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Abstract

Digital learning aids have become increasingly popular to support classical educa-

tion. In particular, adaptive fact learning systems (AFLSs) have been shown to lead

to better learning outcomes as their underlying cognitive models allow them to train

facts of appropriate difficulty at the appropriate time to optimise declarative mem-

ory reinforcement. With each given response, the cognitive model adapts to better

reflect how well each fact is represented in the user’s declarative memory, leading

to a more personalised learning experience over time. When a new, unknown fact

or user is encountered, the cognitive model will need to adapt a number of times

before the model can provide an accurate representation of that fact in declarative

memory, meanwhile the learning experience is not optimal. This is known as the

‘cold start problem’. The current study sought to mitigate the cold start problem

by predicting an AFLS parameter that reflected fact difficulty and student learning

ability through five distinct Bayesian prediction methods. Predictions were carried

out in a post-hoc simulation on a large and varied naturalistic dataset consisting of

more than 117 million AFLS trials performed by over 135 thousand Dutch secondary

school students. Out of the five prediction methods, a fact-level prediction method

that made predictions per fact based on previous performances on each fact and

a hybrid prediction method that combined fact-level and student-level predictions

were found to consistently make more accurate model parameter and response time

predictions than the default method which induced the cold start problem. It was

concluded that these prediction methods are likely to mitigate the cold start problem

in an applied setting. Further deliberation revealed that the fact-level prediction

method was the best candidate to mitigate the cold start problem of an AFLS in

practice.
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Introduction

In the current digital age, computers have become an indispensable commodity in

education. Multimedia presentations, serious games and online tutoring are com-

monplace in all levels and grades of students’ academic careers Dahlstrom, Brooks,

and Bichsel (2014); Ennouamani and Mahani (2017); Jeong and Kim (2017). Dig-

ital learning allows students to see learning material from a different perspective

to the regular classroom setting, and has hence been found to enrich their learning

experience FitzPatrick (2012). One increasingly popular instance of digital educa-

tion is that of fact learning systems Ennouamani and Mahani (2017). Fact learning

systems help students to expand their factual knowledge by repeatedly testing them

on factual inquiries, such as the translations of words in case of language classes

or multiplication tables when learning mathematics. As students typically need to

memorise the meaning of thousands of words to achieve a moderate level of mas-

tery in a foreign language Webb and Nation (2017), digital fact learning systems

represent a welcome alternative to conventional learning techniques.

The simplest of digital fact learning systems increase learning outcomes just

by repeatedly testing users’ declarative knowledge. More advanced fact learning sys-

tems seek to further increase learning outcomes through the integration of adaptive

models. As a type of intelligent tutoring system (ITS), such adaptive fact learn-

ing systems (AFLSs) may keep track of users’ responses, overall knowledge level,

cognitive and emotional state, and learning ability depending on the complexity of

the AFLS’s user model Nkambou, Mizoguchi, and Bourdeau (2010). An AFLS will

use this information to provide learning material and feedback that best suits the

user’s current state in order to optimise the learning process VanLehn (2006). In

this way, AFLSs create personalised learning environments tailored to their users.

For instance, an AFLS may manipulate the schedule which dictates when each fact

is presented. If a fact proves difficult to memorise, it may be repeated more often,

while easier fact could be repeated only rarely. This may enhance the learning pro-

cess because difficult facts require more repetition in order to be memorised than

easy facts Pavlik Jr and Anderson (2005).
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By providing students with a personalised learning environment that suits

their knowledge level AFLSs have been found to lead to better learning outcomes

Alshammari, Anane, and Hendley (2016). Meta-analyses by Ma, Adesope, Nesbit,

and Liu (2014) and Steenbergen-Hu and Cooper (2014) have shown that ITSs can

lead to better learning outcomes than many traditional education methods, such

as large-group instruction, textbooks, passive computer-assisted learning and prac-

tical assignments. ITSs overall were found to lead to similar learning outcomes as

much more labour-intensive methods such as small-group instruction and personal

tutoring Steenbergen-Hu and Cooper (2014), promoting their use in current learning

environments where there is often little capacity for personalised teaching Travers

(2017).

For an AFLS to create a personalised learning environment, it requires in-

formation about its users. For example, it needs to be fed information on a user’s

response accuracy in previous trials to make an estimate of their learning ability.

With each new trial, more is discovered about the user’s learning ability, prompting

the AFLS’s estimate to be refined. In cases where nothing is known about the user,

such as when someone uses the AFLS for the first time, the AFLS will not be able to

provide a personalised learning experience until enough responses have been given

for the user’s learning ability to be estimated. This problem is known as the ‘cold

start problem’. An AFLS that suffers from the cold start problem cannot account

for any individual differences between users nor any differences in difficulty between

facts before it has ‘warmed up’, that is, collected sufficient information to construct

a user model. During initial encounters with new users and facts, an AFLS’s ability

to improve learning outcomes is thus compromised (for more detail, see chapter:

‘The SlimStampen AFLS’), leaving it as effective (or ineffective) as a regular fact

learning system. The current study aimed to mitigate the cold start problem by

predicting an AFLS parameter that described fact difficulty and students’ learning

ability. In consequence, the starting values of that parameter should be closer to pa-

rameter values observed after personalisation through adaptation, even if the AFLS

did not encounter those facts or students before.
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In recent work that inspired the current study, Van der Velde, Sense, Borst,

and van Rijn (2021) investigated whether they could mitigate the cold start problem

by predicting the ‘rate of forgetting’, a parameter used by the cognitive model at the

base of their AFLS that represents the speed at which a memory of a fact decays.

To illustrate, a difficult fact that is harder to memorise will have a higher rate of for-

getting than an easy fact. Similarly, fast learning students will have an overall lower

rate of forgetting than students that have trouble with memorising facts. In their

lab study, Van der Velde and colleagues (2021) found that using a predicted rate

of forgetting instead of a default value as the starting rate of forgetting resulted in

increased response accuracy. Indeed, they found that predicted fact-related starting

rates of forgetting based on earlier performances on the same facts by other users

resulted in higher response accuracy than when a default starting rate of forgetting

was used. They did not, however, find evidence for an increase in learning out-

comes when starting rates of forgetting were user-related. This concerned predicted

starting rates of forgetting per user based on prior performances as well as predicted

staring rates of forgetting that were predicted using a hybrid method combining fact

and user-related predictions. Van der Velde and colleagues (2021) explained their

finding by arguing that their participant sample was too homogeneous, as they had

found that increased heterogeneity of fact difficulty did increase the effectiveness of

fact-related predictions on learning outcomes. Van der Velde and colleagues (2021)

hence proposed that predictions based on the differences between users would lead

to better learning outcomes if they were made in a more heterogeneous participant

sample.

