
Keyword Spotting
with the Time Difference Encoder

Ton Juny Pina



University of Groningen

Keyword Spotting
with the Time Difference Encoder

Master’s Thesis

To fulfill the requirements for the degree of
Master of Science in Physics

at University of Groningen under the supervision of
Prof. dr. Elisabetta Chicca (Zernike Institute for Advanced Materials, University of Groningen)
Prof. dr. Beatriz Noheda (Zernike Institute for Advanced Materials, University of Groningen)

Dr. Lyes Khacef (Zernike Institute for Advanced Materials, University of Groningen)
and

Michele Mastella (Zernike Institute for Advanced Materials, University of Groningen)

Ton Juny Pina (s3896781)

December 17, 2021



3

Contents

Page

Acknowledgements 5

Abstract 6

1 Introduction 7

1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 The neuromorphic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Methods 10

2.1 The Time Difference Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Speech processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Information theory: Entropy and Mutual Information . . . . . . . . . . . . . . . . . 13

2.4 Bio-inspired model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Experiment 1: Mutual Information in the cochlea and TDEs . . . . . . . . . 17

2.4.2 Mutual Information in reduced populations of TDEs . . . . . . . . . . . . . 18

2.5 Formants model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Experiment 1: MI reduced populations . . . . . . . . . . . . . . . . . . . . 19

2.5.2 Experiment 2: Spikecount-based classifier . . . . . . . . . . . . . . . . . . . 20

3 Results and discussion: Bio-inspired model 21

3.1 Mutual Information in the cochlea and TDEs . . . . . . . . . . . . . . . . . . . . . 21

3.2 Mutual Information in reduced populations of TDEs . . . . . . . . . . . . . . . . . . 21

4 Formants model 25

4.1 Mutual Information in reduced populations of formant channels and TDEs . . . . . . 25



4 CONTENTS

4.2 Spike-count based classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Conclusion 29

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Bibliography 30

Appendices 32



5

Acknowledgments

I want to thank the whole Bio-inspired Circuits and Systems team, for making me feel part of the
group since the first moment, discovering me an amazing research field as it is the neuromorphic
computing, the unconditional help given daily, the amazing working environment, and just for the
very nice people that each of you are. Special thanks to my daily supervisors, Michele and Lyes.
Without your guidance and contributions this thesis would not have been possible. I also want to
make a special mention to Elisabetta, the mind behind many of the ideas researched in this work. You
taught me a lot during this year and it has been a great experience learning and working with you.
Finally, I want to thank dr. Beatriz Noheda for also supervising this thesis.

Last but not least, a huge thank you to the family and friends, who has been supporting me during this
year and my during my whole life. Without you this thesis would not be possible.



6

Abstract

In this thesis, the contribution of introducing the Time Difference Encoder to neuromorphic keyword
spotting models is researched. Previous studies show that implementing a layer of this neural struc-
ture into these models, can improve the performance in the classification task. The reasons for this
improvement are discussed by analyzing how the speech is encoded and processed in the biologi-
cal nervous systems. Information Theory is used in order to research the stimulus encoding in the
different parts of the models. In the first set of experiments, a realistic model based on a Python
implementation of a biological cochlea is bench-marked, showing successful results by the TDEs in
the encoding of temporal patterns from the cochlea representation of the human speech. The second
set of experiments tests a model that uses the extracted formants from human speech to classify the
spoken words. As in the first experiment, the TDEs show successful results in the encoding of tem-
poral patterns in the formant shape. Finally, a simple binary classifier is designed that performs the
keyword spotting from the formants model outputs, showing a solid performance.
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Figure 1: Little girl talking to Amazon Alexa. (Shutterstock 2021)

1 Introduction

1.1 Context and motivation

In speech processing, keyword spotting deals with the identification of specific keywords in spoken
language, which can be anything from simple words to full sentences. Performing speech recognition
is computationally expensive, due to the model complexity needed to be able to recognize thousands
of different words in a speech. Furthermore, keyword spotting models only need to be trained to
identify a single expression. This allows for greater model simplicity, which drastically reduces the
required number of calculations and lowers the power consumption.

As the number of devices using voice assistants increase, the use of keyword spotting models has
broadly extended. By default, speech recognition in the voice assistants is in standby, and only the
keyword spotting runs in the background. This prevents the voice assistant from draining the battery
of the device, and also prevents false commands. When the keyword is spoken, the assistant ’wakes
up’ and the speech recognition is activated.

Due to the need for an integrated an power efficient solution, the development of keyword spotting
(KS) models in neuromorphic hardware has been explored in recent years[1][2], and its improved
efficiency in front of the models in digital hardware has been proven[3]. Nevertheless, these models
still face difficulties in distinguishing some words, especially if they show the same vowel structure.
Within the aim of improving the accuracy of the neuromorphic KS models, this work explores the
idea of introducing a layer of Time Difference Encoders (TDEs), a neural structure that captures the
time difference between two pre-synaptic spike inputs.

In order to benchmark the improvement in the classification task, Information Theory is used to
explore the stimulus encoding in each part of the model. Also, the reasons why the KS models benefit
from introducing this neural structure are discussed. Moreover, introducing a layer of TDEs increases
the model complexity, thus increasing its energy consumption. Measurements are performed in order
to optimize the number of TDEs, pursuing the best trade between accuracy and energy consumption.
Finally, this work hopes to contribute in the understanding of how the information is encoded and
processed in the auditory channel.
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This thesis follows up on the results obtained by Tobias Mikkuta (University of Bielefeld) in his
Master’s thesis[4], where the addition of the TDEs to a bio-realistic KS model was proven to increase
the true positive rate in the classification task by a 20%.

