university of faculty of science
groningen and engineering

A Virtual Ray Tracer

Bachelor’s Project Computing Science
December 24, 2021

Student: Chris van Wezel

Primary supervisor: prof. dr. J. Kosinka

Secondary supervisor: dr. S.D. Frey

Abstract

Ray tracing is an integral and mathematically complex part of the field of Computer
Graphics. With recent advances towards real-time ray tracing students now more than
ever need help understanding the concept.

With this thesis I set out to discover what an effective way would be to visualise ray
tracing within an application and how much the application would help people understand
ray tracing better. To answer these question I together with a project partner designed
an application that could visualise the inner workings of ray tracing and a corresponding
user study to test it. Despite some setbacks while writing the application the user study
turned out to be overwhelmingly positive. According to the data the application was
adequate in visualising ray tracing and could aid people with learning about ray tracing.
I highly recommend doing more research and improve upon this application.

CONTENTS

1 Introductionl

2 Background Information|

13 Requirements|

4 Implementation|
4.1 Tools and Languages| o
4.2 Initial Sketchl oL Lo
4.3 Ray tracer|. e e
4.4 Application|

[User Study]|
5.1 Questions| e e
[5.1.1 Personal Questions|
[5.1.2 Educational Questions| oo
[5.1.3 Technical Questions| L.
BI14 Feedbackl e

[5.2.1 The study group|
[6.2.2 Helptulness|
[5.2.3 Usability]

G} onl
6.1 Application| L
6.2 Userstudy|. e

[Conclusion|

8 Future work

ii

12
12
13
13
14
14
15
15
16
17

19
19
19

21

22

1 INTRODUCTION

Since the first digital image, there has been a push towards developing realistic graphics with
computers. Over the years better, faster and compacter ways have been discovered to generate
nicer and realistic-looking images. However, some processes proved to be more challenging
than others. Ray tracing was one of them. The first mention of the process of ray tracing,
we are aware of, is in a paper of Arthur Appel [I] about computer-generated shadows. In his
paper Appel described a program that could generate shadows by casting rays in a scene from
a light source to an object. He does not call it ray tracing yet, but this would be the start of
a world wide revolution in drawing realistic graphics.

Because of its accurate simulation of the real world and the ongoing strife to make digital
images as realistic as possible, ray tracing has become an integral part of the field of Computer
Graphics. With new research into real-time ray tracing the importance of accurately teaching
students the concepts of ray tracing is only growing. However, this turned out to be somewhat
difficult. The different implementations of ray tracing are mathematically quite complex and
can therefore be difficult to teach and understand.

To address this issue, W.A. Verschoore de la Houssaije and I designed an application that
could aid teachers and guide students by visualising the processes behind ray tracing. In our
application the user can manipulate the environment and see what the effects are on the ray
tracing process. To not overwhelm the user the application starts with simple ray tracing
concepts and slowly adds complexity.

To test the effectiveness of our application we reformulated the issue into three questions
and conducted a user study bases on them. The three questions are:

1. What is the best way to present ray tracing in a virtual environment?
2. What interactions should be supported and how?

3. How does such a tool influence the ray tracing learning process?

Although we worked together on the application and the user study we both wrote our
own thesis and divided the research questions accordingly:

e W.A. Verschoore de la Houssaije in his thesis [4], focused on: What interactions should
be supported and how? How does such a tool influence the ray tracing learning process
specifically for CS (Computing science) students that followed the Computer Graphics
course at the RUG (University of Groningen)?

e [in this thesis, focus on: What is the best way to present ray tracing in a virtual
environment? How does such a tool influence the ray tracing learning process specifically
for CS students who have not followed the Computer Graphics course at RUG, non-CS
students and people outside the university?

I included the complete division of work in Table [5| at the end of this paper.

In Chapter [2]I start with what ray tracing is, its current implementation and available ray
tracing applications in the field of education, in Chapter 3] I discuss the requirements of our
application, Chapter [4] explains the tools we used, the ray tracer, the application itself and
how we divided the work, In Chapter [5] I go over the survey and its results, In Chapter [0] I
discuss issues we encountered and flaws of the application, In Chapter [7]I draw a conclusion
from the results we found, Finally in Chapter 8 I propose some ideas for future research.

