H(t) out of the integral, and Eq. (2.2) is simplified to Eq. (2.3).

|ψ(t+ dt)⟩ = U(t+ dt, t) |ψ(t)⟩ = e−
i
ℏH(t)dt |ψ(t)⟩ (2.3)

With U(t+ dt, t), we indicate a unitary (probability-conserving) operator, also known

as the time-evolution operator which takes us from our state at time t to the state at time

t + dt. If we want to calculate a complete wavefunction trajectory, we must compute the

wavefunction at every timestep as follows:

|ψ(tn)⟩ =
[ n∏

k=1

U(kdt, (k − 1)dt)

]
|ψ(0)⟩ (2.4)

where tn = ndt, the nth timestep.

2.2 Exciton Hamiltonians

In principle, when describing a system that is in contact with a bath, we can consider all

degrees of freedom (those of the system and bath) as quantum mechanical. This is done

in some cases, for example in reduced density matrix approaches, which are capable of

modelling irreversible loss of information, i.e. decoherence. In this work, however, and as

is often the case, we consider the system’s degrees of freedom quantum mechanically for

the purposes of calculating the response functions, while the bath degrees of freedom are

propagated classically.

To describe a system of multiple chromophores that can undergo EET, we will use a

class of Hamiltonians given by Eq. (2.5).
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H(t) = H0 + V (t) (2.5)

H0 =
N∑

n=1

En |n⟩ ⟨n|+
∑

n̸=m

Jnm |n⟩ ⟨m| (2.6)

V (t) =
N∑

n=1

∆En(t) |n⟩ ⟨n| (2.7)

where we consider the time-dependent Hamiltonian H(t) in site basis, composed of a time-

independent part H0 consisting of the average site energies En and the couplings Jnm,

and a time-dependent perturbing potential V (t). This is the simplification of the class

of Frenkel exciton Hamiltonians [25, 42, 51], in which the system can couple to a classical

electromagnetic field which can transport the system between the ground states and several

excited states. Transport from the singly excited states to the doubly excited state or the

ground state is assumed to be negligible: its timescales far exceed those of EET.

The individual chromophores are coupled to a bath (which can have any form, but is

often approximated by a harmonic bath with no correlation between the different chro-

mophores), which causes fluctuations ∆En(t) in the diagonal elements (site energies) of

the Hamiltonian. In principle, it is also possible for the dipole-dipole couplings Jnm to

fluctuate, which is due to so-called structural disorder [51], i.e. slight fluctuations in the

relative orientation and positioning of the chromophores, however they are assumed to

be constant in the present model. They can be calculated with the point dipole-dipole

interaction formula

J =
1

4πϵ0r
3
ij

[
µ⃗i · µ⃗j − 3(µ⃗i · r̂ij)(µ⃗j · r̂ij)

]
(2.8)

but other approaches to finding the dipole-dipole couplings exist, such as the extended

dipole model [51–53] and TrEsp [53].

2.2.1 The Displaced Harmonic Oscillator Model

The collection of Hamiltonians we will be working with can be described by the displaced

harmonic oscillator (DHO) model as seen in Fig. 2.1.

Let us consider the simplest system: a monomer whose electronic state is coupled to

a single vibrational degree of freedom through so-called vibronic coupling or system-bath

coupling. The energy of the electronic state will depend on the vibrational displacement,
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2kx
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Nonradiative decay

Figure 2.1: A graphical overview of the potential-energy surfaces (PES) of two separate

electronic states. The simplification to a one-dimensional case is made by assuming each

electronic state only couples to a single nuclear degree of freedom. Notice how the shift

in equilibrium position, d, causes the existence of a reorganisation energy λ, and the

appearance of the Stokes shift 2λ - the difference between absorption and emission spectra.
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a phonon coordinate which we will call x, and we can associate a ‘spring constant’ k with

this vibrational degree of freedom. As such, the energy of the lower state is given as by

Eq. (2.9).

Eg =
1

2
kx2 (2.9)

The higher electronic state couples differently to the vibrational state - and we can assume

that for this higher state, the equilibrium length of the vibrational degree of freedom is

slightly stretched or compressed by an amount d. Additionally, there is an increase in

equilibrium energy, a factor E ′. As such, the energy (both by vibronic coupling and energy

gap) of the excited state can be described by Eq. (2.10).

Ee = E ′ +
1

2
k(x+ d)2 = E ′ +

1

2
kx2 + kdx+

1

2
kd2 (2.10)

Here, the assumption is made that the shape of the potential landscape does not vary

widely between the energy levels, such that the spring constant k remains the same.

Since for quantum dynamics, only the difference in energy levels matters, and not the

absolute value of individual energies, we can translate the levels by an amount −1
2
kx2 and

be left with the energies Eg = 0 and Ee = E ′ + σx+ λ, where the term λ = 1
2
kd2 is called

the reorganisation energy and the term σx = kdx is an energy shift which we will call the

system-bath coupling. We can simplify this even further by absorbing the reorganisation

energy into the energy shift by saying E = E ′ + λ, leaving us with Ee = E + σx.

A surprising result of the existence of the reorganisation energy, though not one we will

discuss in much detail, is the Stokes shift : the absorption peaks of this model will occur at

higher energies than the emission peaks, which can be used to determine vibrational levels

with fluorescence spectroscopy.

Now that we understand the working of the displaced harmonic oscillator model in the

case of a monomer, we can start applying it to a dimer of two-level systems, and extrapolate

the behaviour for larger systems. Each of the two-level systems given by E(i)
g = 0 and

E(i)
e = E(i) + σ(i)xi, for i = 1, 2. The total Hamiltonian for this dimer of two-level systems

is given by

H(t) =

(
E1 + σ1x1(t) J

J E2 + σ2x2(t)

)
(2.11)

where J, the coupling, is determined from either the dipole-dipole coupling in the point

dipole approximation, extended dipole approximation, but can also include higher-order

terms such as the quadrupole coupling.
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Simplifying the Hamiltonian, we sometimes translate the diagonal components by an

amount −E2, an action which leaves the eigenvectors of the matrix intact but simplifies

the model Hamiltonian. Additionally, it is assumed that σ1 = σ2 = σ (which is reasonable

if the chromophores all have similar vibronic couplings).

H(t) =

(
∆E + σx1(t) J

J σx2(t)

)
(2.12)

where ∆E = E1 − E2, called the energy gap or static disorder.

Relating λ and σ

The bath energy fluctuations are defined as σx(t) = kdx(t), and the reorganisation energy

is λ = 1
2
kd2. This can be used to relate σ and λ.

⟨(σx(t))2⟩ = σ2 ⟨x(t)2⟩ = k2d2 ⟨x(t)2⟩ = 2λk ⟨x(t)2⟩ (2.13)

Now, using the equipartition theorem (Ref. 54), we can equate 1
2
k ⟨x2⟩ to 1

2
kBT , yielding:

σ2 = 2λkBT (2.14)

This means that the fluctuations in site energies are closely related to the reorganisation

energy and the temperature.

2.2.2 Overdamped Brownian oscillators and the Langevin equa-

tion

To find the entries of the time-dependent Hamiltonian, we must still find the bath coordi-

nates. There are many ways to do this, among which molecular dynamics (MD) simula-

tions, but for our purposes, we find that making the assumption that they are overdamped

Brownian oscillators and thus follow the Langevin equation is a suitable answer.

The bath coordinates xi(t) are also known as the ‘nuclear degrees of freedom’. They

can be considered as the lengths of particular phonon modes in a molecule, or (for a

simplified explanation) the internuclear distance in a homonuclear diatomic molecule. In

many cases, there is a single ‘effective’ phonon mode which dominates the system-bath

interaction, turning the vibronic coupling into a one-dimensional problem. Let us model

this primary mode as a particle subject to three forces: a damping force −γv(t) causing it

to slow down, a restoring force −kx(t) bringing it back to equilibrium and a random force
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f(t) due to interactions with the surrounding bath molecules. This yields the differential

equation:

mẍ(t) = −γẋ(t)− kx(t) + f(t) (2.15)

where we can divide by m and assume that the damping force is much greater than the

restoring force (i.e. the overdamped limit) to find

v̇(t) = − γ
m
v(t) + ξ(t) (2.16)

This is called the Langevin equation [55], whose analytical solution is also covered in Section

A.1.

Numerical solution

If we want to solve for the motion of the Brownian oscillator numerically, we can transform

the Langevin equation into a differential equation for the position variable to find [56]

x(t+∆t) = x(t)− γx(t)∆t+
√
2γ∆tN (0, 1) (2.17)

whereN (0, 1) is a number drawn from the standard normal distribution, and ∆t is assumed

to be infinitesimally small. Fig. 2.2 shows a number of trajectories generated in this way.

Autocorrelation functions

In order for the bath trajectories to be suitable for the quantum dynamical simulations

done in this work, they must fulfil a few basic needs.

1. ⟨x(t)⟩ = 0, i.e. they must have zero mean.

2. Cxx(t) = ⟨x(t)x(0)⟩ = e−γt , i.e. their autocorrelation functions (ACF) must decay

exponentially, starting with a variance of 1. Note that m is taken to be unity.

We can calculate the ACF using the Wiener-Khinchin theorem, as explained in Ref. 57.

In Fig. 2.3, we can see the result of doing this for arbitrary γ. To calculate the ACF,

one should keep in mind to generate a sufficiently long bath trajectory, as sampling errors

increase with increasing time, given a finite bath trajectory. In the present case, the ACF

is shown for a very small fraction of the total bath trajectory, about 4 · 10−4.
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Figure 2.2: The behaviour of three overdamped harmonic Brownian oscillators. Note that

the size and speed of fluctuations increases with γ, which is a result of the fluctuation-

dissipation theorem. The timesteps are ∆t = 1fs.
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Figure 2.3: Predicted and calculated autocorrelation function Cxx(t) for the Brownian

overdamped harmonic oscillator as governed by Eq. (2.17) and shown in Fig. 2.2. The

parameter γ is taken to be arbitrary. Only a small fraction (4 ·10−4) of the total trajectory

is shown, as this allows errors to be averaged out more easily.
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2.2.3 Energy levels and parameter regimes of a dimer

A dimer of two-level systems has the following Hamiltonian in site basis, when considering

only the singly-excited states to be accessible:

(
∆E J

J 0

)
(2.18)

An excitation, if present on the first molecule (corresponding to our system being in state

|ψ1⟩), can hop over to the other molecule (the system being in state |ψ2⟩) with a particular

probability which depends on the relative magnitude of ∆E and J . |ψ1⟩ and |ψ2⟩ are
defined as:

|ψ1⟩ =
(
1

0

)
, |ψ2⟩ =

(
0

1

)
(2.19)

Decomposition in eigenbasis

If we are to consider the time evolution of this dimer system, we must identify the stationary

states, which are the eigenstates which remain invariant up to a complex phase upon

interaction with the time evolution operator U(t+ dt, t) = e−
i
ℏH(t)dt (i.e. the eigenstates).

The eigendecomposition of H includes its eigenvalues:

ϵ± =
∆E

2
±
√(

∆E

2

)2

+ J2 (2.20)

and their corresponding (normalised) eigenvectors:

|ψ+⟩ =
√√√√

1

2 + 2
(
∆E

2J

)2
+ ∆E

J

√(
∆E

2J

)2
+ 1




∆E

2J
+
√(

∆E

2J

)2
+ 1

1


 (2.21)

|ψ−⟩ =
√√√√

1

2 + 2
(
∆E

2J

)2 − ∆E

J

√(
∆E

2J

)2
+ 1




∆E

2J
−
√(

∆E

2J

)2
+ 1

1


 (2.22)

The resulting energy levels, and how well the eigenstates correspond to the local basis

states, can be seen in Fig. 2.4.
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Figure 2.4: The splitting of states |ψ1⟩ and |ψ2⟩ in site basis, into eigenstates |ψ±⟩. One

can see that the overlaps ⟨ψ+|ψ1⟩ and ⟨ψ−|ψ2⟩ should be slightly larger than ⟨ψ+|ψ2⟩ and
⟨ψ−|ψ1⟩. However, since J appears larger than ∆E, the system is rather delocalised.