1.2 The neuromorphic approach

The biological nervous systems operate under extreme small-size and low-power constraints, and its
performance cannot be challenged by any man-made processor today. This performance in terms
of real-time processing and energy efficiency is due to its computing architecture. Any biological
nervous system is constituted by neurons, which are highly parallel and redundant elements that are
intrinsically sluggish, noisy and unreliable. Every neuron has in average 10000 synapses that connect
it within other neurons, and from them receives impulses through its dendrites, which act as input
channels. Then, if the potential inside the neuron reaches a certain threshold, the neuron is activated
and an impulse is emitted through its axon. This leads to a way of computing information where
memory and processing are shared and influencing each other, radically different from the digital
processors based in the von Neumann architecture.

During the last decades, many efforts have been put into mimicking the properties of the very suc-
cessful biological nervous systems. This has given birth to the field of artificial intelligence (AI),
which aims to build models that solve a task by processing the information through an artificial neu-
ral network (ANN). These networks are constituted by artificial neurons, which are an abstraction of
its biological counterpart. The artificial neuron is represented by a mathematical function that takes a
finite number of inputs, and produces an output as a response. Every input is separately weighted, and
then its sum is operated through a nonlinear function called the response function, which determines
if the neuron is activated. The output of the response function then becomes one of the inputs for a
neuron in the next layer.

Figure 2: Biological neuron and its mathematical representation, which constitutes an artificial neu-
ron. The n input signals are received in the dendrites. Every dendrite weights the signal by regulating
the number of synaptic neurotransmitters. Then the cell body, or soma, adds up all the inputs. If the
membrane potential reaches the threshold value, an action potential is sent through the axon to the
postsynaptic neurons. In the artificial neuron, this is represented by the response function. (Wikime-
dia Commons, 2021)
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The ANNs can be totally abstract, when they are mathematically computed in a digital processor. In
this case, all the synapses can be precisely configured, and there is no limit in the architecture of the
network, number of neurons or synapses, except for the computational power required to perform
all the calculations. However, this advantage of the simulated networks is also its drawback. As the
number of neurons and synapses increases, the number of calculations required to run the model grows
exponentially, which in turn increases the power consumption and the computational requirements.
For instance, the Human Brain Project[5], which tries to simulate a human-scale cortical model of
20 billion neurons, will require an exascale supercomputer (1018 flops) powered with the energy
equivalent to a quarter-million households (0.5 GW). The human brain makes it with just 20 W; 50
million times less energy.

In order to move towards the real-time performance and energy efficiency of the biological nervous
systems, the field of neuromorphic engineering emulates the dynamics of the neural networks on
analogous physical substrate. The neural networks are built from electrical circuits that resemble the
properties of the biological neurons. These circuits are built on analog CMOS designed to operate in
subthreshold regime, which run on currents of the order of the nanoampere. This greatly increases
the efficiency compared to the simulations on digital CPUs, where it’s circuits typically operate on
currents of the order of the milliampere.

The real-time performance is also improved by the networks in neuromorphic hardware. In standard
digital simulations, all the calculations are performed by the CPU, and there is a constant exchange of
data between the CPU and the memory. In consequence, the latency in this exchange also constrains
the overall performance of the network (which is known as the Von Neumann bottleneck problem).
On the other hand, in the neuromorphic networks the information processing is done in parallel by
each neuron, as it happens in biology. This leads to producing the outcomes of the network in real-
time with very small latency times.

1.3 Research questions

To summarize, this thesis focuses on the following problems:

Q1. Proof that introducing a layer of TDEs improves the classification task in keyword spot-
ting models.

Q2. Explore how the TDEs contribute to keyword spotting. Which are the sound features
captured by the TDEs that allow for the stimulus classification.

Q3. Model optimization. Find which TDEs are carrying the relevant information for detect-
ing a certain keyword.

Q4. Explore the information encoding and processing in the auditory channel.
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2 Methods

2.1 The Time Difference Encoder

The Time Difference Encoder (TDE) is a neural structure introduced by Milde et. al. in 2018[6]. This
neuron receives two presynaptic inputs, and encodes the time difference between them into a burst of
spikes. Both the number of spikes and the inter-spike interval are proportional to the time difference
between the inputs.

This neural structure is constituted by a leaky-integrate-and-fire neuron and two synapses, the facil-
itatory synapse (Figure 3a, red) and the trigger synapse (Figure 3a, blue). When a spike is received
in the facilitatory synapse, an excitatory post-synaptic current (EPSC) rises the TDE membrane po-
tential. As shown in figure 3b, the synaptic weight of the facilitatory synapse is set so the membrane
voltage does not reach its threshold value with the EPSC from the facilitatory synapse. The efficacy
of the trigger synapse is determined by the EPSC in the facilitatory synapse. If a spike is received
while the EPSC from the facilitatory synapse is non-negligible, the current from the trigger synapse
rises the membrane potential over the threshold and the TDE spikes. The current integrated by the
neuron is then proportional to the time difference between the presynaptic spikes, thus its number of
spikes (Figure 3e).

Figure 3: Representation of the TDE response to the input spikes. In 3a the TDE neuron is represented
with its facilitatory synapse (red) and its trigger synapse (blue). Following figures show the TDE
response to spikes in the correct order and short time difference (3b), long time difference (3c) and
anti-preferred order (3d). Finally, figure 3e shows the number of spikes in the TDE response as a
function of the time difference between facilitatory and trigger inputs. (D’Angelo et al., 2020)
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Figure 4: Representation of the speech processing in the auditory channel. The sound waves re-
ceived in the inner ear are encoded by the spiking patterns of the fibers in the cochlea. (Chittka and
Brokmann, 2005)

The TDE model used in this research is a Python implementation in Nengo[8], provided by Terry
Stewart.