2 BACKGROUND INFORMATION

This Chapter explains the current ray tracing implementations and development, and shows
how similar research turned out.

2.1 RAY TRACING

To explain what ray tracing is we take a look at how light behaves in the real world. In the
real world a light particle is cast from a light source with a given colour. For example the
sun. Whenever this particle hits an object it can change direction or colour depending on the
characteristics. For example if the ray hits a mirror it will only change directions or if it hits
a green leave it will lose other colours and turn green. After a couple of these interaction the
ray will eventually hit our eye. In our eye the information in the particle will be decoded,
together with many other particles that arrived at the same time, to form an image. This
image has colour where we catch a coloured ray, shadows where we did not catch that many
rays and reflections where the rays solely changed direction.

Image _
- .
Camera T 5 Light Source
- __-"d-
MEES _
| View Ray
s agh
TN
- s,

Scene Object

Figure 1: Example of Ray Tracing. https://commons.wikimedia.org/wiki/File:Ray_
trace_diagram.svg

For ray tracing in computing science the principles are the same but there are also some
differences [7]. In computing science the process is usually reversed. The light rays are cast
from the camera (our eye) instead of the light source. This way you do not waste performance
on calculating light rays that would have never reach the camera from the light source. To get
a realistic-looking image we then divide the view of the camera in a grid. After this we cast a
light ray through each pixel on this grid. When the rays hit an object new rays are cast based
on the properties of the object. This process is repeated until the light rays either reach a
given distance or a light source. When done we gather the final colour of the ray and put a dot
on the screen, with that colour, at the corresponding pixel. A representation of this process
can be seen in Figure [I} To get a sharp and accurate image we need to cast a lot of rays and
allow for many interactions with objects. Add to this the different calculations we need to
make for different objects and situations like; round objects, cylinders, planar quads, reflection
and refraction [7]. We can conclude that ray tracing is inherently a computational costly and
without dedicated hardware a time consuming process. However, this is not unexpected.

https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg
https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg

2.2 CURRENT IMPLEMENTATIONS

In general creating a pleasing image on a computer screen, (computer graphics), is a com-
putationally costly and time consuming process without dedicated hardware. To amend this
companies like Nvidia and AMD started to create just that. They developed processors that
are specifically designed to solve the computations involved with computer graphics. These
processors were fittingly named Graphic Processing Units (GPUs). GPUs work by focusing on
specific aspects of computer graphics. Although a lot of computations are needed to generate
an image, most of these computations are of the same type and do not influence each other.
This means that the process could be parallelized and accelerated with many processors that
excel in these specific calculation. A representation of a normal processor (CPU) vs a GPU
can be seen in Figure [2, Where a CPU contains a couple of multipurpose processors a GPU
contains a lot of dedicated processors that excel in a specific set of tasks. With the initial
launch of GPUs a loop of continuous demand by the users of computer graphics and the
development of new, faster and compacter GPUs was created.

GPU

Figure 2: A representation of the amount of processors in a CPU vs GPU. Each square
represent a processor.

Until the users started to demand real time ray tracing. Although ray tracing was already
widely used by the computer graphics user base, for example computer generated images
(CGI) in the movie industry. Real time ray tracing revealed itself to be even more com-
putational demanding than other types of computer graphics. It took Nvidia until 2018
to announce the first graphics card that was able to preform real time ray tracing [3]. They
achieved this by creating dedicated ray-tracing processing units and improving the ray-tracing
calculations [2]. These processing units were called RT cores and were released with their new
graphic cards series named RTX. Special ray tracing software features in DirectX called DXR
enabled ray tracing for Windows.[6]. With the new real time implementation of ray tracing
and the supporting tools, DXR, ray tracing could be used by the computer graphics user base
and new developments soon followed. Notably in the game industry. Until now ray tracing
was out of reach for the game industry because its slow implementation inherently clashed
with the nature of gaming. Real time ray tracing meant that the ray tracer finally was fast
enough to keep up with the render demand of the games. Developers now had a new tool to
make there games even more beautiful.