∆E ≪ J, the delocalised case

We can also look at the other extreme case, where the difference between site energies is

negligible with respect to the coupling. We can see that exciton transport between the two

sites is at its largest, and in fact, when starting out with a full population on site 1, after

a time J
ℏ we will find the full population on site 2. When taking the limit as ∆E

J
goes to

zero, we can see that our eigenvalues and eigenvectors will become:

ϵ± = ±J (2.23)

|ψ+⟩ =
1√
2

(
1

1

)
, |ψ−⟩ =

1√
2

(
−1
1

)
(2.24)

This means that our exciton system is fully delocalised, and a population starting fully on

site 1 will, after a time ℏ
4J

be completely on site 2, as shown in Fig. 2.5.

∆E ≫ J, the localised case

In the case that the energy levels are far apart, very little transport will occur between

them. An excitation on molecule 1 will remain there with large probability. Indeed, if we
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Figure 2.5: The population dynamics in the case where J >> ∆E. Notice that a

population that starts out completely on site 1 will result in a system which is fully on site

2 after a time ℏ
4J
, and that the dynamics are periodic, with a period of T = ℏ

2J
.
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take the limit as J
∆E

goes to zero, we are left with the eigenvalues and eigenvectors:

ϵ+ = ∆E = E1, ϵ− = 0 = E2 (2.25)

|ψ+⟩ =
(
1

0

)
, |ψ−⟩ =

(
0

1

)
(2.26)

The stationary states overlap completely with the states in site basis, which implies that

the exciton system is fully localised: no transport happens between the states. If we

instead consider J to be perturbatively small, we can find the amplitude of oscillation in

site basis populations. Expanding Eq. (2.20), (2.21) and (2.22) considering J
∆E
≪ 1, we

can use the binomial approximation (1 + x)n ≈ 1 + nx to find the perturbed eigenvalues

and eigenvectors.
√(

∆E

2J

)2

+ 1 =
∆E

2J

√
1 +

(
2J

∆E

)2

≈ ∆E

2J

[
1 +

1

2

(
2J

∆E

)2]
=

∆E

2J
+

J

∆E

(2.27)

This means that the perturbed eigenvalues are:

ϵ± =

{
∆E

2

[
2 + 1

2

(
2J
∆E

)2
] = ∆E + J

2

∆E
∆E

2
· −1

2

(
2J
∆E

)2
= − J

2

∆E

(2.28)

The (unnormalised) eigenvectors are then given by:

|ψ+⟩ =
(

∆E

2J

[
2 + 1

2

(
2J
∆E

)2]

1

)
=

(
∆E

J
+ J

∆E

1

)
norm.≈ 1√

1 +
(

J
∆E

)2

(
1
J
∆E

)
(2.29)

|ψ−⟩ =
(

∆E

2J

[
1− 1− 1

2

(
2J
∆E

)2]

1

)
norm.≈ 1√

1 +
(

J
∆E

)2

(
− J

∆E

1

)
(2.30)

Let’s write down a trial wavefunction and its time evolution:

|ψ(t)⟩ = c̃1e
− i

ℏ (∆E+ J
2

∆E
)t

(
1
J
∆E

)
+ c̃2e

i
ℏ

J
2

∆E
t

(
− J

∆E

1

)
(2.31)

Where c̃1 and c̃2 are the wavefunction coeffients of the eigenstates. If we assume them to

be constant over time, and if we have all our population on the first site, we can set the

total coefficient of site 2 to zero at t = 0, which means that c̃2 = − J
∆E
c̃1. Finding the

approximate time-dependent population on site 2 is then an easy task: it is given by

ρ22(t) =

(
J

∆E

)2

sin2 ∆Et

2ℏ
(2.32)

An example of this can be seen in Fig. 2.6.
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Figure 2.6: Population dynamics in the case where ∆E >> J . The population fluctua-
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Large dynamic disorder causes localisation

One can add an additional term to the Hamiltonian: a time-dependent potential which is

generated by some additional interaction with the environment (usually with a solvent).

This is called dynamic disorder [34]. Let us consider this potential to fluctuate quickly

compared to the dynamics of our excitonic system without the presence of such fluctuations.

Our Hamiltonian now looks as follows:

H(t) =

(
σx1(t) J

J σx2(t)

)
(2.33)

To decide whether an excitonic system is localised or delocalised, we must compare the size

of the dynamic disorder to the excitonic coupling. The small-fluctuation regime is quite

easy to treat perturbatively: there will be very little effect on transport, similar to when

the static disorder is small. Instead, let us look at the case where σ ≫ J , i.e. the dynamic

disorder is large. The time-averaged expectation value of the energy difference is given as:

⟨E1(t)− E2(t)⟩ = σ ⟨x1(t)− x2(t)⟩ = σ(⟨x1(t)⟩ − ⟨x2(t)⟩) = 0 (2.34)

This expectation value might be zero, but we can still look at the mean squared difference,

which can tell us a little bit more.

⟨(E1(t)− E2(t))
2⟩ = σ2

[
⟨x1(t)2⟩+ ⟨x2(t)2⟩ − 2 ⟨x1(t)x2(t)⟩

]
(2.35)

= σ2
[
⟨x1(t)2⟩+ ⟨x2(t)2⟩ − 2 ⟨x1(t)⟩ ⟨x2(t)⟩

]
(2.36)

= σ2
[
⟨x1(t)2⟩+ ⟨x2(t)2⟩

]
(2.37)

= 2σ2 (2.38)

The mean squared difference in site energies is large, therefore it must be sampled from a

wide Gaussian distribution. This means that the energy difference between sites is likely

to be much larger than J . We can safely say that a large dynamic disorder causes exciton

localisation.

Dynamic disorder causes decoherence

We know that the cause of dynamic disorder is the bath coupling. In the present model,

there is one effective phonon mode coupled to each chromophore. These phonons are

considered overdamped Brownian harmonic oscillators as in Section 2.2.2.
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When integrating the Schrödinger equation with a Hamiltonian whose diagonal el-

ements are given by such Brownian oscillators, we are using a single trajectory which

constitutes only a small amount of the microstates that our bath can occupy. When deal-

ing with a bath, knowing only its macrostate, we must sum over as large a number of

microstates as possible (i.e. we must sample all or most of its phase space). One does

this by generating a large amount of Hamiltonian trajectories, integrating the Schrödinger

equation and averaging all of the resulting population trajectories. The system will deco-

here and no longer be in a pure superposition of states. The populations will relax to their

equilibrium values (which, in the case of N states in the NISE formalism, is ρnn = 1
N

for

all values of n: a uniform distribution). Applying more exact methods such as HEOM, the

Boltzmann populations will be recovered at large timescales.

The dynamic disorder parameter influences the behaviour of the system. To distinguish

between different disorder regimes, a parameter κ = γ
σ
is defined which characterises the

speed of the bath dynamics [17].

Fast modulation limit

κ ≫ 1 tells us that bath dynamics are fast, and that the energy fluctuations are uncor-

related between different timesteps (see Eq. (2.39)). The correlation function is given as:

C(t) = ⟨∆E,n(t)∆E,m(t)⟩ =
σ2

γ
δ(t)δnm = Γδ(t)δnm (2.39)

where Γ is called the inhomogeneous linewidth [17], In this case, the Haken-Stroben-

Reineker (HSR) model describes the system well [58]. The density matrix elements evolve

in Liouville space as follows:

d

dt
ρnm = − i

ℏ
[H0, ρ]nm − 2Γ(1− δnm)ρnm(t) (2.40)

Slow modulation limit or static limit

κ ≪ 1 means bath dynamics are slow. Instead of generating a bath trajectory, one can

get away with generating a single bath coordinate. This simplifies the solution of the

Schrödinger equation, as the same time-evolution operator applies throughout the integra-

tion. Averaging over the bath needs to be done in the same fashion as before.
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The effects of fluctuation speed on observables

In spectroscopic experiments, we cannot detect quantities such as populations and coher-

ences. Instead, we must look at observables. These are usually the energies in our spectra.

Given a simple dimer of two-level systems, the peak energies in the spectrum are usu-

ally not equal to the fluctuating site energies. Instead, the energies are eigenvalues of the

Hamiltonian which has been averaged over the time that the light interacts with our sys-

tem. Therefore, if we wish to accurately predict observables, we must look at the average

eigenbasis and adiabatic basis.

In the fast-modulation limit, the interaction time is much longer than the time of

fluctuation 1
γ
, and our Hamiltonian can be represented by its long-term average, which

means our energies are given by the average eigenvalues. In the static limit, the fluctuation

timescale is much longer than the interaction time, and therefore our system’s energies are

best represented by the instantaneous eigenvalues of the Hamiltonian, and our observables

are best regarded in the adiabatic basis.

2.3 Detailed balance

As we have seen from the population dynamics in 2.2.3, the populations are not guaranteed

to reach the Boltzmann distribution as expected from systems in thermal equilibrium

with the bath. We must first identify the reason for this, and come up with a physically

acceptable solution.

2.3.1 Perturbation theory

The detailed balance methods proposed in Refs. [5, 46–48] rely on time-dependent pertur-

bation theory. Therefore, it is useful to look at two different definitions of the perturbation,

which in turn inform two different detailed balance methods, NISE-DBa and NISE-DBb.

Perturbation from the average Hamiltonian

The first of these methods, which will become NISE-DBb, considers a Hamiltonian defined

as follows:

H(t) = H0 + V (t) (2.41)
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where H0 is the average Hamiltonian, and V (t) contains the energetic disorder, which is

considered the perturbation. For reasons that will become clear shortly, this perturbation

needs to be considered in average eigenbasis. The Hamiltonian will be transformed from

local basis to average eigenbasis as follows:

Ha(t) = CH0C
† + CV (t)C† (2.42)

where CH0C
† is a diagonal matrix whose entries are the eigenvalues of the average Hamil-

tonian. The C matrix contains the average eigenvectors as row vectors (not to be confused

with the autocorrelation function) and C† is its hermitean conjugate. CV (t)C† is the pro-

jection of the dynamic disorder onto the average eigenbasis. Its off-diagonal entries, by

Fermi’s Golden Rule, determine the transition rate between two states in average eigenba-

sis. They are also the ones that need to be adjusted for detailed balance.

Perturbations in the adiabatic basis

The second method, which will become NISE-DBa, considers the Hamiltonian and per-

turbation to be defined in a slightly different way: via the nonadiabatic couplings. First

of all, this requires an explanation of the adiabatic basis. Using the derivation in Section

A.3, we find that the time evolution is given by

|ψ(t+∆t)⟩ad = e−
i
ℏP (t)∆t |ψ(t)⟩ad (2.43)

where Pmn(t) = ϵm(t)δmn+iℏSmn(t). Assuming that the nonadiabatic couplings Smn(t) are

small, we can approximate [ϵ(t), S(t)] to be zero (where ϵmn(t) = ϵm(t)δmn, the diagonal

matrix of instantaneous energies), which lets us rewrite the above equation to

|ψ(t+∆t)⟩ad = e−
i
ℏ ϵ(t)∆teS(t)∆t |ψ(t)⟩ad (2.44)

where the nonadiabatic couplings are defined as:

Smn(t) = ⟨ ˙̃ψm(t)|ψ̃n(t)⟩ (2.45)

Given that C(t) is a matrix containing the adiabatic basis vectors as its columns, this

means

eS(t)∆t = e(C
†
(t+∆t)−C

†
(t))C(t) (2.46)

where we have used the definition

Ċ(t) = lim
∆t→0

C(t+∆t)− C(t)
∆t

(2.47)
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2.3.2 Rate equations

Let us consider Fermi’s Golden Rule as given in Eq. (A.23), which states that the rate of

transfer between two states is proportional to |V (t)|2, the absolute value squared of the

perturbing potential, or to |S(t)|2, the absolute value squared of the nonadiabatic coupling,

as explored in A.3.2. Hermiticity of the perturbing potential (or antisymmetry of the

nonadiabatic couplings) tells us that km←−n = kn←−m, as dictated by the rate equation:

∂ρn
∂t

= kn←−mρm − km←−nρn (2.48)

The rate equation is the differential equation that governs the time evolution of the popu-

lations. k0←−1 tells us the rate at which population in state 1 will transfer to state 0, and

k1←−0 tells us the rate of the inverse process. The equilibrium of the system governed by

Eq. (2.48) is found at kn←−mρn = km←−nρm, or ρm = ρn, as the net population transfer

rate is zero. Here, densities with single indices imply the diagonal elements ρn = ρnn(t).