2.2 Speech processing

In order to study the contribution of using TDEs in keyword spotting, some understanding about how
the speech is encoded and processed in the auditory channel is required. This section gives some
insights about the characteristic properties of a sound-wave that relate it to the uttered word, and how
this are encoded by the TDEs.

The cochlea is a hollow, spiral-shaped bone found in the inner ear. When the sound is processed the
auditory channel, it produces vibrations in the cochlea. This vibrations are encoded into electrical
impulses that correspond to the sound amplitude for each individual frequency. Mathematically, it
acts as a discrete Fourier transform over the sound wave

(a) (b) (c)

Figure 5: Comparison of the resulting spike-trains from processing the same utterance of the word
two with 20 equally spaced channels between 0 Hz and 8000 Hz, and 1 LSR (a)/MSR (b)/HSR (c)
fiber per channel[10]



12 Chapter 2 METHODS

f (t) =
N

∑
n=0

Aν exp
(
−i

2πνn

N
t
)
, (1)

where Aν represents the amplitude for a certain frequency ν, and the sum goes over all the discrete
frequencies. This work uses the Python implementation of a bio-inspired cochlea model developed
by Zilany et al. in 2009[10][11].

The neurons that encode the amplitude in each frequency are called fibers. The encoding is done by
the spike-rate. Fibers in biological cochleas show a wide range of sensitivity, which improves the
hearing capabilities in the real world. It allows our brains to perform well in noisy environments,
to modulate the sensitivity regarding the sound volume around the subject and to differentiate be-
tween sounds in situations with many sound sources. This is represented in our model by three types
of fibers: the High Spontaneous Rate (HSR), the Medium Spontaneous Rate (MSR) and the Low
Spontaneous Rate (LSR) fibers (figure 5).

(a)

(b)

Figure 6: Accumulated sound amplitude per frequency during two utterances of the word one (a) and
two (b).
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The human speech is produced by modulating the flow of air expelled from the lungs through the
voice tract. This produces vibrations of different frequencies that constitute each phoneme. The
vowel sounds are the easier to identify, since are characterized by high peaks of amplitude in the low
frequencies range (200 Hz -2 kHz), which are produced by strong vibrations in the vocal chords. The
consonant sounds are usually characterized by fainter peaks of amplitude through the whole frequency
range, result of modulations made by the throat, mouth, tongue and lips.

In the figure 6, the sound amplitude per frequency for two utterances of the words one and two is
shown. Regardless of the speaker, the structure of peaks is common in different instances of the same
word, even the center position of the peaks may vary depending on the voice tone of the speaker.
Every word, or more precisely every one of the phonemes that form a certain word, are defined by a
superposition of sound-waves of certain frequencies. This phonemes are encoded by the cochlea as a
subset of channels spiking simultaneously. The temporal evolution of the spiking channels generates
characteristic patterns for each word (figure 7).

The TDEs aim to extract this patterns in the temporal evolution of the spike-trains from the cochlea,
and encode them into the activation of certain TDEs. Since these patterns are found to be common in
instances of different speakers pronouncing the same word, for a certain word the most active subset
of TDEs and its sequence of activation identifies the utterance.

The higher amplitude peaks in the frequency domain are the formants. Their spatio-temporal evo-
lution can also be used to characterize the corresponding utterance, as a simplified version of the
patterns observed in the cochlea spikes. The position of the first two formants is enough to identify a
vowel sound, and the four first formants give enough information for identifying most of consonant
sounds[add ref. code formants extraction]. Comparing the cochlea outputs with the corresponding
formants for one and two (figure 8), a high density of spikes is observed coinciding with the position
of the formants, creating patterns that resemble the shape of the formant.

2.3 Information theory: Entropy and Mutual Information

In order to test the performance of the models, and study how the stimulus are encoded and processed,
this work uses Information Theory.

Information theory is a useful analysis tool for neuroscience data. It is model independent, so it is
not necessary to hypothesize a specific structure to the interactions between variables. The model-
free character allows a much wider range of interactions to be quantified than could be achieved
with a model-dependent approach, that is limited by the assumed model. Information Theory can
be applied to any mixture of data types, which is really helpful when comparing stimulus presented
to a network model with the spiking outputs. It is also capable of detecting non-linear interactions.
Given the prevalence of non-linear interactions in neural networks, this ability is especially important.
Finally, the results from the information theoretic measurements are in the general unit of bits, which
facilitates comparisons between results.

In Information Theory, the information is defined as the reduction in the uncertainty about the state
of a variable when the state of a second is known. To illustrate this concept, imagine that the reader
unexpectedly encounters with the author of this thesis. The author flips a coin and hides the result.
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(a) (b)

(c) (d)

Figure 7: Resulting spike-trains from two utterances of the word one (a,b) and two (c,d). The cochlea
is configured with 20 equally spaced channels between 0 Hz and 8000 Hz and 1 LSR fiber per channel.

The reader asks the question: ”Did it come up tails?”, which is trustfully answered: ”Yes”. The
answer totally reduced the reader’s uncertainty about the state of the coin. Since the coin had two
equally probable states, the author’s message contained 1 bit of information.

Moving from coins to the context of spiking data, one might try to ask questions about how much
information a spike train (analogous to the answer about the state of the coin) provides about a stim-
ulus (analogous to the result of the coin flip). In this case, asking Yes/No questions is not enough to
provide information measurements. For this purpose, information theory provides useful quantities
that can be calculated.