2.3 EDUCATION

Generate

Figure 3: Rayground interface. https://rayground.com/documentation

However, this means that the already strong position of ray tracing within the field of
Computer Graphics is becoming stronger. In turn this increases the importance of students
learning about ray tracing in the Computer Graphics course. Since ray-tracing, as mentioned
before, is a mathematically complex process, a visual representation could aid students in
learning about it. Rayground [10] found that from the students who learned ray tracing with
their visual applet, 80% had the feeling it had a positive effect on their understanding of ray
tracing. 73% was inspired to experiment further with ray tracing. This bodes well for the
application we have developed. However, the study group only consisted of 20 students of
which only 15 participated in the evaluation. Another important note is that the tool created
by Rayground, as shown in Figure [3] also simulates a ray-tracing pipeline for students to
practice coding [10]. In our application we only focus on the visualisation of ray tracing, not
the coding aspect.

Besides Rayground there exists a tool called FUSEE [8]. FUSEE is an open-source 3D
platform build by students. It is meant to fill the niche between the larger game engines and
building one yourself. Its main goal is to allow students to learn about 3D programming, which
includes ray tracing. The platform on its own does not help students understand ray tracing,
but the existence of the application shows that there is a need for such type of application. We
briefly discussed if we could use this tool to build our application on. However, a down side
of the tool is that it is fairly new and is lacking in features and documentation in comparison
with older well-established game engines.

https://rayground.com/documentation

3 REQUIREMENTS

To establish a base for our application we determined a set of requirements. We designed the
application to help students learn about ray tracing. The application can only do this if it
itself knows how ray tracing works. Meaning that the first requirement is that the application
should be able to perform ray tracing.

The second requirement is as important as the first. To show the user what the ray tracer
has calculated we need a way to visualise the rays. Besides the rays it would benefit the user
if the user is also able to see the objects, light sources and the camera in the scene.

Because, seeing the scene from only one side is not that impressive, the next requirement
is that the user is able to move through the scene. To give the user even more freedom to
experiment the user should be able to manipulate the scene in the game. Meaning that they
can move or change objects, modify the behaviour of the ray tracer, move or change light
sources, and change settings or the orientation of the camera.

The following requirement for the application is a progression system. The application
should simply not overwhelm the user by giving him access to all the ray tracing concepts at
once. Instead, the complexity should be slowly increase with a level system.

Not everything can be explained by showing it to the user. The application is also required
to have an information system. This system can explain the user how the application works
and what they see in the current level.

Lastly the application will be used for the computer graphics course at the RUG. There
is a lot that can be improved or expanded up on. Therefor the final requirement of the
application is that it is easily expandable.

Taking only the main parts we end up with the following list of requirements:

1. Have an internal ray tracer that outputs a list of rays depending on the objects in the
scene.

2. Have a visual interface which can show the user the rays, objects, light sources and the
camera.

3. Give the user a set of tools with which the user is able to move through and manipulate
the environment.

4. Have a progression system. Start with 1 object and a light source and slowly introduce
the user to more complex ray tracing concepts.

5. Have a set of instructions that explains the user how to use the application and what
the user currently sees on the screen.

6. Easily expandable.

4 IMPLEMENTATION

In this Chapter I explain the tools we used to build the application, how we implemented the
ray tracer and the build process of the application itself.

4.1 TooLS AND LANGUAGES

Our first tool is a game engine. A game engine is a software framework design to develop
games. It usually contains tools, libraries and an environment in which it is easy to create
a virtual world and add attributes to the objects in it. An example of such an environment
can be seen in figure [dl Games are applications that are heavily based around visuals. They
usually allow the user to walk around and interact with a virtual generated world. Since our
application is in principle a game, we have a virtual world with which the user is allowed to
interact, a game engine is a perfect fit to use as framework for our application. The game
engine would handle most of the graphical aspects allowing us to spend more time coding the
actual ray tracer and ray interactions.

Unity - Unity - Introduction - PC, Mac & Linux Standalone - Unity 2020.3.23r1 Personal <OpenGL 4.5>

Bl
LR w17

- Pack

Scripts,

ages
s B Gm GG n e
Presets
DSprte CustomN.. Doviea'S ansR. Nowton moTr. Sarvi Sysroat B2
Systostli. Testram. TedMestp. Teine Tookhainl. Tookhan Wity Ul VersenCo.

Figure 4: Example of the tool provided by a game engine with annotations. In this case Unity.