Evidently, this perturbative formalism does not contain any explicit temperature depen-

dence. In fact, quantum mechanics as described in such a fashion is completely insensitive

to any classical notion of temperature, and any transition probabilities that follow from

Fermi’s Golden Rule are not automatically subject to the Boltzmann equilibrium as given

by

ρn
ρm

= e−βEnm (2.49)

where Enm = En − Em and β = 1
kBT

. Our task is to find a correction to the dynamics as

given by the Schrödinger equation that will yield the proper Boltzmann populations.

2.3.3 Population dynamics of a two-level system

Let us consider a two-level system whose populations dynamics are governed by the dif-

ferential equation Eq. (2.48), so that we can derive its behaviour by solving the system of

coupled equations.

ρ̇0(t) = −k1←−0ρ0(t) + k0←−1ρ1(t) (2.50)

ρ̇1(t) = −k0←−1ρ1(t) + k1←−0ρ0(t) (2.51)

Taking the time derivative of the first of these equations, and subsequently substituting

the values of ρ̇1(t) and ρ1(t) that we get from these equations, we come to the following



2.3. DETAILED BALANCE 35

conclusion:

ρ̈0(t) = −k1←−0ρ̇0(t) + k0←−1ρ̇1(t) (2.52)

= −k1←−0ρ̇0(t) + k0←−1(−k0←−1ρ1(t) + k1←−0ρ0(t)) (2.53)

= −k1←−0ρ̇0(t) + k0←−1(−ρ̇0(t)− k1←−0ρ0(t) + k1←−0ρ0(t)) (2.54)

= −(k1←−0 + k0←−1)ρ̇0(t) (2.55)

Performing a double integration yields the following results:

ln
ρ̇0(t)

ρ̇0(0)
= −(k0←−1 + k1←−0)t (2.56)

ρ̇0(t) = e−(k0←−1+k1←−0)tρ̇0(0) (2.57)

ρ0(t) = ρ0(0) + ρ̇0(0)
1− e−(k0←−1+k1←−0)t

k0←−1 + k1←−0

(2.58)

Filling in the conditions ρ0(0) = 1, ρ1(0) = 0, and as a result ρ̇0(0) = −k1←−0, we get the

result

ρ0(t) =
k0←−1 + k1←−0e

−(k0←−1+k1←−0)t

k0←−1 + k1←−0

(2.59)

Here, we can define a relaxation timescale T1 = (k0←−1 + k1←−0)
−1.

2.3.4 A thermal correction to the population dynamics

One can deduce from Eq. (2.59) that a two-level system will relax to uniform popula-

tion distribution since k0←−1 = k1←−0. This is, unfortunately, not always equal to the

Boltzmann distribution. In literature, multiple ways are defined of adjusting the rate con-

stants, in order to recover detailed balance. The most important of these is a result of

Oxtoby [49], Bader and Berne [50], which works by finding approximations to the quan-

tum time-correlation functions by using the classical correlation functions related to the

time-dependent perturbations. We will now discuss a heuristic derivation of this result,

which goes as follows.

In order to satisfy detailed balance, we must have the following relation between the

rate constants:

km←−n = e−βℏωmnkn←−m (2.60)
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That is, population transfer from state n to statem must be suppressed by a factor e−βℏωmn

as compared to the inverse process. We can come up with a simple modification to the

classical rate constants, which goes as follows. Assuming ωmn ≤ 0, we can say

ktcm←−n = e−
1
2
βℏωmnkm←−n (2.61)

We can see that these new rate constants obey detailed balance. However, we would prefer

the relaxation timescale T1 not to be affected by such thermal corrections on the grounds

that the capacity of the bath to absorb heat from our system does not depend on the

dynamics of the system. The ratio of the relaxation timescales is

T tc
1

T1
=

kn←−m + km←−n

kn←−me
1
2
βℏωmn + km←−ne

− 1
2
βℏωmn

=
2

1 + e−βℏωmn
e−

1
2
βℏωmn (2.62)

As such, we can introduce an additional factor 2

1+e
−βℏωmn

e−
1
2
βℏωmn to our thermally adjusted

rate constants and get

ktcm←−n = e−βℏωmn
2

1 + e−βℏωmn
km←−n =

2

1 + eβℏωmn
km←−n (2.63)

which agrees with Refs. [49, 50], who used it to describe vibrational energy relaxation

(VER) in liquids. This correction is often quoted as the standard (thermal) correction.

We could now decide to use equation Eq. (2.64) to modify the perturbing potential, or

equation Eq. (2.65) for the adiabatic couplings. This should get us back to the Boltzmann

equilibrium.

Ṽnm(t) = Vnm(t)

√
2

1 + e−βEnm
(2.64)

S̃nm(t) = S̃mn(t)

√
2

1 + e−βEnm
(2.65)

It is important to note that, while Eq. 2.64 is used in VER and also applied to EET

[5,46–48], theoretical work by Kim and Rossky [59] suggests that it may not be completely

suited for adiabatic transitions between multiple PES. They propose a different equation

to correct for the semi-classical approach, which is an interesting topic for future study,

although it will most likely be of use to the Ehrenfest method with feedback to the bath,

since NISE only propagates its bath variables on the PES of the electronic ground state.
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2.3.5 A symmetrical thermal correction

However, the requirement of hermiticity states that for real values of Vnm, Ṽnm = Ṽmn [5].

We can therefore introduce a symmetric thermal correction which assures Ṽnm = Ṽmn.

Ṽnm(t) =

√
2

1 + eβEnm
|cm(t)|Hnm(t)−

√
2

1 + e−βEnm
|cn(t)|Vmn(t) (2.66)

=

(√
2

1 + eβEnm
|cm(t)| −

√
2

1 + e−βEnm
|cn(t)|

)
Vnm(t) (2.67)

This has the property that the rate constants follow the Boltzmann relation, and that it

conserves the hermiticity of the Hamiltonian. Anti-hermiticity of the nonadiabatic cou-

plings leads to [46,48]

S̃nm(t) =

√
2

1 + eβEnm
|cm(t)|Snm(t) +

√
2

1 + e−βEnm
|cn(t)|Smn(t) (2.68)

=

(√
2

1 + eβEnm
|cm(t)| −

√
2

1 + e−βEnm
|cn(t)|

)
Snm(t) (2.69)

One can derive that the transition rates will be zero (i.e. the system will be in equilibrium)

if S̃nm = 0, so if
√

2

1 + eβEnm
|cm(t)| =

√
2

1 + e−βEnm
|cn(t)| (2.70)

which implies

ρm
ρn

=
1 + eβEnm

1 + e−βEnm
= eβEnm (2.71)

following the Boltzmann distribution.

2.3.6 The recovery of high-temperature results

There is one problem with the definitions of the thermally corrected perturbation potential

and nonadiabatic couplings in Eq. (2.66) through Eq. (2.69): they do not recover the

population dynamics in the high-temperature limit, where

lim
β−→0

√
2

1 + eβEmn
= lim

β−→0

√
2

1 + e−βEmn
= 1 (2.72)

Plugging this result into Eq. (2.69), for instance, gets us

S̃nm(t) = (|cm(t)| − |cn(t)|)Snm(t) (2.73)
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which means the rate constants follow the relation

k̃m←−n ∝ ||cm(t)| − |cn(t)||2|Snm(t)|2 (2.74)

which does not (necessarily) equal |Snm(t)|2. This problem was noted by Aghtar et al. [47],

and a solution was proposed: dividing each nonadiabatic coupling by a factor |cm(t)| −
|cn(t)|, which gives us

S̃nm(t) =

√
2

1+e
βEnm
|cm(t)| −

√
2

1+e
−βEmn

|cn(t)|
|cm(t)| − |cn(t)|

Snm(t) (2.75)

which, as one can check, still obeys antisymmetry, and has the added bonus that it recovers

high-temperature results.

A sanity check

The eventual aim of this project is to apply the thermal corrections to NISE even in large

systems. Therefore, we should check that the adjustments we make do not adversely affect

population transfer between sparsely populated states. Consider a trimer, where state

|ψ̃0(t)⟩ has a population of 1
2
. Now, also consider that there is no coupling between |ψ̃0(t)⟩

and the other two states, |ψ̃1(t)⟩ and |ψ̃2(t)⟩. Therefore, if the other half of the population
starts out in state |ψ̃1(t)⟩, we can say that the dynamics are the same, except for the

absolute values of the wavefunction coefficients, which are effectively halved. However, our

rate constants must be the same, since they govern the relative transfer of populations

between states. Halving the rate constants (which would happen if we were to leave out

the denominator of Eq. (2.75)) would yield significantly slower dynamics. With this in

mind, we realise that Eq. (2.75) does indeed give a sensible thermal correction.

One last problem?

One can see that the denominator of Eq. (2.75) is not necessarily positive, and that

it may become zero. In this case, Aghtar et al. built in a numerical boundary for the

denominator [47], such that values of |cn(t)| and |cm(t)| that are too close together would

not reach a singularity. However, in their work, they also establish that this numerical

boundary is never reached during many hours of computations.
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2.3.7 Alternative thermal corrections

Other corrections to the perturbation Hamiltonian or nonadiabatic couplings exist, and we

can postulate other thermal corrections based on a few simple rules:

1. k̃m←−n = e−βEmn k̃n←−m, i.e. the rate constants follow the Boltzmann distribution.

For this, |Vmn(t)|2 = e−βEmn|Vnm(t)|2

2. Use the process outlined in 2.3.5 to symmetrise the the thermal correction (or anti-

symmetrise it in the case of the nonadiabatic couplings).

3. k̃m←−n = k̃n←−m = kn←−m = km←−n in the high-temperature limit.

This implies that |Ṽmn(t)|2 = |Ṽnm(t)|2 = |Vnm(t)|2 = |Vmn(t)|2

and |S̃nm(t)|2 = |S̃mn(t)|2 = |Snm(t)|2 = |Smn(t)|2.

4. Another limitation is that, while transport from a lower-energy state to a higher-

energy state should be suppressed, transport from a higher-energy state to a lower-

energy state should not be enhanced significantly. Relaxation through bath inter-

actions cannot occur on infinitely short timescales. If possible, we would like to

preserve the relaxation time, T̃1 = (k̃m←−n + k̃n←−m)
−1 = T1 = (km←−n + kn←−m)

−1 for

all temperatures.

Ref. 60 contains a collection of a few alternative thermal corrections, that each have their

benefits and drawbacks, and are each suited to particular parameter regimes.

2.4 Summary

In short, this work will cover two different methods of recovering the Boltzmann distribu-

tion in the dynamics of open quantum systems at finite temperatures.

The first of these is called NISE-DBa (Numerical Integration of the Schrödinger Equa-

tion with Detailed Balance, version a). It adjusts the nonadiabatic couplings between the

states, such that the resulting perturbative rate constants will drive the dynamics of the

system toward the Boltzmann distribution. This method has been described in Sections

2.3.4 and 2.3.5. The difference between the method used here and in Refs. 46 and 48, is

that an additional correction has been implemented (taken from Ref. 47 and outlined in

Section 2.3.6) to recover the high-temperature results of NISE.
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The second of these methods is called NISE-DBb (NISE-DB, version b). It computes

the difference between the Hamiltonian at any timestep, and the time-averaged (or ‘ideal’)

Hamiltonian. This difference is considered a perturbation. From this perturbation, we can

compute the perturbative rate constants, which are subsequently adjusted such that the

system is driven to the Boltzmann distribution. It has been implemented in full in Ref.

47, including the high-temperature correction outlined in Section 2.3.6 but not compared

to NISE-DBa. Additionally, the dynamics will be computed in the average eigenbasis in

addition to the local and adiabatic bases. Initially exciting a particular excitonic state

(closely linked to an average eigenstate) and watching the system’s dynamics is very close

to the physical processes of absorption that occur in nature and experiment.

These methods will be compared to each other and two benchmark methods: NISE

and HEOM, in several parameter regimes (perturbative, highly nonperturbative, fast and

slow fluctuations). This will give an idea of whether these methods can be used in the

simulation of two-dimensional spectra and comparison to experiment.
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Results

This chapter will show the results of the simulations done with the HEOM, NISE and

NISE-DB methods. Important is that both populations and coherences are displayed.

The first section will cover how to reproduce the plots, by providing the code used

for all of the methods involved. The second section will quickly go over recovering the

high-temperature results. The third section shows results in dimer (two-chromophore)

systems that mimic natural light-harvesting systems. The fourth section shows results for

artificial systems in various parameter regimes. In the fifth section, we will explore how the

methods generalise to larger-scale systems. Finally, in the sixth section, we will summarise

and discuss the results.