Other efforts using post-hoc simulation instead of an experimental approach

investigated whether the cold start problem of an AFLS could be mitigated. Park,

Joo, Cornillie, van der Maas, and Van den Noortgate (2019) tried to mitigate the

cold start problem by predicting student learning ability for maths. Predictions

were made by employing an item response theory model informed by previous per-

formances of students and student characteristic. Park and colleagues (2019)’s simu-

lation showed that learning outcomes would have increased when a student learning
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ability level were a predicted value at the start of a learning session instead of a

non-personalised default. In a similar vein, Pliakos and colleagues (2019) were able

to predict the learning ability and response accuracy of new students and, in doing

so, mitigate the cold start problem. Predictions were based on a combination of an

item response theory model and an implementation of random forests.

The current study means to follow-up on the experiment of Van der Velde and

colleagues (2021) by investigating the ability of their prediction methods to mitigate

the cold start problem in a post-hoc simulation with a very large naturalistic sample.

The fact that the sample is naturalistic provides greatly added value to the field of

AFLS research, as using real data of this magnitude is rare and can give more

insight into the use of AFLSs in an applied setting. Because of this, the current

study’s findings will closely reflect the effects of mitigating the cold start problem

in the actual operating environment of AFLSs. Moreover, using the same AFLS as

Van der Velde and colleagues (2021) granted the unique opportunity to compare lab

findings with findings from the field. The use of such a sample puts this study into

a position where it can take advantage of the natural diversity in secondary school

students and the diversity in their teaching material. This way, Van der Velde and

colleagues (2021)’s suggestion that student-related predictions could help mitigate

the cold start problem given a diverse student sample could be falsified.

The AFLS that was used suffered from the cold start problem when it used

the default method to determine the starting values of the rate of forgetting pa-

rameter. Namely, with the default method, all new facts or student were assigned

the same rate of forgetting independent of the difficulty of the fact or the student’s

learning ability. To try to mitigate the cold start problem, five Bayesian prediction

methods were applied in a post-hoc simulation. Four of these were also used by

Van der Velde and colleagues (2021): the domain, fact-level, student-level and hy-

brid prediction methods (for detailed descriptions see section: ‘Bayesian prediction’

under Methods). A demographic prediction method was added to find whether it

was possible to make meaningful predictions for demographic groups based on prior

performances of the students in each group.
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It is expected that least one of these prediction methods should be able to

mitigate the cold start problem. In other words, at least one method can predict

the rates of forgetting and response times so accurately that they are closer to the

observed rates of forgetting and response times following adaptation than the default

starting value. Furthermore, it is expected that there is a relationship between a

method’s prediction accuracy and its granularity, whereby the more fine-grained the

prediction method, the more accurate it is. For context, 1) the default method is the

least fine-grained, 2) followed by the domain method, 3) demographic, 4) fact-level

and student-level, 5) hybrid. The hybrid method is thus expected to result in the

most accurate predictions for both rates of forgetting and response times. Lastly, it

is expected that prediction accuracy will be higher if the prediction was informed

by more observations.

In the following sections of this paper will be described: 1) the workings of the

AFLS used in this study; 2) the primary and secondary hypotheses of this study; 3)

information on the sample data in addition to the methods used. These include pre-

processing, the post-hoc simulation, the various Bayesian prediction methods used

and, finally, the analyses used to acquire the results; 4) the results of the analyses; 5)

A discussion of the results regarding our hypotheses, a comparison with the findings

of Van der Velde and colleagues (2021) and other studies, the implications of our

findings as well as a note on future improvements and research.

The SlimStampen AFLS

The AFLS that was used to perform the current study was SlimStampen (see Sense,

Behrens, Meijer, and van Rijn (2016), and Van Rijn, van Maanen, and van Wouden-

berg (2009)). The SlimStampen AFLS employs a cognitive model that is based on

the ACT-R architecture Anderson (2009) to model a student’s declarative mem-

ory. Specifically, the model keeps track of memory chunks that each represent a

fact learned by a student. These chunks have a certain activation, which reflects

how strongly they are represented in declarative memory. Whenever a given fact is

encountered, the activation of the corresponding chunk increases. Over time, how-
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ever, the activation decays. The activation A of chunk x at time t, with n previous

encounters from t1, . . . , tn seconds ago, accounting for decay d is given by:

Ax(t) = ln

(
n∑

j=1

t
−dx(t)
j

)
(1)

Before a new trial starts, the SlimStampen AFLS chooses which fact to present

by calculating the activation of each chunk in declarative memory fifteen seconds

in the future. Whichever fact’s activation is lowest at that point in time will be

presented in the upcoming trial. However, if no chunks are estimated to decay

below a set retrieval threshold, a new, unknown fact will be presented instead.

Furthermore, a fact cannot be presented in more than two successive trials. Through

this procedure, a presentation schedule is built up whereby each fact’s activation is

kept above the retrieval threshold.

As some facts may be harder to memorise than others, the rate at which

activation decays varies accordingly. The greater the decay, the faster activation

decreases. The decay dx(t) of chunk x at time t is given by the chunk’s activation

during its most recent encounter and its rate of forgetting α:

dx(t) = c ∗ eAx(tn−1) + αx (2)

In the current SlimStampen AFLS, the rate of forgetting of each fact starts

at 0.3, following the default method. After three repetitions of a given fact, its

rate of forgetting is adapted according to the response time and the correctness of a

student’s answer. Namely, the observed response time is compared with an expected

response time for that trial. It is given by the ACT-R equation for retrieval time

Anderson (2009), where t0 denotes a fixed amount of time needed for perception of

the prompt and the motor processes involved in giving the answer:

E(RT ) = e−Ax + t0 (3)

The further the observed response time is removed from the expected response
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time, the more strongly the rate of forgetting will be adapted. If the observed

response time in a given trial is lower than expected, the true activation of the

prompted fact in declarative memory must be higher than the model had thus far

assumed. The rate of forgetting is then adapted downward in order to achieve

more accurate response time and activation estimates in future trials. Vice versa,

when the observed response time is longer than expected, the rate of forgetting is

adjusted upward. For incorrect answers, the observed response time was taken as

1.5 times the expected response time. Since rate of forgetting adapts according

to the performance on each fact, it gives an indication of each fact’s difficulty as

experienced by the student. Note that this adaptation takes into account the last

five encounters with a fact to reduce the influence of outlier observations.

Through the cognitive model described above, the SlimStampen AFLS is able

to harness two proven effects that improve student learning outcomes. Firstly, the

testing effect Van den Broek et al. (2016) is invoked as the prompts of the AFLS

stimulate active recall of facts. Compared to passive learning methods, for instance

reading both the word and its translation from a list, active recall leads to better

learning outcomes. However, the testing effect is less prominent when recall is unsuc-

cessful van den Broek, Segers, Takashima, and Verhoeven (2014). The SlimStampen

AFLS therefore makes sure all facts are encountered again before their activation

crosses the retrieval threshold, increasing the chances of successful recall.