For this project we decided to choose between the two better known game engines Unreal
and Unity. Both game engines are well documented and widely used [9][5] making it easier
to search for solutions, when issues are encountered, and for other students to expand on the
application in followup research. We decided to choose Unity for the following three reasons.
The first reason being that the main supported programming language of Unity is C#. C#
is a programming language in which you do not have to assign and free your own memory,
like in C++ used for the Unreal engine. Although this generally makes the programming
language slower it is more user friendly and makes it easier to use. The second reason was
that one of our developers already had some experience with Unity. The last reason was that
the other game engine on our list, Unreal, was simply to big to run on my current hardware.

For programming languages, we used C# and some sort of Unity shader language. Ini-
tially we also used C++ but, we dropped it which I will discuss in Section [£.3] To improve

expandability we added comments to most of the code. To share the code and allow for
simultaneous development we created a repository on GitHub. Finally for communication,
sharing files and images between us and the supervisors we used Google Drive.

4.2 INITIAL SKETCH

Creating the application started out with a meeting to discuss what the application should
look like and what type of interaction should be supported. During the meeting we came
up with the list mentioned in Chapter [3| and some suggestions of our own. Figure [5| shows a
sketch of the initially proposed application.

Settings

@ switch view
@ :how single ray

Camera view

Figure 5: Sketch of our application.

The black area in the middle depicts the scene in which we show how ray tracing works.
The scene contains a virtual camera, a virtual screen, a ray, an object and a light source.
In the left bottom corner a small preview is shown of what the scene should look like if
rays where shot from the perspective of the virtual camera through each square, pixel, of
the virtual screen. The user is allowed to move freely through this area and click on objects
to change their settings or move them around. When an object is selected by the user the
settings are shown on the left side of the screen. Whenever the user makes a change to the
scene the application will recalculate and update the rays and what is shown on the virtual
screen and preview. With a clear view of what the application should look like development
could start. First thing on the list, the ray tracer.

4.3 RAY TRACER

The ray tracer is written in C# and is designed around an internal Unity ray cast function.
The ray tracer currently supports reflective and refractive interactions and it can process a
scene with point light sources and objects. The objects are defined by a material and a body
of triangles. The materials have a range of properties:

e Colour: Red, Green, Blue
e Light factor: Ambient, Diffuse, Specular, Shininess
e Transparant: Breaking index

During personal testing the ray tracer preformed well and was able to update the rays on a
real time basis. We decided to go for C# because it integrates nicely with Unity and issues
we encountered while integrating a ray tracer written in C++.

The C++ ray tracer was initial meant to speed up the writing process by using an already
available ray tracer from the Computer Graphics course at the RUG. However, integrating
the C++ ray tracer in Unity proved to be difficult and time consuming. Most issues revolved
around the communication of data between the two languages. For example, our first image,
Figure [6] was generated by manually instructing the ray tracer what the scene looked like.
After a lot of development time we only managed to implement the communication between
the ray tracer and the application, not the other way around.

®

Figure 6: The first ray traced image generated by the application.

More issues came to light at the first test of the application with the ray tracer on Windows.
The ray tracers performance looked promising on Linux but turned out to be sub-optimal on
Windows. Only a couple of rays where enough to create a noticeable delay in the rendering
of the scene. To save the project, we decided to abandon the C++ ray tracer and instead
build one in C# from scratch. We where able to use the knowledge gained from the C++ ray
tracer to speed up the build process of the C# ray tracer.

4.4 APPLICATION

With the ray tracer taking a lot of development time our work was split. One of us was
working on the ray tracer and the other on the rest of the application. After the switch to the
C# ray tracer we could finally both invest our time in developing the rest of the application.
A division of work is mentioned in Table 5l Included below a list showing how we implemented
each requirement and a brief description of the most prominent features for each:

1. Have an internal ray tracer that outputs a list of rays depending on the
objects in the scene:

The ray tracer is covered by Section Notable features for this requirement are:

e The ray tracer is able to handle transparent objects. Shown in Figure[7] Rays cast
through a transparent object are influenced by its breaking index which can be set
by the user. This feature took a while to implement. We had to create two separate
shaders, transparent and opaque, for Unity to properly render transparent objects.

e The ray tracer only updates when a user changes something in the scene. By
only recalculating the rays on a user made change we minimise the burden on
the processor. This allows the application to preform better overall and on older
hardware.