The first quantity that needs to be introduced is the entropy of a variable. Entropy is the fundamental
IT quantity, and it measures how much uncertainty is contained in a variable. The entropy H(X) of a
random variable X (with individual states x) is defined as

H(X) = ∑
x∈X

p(x)log
(

1
p(x)

)
, (2)
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Figure 8: First and second formants extracted from utterances of the words one, two, three and four.
(Coath et al., 2014)

Figure 9: Graphic representation of the Information Theory processing of experimental results.
(Timme and Lapish, 2018)

where the sum is over all the possible states of the variable X , and it is measured in bits. Then in order
to calculate the entropy of a variable, the probability distribution over its possible states needs to be
estimated by experimental measurements.

The entropy definition can be generalized to two (or many) variables by substituting the probability
distribution p(x) for the joint probability distribution p(x,y) in 2,
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H(X ,Y ) = ∑
x∈X ,y∈Y

p(x,y)log
(

1
p(x,y)

)
(3)

which is the joint entropy of X and Y .

In the case of independent variables, the joint probability distribution is just the product of both
variables distributions, then the joint entropy

p(x,y) = p(x)p(y)⇒ H(x,y) = H(x)+H(y) (4)

is just the sum of the individual entropies for each variable.

The entropy reduction in a variable due to the knowledge about the state of a second is quantified by
the conditional entropy

H(X |Y ) = ∑
x∈X ,y∈Y

p(x,y)log
(

1
p(x|y)

)
. (5)

p(x|y) refers to the probability distribution of X once known the state of Y , and as in the previous
cases the sum is over all the possible combinations of states for X and Y .

The information has been defined as the reduction of uncertainty in the state of one variable when
another is known. So from the definitions of entropy and conditional entropy, it is straight forward to
define the mutual information between to variables as

I(X ;Y ) = H(X)−H(X |Y ) = ∑
x∈X ,y∈Y

p(x,y)log
(

p(x,y)
p(x)p(y)

)
. (6)

By performing mutual information measurements on the spike trains before and after the TDE layer,
the models performances and the stimulus encoding by the TDEs is studied. The calculations are
performed with the toolbox provided by [13], a Python package for Information Theoretic analysis of
neural data.

2.4 Bio-inspired model

The first set of experiments tests the network from T. Mikkuta’s Master’s thesis[4]. The model takes a
biologically realistic approach, by using the Python implementation of a biological cochlea [10]. The
cochlea is fed with audio samples from the Google speech commands dataset, which includes 65000
one-second long utterances of 30 short words recorded by thousands of different speakers.

The outputs of the cochlea are processed by a layer of TDE neurons, which are implemented in
Nengo[8]. Each TDE takes the spikes from one cochlea channel in its facilitatory synapse, and the
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spikes from another channel in its trigger synapse. Thus, the TDEs are encoding the time differences
between spikes in different channels in the cochlea. There is a TDE for all the possible combinations
of cochlea channels as facilitatory and trigger inputs. In consequence, if N is the number of channels
in the cochlea, the number of TDEs in this layer scales as N2.

This scaling factor in the number of TDEs is not very efficient in terms of energy consumption, but
the hypothesis is that only a reduced population of TDEs is actually needed in order to capture the
characteristic spatio-temporal patterns that identify a certain keyword. If this TDEs can be identified,
the keyword spotting task can be performed by using only a few neurons and synapses, achieving
great energetic efficiency.

In the research from T. Mikkuta[4], the spiking outputs from the cochlea and the TDEs were fed to a
least-squares word solver, which performed the classification task for the keyword spotting. Its results
were then compared, observing an improvement in the True Positive Rate (TPR) and the accuracy
when using the spike-trains from the TDE layer. In this work, Information Theoretic measurements
are used to study and compare the stimulus encoding in each layer of the model. The aim of the
experiments is to verify the improvement provided by the TDEs, and to explore if reduced populations
of TDEs can be used to capture the key features in a spoken word and perform the keyword spotting
task efficiently.

The hyper-parameter settings for the TDE layer are taken from T. Mikkuta research[4]. This values
were found to provide the best accuracy performing the KS task with this model. Even though further
studies should be performed in order to find more accurate values.

2.4.1 Experiment 1: Mutual Information in the cochlea and TDEs

The first experiment explores the information encoding in the cochlea and TDE layers. When a
stimulus is encoded into a sequence of spikes by a group of neurons, the information can be encoded
in different ways. If it is the timing of the spikes and its frequency, the features that encode which
stimulus is presented to the neurons, the encoding is temporal. On the other hand, if the feature
that encodes the information about the stimulus presented to the neurons is which neuron spikes, the
encoding is spatial.

Furthermore, this experiment aims to prove that the information is encoded more spatially in the
TDE layer than in the cochlea. Most of the information about the stimulus is encoded by temporal
patterns in the cochlea, by the spikes timing and rate in each channel which corresponds to the sound
amplitude in a specific frequency range. In the next layer, the TDEs encode the stimulus by capturing
the time differences between spikes in different channels. When the stimulus is encoded in the TDEs,
part of this information represented by temporal features in the cochlea is translated into the activation
of certain TDEs (i.e. it is spatially distributed).

In order to estimate the probability distributions for each stimulus in the calculation of the mutual
information, the algorithm needs to compare the obtained results over all its possible outcomes. This
translates to 2αβ possible matrices for each spike-train, where α is the number of channels and β is
the number of time-steps in the simulation. In order to reduce the number of possible outcomes, so it
is feasible the computation with a desk CPU, the spike-train matrices are simplified before computing
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the mutual information.

Following the purpose of this experiment, which is to compare the spatially encoded information in
the two layers of the model, the simplification eliminates the temporally encoded information in the
spike-trains. This is done by considering only the total number of spikes in each channel in the mutual
information calculation. With this simplification, the number of possible outcomes is αβ, where α is
the highest spike-count and β is the number of channels in the layer. This is still not manageable by a
CPU, so further simplification is needed.