Secondly, the AFLS makes use of the spacing effect Dempster (1988); Ebbing-

haus (1885) which states that longer periods between recall of a given fact reinforces

its place in declarative memory. Namely, the AFLS repeats facts at the latest pos-

sible moment where the student is still likely to know the answer given, before the

memory activation of a fact is expected to decay below the retrieval threshold. It

should once again be noted that the adaptiveness of the AFLS only comes into play

after a fact has been encountered at least three times. A default value of α = 0.3 is

used as the starting rate of forgetting for new facts irrespective of their difficulty or

a student’s learning ability. Naturally, this default starting rate of forgetting makes

it so that easy facts are presented too often while difficult facts are presented too
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rarely during the first few encounters with a fact. This prevents optimal use of the

spacing effect. Furthermore, the balance between a student’s skill and the challenge

they experience from the AFLS is likely distorted, leading to lower learning perfor-

mance Engeser and Rheinberg (2008); Kennedy, Miele, and Metcalfe (2014). Here,

we tried to mitigate the effect of the cold start problem of the AFLS introduced by

the starting rate of forgetting by predicting starting rates of forgetting using various

prediction methods (see section: ‘Bayesian prediction’ under Methods).

Methods

Dataset

177,074,411 trials of fact learning performance data from 135,105 Dutch secondary

school students on 36,469 distinct facts were used to inform and validate our pre-

dictions. In total, the students performed 1,084,130 distinct learning sessions were

performed where they answered 165 questions on average (SD = 86.7). The data

were collected by Noordhoff, a publisher of teaching materials in the Netherlands,

who distributed the SlimStampen AFLS to secondary schools during the academic

years between 2018 and 2020. The AFLS was provided as an additional learning

resource for students between age 11 and 17 from years 1 to 4 of Dutch secondary

school. Different school levels were represented in the data with 48.1% of students

from pre-vocational education (VMBO), 33.8% from general secondary education

(HAVO) and 18.1% from pre-university education (VWO). Students used the AFLS

to learn vocabulary for their courses in English, French and German, which made up

69.8%, 29.6% and 0.69% of trials, respectively. Due its relatively small presence in

the dataset, data on German vocabulary were excluded, leaving English and French.

The privilege of having large naturalistic dataset provided us with the unique

opportunity to validate or falsify previous research with findings based on an insur-

mountable amount of trials performed in an applied setting. Furthermore, post-hoc

simulation enabled us to test all five Bayesian prediction methods against the default

method on the same data, ruling out any variable influence of trial-to-trial noise and
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environmental factors during data acquisition.

Pre-processing

The data was ‘performance data’ in the sense that it included variables such as

response time, correctness and the answer given by a student. However, it did not

contain the actual correct answer. In case of incorrect responses (7.2% of the data)

it was thus unclear which fact had been questioned. For the most part, the fact

which had been questioned could be deduced through unique within-session IDs of

facts. Occasionally however, these IDs were ambiguous even within sessions, making

it impossible to deduce what fact was questioned with absolute certainty. In such

cases, the facts with ambiguous IDs were excluded from the data. In total, around

395,158 trials, or 0.34% of the data, were filtered out for this purpose.

The performance data also did not include any model parameters of the AFLS,

such as activation or rate of forgetting. The AFLS needed to be re-run with the

performance data as input to acquire these parameters. The model parameters from

the AFLS were calculated as they were during the original learning sessions, using

the default method. This process resulted in a dataset detailing the activation as

well as the rate of forgetting in every single trial. Notably, the rates of forgetting

from the last repetition of each fact in a learning session were distilled. These ‘final’

rates of forgetting represented the rates of forgetting of each fact that approached

the true rate of forgetting of each fact, following the adaptations they underwent

during a learning session. They were the input of the Bayesian models used in the

prediction methods described in the following section.

Bayesian prediction

As a continuation of Van der Velde and colleagues (2021) research, the current

study investigated the effect of various prediction methods to resolve the cold start

problem, now in a large and varied naturalistic sample. In total, five prediction

methods were tested to determine whether they could provide more suitable starting

rates of forgetting compared to the default method’s starting rate of forgetting of
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Figure 1: (Left) The observed rates of forgetting from the final repetition of a given

fact in a learning session, also known as final rates of forgetting, were grouped per

fact, student or demographic for training the fact-level, student-level or

demographic prediction methods respectively. (Right) For Bayesian prediction

posterior predictive distributions were formed based on the aforementioned groups

of final rates of forgetting. First, the mode of these distributions (indicated by the

black vertical line) was taken as the predicted starting rate of forgetting for facts,

students or demographic groups. Second, the domain prediction was obtained by

taking the mean of all fact-level predictions. Hybrid predictions for each

fact-student pair were obtained by taking the mode of a distribution gained from

logarithmic opinion pooling the posterior distributions of a given fact and student.
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0.3 and compared to each other. All prediction methods, apart from demographic

prediction, were also used in the study of Van der Velde and colleagues (2021). The

prediction methods are described below in ascending order of granularity. Figure 1

provides a visual summary of the prediction methods and the Bayesian prediction

process.

Default

A starting rate of forgetting of 0.3 is used for all facts and students. This method

was used by the AFLS when the performance data was collected. The 0.3 default

represented an average, commonly observed rate of forgetting Van Rijn et al. (2009).

The AFLS is known to suffer from the cold start problem with this method.

Domain

The average of all predicted starting rates of forgetting for facts based on the previ-

ous performances of all students on a given fact (i.e. all fact-level predictions) was

taken as a singular starting rate of forgetting for all facts. The domain prediction

method aimed to capture learning performance with the domain of foreign language

learning in a singular starting rate of forgetting. In this respect it is similar to the

default method, since only one starting rate of forgetting is used for all facts. How-

ever, because it is based on previous observations through fact-level predictions, the

domain prediction method should provide a more fitting starting rate of forgetting

than the default method’s 0.3.

Demographic

Groups separated on school level and grade received distinct starting rates of for-

getting. The starting rates of forgetting were given by the modes of the posterior

distributions of a Bayesian model (for more detail, see section ‘Procedure’ below)

trained on the previous performances of all students in a given demographic. The

demographic prediction method was added to the methods used by Van der Velde

and colleagues (2021) because the demographic variation in the dataset allowed for
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it and because it lies in-between domain prediction and fact-level and student-level

prediction in terms of granularity. The demographic prediction method should high-

light the differences in learning ability between demographic groups.

Fact-level

A distinct starting rate of forgetting was predicted for each fact based on the previous

performances of all students on a given fact. Fact-level predictions should highlight

the differences in difficulty between facts.

Student-level

Each student received a distinct starting rate of forgetting based on their previous

performances. Student-level predictions should highlight the individual differences

in learning ability between students.

Hybrid

Each student-fact pair received a distinct starting rate of forgetting based on a

combination of the fact-level and student-level predictions for that particular student

and fact. This method should result in more accurate predictions than the fact-level

and student-level methods in case of an interaction between students’ learning ability

and fact difficulty.