Figure 7: Ray tracing through glass with the c# ray tracer.

2. Have a visual interface which can show the user the rays, objects, light
sources and the camera:

The final application can be seen in Figure |8l Besides the settings window being moved
from the left to the right, it looks similar to the initial sketch. All the objects and their
functions seen in this image are created with the tools provided by the Unity game
engine, Section Notable features for this requirement are:

e The scene shown to the user looks relatively similar to the scene that the ray tracer
would generate. This makes it easier for the user to relate the actual scene with
the ray traced image. Do note that this system is not perfect and in some cases
the scene differs from the image.

e Almost all object properties can be changed.

e Every change the user makes is immediately shown in the scene.

e The user is able to go inside the objects. Ray tracing can also happen inside of
an object. Visualising the inside of the objects gives the user more freedom to
experiment and creates a more accurate visualisation of the ray tracing process.

Settings

Figure 8: Final application.

3. Give the user a set of tools with which the user is able to move through and
manipulate the environment:

To allow the user to interact with the scenes from our application we added the following
features to it:

e The user has access to a button to create a high resolution ray traced image from
the view of the virtual camera. The user also has access to settings to increase or
decrease the resolution of this image.

e The user is able to select a specific pixel in the preview in the bottom right. When
this pixel is selected only the rays that define that pixel are shown.

e The user can change how the rays are rendered. The application can instantly
draw the rays, they can be drawn over time or they can be drawn one by one.

e The user is able to interact freely with the scene by moving around within it, move
objects or change a range of properties.

4. Have a progression system. Start with 1 object and a light source and slowly
introduce the user to more complex ray tracing concepts:

The application contains a basic progression system. Within the application the user
has access to a menu in which the user can select different levels. Each level shows
different ray tracing concepts and all levels start with a pop-up explaining the user
which ray tracing concepts the user currently sees within the scene. A notable feature
of this progression is:

e The final level is a sandbox level. In this level the user is allowed to create his own
scenes by adding or removing objects or light sources.

10

5. Have a set of instructions that explains the user how to use the application
and what the user currently sees on the screen:

Each level in the application starts with a text window showing the user information
about the current level and how some of the tools work. The same information is also
stored in a help menu in the left upper corner of the screen. The user can access this
menu whenever they want.

6. Easily expandable: As mentioned in Section Unity is a well documented game
engine. Documentation makes it easier for new developers to understand how the ap-
plication works. The Unity development tools also work on all three major operating
systems, Windows, Linux and macOS, allowing the new developers to choose their own
preferred platform. Furthermore, we added comments to most of the code explaining
what each part of the code is supposed to do.

11

5 USER STUDY

Here I explain the user study and its results. Section [5.1] is about the user study and its
questions, in Section [5.2] we show the results. The questions used in the user study are added
to the end of the document.

5.1 QUESTIONS

Starting of with the restrictions on the user study. From the start of the project we had a
clear view of the target population of our user study. We wanted to know the influence of our
application on the learning process of students who attend the Computer Graphics course at
the RUG and on every one else. Further restrictions are imposed by the nature of our project.
Our project needs a computer to be tested therefor the participants should have access to a
computer and general knowledge of how a computer works.

For recruitment we relied on our connections with the supervisor of the project, friends
and family. Via our supervisor we got access to Computer Graphics students and via friends
and family we would recruit every on else. We hoped to recruit a group of 50 participants, but
in an attempt to prepare for a lower amount we decided to share the user study between the
two theses. By sharing we could, to some degree, both use the same data effectively increasing
the efficiency of the user data. However, this imposes an extra restriction on the user study.

As mentioned in the introduction one of our research questions is split in two. One part
focuses on students who attended the Computer Graphics course at the RUG and the other
on every one else. Due to the nature of these two groups, the participants are either in one or
the other, it is impossible to share this data to answer both of these questions. To navigate
around this issue and equalise the data set for both research questions, it would be preferred
that 50% of the participants are students who attended the Computer Graphics course at the
RUG and the 50% are every one else.