3.1 Reproducing the plots

For the simulation of the population trajectories with HEOM, I have made use of the PHI

(Parallel Hierarchy Integration) designed by Johann Strümpfer [44]. Unless indicated oth-

erwise, no use has been made of Matsubara frequencies, the timestep taken has been 1 fs

and the hierarchy truncation depth has been 20. In accordance with the model Hamiltoni-

ans, only diagonal energetic disorder has been applied. The disorder associated with each

of the sites is considered uncorrelated with the rest.

For the simulation with NISE and the NISE-DB methods, I developed new subroutines

for the NISE 2017 package developed by Thomas la Cour Jansen. The explanation of this

code and a quick-use manual can be found in Appendix B.

The plots in the following sections will have very similar layouts. A plot shown in local

basis, also means that the system has been propagated with the excitation having been
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put on the highest-energy chromophore initially. In average eigenbasis, the highest average

eigenstate has been excited initially, and in the adiabatic basis, the same holds for the

highest-energy instantaneous eigenstate. Four methods will be compared: HEOM, NISE,

NISE-DBa and NISE-DBb. The symbols on the y-axes are ρ̄00(t), or the bath-averaged

population, and ρ̄01(t), or the bath-averaged (absolute value of the) coherence.

In all cases except the adiabatic basis, the HEOM results shall be used as a benchmark

for the other methods: their quality of thermalisation shall be determined by comparing the

long-term (equilibrium) populations. Other features that will be inspected are short-term

population oscillations and long-term coherences.

3.2 High-temperature limit

Let us first check the easiest box: whether the methods described in the previous chapter

actually yield the same results in the high-temperature limit. The Hamiltonian under

consideration is as follows:

H(t) =

(
V + σx1(t) V

V σx2(t)

)
(3.1)

where V = 100 cm−1. The values of σi are fixed to 100 cm−1 as well. For this, a small bit

of mental gymnastics is needed, since Eq. (2.14) tells us that the value of σ is not only

determined by the reorganisation energy, but also by the thermal energy. At a temperature

of 109K, the value of λ needs to be fixed to λ = 7.19 · 10−6 cm−1. The number of samples

used is 10000. The value of γ is given as 10 ps−1. The results of this simulation can be

found in Figs. 3.1, 3.2 and 3.3.

As can be seen, the results in all three bases are roughly similar. Any differences

between HEOM and the NISE methods (with and without detailed balance) can be as-

cribed to insufficient sampling. There is no observable difference between the different

NISE methods, regardless of thermal corrections. This is as expected, and shows that the

methods behave as expected in the high-temperature limit.

3.3 Intermediate temperatures

Of course, the justification for the detailed balance methods is that they should perform

better than NISE at finite temperatures. Therefore, this section shall cover three different
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(a) Population of the highest-energy site in the

high-temperature limit. As expected, the pop-

ulations all tend to the same equilibrium.
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(b) The absolute value of the coherence be-

tween the two sites. Once again, the four

methods all recover similar results.

Figure 3.1: The populations and coherences in site basis, in the high-temperature limit.

Owing to the high-temperature correction proposed in Ref. 47, all four methods recover

the same result.
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(a) Population of the highest-energy average

eigenstate in the high-temperature limit. As

expected, all four methods tend to the same,

uniformly distributed, equilibrium.
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(b) The absolute value of the coherence be-

tween the two average eigenstates. The dis-

crepancies between the HEOM and NISE

methods can be attributed to poor sampling.

Figure 3.2: The populations and coherences in average eigenbasis, in the high-

temperature limit. The methods yield very similar results.
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(a) The population of the highest-energy

instantaneous eigenstate in the high-

temperature limit.

0 200 400 600 800 1000
t (fs)

0.00

0.02

0.04

0.06

0.08

ρ̄
01

(t
)

HEOM
NISE
NISE-DBa
NISE-DBb

(b) The absolute value of the coherence be-

tween the two instantaneous eigenstates in the

high-temperature limit. Over time, the coher-

ence should tend toward zero, as the system

is relaxing toward thermal equilibrium. The

remaining coherence at longer timescales can

be attributed to poor sampling.

Figure 3.3: The populations and coherences in adiabatic basis, in the high-temperature

limit. Important to note is the discrepancy between the HEOM and NISE methods. The

results of HEOM are shown in the average eigenbasis, as the method has no equivalent

in the adiabatic basis. Other methods, such as surface hopping, can be used to find a

physically plausible result in the adiabatic basis. A feature that will arise in other systems

is the significantly higher coherence peak in the HEOM trajectory. This should not be

considered a failing of the other methods, rather a limitation of HEOM.
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Figure 3.4: FMO trimer with the protein structure in cartoon representation. Adapted

with permission from Ref. 61. © 2011, American Chemical Society.

systems inspired by real life. In all three cases, the temperatures are considered to be at

room temperature, 300K.

3.3.1 The FMO complex

The Fenna-Mathews-Olson (FMO) complex (Fig. 3.4) is a light harvesting system found

in the green sulphur bacterium Chlorobium tepidium and has been the subject of many

experimental studies due to the (disputed) suggestion of long-lived excitonic coherences

[18,19,21,24]. It consists of a trimer, each of whose parts contains eight chromophores.

In previous work [4] the system has been described with dimer parameters obtained

from Ref. 22. In this description, the average Hamiltonian is given as in Eq. 3.2.

H0 =

(
140 −106
−106 0

)
cm−1 (3.2)

The width of the energetic fluctuations is 150 cm−1 and its coherence time is around

140 fs. In the calculation, a timestep of 1 fs has been used. For the results of the NISE-

related methods, a stochastic average was taken over 50000 samples in order to reduce

the error due the wobbly nature of the individual trajectories. The results for the FMO

complex can be seen in Figs. 3.5 (local basis), 3.6 (average eigenbasis) and 3.7 (adiabatic

basis).
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(a) The population of the highest-energy site

as a function of time. Important features to

note are the fast decoherence of the trajec-

tory according to NISE-DBb, and the fact

that NISE-DBb provides a better match to the

equilibrium population as predicted by HEOM

than NISE-DBa.
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(b) The coherence between the two states in

site basis as a function of time. Important to

note is the fact that NISE underestimates the

equilibrium coherence, whereas both NISE-

DBa and NISE-DBb overshoot the mark, al-

though NISE-DBa provides a much closer ap-

proximation.

Figure 3.5: The populations and coherences of the FMO complex (Eq. (3.2)) in local

basis, with the excitation initially on the highest-energy chromophore. As shown before by

Aghtar et al. (Ref. 47), the NISE-DBb approach underestimates the coherent oscillations

at timescales below 500 fs. NISE-DBa provides a reasonable approximation, though, as

shown by Nijjar et al. (Ref. 48), it does not fully reach the thermal equilibrium as

predicted by HEOM.
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(a) The population of the highest-energy av-

erage eigenstate over time. Note the large dis-

crepancy between NISE and HEOM, and the

fact that both NISE-DBa and NISE-DBb ap-

proximate the thermal equilibrium predicted

by HEOM very closely.
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(b) The absolute value of the coherence be-

tween the average eigenstates. The trajecto-

ries are noisy on short timescales. Moreover,

both NISE-DBa and NISE-DBb highly over-

estimate the coherence at longer timescales.

Figure 3.6: The populations and coherences of the FMO complex (Eq. (3.2)) in average

eigenbasis, with the system initially being in the highest-energy average eigenstate. Both

NISE-DBa and NISE-DBb manage to approach the equilibrium population expected by

HEOM, with NISE-DBa more closely approaching HEOM at short timescales.
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(a) The population of the highest-energy in-

stantaneous eigenstate over time. Although

both NISE-DB methods provide a close ap-

proximation to the HEOM results, the HEOM

populations are shown in average eigenbasis,

complicating a comparison.
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(b) The absolute value of the coherence be-

tween the adiabatic states. The expectation is

that the coherences go to zero when reaching

thermal equilibrium, since no net transport oc-

curs between the adiabatic eigenstates. Both

NISE and NISE-DBa follow this prediction.

HEOM, shown in average eigenbasis, does not

agree with this. NISE-DBb significantly over-

estimates the equilibrium value of the coher-

ence.

Figure 3.7: The populations and coherences of the FMO complex (Eq. (3.2)) in adiabatic

basis, with the system initially being in the highest-energy adiabatic state. NISE and NISE-

DBa reproduce the correct expectation for the absolute value of the coherence at long

timescales, tending to zero. The physical equilibrium found by both methods is difficult

to compare to the result from HEOM, which is shown in average eigenbasis instead.
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Figure 3.8: Schematic overview of the LH2 complex of Rsp. molischianum. Reprinted

with permission from Ref. 1. © 2015, American Chemical Society.

These results suggest that NISE-DBb shows slightly more accurate population relax-

ation in the local basis, accompanied by slightly too fast short-term loss of coherence and

an overestimated equilibrium value of the coherence. NISE-DBa manages to recover the

equilibrium coherence quite well. In the average eigenbasis, however, both NISE-DBa and

NISE-DBb achieve reasonably accurate population relaxation, at the expense of a slightly

worse agreement in the coherences. In the adiabatic basis, both methods show similarly

accurate population relaxation, but only NISE-DBa manages to reach the expected equi-

librium coherence.

NISE-DBa manages to perform quite well. The relatively slow bath decoherence ap-

pears to be helpful in this regard: slow fluctuations mean that the nonadiabatic couplings

remain small and the assertion that they can be treated perturbatively (which underpins

the NISE-DBa method) appears true.

3.3.2 The LH2 complex

The LH2 complex (Fig. 3.8) is a second light-harvesting system, a vital part of the

photosystems of purple bacteria such as Rhodospirillum photometricum and Rsp. molis-

chianum [1, 16]. In previous work (Ref. 4) it has been described with dimer parameters

obtained from Rsp. molischianum in Ref. 62. This Hamiltonian is given in Eq. 3.3.
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H0 =

(
300 47

47 0

)
cm−1 (3.3)

The width of the energetic disorder is 100 cm−1, the decoherence time is 100 fs and a

timestep has been used of 1 fs. A stochastic average was taken over 20000 samples. The

results can be seen in Fig. 3.9.

These results suggests that NISE-DBb has a significant edge over NISE-DBa in the

parameter regime associated with the Hamiltonian in Eq. (3.3), that is, the dynamic

disorder (σ = 100 cm−1) is significantly smaller than the static disorder (∆E = 300 cm−1)

and the difference in energy between the average eigenstates. This means that the average

Hamiltonian is a good description of the system, and the perturbative treatment in NISE-

DBb is justified.

3.3.3 The amide I and II bands

The third and last nature-inspired system that we will be considering in this work is the

coupling between the amide I and II bands. Relaxation from the amide I to amide II

band has been suggested to play a role in the transport of excess energy, e.g. after ATP

hydrolysis [63].

As done before in Ref. 4, the dimer parameters are taken from Ref. 63, where N -

methyl acetamide (NMA) is used as a model for the peptide bond found in the backbone

of proteins. The average Hamiltonian is given in Eq. (3.4).

H0 =

(
70 36

36 0

)
cm−1 (3.4)

The width of the energetic disorder is 25 cm−1, the decoherence time is 50 fs. A timestep

has been taken of 1 fs and a stochastic average has been taken over 20000 samples. The

results of the simulations are shown in Fig. 3.10.

These results show that the parameter regime of relatively fast fluctuations (τ = 50 fs)

is not suited to the NISE-DBa method. The NISE-DBb method performs slightly better in

showing the right trend, despite the ∼ 5% absolute difference between HEOM and NISE-

DBb populations. The dynamic disorder is small enough that the average Hamiltonian

describes the system decently.
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(a) The populations in local basis.
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(b) The populations in average eigenbasis.
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(c) The populations in adiabatic basis.

Figure 3.9: The populations of the LH2 complex (Eq. (3.3)) in (a) local basis, (b) aver-

age eigenbasis and (c) adiabatic basis. There are very few differences between each of the

three graphs except short-term population dynamics. While NISE-DBb shows faster-than-

expected population relaxation at short timescales, it makes up for the loss by giving ac-

curate results for the equilibrium population. NISE-DBa, while showing promising results

in short-timescale dynamics, does not achieve nearly as accurate equilibrium populations.
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(a) The populations in local basis.
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(b) The populations in average eigenbasis.
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(c) The populations in adiabatic basis.