Procedure

The abovementioned prediction methods were applied by means of a Bayesian pre-

diction model. The model is grounded in the assumption that the rate of forgetting

is normally distributed and that its mean and precision (reciprocal of the variance)

are unknown. This distribution has a conjugate prior that follows a Normal-Gamma

distribution. Following findings from earlier AFLS research Sense et al. (2016);

Van Rijn et al. (2009), it was appropriate to let the prior distribution be weakly

informative; normally centred around µ0 = 0.3 (with κ0 = 1, α0 = 3, and β0 = 0.2).
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Because the prior is conjugate, the posterior also follows a Normal-Gamma distri-

bution. Hereby the parameters of the posterior distribution may be inferred ana-

lytically through Bayesian statistics. This inference is computationally inexpensive,

contrary to predicting methods that rely on sampling such as Markov chain Monte

Carlo. Crucially, this would allow the AFLS to run smoothly for students when they

were to use it in class or at home.

Inference occurred iteratively, as the most recent rate of forgetting from n data

points together with the corresponding prior were taken to obtain a posterior dis-

tribution. With the distribution of parameters of the posteriors obtained through

Bayesian inference, a posterior predictive distribution was formed. The posterior

predictive distribution represents the probability that any rate of forgetting is ob-

served on the next iteration of the model. The mode of this distribution represents

the value that is most likely to be observed next. As such, the mode gives a rate

of forgetting that should fit better than the current one, given the distribution of

parameters. This is how the predicted starting rate of forgetting is obtained by

the demographic, student-level and fact-level prediction methods. In the case of

the hybrid prediction method, the posterior predictive distribution from both the

student-level and the fact-level prediction methods were combined using logarith-

mic opinion pooling Genest (1984). The predicted hybrid rate of forgetting was the

mode of the combined distribution.

The prediction process was 20-fold. In each fold the data was split in a training

set and a test set of 95% and 5% of the data, respectively, in such a way that all data

had been part of the test set once. The splits were made by randomly distributing

all learning sessions over the test sets of the 20 folds. This way, accurate estimates

of activation and response time could be made using the predicted starting rates

of forgetting, for which whole learning sessions were required. Additionally, overlap

of facts and students between the training and tests sets was more likely with a

random order than a chronological order.

Predictions were informed only by final rates of forgetting from facts that had

been seen more than three times by a student in a given learning session. This
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was because final rates of forgetting from facts that had been shown three or fewer

times would have had one or no opportunity to adapt. Such rates of forgetting are

unlikely to approach a value that reflected the true rate of forgetting. However,

very easy-to-learn facts oftentimes needed only three repetitions to be memorised.

By excluding final rates of forgetting from facts with few repetitions, the training

data is skewed towards a greater average fact difficulty. The decision to use a limit

of three repetitions is a compromise in the dilemma where we cannot assume that

final rates of forgetting based on few repetitions have approached the true rate of

forgetting though many easy facts would be excluded otherwise. In total, 10,336,100

final rates of forgetting were used to inform the predictions.

Analyses

For analysis, the predictions made in all of the 20 folds were pooled together to

reform full dataset. Because all prediction methods were simulated on the same

performance data, direct comparison between the prediction methods was possible

and any influences of environmental factors during data acquisition could be ruled

out. The prediction methods were compared on their accuracy, which was measured

by 1) the error between predicted starting rates of forgetting and observed final

rates of forgetting and 2) the error between predicted response times and observed

response times. All analyses were performed using R (version 3.6.3; R Core Team,

2020).

Bayesian linear regression models were fit to both metrics with prediction

method included as a main effect using the brms R package (version 2.16.1; Bürkner,

2017). Both models were compared to an intercept-only variant using bridge sam-

pling Gronau, Singmann, and Wagenmakers (2017). The resulting Bayes factors

were interpreted following Jeffreys (1998), meaning a Bayes factor greater than 3

indicated substantial evidence for a difference between two models. Above 100, evi-

dence for difference was considered to be very strong Jarosz and Wiley (2014). The

superior model was inspected for the specific relationships between its factors.

As a follow-up, pairwise Bayesian t-tests were performed using the BayesFac-
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tor R package (version 0.9.12-4.2; Morey, Rouder, Jamil, and Morey, 2015). The

aim of the tests was to find whether any individual prediction method(s) performed

better than the default method, and to find which method(s) achieved the most

accurate predictions. The Bayesian t-tests compared the prediction methods within

deciles of the observed rate of forgetting and the observed response time to gain

additional insight into the methods’ ability to predict both common and extreme

values. Because this process consisted of many pairwise comparisons, Westfall’s

correction for multiplicity was applied Westfall, Johnson, and Utts (1997). Uncor-

rected Bayes factors that resulted from the Bayesian t-tests were transformed into

posterior odds. Similar to Bayes factors, posterior odds were interpreted following

Jeffreys (1998). Accordingly, posterior odds greater than 3 indicated substantial

belief in a difference in predictive performance between methods. Whichever pre-

diction method comparison favoured was determined by which method achieved the

smallest mean pairwise difference in absolute prediction error. Note that all Bayes

factors or posterior odds represented evidence, or belief for evidence, in favour of a

difference between prediction methods.

For the above analyses on rate of forgetting prediction error, only the final

repetition of a fact in a learning session was used. Entries with a final repetition

of three or below were excluded because the final observed rate of forgetting could

not be assumed to have approached the true rate of forgetting within the first three

repetitions. Entries with a final repetition of 25 or higher were also excluded since

students should always be able to fully memorise a word within 25 repetitions. They

were assumed to not have actively tried to learn if they required that many repeti-

tions. In all, 11,509,857 trials, each with six distinct predicted rates of forgetting,

were part of the analyses.

For the analyses on response time prediction error, particular interest went

out to the response time prediction error during the first three repetitions of a given

fact. Since the starting rate of forgetting had not undergone any adaptation up

to that point, there had been no chance for it to converge with the predictions of

other methods. As such, the influence of the prediction methods would be the most
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noticeable in the response times in first three repetitions. Unfortunately however,

the cognitive model underlying the AFLS was unable to estimate the activation of

a fact in declarative memory nor predict the response time from just one repetition.

Moreover, observed response times in the second repetition were found to be unusu-

ally low, while response times in the third repetition were rather high. It turned out

that the second repetition of a given fact almost always followed the first repetition

or the trial after. It was assumed that students were subject to the recency effect

Murre and Dros (2015) in the second repetition, whereby they were able to give the

correct answer by retrieving it from their working memory instead of their declara-

tive memory. In the third repetition, students were assumed to have retrieved the

answer from declarative memory for the first time, with a higher average response

time as a result. The analysed response time prediction errors were therefore only

taken from the third repetition of each fact.

Furthermore, for the analyses on response time prediction error, incorrect

trials, and trials where the observed response time was below 300 ms or above

25,000 ms, were excluded from the analyses. The lower response time limit reflected

the minimal reading time instituted by the AFLS. Responses given faster than 300

ms were thus assumed to have been given without reading the prompt. Response

times above 25,000 ms were assumed to indicate that the student was distracted. In

total, 8,682,756 trials, each with six distinct predicted response times, were used in

the analyses.