With the participants and the restrictions handled we focused on the user study itself.
The user study consisted of a practice run with our application and then a set of questions
about the application. The questions are divided into 3 categories: personal, educational and
technical. In the following subsections we go over each of these question and their goal. The
initial intention was to conduct two user studies. First a small user study about the knowledge
of ray tracing. Then, a practice run with our application. Finally, another user study about
the influence of our application on their understanding of ray tracing and about how user-
friendly our application is. With this setup we hoped to see a clear distinction between the
knowledge before the practice run and after. However, due to time constrains we decided to
drop the first user study and instead merged its questions with the second user study.

A final important note is that for our user study we required the ethical approval of the
participants. Before taking the user study we asked the participant if they agree with us using
their answers as data in our study.

12

5.1.1 PERSONAL QUESTIONS

With the questions in the personal category we set out to achieve two goals. The first goal is
to determine the relation of participants towards computing science, Question 1. An existing
relation to computing science could influence the results of our user study. By knowing this
variable we can rule out potential inconsistencies in the result. This data could also be used
in a later more precise study.

The second goal was to determine if the participants attended the Computer Graphics
course at the RUG or not, Question 2. We needed this division so we could both answer our
own version of the 3rd research question. Again we do not need to know if a student failed or
passed the course, however this could have an effect on their opinion of the application and
could be useful in a later study.

5.1.2 EDUCATIONAL QUESTIONS

The goals for the questions in the educational category are to determine if the application is
helpful and what parts of the application are helpful.

A yes-or-no question would have sufficed for the first goal however, in an effort to make the
results a bit more in-depth we decided to divide this goal over multiple questions, specifically
Questions 3, 4 and 5. With the current set of questions we gain insight in the perceived
helpfulness for Computer Graphics students, potential new users and even the degree of
helpfulness for the participants themselves. We are also able to mark the people that already
know how ray tracing works, which is important because this could influence their responses
in our user study.

The other goal became a question on its own, Question 6. We decided that three parts
of our application could potentially be helpful and therefore should be evaluated with this
question:

o The Information texts: A text block that is shown at the start of every level. The
text block contains some details about the level and an explanation of the ray tracing
processes shown in the current level.

o Visualisation of ray tracing: Ray object interactions. The way we made a distinction
between different types of objects or different types of rays. How the rays are drawn.

o Ability to experiment with various settings: The multitude of settings available to the
user to change the scene. Changing these setting directly influences the ray tracing
process allowing the user to discover what the ray tracer would do under certain cir-
cumstances.

Furthermore, since it would be possible that multiple parts where helpful we allowed the
participants to select multiple responses for this question.

The final question in this section, Question 7, is not directly connected to a goal but allows
the participants to give feedback specifically on the helpfulness of our application. Putting
this question here makes it easier to find feedback that is specifically aimed towards this
section.

13

5.1.3 TECHNICAL (QUESTIONS

The technical section contains questions focused on the complexity, usability and looks of the
application.

The first question is aimed towards usability of the application, Question 8. With this
question we could determine if the interface, buttons and instructions where clear enough for
the users to understand and use the application.

The second question focuses on the looks of the application, Question 9. We chose four
different categories for the user to chose from and allowed them to grade them from very bad
to very good:

o The visuals: Everything the user can see on the screen and how it is represented.

The user interface: The buttons, sliders, popups and menus.

The controls: The way the user is allowed to move through the levels and interact with
the user interface.

The scene and explanation of ray tracing: Specifically how the light sources, camera,
objects and ray tracing is represented on the screen.

We believed these categories covered all aspects of the application and focused enough on
specific aspects to determine their influence on the looks of our application.

The last question is to determine the complexity of the application, Question 10. Although
the application could be easy to use or look nice it could have to many settings or sliders for
the user to use. By adding this question we get a good impression of the potential complexity
of our application.

Again we added a question to this section for participants to give feedback specifically on
the functionality of our application, Question 11.

5.1.4 FEEDBACK

The final question, Question 12, was added to allow the participants to give general remarks or
feedback on the application. The feedback from this question could later be used to improve
the program. The positive remarks could directly be used to boost the confidence of the
creators of the application.

14

5.2 RESULTS

The user study had a group of 17 participants. The group of participants consists of a mix
of CS students, RUG staff, and friends and family. I mainly focus on the result that apply
to this thesis. Furthermore, I split the results in three subsections based on their focus. The
first subsection of results focuses on the user group, the second subsection on the performance
of the application and the final subsection on the usability of the application.