The final simplification is done by following a winner-take-all strategy, where the most spiking chan-
nel is selected from the total spike counts. Then the mutual information is computed between the most
spiking channel in the cochlea/TDE layer, and the stimulus presented. This simplification reduces the
number of possible outcomes to the number of channels of each layer.

The dataset employed in the experiment consists of 500 instances of the words zero, one, two and
three. The whole dataset is used in the calculation of the probability distribution of the response to
each stimulus, which guarantees low bias in the MI calculation[14].

2.4.2 Mutual Information in reduced populations of TDEs

The second experiment aims to explore which TDE neurons are encoding more information about the
stimulus. For this purpose, the TDE neurons have been divided into different populations regarding
the frequency of the cochlea channels that are receiving inputs from. For instance, the ’low’ pop-
ulation consists of the TDEs that receive both inputs (facilitatory and trigger) from low-frequency
channels in the cochlea; the ’low-high’ population receives one input from a low frequency channel
and the other from a high-frequency channel, etc.

The used dataset is composed by 200 instances of the words zero and one. The mutual information is
calculated from the spike-trains of a reduced number of TDEs in each population, which are randomly
selected. In order to make the calculations feasible, the possible outcomes are reduced through a
binning method. The binning is performed by adding the number of spikes inside a defined time-bin,
and setting the value for that time-bin into 1 if it’s above a certain threshold, and 0 if it’s below.
In this experiment, the aim is to evaluate which TDE neurons are encoding more information about
the stimulus presented, both if its temporally or spatially encoded. To this end, this method intends
to maintain the temporally encoded information, unlike the simplification method used in the first
experiment.

2.5 Formants model

In the section 2.2, the formants are introduced as the local maximums in amplitude in the frequency
domain. Vowel sounds have between 4 and 6 distinguishable formants in the low frequency range (0
- 2.5 kHz). Moreover, the positions of the two formants with the lowest amplitude, which are the two
first formants, give enough information to distinguish between vowel sounds[15].

In previous research, a neuromorphic keyword spotting model has been developed[1] which success-
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fully uses the extracted formants from spoken words to perform the classification task. Following its
results, the performance of a TDE-based keyword spotting model that uses the extracted formants for
the classification task is assessed.

The formants are extracted from audio samples of the Google speech commands dataset using Sinewave
Speech analysis[16]. Based on the LPC speech analysis, this algorithm tracks the frequencies and am-
plitudes of the four first formants by fitting sinusoids waves to the speech sample. The positions of
the four first formants are stored as 32 x n binary patterns, with each of the 32 rows representing a
frequency channel and each of the n columns representing a time bin of 1 ms (Figure X). By these
procedure, a dataset consisting of 500 formants of the spoken numbers from 0 to 9 is created. These
are used as inputs to the network simulation.

The network is composed by a single layer of TDEs implemented in Nengo[8]. In the bio-inspired
cochlea model, the TDE layer contains a TDE for all the possible combinations of channels as facili-
tatory and trigger inputs. In this case, the number of TDEs have been reduced by defining a maximum
distance Dmax between synapses in the TDEs. The distance between two channels is defined as the
difference between its channel numbers, i.e. channels 2 and 5 are at a distance of 3 channels. Then,
there is a TDE for all the possible combinations of channels at a distance equal or smaller than Dmax.

The benchmarking of this model aims to validate the hypothesis that capturing the temporal evolution
of each of the first four formants with the TDEs, captures enough information about the stimulus to
perform the keyword spotting task. In line with this purpose, Dmax is defined in order to avoid that
the TDEs receive inputs from two different formants in its facilitatory and trigger synapses. After
visually assessing some of the extracted formants, the maximum distance Dmax is set as 3 channels.
This value is found to be in most cases small enough to avoid taking inputs from different formants in
the TDEs, while being at the same time large enough to capture the temporal evolution of the formant
shape. Setting Dmax = 3 leads to a total of 182 TDEs in the network.

2.5.1 Experiment 1: MI reduced populations

The aim of this experiment is to find the best configuration for the TDE layer hyper-parameters. To
this aim, a brute-force approximation is carried out. In order to reduce the number of parameters, the
weights of all the TDEs are set uniformly, and with equal value for both synapses ω f ac = ωtrig = ω.
Also the decaying constants for the EPSC are set uniformly in all the TDEs, but with different value
for each synapse (τ f ac 6= τtrig). Then, the experiment is repeated for the 60 possible combinations
with ω = (20000, 40000, 50000, 60000, 80000), τ f ac = (0.002 s, 0.003 s, 0.005 s, 0.008 s, 0.012 s,
0.015 s) and τtrig = (0.001 s, 0.002 s).

The experiment consists in two phases. In the first phase, which is defined as the training phase, a
keyword is selected from the dataset. Then, 100 formants of the keyword are used as inputs for the
TDE layer, and the outputs are stored. After storing the formants and the TDE layer outputs, the
number of spikes in each formant channel and in each TDE through the whole training phase are
computed. From the total spike counts, the channels in each layer regarding its overall spikecount in
the training phase are ranked.

In the second phase of the experiment, defined as the testing phase, 200 formants of each word
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in the dataset are used as inputs for the TDE layer, and its outputs are stored. For each trial, the
spike counts in a reduced population of TDEs are computed, as well as in a reduced population of
the formant channels. The reduced populations are defined as different percentages (from 5% to
40%) of the top ranked formant channels/TDEs regarding its overall spikecount in the training phase.
Then, the mutual information is calculated between the total spikecount in each population of formant
channels/TDEs and the stimulus presented (keyword or not-keyword).

The MI values are represented as a function of the number of formant channels/TDEs, which allows
to evaluate the populations needed to capture enough information about the stimulus. The results
through the 60 trials are also visually assessed in order to find the best performing configuration for
the TDE layer.