Finally, Bayesian regression models were fit on response time prediction error

with main effects of prediction method and the number of final rates of forgetting

that informed a prediction, as well as an interaction between these factors. A step-

wise model comparison strategy using bridge sampling was employed to find the best

fitting model. The coefficients of the superior model were then inspected for the spe-

cific relationships between its factors. Note that the Bayesian regression models on

response time prediction error were constructed on a subset a hundredth of the size

of the full dataset because the sheer size of the full dataset exceeded the available

computing capacity. The contents of the subset were sampled randomly from the
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full dataset. The subset was inspected to ascertain the relevant distributions in the

full dataset were of similar make-up in the subset.

Results

Rate of forgetting prediction

As is visible in Figure 2A, there was less variance in the predicted starting rates of

forgetting than in the observed rates of forgetting. Naturally, the default method had

no variance at all, as all its predictions were 0.3. The domain method’s predictions

varied very little between folds, with predictions ranging between 0.3208 and 0.3209.

In accordance with its level of granularity, the demographic method made more

varied predictions than the default and domain methods, but less varied than the

fact-level, student-level and hybrid methods. Predicted rates of forgetting were

found to be lower as school level increased, with average starting rates of forgetting of

0.335, 0.319 and 0.311 for pre-vocational education, general secondary education and

pre-university education, respectively. Further investigation using Bayesian linear

regression revealed that there was no evidence for such a relationship, however, as

model comparison using bridge sampling with an intercept-only model resulted in a

Bayes factor of 0.049. Finally, the fact-level, student-level and hybrid methods made

more varied predictions. The fact-level method’s predictions displayed the largest

variance, followed by the hybrid method.

Two Bayesian regression models were fitted on rate of forgetting prediction

error. One model included prediction method as a predictor of rate of forgetting

prediction error while the other was a simple intercept-only model. The two models

were then compared using bridge sampling to find whether there was evidence for a

relationship between rate of forgetting prediction error and prediction method. The

model with prediction method as a predictor for rate of forgetting prediction error

was found to better fit the data than an intercept-only model. Model comparison

using bridge sampling resulted in a Bayes factor in favour of the model with predic-

tion method that was so high that it was approximated to infinity. Model estimates
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Figure 2: A) Frequency distributions of the observed rate of forgetting and the

predicted rates of forgetting per prediction method. The vertical lines indicate the

decile borders. B) Line graph that displays the median observed rate of forgetting

and the median predicted rates of forgetting per prediction method in each decile.

The error bars denote interquartile ranges.

and their posterior distributions are shown in Figure 3 (for the exact estimates see

Table A1 in ‘Appendix’).

According to the Bayesian regression model, the absolute rate of forgetting

prediction error of the domain method was significantly smaller than that of the

default method. In turn, the demographic method had a significantly lower absolute

prediction error than the domain method, and so on for the student-level method,

the hybrid method and lastly the fact-level method. The fact-level and the hybrid

method both showed the large deviations from the absolute prediction error of the

default method, with estimates of -8.55e -03 (95% CI: [-8.59e -03, -8.51e -03]) and

-8.39e -03 (95% CI: [-8.43e -03, -8.35e -03]), respectively, from an average prediction

error of 0.0672 of the default method.

Further investigation using Bayesian t-tests uncovered individual differences in

rate of forgetting prediction error between the prediction methods within ten deciles

of the observed rate of forgetting. Bayes factors were corrected for multiple testing

using the Westfall correction. The Bayes factors were transformed to posterior odds

through multiplication with a prior odds value of 0.086 for 150 pairwise comparisons

de Jong (2019); Westfall et al. (1997). Belief of evidence was found to be very strong

for all individual differences in rate of forgetting prediction error. For almost all
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Figure 3: Posterior distributions of the regression coefficients from the model on

rate of forgetting prediction error that included prediction method as a predictor.

The median of each distribution is indicated by a black dot. Confidence intervals

are too small to be visible.

comparisons the posterior odds were so high that they were approximated to infinity.

The lowest posterior odds were recorded for the difference between the domain

and student-level methods, at 2.03e +21, which still signified belief of very strong

evidence. Going by the mean difference between the pairwise absolute prediction,

the favoured prediction method could be determined for each comparison.

Overall, the median rate of forgetting prediction error of each prediction

method was: 0.0531 (default), 0.0591 (domain), 0.0570 (demographic), 0.0496 (fact-

level), 0.0554 (student-level), 0.0502 (hybrid). Within deciles, the prediction error

was larger for the outer deciles as given by the distance (visible in Figure 2B) of the

prediction methods’ predictions to the observed rates of forgetting. Furthermore,

Figure 2B shows how the default methods’ predictions are generally the closest to

the observed rates of forgetting in the first five deciles, but the farthest in the latter

deciles. Moreover, the fact-level and hybrid methods, and to a lesser extent the

student-level method, can be seen following the upwards trend of the observed rate

of forgetting.

For further insight into the differences in rate of forgetting prediction error



RESULTS 23

Table 1: Rankings of the methods’ predictive performance on rate of forgetting

per decile, as well as average of all decile rankings.

Method Deciles

1 2 3 4 5 6 7 8 9 10

Average

rank

Default 3 1 1 1 1 6 6 6 6 6 3.70

Domain 6 5 4 2 2 1 5 5 5 5 4.00

Demographic 5 6 6 3 3 2 2 4 4 4 3.90

Fact-level 1 2 2 6 6 5 3 1 1 1 2.80

Student-level 4 4 5 5 5 4 4 3 3 3 4.00

Hybrid 2 3 3 4 4 3 1 2 2 2 2.60

between prediction methods within deciles, however small they may be, a ranking of

the methods is shown in Table 1. Most notable finding is that the fact-level method

made relatively accurate predictions in the outer deciles, but it was relatively in-

accurate in the middle deciles 4, 5 and 6. The opposite was true for the domain

method. Moreover, the hybrid and demographic methods showed a similar, although

weakened, trend to the aforementioned methods, respectively. Keep in mind, how-

ever, that the numeric differences between prediction methods are larger in the outer

deciles. As was also made clear by their median prediction errors, the hybrid and

fact-level methods performed much better than the other methods overall.

Response time prediction

Another two Bayesian regression models were fitted, this time on response time

prediction error. Once again, one model included prediction method as a predictor

and the other model only included the intercept. Model comparison using bridge

sampling revealed that the model with prediction method as a predictor fit the data

better, evidenced by an infinitely high Bayes factor in favour of it over the intercept-

only model. Inspection of the model showed that, compared to an average response

time error of 1814 ms of the default method, the demographic (b = -30.95, 95% CI:

[-57.23, -4.37]), fact-level (b = -89.45, 95% CI: [-116.5, -62.20]), student-level (b =

-41.97, 95% CI: [-68.36, -15.15]) and hybrid (b = -80.47, 95% CI: [-107.0, -53.68])

methods all resulted in significantly lower response time errors (see also Figure 5).
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Figure 4: A) Density functions of the observed response time and the predicted

response times per prediction method. The vertical lines indicate the decile borders.

B) The line graph displays the median observed response time and the median

predicted response times per prediction method in each decile. The error bars

denote interquartile ranges.