5.2.1 THE STUDY GROUP

In Table [I] I combined the data gained from Question 1 and 2. In the rows the table is split
between the fields the student are related to and in the columns it tells if they attended the
Computer Graphics course and passed it.

Did you follow the RUG Computer Graphics course and if so did you pass?
No passed failed

I am or was a computing science student. 3) 1
I am or was a student in a computing science related field. 0 2 0
I have not been a student in computing science or a related field. 6 0 0
Total 9 7 1

Table 1: Results from Question 1 and 2 of the user study.

When selecting the participants for the study group we aimed to have an even split between
the participants that did the computer graphics course at the RUG and those who did not.
From the data shown in Table (1] we can see that we succeeded in doing so. 53% participants
did not follow the course and 47% did, although 1 participant failed. Furthermore, from
the participants that did not attend the computer graphics course 67% had no relation to
computing science and 33% where or had been a computing science student.

15

5.2.2 HELPFULNESS

Here I constructed a table, Table[2], from all the questions of the helpfulness section, questions
3 to 6. The divide in results, the last two columns, is created based on the answer of the
participants on Question 2.

Questions Allowed responses Results
Yes No
If you followed the course, do you Yes. 8 1
think the application would be helpful No. 0 0
to future students of the course? Empty. 0 8
Did the application help you Yes. 2 8
understand ray tracing better? No. 0 1

No, but I already understood ray 6 0
tracing well beforehand.

Yes, I think the application can be 4 2
moderately helpful.

Yes, I think the application can be 4 7
very helpful.

No, I don’t think the application can 0 0
be helpful.

Do you think the application can help
other people understand ray tracing
better?

Which of the following things do you The ability to experiment with 5 6
think where successful in helping you various settings in the scenes.

understand ray tracing? The informative text at the start of 2 6
scenes.

The visualisation of ray tracing in the 8 7
scenes.

Table 2: Results from the questions in the educational section, Question 3 to 6, divided in
the group that failed or passed the RUG Computer Graphics course Yes and those that did
not attend the course No.

My main focus is on the people that did not attend the course, the No column. The first
question can be skipped, because it was only meant for the people that did attend the course.
For the second question 90% of the No group had the feeling that the application helped them
understand ray tracing better. This is a good start. Looking further at the third question
we see similar results. 100% of the No group believed the application to be helpful for other
people to better understand ray tracing. Of this group 78% thought the application would
be very helpful. For the final question generally the participant found at least two aspects
of our application helpful. For this question we mainly hoped that the visualisation of the
ray tracer would have been the most helpful. However, the scores are pretty even. Both the
ability to experiment and the informative text scored 31.5% and the visualisation of the ray
tracing scored 37%.

16

5.2.3 USABILITY

Table [3| shows the results of Question 7 and 9.

Questions Allowed responses Results
Did you find the Yes, but some things were confusing or difficult. 8
application easy to use? Yes, the application was very easy and intuitive. 7
No, but it was not very confusing or difficult 1
either.
No, the application was very confusing and/or 0
difficult to use
What do you think of the The application is too simple. More settings and 0
complexity of the controls would be an improvement.
application? The complexity of the application is good. 16
The application is too complex. There are too 1

many unnecessary settings and controls.

Table 3: Results from the questions in the technical section, Question 7 and 9.

These questions tell us something about the looks of our application. From the first question
we can see that 88% perceived the application easy to use. This is a great number, except 53%
of these participants still noted that some aspects of the application where either confusing or
difficult. Although 6% found the application not easy to use no one found it very confusing
or difficult. Note worthy here is that one of our participants got lost and did not answer this
question. The second question is focused on the complexity of our application. Again the
result are extremely positive. Of our participants 94% said that complexity of the application
was good, not to complex and not to simple. The remaining 6% considered the application
to be to complex with to many unnecessary settings and controls.

17

The results of Question 8, are shown in Table 4] The table shows how our participants
rated 4 aspects of our application from Very Good to Very Bad. In the first column the
ratings are shown, in the remaining columns each aspect is shown with the score for each
rating below it.

What do you think of these apsects of the application?

The scenes and explanation
The visuals The user interface The controls of the ray tracing concept
Very Good | 7 1 3 3
Good 7 9 10 11
Neutral 3 7 3 3
Bad 0 0 1 0
Very Bad 0 0 0 0

Table 4: Results from Question 8. Rating of each aspect of the application.