2.5.2 Experiment 2: Spikecount-based classifier

The second experiment tests the performance of a classifier performing the keyword spotting task
with the formants. The aim of the experiment is to compare the results when the classifier is using
the formants for the stimulus classification, and when is using instead the TDE layer outputs. The
hyper-parameter configuration is set as the best performing configuration found in the Experiment 1.

As in the previous experiment, this experiment also consists in two phases. In the training phase,
400 formants of the selected keyword are fed to the TDE layer, and its outputs are stored. Then, the
total spike counts are calculated for each formant channel and for each TDE. From the total spike
counts, the formant channels and the TDEs are ranked regarding its overall spikecount. For a reduced
population, consisting in the X% of the top ranked formant channels and top ranked TDEs, the mean
spike counts per trial and its standard deviation are also computed.

In the classification phase, 100 formants of each word in the dataset are used as the testing dataset.
The formants are fed to the TDE layer, and its outputs are stored. In each trial, the classification
of the stimulus is made from the spike counts in the most spiking X% of the formant channels and
TDEs. A threshold θ is calculated from the mean spike counts in the training phase of the top ranked
population, and its standard deviation. If the spike count in top ranked channels for a certain trial is
higher than the threshold, the stimulus is classified as keyword. On the other hand if the spike count
is lower, is classified as not-keyword.

In order to assess the classifier performance, the Receiver Operating Characteristic (ROC) curves[17]

are computed by ranging the threshold from θ = C− 3σC to θ = C + 3σC, where C are the mean
counts per trial in the top ranked population, and σC its standard deviation. For each threshold value
the confusion matrix is calculated, and also the True Positive ratio (TPR), the False Positive ratio
(FPR) and the accuracy.
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3 Results and discussion: Bio-inspired model

In the following section, the results from the benchmarking of the bio-inspired model described in the
Methods section are presented and discussed. Mutual Information is used to compare the stimulus
encoding in each part of the network, with the aim of proving that the addition of the TDEs eases
the classification task. Also, the Mutual Information from small populations of TDEs is measured, in
order to explore the minimum populations of TDEs required to spot a keyword.

3.1 Mutual Information in the cochlea and TDEs

The aim of this experiment is to serve as a first proof of concept that the stimulus encoding is more
spatially distributed in the TDE layer, thus easing the classification task. Figure 10 compares the
mutual information values between the spike-trains and the presented stimulus after the spike-train
simplification, for both the cochlea and TDE layers. In this sense, figure 10 shows around a 100%
increase in the mutual information values for the TDE layer after the temporal information has been
removed by the reduction method. In consequence, the TDE layer is effectively encoding the temporal
patterns in the cochlea with the activation of certain TDEs.

In the brute-force approximation to the optimal hyper-parameter settings from T. Mikkuta’s research[4],
the best accuracy was found in the highest values tested. Repeating the comparison of the mutual in-
formation in the cochlea versus the TDE layers with MSR fibers, shows higher mutual information
values than with LSR fibers (Appendix, figure 16). Even though the mean inter-spike interval in the
MSR case is way shorter, the same hyper-parameter settings are used. This results point in the di-
rection that longer values for τ f acilitatory and τtrigger would improve the model performance with LSR
fibers.

3.2 Mutual Information in reduced populations of TDEs

In this experiment, the information encoding in the TDE layer is explored. To this end, Figure 11
compares the mutual information values for different number of TDEs selected in each population.
In figure 12a, the mutual information values for different sizes of time-bins are represented. Finally,
figure 12b shows the results of introducing a scale factor. This consists in increasing the weights of
the trigger synapse as ω = fω · #ch, where fω is the scale factor. By introducing the scale factor, the
weights linearly increase with the frequency of the fiber.

The exploration of which populations of TDE encode more information about the stimulus, follows
previous studies about speech processing. The vowel structure of a word is represented by its peaks of
amplitude, its formants, in the region of 0-2500 Hz. In this case the 4 words presented have different
vowel structure, so the information encoded by the TDEs connected to the low frequency channels
may be enough to classify the stimulus. This is seen by the MI values measured in the low population
in figures 11 and 12. Also most of the sound amplitude in the human speech accumulates in this
range of frequencies, so the population of TDEs connected to the low frequency channels show more
activity.
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Figure 10: Comparison of the Mutual Information values measured between the stimulus presented to
the network and the cochlea spike-trains (blue) or the TDE layer spike-trains (orange), as a function
of the number of channels in the cochlea.

Figure 11: Mutual information that subsets of 16 to 24 TDEs provide about the stimulus, chosen
randomly over each of the populations.

In order to improve the accuracy of the keyword spotting model, the goal must be to avoid false
positives for words with similar vowel structure. For this purpose, the information encoded by the
TDEs receiving inputs from higher frequency populations is important. This is shown by figure 11.
In this model, the weights for all the TDEs are set in the same value. As most of the activity in the
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(a)

(b)

Figure 12: Mutual information measurements with subsets of 24 TDEs from each population. Figure
a) shows the results for different time-bin sizes. In figure b), the results from applying different scaling
factors in the weights of the trigger synapses is shown.

cochlea locates in the low frequency channels, the weight’s value is set as the TDEs connected to this
channels do not saturate. The drawback is that some spikes in high frequency channels, which carry
important information about the stimulus, do not trigger any TDE to spike. Introducing the scale
factor in the weights, allows the TDEs to capture easily features of the stimulus represented by a only
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a few spikes in high frequency channels. Thus, figure 12b shows higher MI when the scale factor in
the weights is introduced.

It is also important to note that the results shown in the Figure 12a point in the same direction than
the previous experiment. The mutual information values for all the TDE populations are higher as the
size of the time-bin increases. Thus, it indicates that it is more important the information carried by
the number of spikes of each TDE, rather than the precise timing of the spikes, as the precise timing
is lost as the size of the time bin increases.