The fact-level and hybrid methods were also found to have a significantly lower

response time prediction error than the other methods.

Figure 4A shows that the observed response times varied more than any

method’s predicted response times, similar to the distributions of the predicted and

observed rates of forgetting depicted in Figure 2A. Moreover, the fact-level method

once again had the largest variance in predictions, followed by the hybrid method

and then the student-level method. Figure 4B also shows many similarities with Fig-

ure 2B, as the default method’s predictions generally are lower than those of other

methods and both the fact-level and hybrid methods slightly follow the upward

trend of the observed response times. Bayesian pairwise t-tests were carried out to

find evidence for differences in absolute response time prediction error between the

prediction methods in each quantile. The Bayes factors were transformed according

to the Westfall correction for multiplicity into posterior odds through multiplica-

tion with a prior odds value of 0.086 for 150 pairwise comparisons. The Bayesian

t-tests showed that there was very strong belief for all differences except for the

difference between the domain method and the demographic method in decile 2 and

the difference between the domain method and the student-level method in decile

3.
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Figure 5: Posterior distributions of the regression coefficients from the model on

response time prediction error that included prediction method as a predictor. The

median of each distribution is indicated by a black dot. The thick and thin black

lines indicate the 66% and 95% confidence intervals, respectively. Note that

compared to the model on rate of forgetting prediction error, this model was

constructed on a subset of 1/100 of the data.

Table 2: Rankings of the methods’ predictive performance on response time per

decile, as well as average of all decile rankings.

Method Deciles

1 2 3 4 5 6 7 8 9 10

Average

rank

Default 2 1 1 1 1 6 6 6 6 6 3.80

Domain 6 6* 4* 2 1 4 5 5 5 5 4.30

Demographic 5 5* 6 4 2 2 4 4 4 4 4.05

Fact-level 1 2 2 5 6 5 1 1 1 1 2.50

Student-level 4 4 5* 6 5 3 3 3 3 3 3.85

Hybrid 3 3 3 3 4 1 2 2 2 2 2.50

*No belief for evidence was found for the difference between the two marked methods. For

the average rank, both methods received the average of their rankings in that decile(e.g. both

methods get 4.5 counted towards their average rank if there was no belief for a difference

between their ranks 4 and 5).
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Based on the results from the Bayesian t-tests a ranking could be made for

each decile to show how the differences in absolute response time prediction error

were reflected in the data. These rankings are shown in Table 2. Once again, the

default method was found to perform relatively well in the first five decile but poorly

in the last five. The fact-level method predicted accurate response times in the outer

deciles, but not in the inner deciles. The opposite behaviour of the domain method

as well as the similar, but weaker respective trends of the hybrid and demographic

methods were also found in the ranking of response time errors. On average, the

fact-level and hybrid methods performed equally well and far better than the other

prediction methods.

The finding that the student-level method generally did not result in more

accurate predictions than the default method prompted a follow-up investigation

into the variance in learning ability between students in the current study and in

the study of Van der Velde and colleagues (2021). Distributions of student learning

ability, given by their average rate of forgetting, from both studies are visualised in

Figure 6. Surprisingly, the variance in learning ability between students was lower

in the current study (σ2
current = 8.44e − 04; σ2

V anDerV elde = 1.41e − 03), even though

our sample consisted of secondary school students from distinct school levels and

years while Van der Velde and colleagues (2021)’s sample consisted of first-year

psychology students.

Amount of data per prediction and prediction error

Additional Bayesian regression analyses were performed to find whether response

time predictions made based on small amounts of data were less accurate than pre-

dictions based on many observations. A Bayesian regression model with prediction

method and the amount of data used to make each prediction as main effects and

an interaction effect between the two was fit on response time prediction error. The

amount of data that was used to make each prediction was given by the number

of final rates of forgetting that informed each rate of forgetting prediction which in

turn influenced response time predictions in trials with respective facts, students,
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Figure 6: Boxplot with distributions of student learning ability, given by their

average rate of forgetting, in the current study and in Van der Velde, et al. (2021).

domains and demographics.

The distribution of the number of final rates of forgetting that informed each

prediction varied greatly between prediction methods (e.g. the median number of

final rates of forgetting that informed a prediction was 149 for the student-level

method, 1264 for the hybrid method and over 1.3 million for the demographic

method; see also Figure 7). To accommodate for this and so facilitate a more

interpretable comparison of the prediction methods, the number of final rates of for-

getting that informed a prediction was standardised within each prediction method.

The default method was excluded from the analysis because it does not make pre-

dictions and hence was not informed by any number of datapoints. Stepwise model

comparison using bridge sampling revealed that the full model and a model that

included only the main effect of prediction method and the interaction between pre-

diction method and the amount of data used fit the data better than less complex

models. Namely, there was very strong evidence in favour of the full model and the

model without the main effect of the amount of data used over an intercept-only

model, given by Bayes factors of 4.44e +07 and 4.53e +07, respectively. The Bayes

factor in favour of the full model over the model without the main effect of the

amount of data used was 0.997, indicating there was no evidence for a difference in
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Figure 7: Frequency distributions of the number of observations that informed each

prediction per prediction method

fit between the models. Thus, according to Occam’s razor, the model without the

main effect of the amount of data used to make each prediction was preferred over

the full model.

Inspection of the model itself revealed that only the fact-level and hybrid

methods had a significantly lower response time prediction error than the domain

method. Moreover, they were also the only prediction methods that showed a sig-

nificant interaction effect with the amount of data used to make each prediction.

The interaction coefficient of the fact-level method (-20.77; 95% CI: [-39.39, -2.04])

indicated that the absolute response time prediction error of the fact-level method

decreased by an estimated 20.77 ms for every standard deviation of datapoints used

(SD = 1301) over the mean amount of data used by the fact-level method (m =

1405). For the hybrid method, the interaction coefficient (-20.99; 95% CI: [-39.73,

-2.49]) meant that the absolute response time prediction error of the hybrid method

decreased by an estimated 20.99 ms for every standard deviation of datapoints used

(SD = 1319) over the mean amount of data used by the hybrid method (m = 1632).

The regression coefficients of the best fitting model are given in Table 3 and visu-

alised with their posterior distributions in Figure 8.
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Figure 8: Posterior distributions of the regression coefficients from the best fitting

model. The median of each distribution is indicated by a black dot. The thick and

thin black lines indicate the 66% and 95% confidence intervals, respectively. The

coefficients of the main effect of prediction method are shown on the left-hand side

and the interaction coefficients on the right-hand side. The coefficients on the right

are relative to the intercept given by the main effect coefficient of the domain

prediction method.