Figure 3.10: The populations of the amide I/amide II system (Eq. (3.4)) in (a) local

basis, (b) average eigenbasis and (c) adiabatic basis. The discrepancies between HEOM

and the NISE-DB methods are large, especially after t = 1000 fs.
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3.4 Limitations of the perturbative approach

For this section, an approach is used that reflects Ref. 47. There, the authors fix the

average Hamiltonian to Eq. (3.5).

H0 =

(
V V

V 0

)
(3.5)

where V = 100 cm−1. The temperature is kept at a constant 300K, but the reorganisation

energy, which determines the width of the distribution of site energies, is varied between

different values. The bath decoherence time is kept constant at 100 fs. Doing this, it is

possible to identify the parameter regimes in which the approach works best. From the use

of Fermi’s Golden Rule, it has become clear that the accuracy of the thermal corrections

should depend on the strength of the fluctuations. The expectation is that systems with

small fluctuations can be described better by the thermalised model than systems with

large fluctuations. The goal is to get a decent grasp on the parameter regimes that can be

described by the two thermalised models. The results of these simulations can be seen in

Fig. 3.11 (local basis) and Fig. 3.12 (average eigenbasis).

In local basis, NISE-DBb appears to lose coherence quickly, but manages to converge

to the population predicted by HEOM. A feature that can be seen in Fig. 3.11 is the

fast population relaxation (starting linearly at t = 0, rather than quadratically like other

methods) as predicted by NISE-DBa. This is an unphysical result, which can be due to

large denominators in Eq. (2.75). The performance of NISE-DBa can see improvements if

we find a solution to this problem.

A nice observation is that when exciting only the highest average eigenstate, the NISE-

DBa method can yield results that are strikingly close to the results predicted by HEOM.

This spells good news for its ability to reproduce some two-dimensional spectra, since the

observables are closely (but not exactly) linked to dynamics in the average eigenbasis.

3.5 Larger-scale systems

It is promising that the adiabatic detailed balance method (NISE-DBa) seems to work

well for many systems, especially when considering the populations in average eigenbasis.

However, in order for this method to have a marginal benefit over NISE or HEOM, it

must continue to yield accurate results in larger systems. To this end, it is useful to start

simulating larger systems. The first hurdle to overcome is to go from a dimer system to
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(a) The small fluctuation limit, where λ =

2 cm−1, resulting in a width of σ = 28.9 cm−1
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(b) The intermediate fluctuation limit, where

λ = 20 cm−1, resulting in a width of σ =

91.3 cm−1
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(c) The large fluctuation limit, where λ =

100 cm−1 and σ = 204.2 cm−1
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(d) The very large fluctuation limit, where λ =

500 cm−1 and σ = 456.6 cm−1

Figure 3.11: The population of the highest-energy chromophore over time, for the Hamil-

tonian in Eq. (3.5). For small fluctuations, up to σ = 91.3 cm−1, the NISE-DBa method

gives reasonable results. In the large fluctuation limit, despite its quick short-term loss

of coherence, NISE-DBb reproduces the equilibrium population very accurately. For large

dynamic disorder, neither of the NISE-DB methods achieves good agreement with HEOM.
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(a) The small fluctuation regime, where λ =

2 cm−1 and σ = 28.9 cm−1
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(b) The intermediate fluctuation regime,

where λ = 20 cm−1 and σ = 91.3 cm−1
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(c) The large fluctuation regime, where λ =

100 cm−1 and σ = 204.2 cm−1
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Figure 3.12: The populations of the highest-energy average eigenstates over time, for the

Hamiltonian in Eq. (3.5). No matter the size of the dynamic disorder, NISE-DBa appears

to reproduce the dynamics of HEOM very accurately.



3.5. LARGER-SCALE SYSTEMS 57

a trimer system. NISE-DBa deals with populations in the adiabatic basis. In a dimer,

the two adiabatic states are always correctly ordered: crossings of the site basis energies

yields an avoided crossing in adiabatic basis. However, this ordering disappears when we

are dealing with a trimer system - suddenly, there is a possibility of level crossings. While

this is easy to realise in a analytic setting, since the time evolution preserves invariant

subspaces of the Hilbert space, the in silico implementation has proven to be challenging:

the ordering of the eigenstates causes computational problems, and we must thus keep

track of it ourselves. This has resulted in the ‘swaps’ subroutine, explained in Appendix

B.

3.5.1 A dimer disguised as a trimer

The simplest trimer system that adds complexity to our calculation would be a system

whose Hamiltonian is defined in Eq. .

H0 =



V V 0

V 0 0

0 0 −V


 cm−1 (3.6)

where V = 100 cm−1. This would be equivalent to taking the system in Section 3.4 and

adding a third chromophore at infinity. All three chromophores’ energies fluctuate, however

only two of the molecules feel each others’ influence due to a nonzero excitonic coupling.

It is now possible to define two invariant subspaces in our Hilbert space: populations in

the first two states will evolve in exactly the same way as in 3.4, whereas any population

on the third site will not evolve over time at all.

Having implemented the aforementioned ‘swaps’ routine, it becomes easy to see that

the results are identical to the ones in 3.4. Given that λ = 20 cm−1 and γ = 10 ps−1, the

results can be seen in Fig. 3.13.

These results show that all methods used in this work conserve the invariant subspaces

of the system’s Hilbert space.
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(a) The population in local basis.
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(b) The population in average eigenbasis.

Figure 3.13: The time dependence of the populations in the hypothetical trimer system

whose Hamiltonian is given by Eq. (3.6). As expected, the population transfer follows the

same dynamics as the dimer system in the intermediate fluctuation regime, as shown in

Figs. 3.11b and 3.12b.
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(a) The population in local basis.
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(b) The population in average eigenbasis.

Figure 3.14: The time dependence of the populations in the hypothetical trimer system

whose Hamiltonian is given by Eq. (3.7).

3.5.2 One step further: an equilateral trimer

Now, it is time to explore the accuracy of the NISE-DBa and NISE-DBb methods if we

are dealing with a fully-connected trimer whose Hamiltonian is given in Eq. (3.7).

H0 =



V V V

V 0 V

V V −V


 cm−1 (3.7)

where V = 100 cm−1. This would be equivalent to placing the three chromophores in an

equilateral triangle, since the interactions between each of the three pairs of chromophores

is equally strong. The resulting trajectories are shown in Fig. 3.14.

An obvious feature of the above trajectories is the quick loss of coherence in the NISE-

DBa and NISE-DBb schemes, when starting out with all population on the highest-energy

chromophore. However, NISE-DBa still performs well when looking at the trajectory in

average eigenbasis. Perhaps the performance of NISE-DBa can be improved by looking at

alternatives to its ‘swaps’ routine, as laid out in Appendix B.
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3.6 Discussion

Of all the simulations in this chapter, perhaps the most important are the computations

in average eigenbasis, and the simulations of the equilateral trimer.

The former are important because they are closely linked to how excitons are trans-

ported in nature and experiment: the excitonic states are the eigenstates of the time-

averaged Hamiltonian over the relevant interaction time (i.e. the pulse lengths in a 2D

spectroscopic experiment). Therefore, producing results that are close to the HEOM pre-

dictions in the average eigenbasis spells good news for a method. In many of the simula-

tions, NISE-DBa appears to get results that are very close to those of HEOM.

The latter are important because our models must be easily generalisable to larger

systems, since this is where NISE has an edge over HEOM in terms of computational

cost. While neither of the NISE-DB methods give very good results when considering

the transport between individual chromophores, but NISE-DBa, at least in the parameter

regime considered, gives reasonable results in the average eigenbasis.

3.6.1 On the relevance of basis

The astute reader might find a problem with particular methods doing well in one basis,

while not performing well in another. This would indeed be a problematic thing if the

physics displayed in the graphs were completely the same. The thermal corrections in

the NISE-DB methods are not basis-dependent (luckily so, or else we might find that our

results make no physical sense). However, the way the simulations are set up prevents a

simple comparison between the results in two bases. That is, the physics of the underlying

processes are ever so slightly different.

Consider first the population dynamics in local basis: this involves the excitation of

a single chromophore. This excitation will be transported to other chromophores, and

eventually the system will arrive at a thermal equilibrium, which is the same for all possible

bases. In average eigenbasis, the highest-energy average eigenstate will be excited, which

is (on average) the state that light will couple to. Over time, the system will again find

thermal equilibrium. The final states might be the same, but the initial conditions, and

thus the dynamics, will not be.
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3.6.2 Computational artifacts

There are two issues that arise in the NISE-DBa method. The first of these is the quick

transport between individual chromophores around t = 0, which shows approximately

linear behaviour, rather than quadratic as expected. This is likely to be caused by the

possibility of small denominators in Eq. (2.75). This only (noticeably) occurs in local basis,

which can happen because two sites can temporarily be very close in energy. This brings the

wavefunction coefficients in adiabatic basis close together, yielding a small denominator.

It might be necessary to find an alternative formulation to reproduce the high-temperature

results.

The second is that larger-than-dimer systems can have crossings between adiabatic

states. This makes it difficult to keep track of the adiabatic states, which is necessary

to correctly compute the time evolution with NISE-DBa. Current methods of tracking

these states might allow small errors, yielding very ‘noisy’ data such as in Fig. 3.14. If a

better method exists, it might be useful to look into. Otherwise, the only option will be

to reduce the timestep, since this allows tracking individual states more easily. A more

detailed explanation is given in Appendix B.

3.6.3 Computational cost

A quick evaluation of the computational cost of the new methods is in order. In principle,

there is a small difference between the two NISE-DB methods, giving a slight edge to the

NISE-DBb method (as previously mentioned by Bastida et al. in Ref. 5).

NISE-DBa

The NISE-DBa method requires two matrix diagonalisations. The first finds the basis

functions of the adiabatic basis at any particular timestep, and the energies associated

with these basis functions. From this, it is possible to calculate the nonadiabatic couplings

and their thermal corrections. However, a second matrix diagonalisation is needed, because

the nonadiabatic couplings still need to be exponentiated. As such, the algorithm requires

two eigenvalue decompositions of order O(N3).

NISE-DBb

In principle, NISE-DBb allows the computation of the average Hamiltonian outside of the

main loop of the NISE algorithm, meaning that it need only be exponentiated once. What
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remains is exponentiating the (corrected) perturbation at every timestep. This means that

the computational cost of NISE-DBb is slightly smaller than that of NISE-DBa. However,

since this is a simple factor and not a scaling effect, it will not cause drastic differences in

computational cost.
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Conclusion

This chapter will cover the conclusions of this work. In the first section, we will talk about

the interpretation of the results. In the second section, we will talk about the possible

improvements that can be made on the different methods. In the third section, we will

finish off by talking about the possible implications of this work.

4.1 Interpretation of the results

In this work, a comparison was made of two different perturbative finite-temperature meth-

ods to describe open quantum systems, named NISE-DBa and NISE-DBb (Numerical Inte-

gration of the Schrödinger Equation with Detailed Balance, versions a and b). NISE-DBa

uses a thermal correction to the nonadiabatic couplings, whereas NISE-DBb corrects the

perturbations in average eigenbasis, i.e. the basis associated with the idealised excitonic

states of a system. Both methods are designed to improve the finite-temperature calcula-

tions of NISE, which is originally temperature-agnostic but provides much better scaling

with system size than the Hierarchical Equations of Motion (HEOM). Although both meth-

ods have been implemented and tested before (albeit under different names and with slight

adjustments) [5,46–48], this research is, to the best of our knowledge, the first to compare

both versions in quantum parameter regimes that are relevant to light-harvesting systems.

The NISE-DBb method, first introduced by Bastida et al. in Ref. 5 and modified

by Aghtar et al. in Ref. 47, has been tested extensively, albeit under the name of the

Ehrenfest method, while the supposed quantum feedback due to the Hellmann-Feynman

forces has been neglected. The NISE-DBa method, implemented by Bastida et al. in

Ref. 46 and modified by Nijjar et al. in Ref. 48 (there named Ehrenfest-DDB, or the
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Ehrenfest method with decoherence and detailed balance). In order to be able to compare

the results of the two methods on equal footing, we modified the NISE-DBa method to

recover high-temperature results using the approach in Ref. 47 and described in Section

2.3.6.

This work provides insight into how the results of the two methods compare to HEOM,

which is considered a ‘gold standard’ for quantum dynamics simulations, and whose results

have been compared to experimental data, albeit not very thoroughly (see Section 1.4.1).