Chapter 4 FORMANTS MODEL 25

4 Formants model

In the following section, the results from the experiments performed with the formants model de-
scribed in the Methods section are presented and discussed. The aim of this set of experiments is to
test the performance of the TDEs in a simpler and less noisy representation of the stimulus, in terms
of assessing if the TDEs are extracting the information about the stimulus that is represented in the
temporal evolution of the formant, and encoding it spatially by the spiking of a certain TDE.

4.1 Mutual Information in reduced populations of formant channels and TDEs

In this experiment, a brute-force approximation to the optimal values for the TDE layer hyper-
parameters is performed. After visually assessing the results of the 60 tested combinations of ω,
τ f ac and τtrig, the best performance is found for ω = 50000, τ f ac = 0.008 s and τtrig = 0.002 s. Figure
13 shows the Mutual Information values both for the formant channels and the TDEs, as a function
of the number of formant channels/TDEs included in the spike counts.

Regarding that the MI is calculated only by the spike counts in certain channels and TDEs, all the
information about the stimulus that is represented by the timing of the spikes is not taken into account.
In this sense, comparing the MI values for the TDEs and for the formant channels show that while in
the TDE layer most of the information about the stimulus is represented by which TDE is spiking and
its spike count, in the formant the timing of the spikes and the temporal evolution of the formant plays
a bigger role. Thus, the TDEs are extracting temporal features from the formant that characterize the
stimulus, and encoding them in the activation of certain TDEs.

The assessment of how the MI increases as a higher number of formant channels/TDEs is taken
into account, shows that using between a 10% and 20% of the TDEs is enough to capture most of
the information about the stimulus. This result is very promising in terms of developing energetic
efficient keyword spotting models. Regarding that the total number of TDEs in this model is 182, this
result means that only with 20-30 TDEs is enough to extract the characteristic temporal features of
the keyword that allow its classification with this set up.

4.2 Spike-count based classifier

In this experiment, the performance of a classifier based on the spike counts in a reduced number
of channels/TDEs is tested. The channels/TDEs are selected as the most spiking channels/TDEs for
the specific keyword in the training phase. The performance is visually assessed by the ROC curves,
and also by the True Positive rate (TPR), the False Positive rate (FPR) and the accuracy for the best
performing threshold in each ROC curve.

The comparison of the ROC curves for the stimulus classification with the formants and with the
outputs of the TDE layer (Figure 14), shows that the classifier performs better with the TDE outputs
than with the formants. As in the previous experiment, all the information encoded by timing of
the spikes is lost by only taking into account the spike counts. In this sense, the better performance
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of the TDE layer follows the previous results, as the TDEs are able to spatially encode information
represented by the temporal evolution of the formant, thus easing the classification task.

Comparing the ROC curves in Figure 15, is important to note that when only the spike counts of a
small number of channels/TDEs is used in the classification (1% - 6%), the classifier is able to hold
better its performance when using the TDE layer outputs than when using the formant. This result also
points in the direction that the TDEs can be useful for developing a very energetic-efficient keyword

(a) Keyword = one (b) Keyword = two

(c) Keyword = three (d) Keyword = four

Figure 13: Mutual Information between the spike counts in the most spiking formant channels (blue)
and TDEs (orange) and the stimulus presented, as a function of the percentage of the formant chan-
nels/TDEs included, for the best performing configuration of the TDE layer hyper-parameters. The
channels/TDEs are ranked regarding its total spike count in the training phase, and the populations are
chosen regarding the X% of channels/TDEs that showed the higher spike count. The different figures
show the results for setting each of the words in the dataset for this experiment as the keyword for the
training phase.
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(a) (b)

Figure 14: ROC curves for the classification of the stimulus by the spike counts in the formant chan-
nels (a) and by the spike counts in the TDE layer (b) for the keyword one. Each curve corresponds
to the percentage of the formant channels/TDEs used in the classification of the stimulus, and the red
dashed line corresponds to a random classifier.

spotting model with a small number of neurons.

The best performance for the classifier, is obtained from the spike counts of the TDE layer when
using the 20% of the TDEs. For the best performing threshold, which is obtained from the values
represented in Figure 15, gives an accuracy of 79.8%, with a TPR of 0.71 and a FPR of 0.19. This
should be considered a very solid performance, taking into account that it is classifying the stimulus
by only taking into account the spike counts on 36 TDEs, without using the information encoded by
the timing of the spikes, and without performing any learning method in order to obtain the optimal
values for the TDE layer hyper-parameters.

In order to asses the reliability of the results, the experiment has been repeated for different keywords
in the dataset, showing similar results (Appendix, Figures 17 and 18).
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(a) (b)

Figure 15: Comparison of the ROC curves for the classification with the formants and with the TDEs,
when using the 2% of channels in the classification (a) and when using the 20% (b). The red dashed
line corresponds to a random classifier.
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5 Conclusion

In this thesis, the information processing in neuromorphic keyword spotting models is researched,
in order to evaluate the introduction of the Time Difference Encoder to this models for improving its
performance. The temporal features in the speech encoding that allow to identify the spoken words are
explored, and how the TDEs can extract this features in order to improve the existing neuromorphic
keyword spotting models. In the models tested, the mutual information measurements show that the
TDEs can successfully encode temporal features present in the human speech by the spiking of certain
TDEs in the TDE layer, easing the classification of the stimulus. Moreover, the study of the formants
model show that a reduced population of TDEs, specific for the keyword that wants to be spotted, can
be used to successfully perform the keyword spotting task.