Discussion

Five distinct Bayesian prediction methods were trained on a large naturalistic sam-

ple to predict AFLS parameters in order to try to mitigate the cold start problem

of the AFLS. Currently, the AFLS employs a default method that assigns a rate of

forgetting of 0.3 to every fact a student is yet to learn, regardless of its difficulty

or the student’s learning ability. The prediction methods were compared with the

default method as well as each other on their prediction accuracy of the AFLS’s rate

of forgetting parameter and response times. The aim of the current study was to

find evidence that one or more of the five proposed prediction methods approached

observed response times and the rates of forgetting observed at the end of a learning

session more closely than the default method and, in doing so, could mitigate the

cold start problem. Further investigation into the relationship between the granu-

larity of a prediction method and its prediction accuracy as well as the relationship

between prediction accuracy and the number of observations that informed each

prediction was done to find which factors influenced the performance of a prediction

method.
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Taken together, the results suggest that the cold start problem can likely be

mitigated when AFLS parameters are predicted with Bayesian prediction methods

informed by parameter values obtained through prior use of the AFLS. Specifically,

the rate of forgetting parameter of the SlimStampen AFLS could be predicted so

that the rate of forgetting at the start of a learning session closer to the true rate of

forgetting than a default value of 0.3 was. Furthermore, several prediction methods

could also predict response times more accurately than the default method. How-

ever, only the fact-level method and the hybrid method consistently achieved higher

rate of forgetting prediction accuracy and response time prediction accuracy than

the default method in all analyses. By employing a fact-level or a hybrid prediction

method instead of the default method, the starting rate of forgetting assigned to

a new fact or a new student thus more accurately reflected the difficulty of that

fact and, in case of the hybrid method, also the learning ability of that student.

The higher accuracy would allow the AFLS to provide its users with a personalised

learning experience from the start of a learning session.

Looking at their performance within rate of forgetting deciles as well as re-

sponse time deciles, the fact-level and the hybrid methods were found to achieve

relatively good predictions for extreme observations, although they were relatively

poorly in predicting more common observations. When pondering over this finding,

one should keep in mind that the absolute difference in prediction error for both

rate of forgetting and response times was much larger for extreme observations than

for common observations. For the purpose of mitigating the cold start problem it

is favourable to accurately predict extreme observations because that is where the

greatest gain lies. For example, a default starting rate of forgetting of 0.3 might

need only one adaptation to reach the true rate of forgetting of 0.32, but it will

need at least five to reach 0.52. A fact-level method might make a worse prediction

of 0.37 for a common observation of 0.32, requiring two adaptations. The extreme

observation will be predicted better at, say, 0.46, also requiring two adaptations.

This scenario illustrates how fact-level predictions lead to faster approximation of
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the true rate of forgetting, as it is roughly accurate overall rather than only accurate

for common observations. Using a fact-level or hybrid prediction method, an AFLS

will be able to personalise and optimise the learning experience faster.

Even though it was impossible to measure the effect of cold start mitiga-

tion on learning outcomes due to the inflexible nature of the post-hoc simulation,

extrapolation from earlier findings suggests that by applying a Bayesian fact-level

or hybrid prediction method to an AFLS may lead to greater learning outcomes

(Van der Velde et al., 2021). Furthermore, user frustration with the learning system

may be reduced whereby abandonment of the system becomes less likely Pliakos et

al. (2019). Mitigating the cold start problem may also increase users’ motivation to

learn Wauters, Desmet, and Van Den Noortgate (2010), which could be essential for

students who are less receptive to traditional teaching methods Prensky (2010).

The question remains whether the most fine-grained prediction method was

the most accurate. As the method in question, the hybrid method was generally

found to perform on par with the more coarse-grained fact-level method. Both

were found to predict rates of forgetting and response times better than the default

method. Furthermore, both methods achieved the same average rank on response

time prediction error divided by decile. On rate of forgetting prediction error divided

by decile, the hybrid method achieved a marginally higher average rank. Analyses

investigating the interaction between prediction method and the number of obser-

vations that informed each prediction revealed that both the fact-level method and

the hybrid method were equally superior to the domain method in terms of response

time prediction error. Both methods also interacted similarly with the number of

observations that informed each prediction.

To break the stalemate, the way in which the two prediction methods operate

should be considered. Namely, the hybrid method makes its predictions by taking

the mode of a logarithmically pooled distribution made up of the posterior of a given

fact-level and the posterior of a given student-level prediction. From figures 2A and

4A as well as the ranking tables becomes clear that hybrid predictions are less varied
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than fact-level predictions. Since hybrid predictions are drawn from pooled fact-level

and student-level posteriors, it is plausible that hybrid predictions reflect the more

extreme fact-level predictions that have tempered by student-level predictions. For

the purpose of mitigating the cold start problem, however, accurate predictions of

extreme observations are very valuable. Arguably then, the hybrid method’s good

performance may largely be attributed to fact-level predictions. Accordingly, it was

concluded that, since the fact-level method is more coarse-grained than the hybrid

method, the hypothesis that the most fine-grained prediction method would make

the most accurate predictions was rejected.

These results are congruent with the findings of Van der Velde and colleagues

(2021). They found that the cold start problem could be mitigated if predictions

were made following a fact-level method, be it only when the variance of fact diffi-

culty was large enough.

The fact-level method is recommended for future application for the above

reason. Moreover, the fact-level method is much less computationally intensive

compared to the hybrid method. This practical advantage makes it the ideal candi-

date for cold start mitigation in future AFLSs.

The domain, demographic and student-level methods had a lower absolute pre-

diction error on rate of forgetting than the default method, although they achieved

a similar average rank to the default method when comparisons were made within

deciles of the observed rates of forgetting. Additionally, the demographic and

student-level methods were revealed to have a lower absolute prediction error on

response times than the default method, though they again achieved a similar aver-

age rank to the default and domain methods over deciles of the observed response

times.

Within deciles, the domain, demographic and student-level methods made less

accurate predictions than the default method for the lower half of the observed rates

of forgetting as well as the lower half of the observed response times, though they

were more accurate for both upper halves. The main reason for this finding is that
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all prediction methods predicted higher median rates of forgetting and response

times than the default method in all deciles, except for the fact-level and hybrid

methods in decile 1. This upwards shift from the median predictions of the default

method may be attributed to the exclusion of final rates of forgetting from facts

that had been repeated less than four times from the training data, whereby the

predictions were biased towards a higher difficulty of facts, expressed in a higher

rate of forgetting and response time.

However, that does not explain why the domain, demographic and student-

level methods performed worse than the fact-level and hybrid methods. Firstly, the

lack of rate of forgetting prediction accuracy of the domain method may be because

it is too shallow. Since only one prediction was made for all facts, the domain

method could not account for, nor take advantage of, the variety in the dataset.

Secondly, the demographic method’s underperformance may be attributed to

the fact that there was no traceable difference in the rate of forgetting between de-

mographic groups. Surprisingly, learning ability did not seem to increase as students

advanced to higher school years. In contrast to the domain method, there was no

variety for the demographic method to take advantage of.