In the high-temperature limit, the methods all show the same behaviour, owing to the

high-temperature correction proposed by Aghtar et al. in Ref. 47.

Comparing the results side-by-side for a few systems, including FMO, LH2 and the

amide I to amide II relaxation, and some artificial systems shows that both methods

provide a significant gain in accuracy over NISE without detailed balance. Depending on

the system, picking either NISE-DBa or NISE-DBb can have an advantage over the other.

Due to the perturbative nature of both methods, NISE-DBa works best in situations

where the energies fluctuate slowly (i.e. at or near the static limit). NISE-DBb works

best in case the Hamiltonian can be approximated by its average (i.e. when the width of

the energetic disorder is small compared to the other energetic parameters, i.e. the energy

difference between individual chromophores, and the couplings).

4.2 The next steps for NISE-DB

Generalisation of the NISE-DB methods to larger-scale systems appears to work ade-

quately. However, additional performance enhancements are possible for both the NISE-

DBa and NISE-DBb methods. Both methods are hampered by the possibility of a small

denominator in the thermal correction of the perturbations, which can lead to unphysically

fast decoherence. In addition, the need to keep track of adiabatic basis populations in the

case of NISE-DBa leads to slightly worse performance (read: faster decoherence and more

noisy results) for larger systems. A routine that manages to correctly preserve the physics,

regardless of the system, needs to be developed in order to fix this problem.

The next step in verifying the effectiveness of the detailed balance schemes for NISE

is to use them to compute observables such as absorption spectra, and in particular 2D

spectra. If the spectra simulated using the NISE-DB methods come close to experimental

spectra, or those generated with HEOM, we know that we have a model whose physics

can describe actual observations. Being able to do so with relatively little computational
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effort will prove to be useful in discovering the underlying physics in large-scale biological

systems.

4.3 The future in semi-classical models

The current developments in computationally cheap methods of simulating open quantum

systems show that no method is foolproof, and none of the newly proposed methods exactly

reflect reality. However, having methods that closely match the results of HEOM, but which

use only a fraction of the computational resources, will be beneficial in the discovery of

the working of light harvesting systems. The relative computational time gain achieved

by these methods may prove to speed up the search for potential artificial light harvesting

systems, which might otherwise be impossible, due to the large number of potential systems

that need to be investigated. Additionally, the scale of the systems that can be studied

will increase, as the scaling of NISE and the NISE-DB methods with respect to system size

is very favourable.

If we can deduce the factors that are important for efficient exciton transport, we will

not only learn how nature has developed efficient light harvesting systems, but also how to

mimic nature and build organic electronics and artificial light harvesting systems, paving

the way for clean and abundant energy production.
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Chapter 5

Contributions

For this work, I have made use of the NISE 2017 code [64–68] written by Thomas la Cour

Jansen. Contributions to the code have been previously made by Floris P. Westerman. I

have also made use of the PHI software [44] for the HEOM calculations.

I have personally contributed the thermal corrections, NISE DBa and NISE DBb rou-

tines, and performed all the simulations (HEOM, NISE and NISE-DB) shown in this work.
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Appendix A

Mathematical proofs and derivations

Here, we will lightly touch on some of the proofs that underlie some of the assumptions in

this chapter. Some of these, such as Fermi’s Golden Rule and the adiabatic theorem, can

be found in (introductory) texts on quantum mechanics [3], but they have been compiled

here for brevity.

The first section will cover the Langevin equation. In the second section, we will

cover Fermi’s Golden Rule. The third section is about the adiabatic theorem. In the

fourth section, we will cover the different definitions of the nonadiabatic couplings used,

and show that they are equivalent. The fifth section covers the formal derivation of the

so-called ‘quantum correction’ or thermal correction used in this work.

A.1 Solving the Langevin equation

The Langevin equation, as given before in (2.16), is as follows:

v̇(t) = − γ
m
v(t) + ξ(t) (A.1)

We will look at its solution, following the methods outlined in Ref. 55.

The random force f(t) has a Gaussian distribution centered on zero, which is considered

to be white noise:

⟨fi(t)⟩ = 0 (A.2)

⟨fi(t)fj(t′)⟩ = gδijδ(t− t′) (A.3)

where the delta function δij indicates that the forces on different bath variables are com-

pletely uncorrelated, and δ(t−t′) indicates that the noise is white in nature. The ‘strength’

71
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g has yet to be determined, but is considered to be the standard deviation of the random

variable. From Eq. (2.16) we can infer that

⟨ξi(t)ξj(t′)⟩ =
g

m2 δijδ(t− t
′) (A.4)

In finding g, we will derive the fluctuation-dissipation theorem for overdamped Brownian

motion. The first step is to find the Green function for Eq. (2.16), which is

G(t, t′) = e−
γ
m
(t−t

′
)Θ(t− t′) (A.5)

where Θ(t) is the Heaviside step function. The solution for v(t) is

v(t) =

∞∫

−∞

dt′e−
γ
m
(t−t

′
)Θ(t− t′)ξ(t′) (A.6)

and substituting t1 = t− t′ yields

v(t) =

∞∫

−∞

dt1e
− γ

m
t1Θ(t1)ξ(t− t1) =

∞∫

0

dt1e
−γt1ξ(t− t1) (A.7)

The expectation value ⟨v2⟩ is then given as

⟨v2(t)⟩ =
∞∫
0

dt1
∞∫
0

dt2e
− γ

m
(t1+t2) ⟨ξ(t− t1)ξ(t− t2)⟩ (A.8)

= g

m
2

∞∫
0

dt1
∞∫
0

dt2e
− γ

m
(t1+t2)δ(t1 − t2) (A.9)

(A.10)

whose result is

⟨v2(t)⟩ = g

2γm
(A.11)

Using the equipartition theorem in one dimension, we know that

⟨v2(t)⟩ = kBT

m
(A.12)

and equating the last two equations gives

g = 2γkBT (A.13)

This is the simplest form of the fluctuation-dissipation theorem [55]: the size of the fluc-

tuations is proportional to the friction (dissipation) in the system.
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A.2 Fermi’s Golden Rule

We can use a short derivation to compute the transition rates between states in pertur-

bation theory, which is given in Ref. 2. Given a wavefunction |Ψ(t)⟩ which is defined as

follows

|Ψ(t)⟩ =
∑

n

cn(t) |ψn⟩ e−
i
ℏEnt (A.14)

and a Hamiltonian H(t) = H0 + V (t) whose the time-dependence is considered to be fully

contained in the perturbing potential V (t), we can use the Schrödinger equation, Eq. (2.1),

to find

∑

n

cn(t)H(t) |ψn⟩ e−
i
ℏEnt = iℏ

∑

n

[
ċn(t) |ψn⟩ −

i

ℏ
Encn(t) |ψn⟩

]
e−

i
ℏEnt (A.15)

where we can bring the last term on the right over to the left-hand side to get

∑

n

cn(t)e
− i

ℏEntV (t) |ψn⟩ = iℏ
∑

n

ċn(t) |ψn⟩ e−
i
ℏEnt (A.16)

and multiply by ⟨ψm| on both sides to get

∑

n

Vmn(t)cn(t)e
− i

ℏEnt = iℏ
∑

n

ċn(t)δnme
− i

ℏEnt = iℏċm(t)e−
i
ℏEmt (A.17)

where we have used Vmn = ⟨ψm|V (t)|ψn⟩ and ⟨ψm|ψn⟩ = δmn. We can rewrite it as follows

ċm(t) = −
i

ℏ
∑

n

Vmn(t)cn(t)e
iωmnt (A.18)

where ωmn = Em−En

ℏ .

In most physical cases, the diagonal elements of V (t) are zero, which comes in handy

if we want to give a perturbative estimate for the populations in each of the states. In the

adiabatic basis, as shown in A.3, this assumption holds because of the antisymmetry of

the nonadiabatic coupling matrix.

If we now consider a two-level system with energies Ea and Eb, we get two coupled

differential equations for the individual coefficients ca(t) and cb(t). Assuming that we

start out with our population fully in state |ψa⟩, we can find the transition probability

perturbatively. To first order in perturbation theory, we find

ċ
(1)
b (t) = − i

ℏ
Vba(t)e

iωbat (A.19)
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which can be integrated to get

c
(1)
b (t) = − i

ℏ
Vba

t∫

0

dt′eiωbat =
Vba
ℏωba

(1− eiωbat) (A.20)

where we assume that our perturbation is (at least temporarily) time-independent. Now,

we can find the population in state |ψb⟩ to first order:

ρ
(1)
bb (t) = |c

(1)
b (t)|2 =

∣∣∣∣
Vba
ℏωba

∣∣∣∣
2

(2− 2 cosωbat) =

∣∣∣∣
2Vba
ℏωba

∣∣∣∣
2

sin2 ωbat

2
(A.21)

For short timescales, this is proportional to t2, so we cannot define a proper rate constant.

Over long timescales, however, we can take the limit

ρ
(1)
bb (t) = lim

t−→∞

∣∣∣∣
Vba
ℏ

∣∣∣∣
2

t
sin2Ωt

Ω2t
= πt

∣∣∣∣
Vba
ℏ

∣∣∣∣
2

δ(
ωba

2
) =

2π|Vba|2
ℏ2

δ(ωba)t (A.22)

If we take the derivative of the previous equation, we can find the transition rate:

kb←−a =
∂

∂t
ρ
(1)
bb (t) =

2π|Vba|2
ℏ2

δ(ωba) (A.23)

We thus find out that kn←−m ∝ |Vnm|2 and km←−n ∝ |Vmn|2, which is the consequence

of Fermi’s Golden Rule.

A.3 The adiabatic theorem

The adiabatic theorem is a result in time-dependent perturbation theory, where we can

describe the dynamics of our system as moving on a single adiabatic surface, provided that

the time dependence of our system is slow enough that we can describe the perturbations

as roughly constant. It should remind the reader of the Born-Oppenheimer approximation,

which assumes the time evolution of the nuclear positions occurs on much smaller timescales

than the evolution of the electronic degrees of freedom. In deriving the adiabatic theorem,

one usually obtains a term which is negligible under the assumption that the perturbation

varies slowly [2]. In our case, however, this assumption does not hold and therefore we

should keep this term.

First of all, let us assume |ψ̃n(t)⟩ is the set of eigenvectors of our Hamiltonian at time

t, each with eigenvalues ϵn(t). This is also called the adiabatic basis [69].

H(t) |ψ̃n(t)⟩ = ϵn(t) |ψ̃n(t)⟩ (A.24)
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We can write the original Hamiltonian H(t) in its eigendecomposition as follows:

H(t) = C†(t)H̃(t)C(t) (A.25)

Where C(t) is the unitary matrix containing the Hamiltonian’s eigenvectors in column

form, and C†(t) is its Hermitean conjugate. In the case of a real Hamiltonian, we can find

an orthogonal C(t), simplifying any calculations we might want to do.

Next, let us decompose our wavefunction |Ψ(t)⟩ in adiabatic basis:

|Ψ(t)⟩ =
∑

n

cn(t) |ψ̃n(t)⟩ (A.26)

According to the Schrödinger equation, its time evolution is given as:

iℏ
∂

∂t

∑

n

cn(t) |ψ̃n(t)⟩ = H(t)
∑

n

cn(t) |ψ̃n(t)⟩ (A.27)

Which can be rewritten to

∑

n

cn(t)ϵn(t) |ψ̃n(t)⟩ = iℏ
∑

n

[
ċn(t) |ψ̃n(t)⟩+ cn(t) | ˙̃ψn(t)⟩

]
(A.28)

Where a dot above a variable indicates its time derivative. Remembering that our goal

is to find an expression for cn(t), we would like to make this into a differential equation.