5.1 Future Work

In order to develop a biologically realistic keyword spotting model, it is important to take into account
that in real-world data, the sound volume of the speakers and the back-ground noise levels can show
a high variability. The TDEs can be very sensitive to both factors, as the volume of the speaker is
directly related to the spike counts in the cochlea channels, and the noisy spikes in the cochlea can
trigger TDEs that should not be active. In this sense, the introduction of a filtering mechanism, such
as a Winner-take-all network connected to the cochlea, or a noise suppressing mechanism based on
lateral inhibition in the cochlea should be studied.



30 BIBLIOGRAPHY

Bibliography

[1] M. Coath, S. Sheik, E. Chicca, G. Indiveri, S. Denham, and T. Wennekers, “A robust sound
perception model suitable for neuromorphic implementation,” Frontiers in Neuroscience, vol. 7,
p. 278, 2014.

[2] T. Rost, H. Ramachandran, M. Nawrot, and E. Chicca, “A neuromorphic approach to auditory
pattern recognition in cricket phonotaxis,” Circuit Theory and Design (ECCTD), 2013 European
Conference on (Dresden), pp. 1–4, 12 2013.

[3] P. Blouw, X. Choo, E. Hunsberger, and C. Eliasmith, “Benchmarking keyword spotting effi-
ciency on neuromorphic hardware,” pp. 1–8, 03 2019.

[4] T. Mikutta, “Improving keyword spotting on neuromorphic hardware using time difference en-
coder neurons, journal = Master’s thesis, MSc in Biomechatronics, University of Bielefeld,,” 11
2020.

[5] H. Markram, K. Meier, T. Lippert, S. Grillner, R. Frackowiak, S. Dehaene, A. Knoll, H. Som-
polinsky, K. Verstreken, J. DeFelipe, S. Grant, J.-P. Changeux, and A. Saria, “Introducing the
human brain project,” Procedia Computer Science, vol. 7, pp. 39–42, 2011. Proceedings of the
2nd European Future Technologies Conference and Exhibition 2011 (FET 11).

[6] M. B. Milde, O. J. N. Bertrand, H. Ramachandran, M. Egelhaaf, and E. Chicca, “Spiking Ele-
mentary Motion Detector in Neuromorphic Systems,” Neural Computation, vol. 30, pp. 2384–
2417, 09 2018.

[7] G. D’Angelo, E. Janotte, T. Schoepe, J. O’Keeffe, M. B. Milde, E. Chicca, and C. Bartolozzi,
“Event-based eccentric motion detection exploiting time difference encoding,” Frontiers in Neu-
roscience, vol. 14, p. 451, 2020.

[8] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. Stewart, D. Rasmussen, X. Choo,
A. Voelker, and C. Eliasmith, “Nengo: a python tool for building large-scale functional brain
models,” Frontiers in Neuroinformatics, vol. 7, p. 48, 2014.

[9] L. Chittka and A. Brockmann, “Perception space—the final frontier,” PLOS Biology, vol. 3,
p. null, 04 2005.

[10] M. S. A. Zilany, I. C. Bruce, P. C. Nelson, and L. H. Carney, “A phenomenological model of the
synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law
dynamics,” The Journal of the Acoustical Society of America, vol. 126, no. 5, pp. 2390–2412,
2009.

[11] M. Zilany, I. Bruce, and L. Carney, “Updated parameters and expanded simulation options for
a model of the auditory periphery,” The Journal of the Acoustical Society of America, vol. 135,
pp. 283–6, 01 2014.

[12] N. M. Timme and C. Lapish, “A tutorial for information theory in neuroscience,” eNeuro, vol. 5,
no. 3, 2018.



BIBLIOGRAPHY 31

[13] R. Ince, R. Petersen, D. Swan, and S. Panzeri, “Python for information theoretic analysis of
neural data,” Frontiers in Neuroinformatics, vol. 3, p. 4, 2009.

[14] S. Panzeri, R. Senatore, M. A. Montemurro, and R. S. Petersen, “Correcting for the sampling
bias problem in spike train information measures,” Journal of Neurophysiology, vol. 98, no. 3,
pp. 1064–1072, 2007. PMID: 17615128.

[15] I. Titze, Principles of Voice Production. Prentice Hall, 1994.

[16] D. P. W. Ellis, “Sinwave speech analysis/synthesis in matlab.”
http://www.ee.columbia.edu/ln/labrosa/matlab/sws/, 2004. Online source.

[17] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition Letters, vol. 27, no. 8,
pp. 861–874, 2006.

[18] “Shutterstock.” https://www.shutterstock.com/image-photo/voice-controlled-smart-speaker-
little-kid-1837400464, 2021. Accessed: 30.11.2021.

[19] “Wikimedia commons.” https://commons.wikimedia.org/wiki/File:Neuron3.png, 2021. Ac-
cessed: 17.10.2021.



32 APPENDICES

Appendix

Figure 16: Mutual information between the cochlea (blue) and the TDE layer (orange) versus the
stimulus presented as a function of the number of channels in the cochlea. In this case, the cochlea
model contains 1 MSR fiber per channel. The errors are estimated by the standard deviation between
3 measurements with different bias correction methods
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(a) (b)

Figure 17: ROC curves for the classification of the stimulus by the spike counts in the formant chan-
nels (a) and by the spike counts in the TDE layer (b) for the keyword four. Each curve corresponds
to the percentage of the formant channels/TDEs used in the classification of the stimulus, and the red
dashed line corresponds to a random classifier.

(a) (b)

Figure 18: ROC curves for the classification of the stimulus by the spike counts in the formant chan-
nels (a) and by the spike counts in the TDE layer (b) for the keyword zero. Each curve corresponds
to the percentage of the formant channels/TDEs used in the classification of the stimulus, and the red
dashed line corresponds to a random classifier.