Thirdly, the student-level method’s underperformance could be explained by

the observation that there were less observations to inform each prediction com-

pared to the fact-level method. Yet no evidence was found for that increasing the

number of observations that informed a student-level prediction would increase pre-

diction accuracy. Further investigation revealed, however, that although the current

study had access to data from more than 135,000 Dutch secondary school students

from multiple school levels and grades and Van der Velde and colleagues (2021)

tested 159 first-year psychology students, there was less variance in learning abil-

ity between students in the current study. Our findings thus agree with Van der

Velde and colleagues (2021)’s suggestion that insufficient variance in the partici-

pant sample prevented a student-level prediction method from making meaningful

predictions. Crucially however, the current study revealed that even with a large

naturalistic pool of participants from various backgrounds there was insufficient vari-
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ance in learning ability for the student-level method to capitalise on, suggesting that

it might be impossible for a student-level method to mitigate the cold start problem

in a natural setting.

Overall, the results revealed close similarities in how a method performed on

rate of forgetting prediction and how they performed on response time prediction.

It is not surprising that there would be a relationship between these parameters as

response time predictions took into account the activation of the fact in declara-

tive memory, and thereby by extent the rate of forgetting. Crucially however, this

relationship shows that when the latent model parameter rate of forgetting can be

predicted more accurately, the more tangible parameter response time can also be

predicted with greater accuracy, which validates the cognitive model underlying the

AFLS.

Finally, it was investigated whether response time predictions partially de-

rived from predicted rates of forgetting based on many observations in the training

set were more accurate than those derived from rate of forgetting predictions made

that were based on few observations. Logically, predictions that were informed by

many observations are more robust against outliers and predictions that are heavily

influenced by outliers are likely to be inaccurate. The results showed that there was

evidence for an interaction effect between prediction method and the number of ob-

servations each method used to make its predictions. Concretely, only the fact-level

and hybrid methods were found to predict significantly more accurate response times

the more observations had informed their predictions. However, for both methods

for the absolute response time error to go down by 1.21% the number of observa-

tions for a prediction had to almost double. This marginal gain suggests that this

interactive relationship is not practically relevant here. Following the law of dimin-

ishing returns, predictions based on much smaller datasets would likely show a more

pronounced effect. For future reference, none should strive to amass larger amounts

of data in the hope of increasing prediction accuracy when data is available to the
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same order of magnitude as in the current study.

The current study also recognises the limitations that were introduced by the

methodological procedures employed. The use of a post-hoc simulation as opposed to

experimental testing meant that all training data was gathered by the SlimStampen

AFLS while it employed the default method. This meant that the sequence in

which facts were presented to students during data acquisition was set in stone.

For example, a student is presented with a difficult fact for the first time (say, the

true rate of forgetting is 0.4). An AFLS using the default method would apply a

starting rate of forgetting of 0.3, whereas it may have applied a starting rate of

forgetting of 0.35 if it used the fact-level method. With a higher starting rate of

forgetting the difficult fact is repeated more often in the early stages of the learning

session. Not only does this mean that the presentation schedule is altered, the

student may also fully memorise the fact in fewer repetitions because of the better

fitting presentation schedule. Because of the property of post-hoc simulation that

the original presentation schedule cannot be changed, any potential side effects of

cold start mitigation could not be measured. Pliakos and colleagues (2019) already

suggested that the advantages of mitigating the cold start problem with accurate

predictions are more plentiful than increased personalisation learning environment

at the start of a learning session.

Another limitation was introduced by the luxury of having a very large dataset.

Namely, even for the smallest of differences between prediction methods there often

was overwhelming evidence. While corrections accounting for the number of anal-

yses were performed to prevent type 1 errors, very small differences in prediction

errors between methods should be adopted critically. For the reason that some of

these effects may not be replicable, we focused on effects which were consistently

clear from all analyses.

Ultimately, the findings of the current study and those of Van der Velde and

colleagues (2021) may be used as a foundation for future research into mitigating
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the cold start problem of AFLSs. The current findings pave the way for a long-term

applied experiment where the fact-level prediction method is applied in a naturalis-

tic setting. Using the default method as a control condition, the effects of mitigating

the cold start problem by predicting fact difficulty may be investigated beyond the

limitations of the current study. Namely, while the post-hoc simulation lent itself to

perform analyses of the predictive performance of five distinct prediction methods

on an unprecedented scale, it was not possible to measure any side effects when

these prediction methods were used to mitigate the cold start problem. Investiga-

tions into the effect of cold start mitigation through Bayesian prediction on learning

outcomes, learning motivation and system abandonment could emphasize the ad-

vantages of AFLSs. Moreover, we suggest a theory for improvement of the cold

start mitigation achieved in the current study. Namely, the prediction accuracy of

a mitigating prediction method like the fact-level method is expected to increase

when it is informed by observations from a system using such a prediction method.

As there is less need for large adaptations when the cold start problem is mitigated,

an AFLS may be able to hone in more precisely on the actual value of the AFLS’s

latent parameter. Consequentially, observations that more accurately reflect this

actual value are expected to produce more accurate predictions. In this way, there

is potential for a positive feedback loop, increasing prediction accuracy up to its

maximum, given the natural shifts and unpredictability of cognition.

Conclusion

The cold start problem hampers an AFLS’s ability to provide users with a person-

alised learning experience that increases their learning outcomes at the start of a

learning session. Through a post-hoc simulation on a large naturalistic dataset, the

current study found that the cold start problem could be mitigated by predicting the

starting rate of forgetting parameter value of the AFLS’s underlying cognitive model

prior to the start of a learning session. Five distinct Bayesian prediction methods

were tested on their prediction accuracy for rates of forgetting and response times.

From these five, the fact-level and hybrid prediction methods were found to consis-
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tently make more accurate predictions than the default method, which the AFLS

employed when it suffered from the cold start problem. Out of the two, the more

coarse-grained fact-level was deemed the best candidate to mitigate the AFLS’s cold

start problem in an applied setting. Based on previous studies, the application of

this prediction could lead to a further increase in learning outcomes facilitated by

AFLSs, as well as an increase in learning motivation. In all, the current study under-

states the importance of the use of advanced digital learning aids next to traditional

teaching methods to improve the quality of education.
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Appendix

Table A1: Bayesian regression coefficients of the model fit on absolute rate

of forgetting prediction error that included a main effect of prediction method.

Method Estimate 95% Confidence interval

Default 0.0672 [0.0672, 0.0673]

Domain -0.000953 [-0.000995, -0.000911]

Demographic -0.00176 [-0.00180, -.000172]

Fact-level -0.00855 [-0.00859, -0.00851]

Student-level -0.00298 [-0.00303, -0.00294]

Hybrid -0.00839 [-0.00843, -0.00835]

Table A2: Bayesian regression coefficients of the model fit on absolute response

time prediction error that included a main effect of prediction method.

Method Estimate 95% Confidence interval

Default 1814 [1795, 1833]

Domain -21.54 [-48.14, 5.42]

Demographic -30.95 [-57.23, -4.37]

Fact-level -89.45 [-116.5, -62.20]

Student-level -41.97 [-68.36, -15.15]

Hybrid -80.47 [-107.0, -53.68]

Code availability

The code required to reproduce the prediction process and analysis is available

upon request. Please contact M. van der Velde, Msc. (Experimental Psychology,

University of Groningen) at: m.a.van.der.velde@rug.nl
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