Bringing all instances of ċn(t) to the left-hand side, and all instances of cn(t) to the right

and multiplying by ⟨ψ̃m(t)| gives us:
∑

n

ċn(t) ⟨ψ̃m(t)|ψ̃n(t)⟩ = −
i

ℏ
∑

n

cn(t)
[
ϵn(t) ⟨ψ̃m(t)|ψ̃n(t)⟩ − iℏ ⟨ψ̃m(t)| ˙̃ψn(t)⟩

]
(A.29)

Realising that ⟨ψ̃m(t)|ψ̃n(t)⟩ = δmn, we can rewrite it in the following form:

ċm(t) = −
i

ℏ
∑

n

Pmn(t)cn(t) (A.30)

where we have defined a propagator matrix P (t) combining both adiabatic and non-

adiabatic behaviour, which can be written as follows:

Pmn = ϵm(t)δmn + iℏSmn(t) (A.31)

where Smn(t) = ⟨ ˙̃ψm(t)|ψ̃n(t)⟩ are the nonadiabatic couplings, which promote transfer be-

tween adiabatic basis states. We can integrate Eq. (A.30) numerically to find

cm(t+∆t) =
∑

n

(
e−

i
ℏP (t)∆t

)
mn
cn(t) (A.32)
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From their definition in Dirac notation, we can write the nonadiabatic couplings in

matrix notation as follows

Smn(t) = Ċ†
mk(t)Ckn(t) (A.33)

where C(t) is the matrix containing the eigenvectors of H(t) in its columns. Since the

propagator matrix needs to be Hermitean, we can infer that iℏS(t) needs to be anti-

Hermitean, i.e. (iℏS(t))† = iℏS(t), so S†(t) = −S(t). Moreover, since the eigenvectors

of the Hamiltonian will be real, up to an arbitrary complex phase, we can infer that S(t)

must be real and antisymmetric.

A.3.1 An alternative nonadiabatic coupling

There is another way of defining the nonadiabatic couplings, which exploits a time deriva-

tive of the eigenvalue equation, as shown in Ref. 2:

∂

∂t
(H(t) |ψ̃n(t)⟩) =

∂

∂t
(En(t) |ψ̃n(t)⟩) (A.34)

which is expanded to

Ḣ(t) |ψ̃n(t)⟩+H(t) | ˙̃ψn(t)⟩ = Ėn(t) |ψ̃n(t)⟩+ En(t) | ˙̃ψn(t)⟩ (A.35)

We can multiply on the left by ⟨ψ̃m(t)| to get

⟨ψ̃m(t)|Ḣ(t)|ψ̃n(t)⟩+⟨ψ̃m(t)|H(t)| ˙̃ψn(t)⟩ = Ėn(t) ⟨ψ̃m(t)|ψ̃n(t)⟩+En(t) ⟨ψ̃m(t)| ˙̃ψn(t)⟩(A.36)

Using the hermiticity of H(t) and the orthonormality of basis vectors, we get

⟨ψ̃m(t)|Ḣ(t)|ψ̃n(t)⟩ = Ėn(t)δnm + (En(t)− Em(t)) ⟨ψ̃m(t)| ˙̃ψn(t)⟩ (A.37)

and for n ̸= m, we get

−Smn(t) = ⟨ψ̃m(t)| ˙̃ψn(t)⟩ =
⟨ψ̃m(t)|Ḣ(t)|ψ̃n(t)⟩
En(t)− Em(t)

(A.38)

from which one can see that energy levels that are close together will yield high nonadiabatic

couplings. If two energy levels in diabatic basis cross each other, the resulting nonadiabatic

couplings will be the largest. We call this an avoided crossing, since the denominator in

Eq. (A.38) will not go to zero, but it will find a minimum.
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A.3.2 An extension of Fermi’s Golden Rule

In the adiabatic basis, as we can see, the role of the perturbing potential is played by the

nonadiabatic couplings. We can consider the substitution V (t) = iℏS(t), and assume S(t)

to be constant for a short amount of time, such that we can solve our differential equations

numerically. If this is the case, then it follows from Fermi’s Golden Rule, Eq. (A.23), that

km←−n =
2πℏ2|Smn(t)|2

ℏ2
δ(ωmn) = 2π|Smn(t)|2δ(ωmn) (A.39)

A.4 Equivalence of nonadiabatic couplings

Among many definitions of population dynamics in the adiabatic basis, the one used by

Bastida and Prezhdo [46,48] is as follows

iℏċm(t) =
∑

n

(
Emδmn − iℏd⃗(1)mn ·

P⃗

M

)
cn(t) (A.40)

Here, the term −iℏd⃗(1)mn · P⃗
M

looks eerily like iℏSmn. Let us check that the two definitions

are equivalent. The definition of the nonadiabatic coupling is:

d⃗(1)mn = ⟨ψ̃m(r⃗, R⃗(t))|∇⃗ψ̃n(r⃗, R⃗(t))⟩ (A.41)

with r⃗ being the electronic coordinates (which we shall not consider in this derivation),

R⃗(t) = Ri(t) being the nuclear coordinates, ∇⃗ = ∂
∂Ri

indicating derivatives with respect to

the nuclear coordinates, and P⃗
M

= Pi

M
indicating the velocities of the nuclei themselves.

The fact that |ψ̃m⟩ depends on Ri(t) shows us that Without loss of generality with

regards to the equation of motion of the nuclear degrees of freedom, we can state:

−d⃗(1)mn ·
P⃗

M
= −⟨ψ̃n(r⃗, R⃗(t))|

∂t

∂Ri

∂

∂t
ψ̃m(r⃗, Ri(t))⟩

Pi

M
(A.42)

= −⟨ψ̃n(t)| ˙̃ψm(t)⟩
(
Pi

M

)−1
Pi

M
(A.43)

= Smn (A.44)

And thus, we can conclude that these two definitions of the nonadiabatic coupling are

equivalent.
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A.5 Semi-classical time-correlation functions

I have covered a heuristic explanation of the thermal correction to the perturbing potential

and the nonadiabatic couplings in Section 2.3.4. Now, I will touch on the basics of the

original derivation of this correction, and a few of the alternatives laid out in Ref. 60.

For a complete description of our quantum system in its bath environment, we must

treat the bath degrees of freedom quantum mechanically as well. That means that we

consider our complete wavefunctions |Ψ⟩ to be of the form

|Ψ⟩ = |ψS⟩ |χB⟩ (A.45)

where |ψS⟩ are the system wavefunctions and |χB⟩ are the bath wavefunctions. The tran-

sition rates according to Fermi’s Golden Rule given in Eq. (A.23) can now be rewrit-

ten [49,60] by considering the bath expectation value of the transition rates:

kqm←−n(t) =
2π

ℏ2
∑

α

P (α) ⟨α| |Vmn|2 |α⟩ δ
(Em − En + Eα − Eβ

ℏ
)

(A.46)

where P (α) is the probability of finding the bath in state |α⟩, which is given by the

Boltzmann factor 1
Z
e−βEα , where Z =

∑
α

e−βEα = Tr[e−βHB ] is the partition function. We

can turn the delta function into an exponential as follows

kqm←−n(t) =
1

ℏ2
∑

α

e−βEα

∞∫

−∞

dt′ e
it
′

ℏ (Em−En+Eα−Eβ) ⟨α| |Vmn|2 |α⟩ (A.47)

we can replace |Vmn|2 by the symmetrical formula

|Vmn|2 =
1

2
[V †

nmVmn + VmnV
†
nm] (A.48)

from which it follows that

kqm←−n =
1

2ℏ2

∞∫

−∞

dt′ eiωmnt
′∑

α

1

Z
e−βEαe

it
′

ℏ (Eα−Eβ)[⟨α|V †
nmVmn + VmnV

†
nm |α⟩] (A.49)

where we can insert a complete set of states
∑
β

|β⟩ ⟨β| = 1 to turn the sum over α into a
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double sum:
∑

α, β

1

Z
e−βEαe

it
′

ℏ (Eα−Eβ)[⟨α|V †
nm |β⟩ ⟨β|Vmn |α⟩+ ⟨α|Vmn |β⟩ ⟨β|V †

nm |α⟩] (A.50)

=
∑

α, β

1

Z
e−βEα [⟨α| e i

ℏHBtV †
nme

− i
ℏHBt |β⟩ ⟨β|Vmn |α⟩+ ⟨α| e

i
ℏHBtVmne

− i
ℏHBtV †

nm |β⟩ ⟨β|Vmn |α⟩]

(A.51)

=
∑

α

1

Z
e−βEα [⟨α|V †

nm(t
′)Vmn(0) + Vmn(t

′)V †
nm(0) |α⟩] = Gmn(t) (A.52)

where G(t) is the quantum time-correlation function (TCF) of the perturbing potential,

which is defined as

Gmn(t) =
1

2

[
⟨V †

nm(t)Vmn(0)⟩+ ⟨Vmn(t)V
†
nm(0)⟩

]
(A.53)

where

⟨V †
nm(t)Vmn(0)⟩ =

Tr[e−βHBV †
nm(t)Vmn(0)]

Tr[e−βHB ]
(A.54)

whose numerator must obey a few time symmetries. First, we must be aware of the relation

Tr[e−βHBV †
mn(t)Vmn(0)] = Tr[e−βHBe

it
ℏ HBV ⋆

nm(0)e
− it

ℏ HBVmn(0)] (A.55)

= Tr[e−βHBV ⋆
nm(0)e

− it
ℏ HBVmn(0)e

it
ℏ HB ] (A.56)

= Tr[e−βHBV ⋆
nm(0)Vmn(−t)] (A.57)

where we exploit the cyclic property of the trace and write Vmn(t) = e
it
ℏ HBVmn(0)e

− it
ℏ HB

in the Heisenberg picture. I have also assumed that Vmn(t) is an operator on the bath

coordinates. One can now perform the following manipulation:

⟨V †
nm(−t)Vmn(0)⟩ =

Tr[e−βHBe−
it
ℏ HBV †

nm(0)e
it
ℏ HBVmn(0)]

Tr[e−βHB ]
=

Tr[e−βHBVmn(t)V
†
nm(0)]

Tr[e−βHB ]
(A.58)

where I used the cyclic property of the trace, and a little sleight of hand with Eq. (A.55)

yields the relations

Gmn(−t) = G⋆
mn(t) = Gmn(t− iβℏ) (A.59)

The first equality makes sure that the TCF consists of a real, symmetric part and an

imaginary, antisymmetric part. The second ensures that the TCF obeys detailed balance,

as will become clear when looking at the Fourier transform of the TCF:

Ĝmn(ω) =

∞∫

−∞

dt eiωtGmn(t) (A.60)
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which has the property

Ĝmn(−ω) =
∞∫

−∞

dt e−iωtGmn(t) =

∞∫

−∞

dt′eiωt
′
Gmn(−t′) (A.61)

=

∞∫

−∞

dt′eiωt
′
Gmn(t

′ − iβℏ) =
∞∫

−∞

dt′′eiω(t
′′
+iβℏ) (A.62)

=

∞∫

−∞

e−βℏω
∞∫

−∞

dt′′eiωt
′′
G(t′′) = e−βℏωĜmn(ω) (A.63)

which means that the rate constants indeed satisfy detailed balance.

The challenge in carrying over the detailed balance to the semi-classical approxima-

tion, lies in finding the quantum TCF. Since taking the trace over the bath variables is

not a viable option in the case of large systems, some other solution is needed. As said

before, G(t) can be split up into GR(t), a real, symmetric part, and iGI(t), an imaginary

antisymmetric part.

G(t) = GR(t) + iGI(t) (A.64)

whose symmetries are proven by the following equation:

G(−t) = GR(−t) + iGI(−t) = G⋆(t) = GR(t)− iGI(t) (A.65)

The Fourier transform of the TCF can also be rewritten:

Ĝ(ω) = ĜS(ω) + ĜA(ω) (A.66)

where

ĜS(ω) =

∞∫

−∞

dt eiωtGR(t) (A.67)

and

ĜA(ω) = i

∞∫

−∞

dt eiωtGI(t) (A.68)

which are the symmetric and antisymmetric contributions, respectively. Using the detailed

balance time symmetry (Eq. (A.63)) one gets

Ĝ(−ω) = ĜS(−ω) + ĜA(−ω) = ĜS(ω)− ĜA(ω) = e−βℏωĜ(ω) (A.69)

= e−βℏω[ĜS(ω) + Ĝ(ω)] (A.70)
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which yields the relation

ĜA(ω) =

(
1− e−βℏω

1 + e−βℏω

)
ĜS(ω) =

(
e

βℏω
2 − e−βℏω

2

e
βℏω
2 + e−

βℏω
2

)
ĜS(ω) = tanh

(
βℏω
2

)
ĜS(ω) (A.71)

or, alternatively,

Ĝ(ω) =

(
1 +

1− e−βℏω

1 + e−βℏω

)
ĜS(ω) =

(
2

1 + e−βℏω

)
ĜS(ω) =

(
2

1− e−βℏω

)
ĜA(ω) (A.72)

It is possible to find a relation between GR(t) and GI(t) by taking the inverse Fourier

transform of the series expansion of ĜA(ω):

GI(t) =

∞∫

−∞

dω e−iωt tanh

(
βℏω
2

)
ĜS(ω) =

∞∫

−∞

dω e−iωt
∑

n

an
n!

(
βℏω
2

)n

ĜS(ω) (A.73)

where we can exploit the fundamental theorem of calculus to get

GI(t) =
∑

n

an
n!

(
iβℏ ∂

∂t

2

)n
∞∫

−∞

dω e−iωtĜS(ω) = tan

(
βℏ ∂

∂t

2

)
GR(t) (A.74)

There are different ways of solving the relation in Eq. (A.74). The first is to decompose

G(t) into a Taylor series in ℏ and to take the limit as ℏ→ 0.

GI(t) = tan

(
βℏ
2

∂

∂t

)
GR(t) ≈

βℏ
2

∂

∂t
GR(t) (A.75)

lim
ℏ→0

G(t) = lim
ℏ→0

GR(t) + i lim
ℏ→0

GI(t) = lim
ℏ→0

GR(t) = Gcl(t) (A.76)

Where lim
ℏ→0

GI(t) = 0. The semi-classical (or standard) approximation then takes GR(t) ≈
Gcl(t), which means that using Eq. (A.72) we have

Ĝ(ω) =

(
2

1 + e−βℏω

)
Ĝcl(ω) (A.77)

Taking the Fourier transform of Eq. (A.75), we find

ĜA(ω) = i
βℏ
2

∞∫

−∞

dt eiωt
∂

∂t
GR(t) =

βℏω
2

∞∫

−∞

dt eiωtGR(t) + lim
T→∞

[
eiωtGR(t)

]T
−T

(A.78)

=
βℏω
2
Ĝcl(ω) (A.79)
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where we have used the fact that GR(t) is symmetric and GR(t) ≈ Gcl(t). The next step

is to take Eq. (A.72) and say

Ĝ(ω) =

(
2

1− e−βℏω

)
βℏω
2
Ĝcl(t) =

(
βℏω

1− e−βℏω

)
Ĝcl(ω) (A.80)

which is called the harmonic approximation [60]. We can use this to postulate another

thermal correction to the perturbing potential or the nonadiabatic couplings. Following

the guidelines in 2.3.7, the thermal correction to the perturbing potential should be

Ṽmn(t) =
Vmn(t)

|cn(t)| − |cm(t)|

[√
βEmn

1− e−βEmn
|cn(t)| −

√
βEnm

1− e−βEnm
|cm(t)|

]
(A.81)

and the correction to the nonadiabatic coupling:

S̃mn(t) = Smn(t)

[√
βEmn

1− e−βEmn
|cn(t)| −

√
βEnm

1− e−βEnm
|cm(t)|

]
(A.82)



Appendix B

Explanation of the computational

tools

For this work, a new subroutine was developed for the NISE 2017 [64–68] code.

For an explanation on how to use the NISE 2017 code, the reader is referred to its official

GitHub repository. Before you can get started using the code, you must first ‘build’ it.

Instructions for this can be found in the user manual. The new code can be found in my

personal GitHub repository.

B.1 File structure and building

The file structure of the repository is as follows (after following the ‘build’ instructions in

the user manual):

NISE 2017

|
|−examples

| |
| |−−dimer

| |−− t u t o r i a l

| |−− t r imer

|
|−bu i ld

|− other d i r e c t o r i e s , such as s r c
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Before you can start using the example systems, you must build the ‘stochastic general’

code, which can generate an arbitrarily large Hamiltonian with random, uncorrelated dy-

namic disorder. You do this by navigating to the ‘build’ directory and using the command

‘make examples’. This generates the ‘stochastic general’ program in the ‘tutorial’ directory.

B.2 Generating the Hamiltonian

To create the input files, you must use the ‘stochastic general’ code. The arguments that

need to be passed to this program are: Length (the number of snapshots), the timestep in

fs, the width (standard deviation) of the dynamic disorder in cm−1, the bath correlation

time in fs, the correlation angle of the dipoles (which is not important for the PopT2

routine but the program structure still requires us to supply a Dipole file, hence we must

fill in something here), and the Hamiltonian in cm−1.

For the latter, the upper triangle of the Hamiltonian is passed. The Hamiltonian

is assumed to be real-valued. To reproduce the results in this work, a time-averaged

Hamiltonian such as in Eq. (B.1) must be entered as ‘0 200 100’, with the highest diagonal

element going first. The design choice was made to keep consistency between results in

different bases: the eigenstates are put in ascending order by their energies, and therefore

it makes sense to put the highest-energy chromophore last as well.

H0 =

(
100 200

200 0

)
cm−1 (B.1)

B.3 The NISE input files

The following changes are necessary in NISE 2017 to make use of the NISE DBa and

NISE DBb. First, the keyword ‘Technique’ needs to be followed by ‘PopT2’. Next, the

keyword ‘Basis’ needs to be followed by ‘Local’, ‘Average’ (for average eigenbasis) or ‘Adi-

abatic’. Additionally, the temperature can set with the keyword ‘Temperature’, followed

by the temperature in Kelvin.

For every execution of the code, two output files are generated in txt format. One con-

tains the populations of the wanted state (highest-energy chromophore, average eigenstate

or adiabatic state), the other contains the absolute value of the coherence between the

highest and second highest-energy chromophores or eigenstates.
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B.4 The tutorial files

The directories ‘dimer’ and ‘trimer’ contain two separate examples. The first, ‘dimer’,

contains a file ‘run.sh’ that generates a Hamiltonian trajectory, which is turned into a

binary file. The default average Hamiltonian is:

H =

(
100 100

100 0

)
cm−1 (B.2)

The width of the dynamic disorder is 100 cm−1, and its bath correlation time is 100 fs. The

second, ‘trimer’, contains a similarly named file. Its default Hamiltonian is:

H =



100 100 100

100 0 100

100 100 −100


 cm−1 (B.3)

The width of the dynamic disorder and the bath correlation time are the same as for the

‘dimer’ tutorial file. To perform the NISE(-DB) calculations, you have to run the command

‘../../bin/NISE inputPop’. The files ‘inputPop’ contain the necessary settings to run the

population dynamics in average eigenbasis.

B.5 The ‘swaps’ routine

A problem with NISE-DBa is that it makes use of a routine that keeps track of the order

of the adiabatic states. In a two-level system, this is an easy task, since the eigenvalues

always stay separated by an amount 2J . This changes in trimers and larger systems.

Let us consider a trimer system with a Hamiltonian as given in Eq. (B.4), whose Hilbert

space contains two invariant subspaces (i.e. the Hamiltonian is block diagonal with two

blocks).

H =



σx1(t) + V V 0

V σx2(t) 0

0 0 σx3(t)


 (B.4)

where V and σ are arbitrary energies, and xi(t) where i ∈ {1, 2, 3} are dimensionless,

normally distributed random variables with zero mean. Since the Hamiltonian is block-

diagonal, the third eigenvalue is going to be equal to σx3(t) at any point in time. This

means that this eigenvalue can cross in between the two eigenvalues of the upper left
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block. The eigendecomposition algorithms pay this no heed, and the eigenvalues and

eigenvectors associated with the two invariant subspaces get mixed as a result. This would

not be a problem in the original NISE implementation, as this mixing only plays a role in

the nonadiabatic couplings. Since NISE does not adjust the nonadiabatic couplings, the

physics remain the same, even if the order of the eigenvectors is changed.

The problem arises in NISE-DBa, where the nonadiabatic couplings are changed. A

mixing in the eigenvectors between times t and t + dt means that the off-diagonal ele-

ments of Ċ†(t + dt)C(t), and therefore the nonadiabatic couplings, between the different

invariant subspaces becomes very large. The thermal correction thus corrects a very large

(unphysical) nonadiabatic coupling, yielding unphysical results in the transport. Suddenly,

seemingly impossible transport between particular adiabatic states can occur. This must

be prevented, which can be done by tracking the individual eigenstates.

The routine is performed at every timestep. It starts by multiplying the matrix eigen-

vectors at the next timestep C†(t+ dt), by the eigenvectors at the current timestep C(t),

as follows: C†(t+dt)C(t). If the change in eigenstates is small enough, this matrix will be

close to identity. If two eigenvectors have suddenly swapped places, there will be large off-

diagonal components in this matrix. As a benchmark, the largest off-diagonal component

(LODC) is compared to the smallest diagonal component (SDC). If the SDC is smaller

than the LODC, this is a strong indication that two eigenvectors have swapped places.

The coordinates of the LODC are denoted (i, j). To finish off, the eigenvalues at indices i

and j are swapped, and so are the column vectors of C(t+ dt).
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[5] A. Bastida, C. Cruz, J. Zúñiga, A. Requena and B. Miguel. Chem. Phys. Lett.,

417(1):53–57, (January 2006).

[6] G.D. Scholes, G.R. Fleming, A. Olaya-Castro and R. van Grondelle. Nat. Chem.,

3(10):763–774, (October 2011).

[7] N.S. Lewis and D.G. Nocera. Proc. Natl. Acad. Sci., 103(43):15729–15735, (October

2006).

[8] C.B. Field, M.J. Behrenfeld, J.T. Randerson and P. Falkowski. Science,

281(5374):237–240, (July 1998).

[9] R.E. Blankenship. Plant Physiol., 154(2):434–438, (October 2010).

[10] A.E. Becquerel. Recherche sur les effets de la radiation chimique de la lumière solaire,
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Knoester and U. Kleinekathöfer. J. Phys. Chem. B, 115(26):8609–8621, (July 2011).

[62] J. Koepke, X. Hu, C. Muenke, K. Schulten and H. Michel. Structure, 4(5):581–597,

(May 1996).

[63] R. Bloem, A.G. Dijkstra, T.L.C. Jansen and J. Knoester. J. Chem. Phys.,

129(5):055101, (August 2008).

[64] T.L.C. Jansen and J. Knoester. J. Phys. Chem. B, 110(45):22910–22916, (November

2006).

[65] T.L.C. Jansen and J. Knoester. Acc. Chem. Res., 42(9):1405–1411, (September 2009).

[66] T.L.C. Jansen, B.M. Auer, M. Yang and J.L. Skinner. J. Chem. Phys.,

132(22):224503, (June 2010).

[67] C. Liang and T.L.C. Jansen. J. Phys. Chem. B, 117(23):6937–6945, (June 2013).

[68] C. Liang, M. Louhivuori, S.J. Marrink, T.L.C. Jansen and J. Knoester. J. Phys.

Chem. Lett., 4(3):448–452, (February 2013).

[69] T.L.C. Jansen, W. Zhuang and S. Mukamel. J. Chem. Phys., 121(21):10577–10598,

(December 2004).


	Contents
	General Introduction
	Light harvesting
	Quantum biology
	Multiscale modelling
	Modelling optical spectra
	Focusing on quantum dynamics

	Semi-classical methods
	Hierarchical Equations of Motion
	Surface hopping
	Numerical Integration of the Schrödinger Equation
	Previously proposed solutions
	New proposals
	Summary


	The Schrödinger Equation and Detailed Balance
	Quantum dynamics
	Numerical Integration of the Schrödinger Equation

	Exciton Hamiltonians
	The Displaced Harmonic Oscillator Model
	Overdamped Brownian oscillators and the Langevin equation
	Energy levels and parameter regimes of a dimer

	Detailed balance
	Perturbation theory
	Rate equations
	Population dynamics of a two-level system
	A thermal correction to the population dynamics
	A symmetrical thermal correction
	The recovery of high-temperature results
	Alternative thermal corrections

	Summary

	Results
	Reproducing the plots
	High-temperature limit
	Intermediate temperatures
	The FMO complex
	The LH2 complex
	The amide I and II bands

	Limitations of the perturbative approach
	Larger-scale systems
	A dimer disguised as a trimer
	One step further: an equilateral trimer

	Discussion
	On the relevance of basis
	Computational artifacts
	Computational cost


	Conclusion
	Interpretation of the results
	The next steps for NISE-DB
	The future in semi-classical models

	Contributions
	Acknowledgement
	Mathematical proofs and derivations
	Solving the Langevin equation
	Fermi's Golden Rule
	The adiabatic theorem
	An alternative nonadiabatic coupling
	An extension of Fermi's Golden Rule

	Equivalence of nonadiabatic couplings
	Semi-classical time-correlation functions

	Explanation of the computational tools
	File structure and building
	Generating the Hamiltonian
	The NISE input files
	The tutorial files
	The `swaps' routine

	Bibliography