The most notable observation is the positive trend of the results. According to almost all
the participants the aspects of our application are at least Neutral or better. There is only
one Bad review. Looking at the rating for each individual aspect we can see that the visuals
scored the best. Of our participants 41% reported the visuals to be Very Good and again
41% gave a rating of Good. In comparison only 6% of the participants gave the user interface
a rating of Very Good and only 18% for both the controls and the explanation of the ray
tracing concept. The worst score is between the user interface and the controls. Where the
user interface had an overall lower score 52% Good and 41% Neutral the controls had 6%
voting Bad. The scenes and explanation of the ray tracing concept averaged out on Good
with 65% of the participants rating it Good and both Very Good and Neutral being 18%.

18

6 DISCUSSION

In this Chapter I discuss the limitations of our application and the result of the user study.

6.1 APPLICATION

Although the switch to the C# ray tracer improved the integration with Unity it also imposed
some limitations.

One of the limitation is the ability to cast rays through objects. In the digital scene the
objects consist of meshes which in turn are a set of connected triangles. The connection
between these triangles is not perfect leaving tiny gaps between them. When these gaps line
up with the ray tracer it is possible to cast a ray through these gaps creating the image of
Figure[9] The sphere in this image starts with one if its mesh connections directly in front of
the ray tracer, making the ray miss the surface of the sphere. We where not able to fix this
bug but, we where able to hide it. By rotating the mesh of the sphere a tiny bit it does not
start with the mesh connection directly in front of the ray tracer. Now the user needs to make
a precise rotation for the bug to appear which is almost impossible because, the controls are
not precise enough.

Another limitation of the C+# ray tracer is parallelization. The ray tracer is build around
an internal Unity function that is hard to parallelize.

Figure 9: C# ray tracer casting a ray through a sphere.

6.2 USER STUDY

While going over the result of the user study I noticed some discrepancies within the data.
Looking at the result of the personal section of the user study, Table [I] In the No Column
three participants are (ex)CS students. Although these students have not followed the com-
puting graphics course, their prior understanding of computing science could influence results
of the user study.

In the Yes Column from the same Table we also see something curious. Their are two
participants that are not (ex)CS students but, did pass the Computer Graphics course. I
suspect that this is a precision error of our user study. These participants likely had an
noteworthy relation to the Computer Graphics course but, did not have a better suiting
option to select.

19

Furthermore the limited size of our population sample, the fact that we where not able
to conduct two user studies and properly measure the influence of our application on the
participants learning process could make the data unreliable. However, because of the over-
whelmingly positive trend of the result I still deem the data good enough to at least draw a
suggestive conclusion.

20

7 (CONCLUSION

The goal of this bachelor thesis was to write an application that would give the user an envi-
ronment in which they could see and experiment with the concepts of ray tracing, determine
what the best way would be to present ray tracing in such an application and find out how
such a tool would influence the ray tracing learning process specifically for CS students who
have not followed the Computer Graphics course at RUG, non-CS students and people outside
the university.

The data gathered in the user study points towards a positive influence of the ray tracing
learning process. From the participants not only 90% believed that the application had a
positive influence for them, 100% felt that the application would also benefit others. Overall
the participants chose two or more out of the three attributes that contributed to the positive
learning influence.

Looking closer at these attributes all attributes had an almost even score with only a small
lead for the visualisation of the ray tracing in the scene. Combining this data with the data
from the usability section of the user study and we see some mixed results. The visuals are
really good 41% Very Good and 41% Good. However, The scenes and explanation of the
ray tracing process scored lower. Overall it still averaged out on Good.

Furthermore, The application was generally easy to use 88% and not to complex 94%.
Leading to the final conclusion: We successfully build an application that can present ray
tracing and positively influence the ray tracing learning process specifically for CS students
who have not followed the Computer Graphics course at RUG, non-CS students and people
outside the university.

21

& FUTURE WORK

First and foremost the application has a lot of potential and it would be interesting to develop
it further. In this Chapter I added a list of improvements for the application and a suggestions
for a followup user study:

e External ray tracer The current ray tracer used by our application is build around
an internal Unity ray cast function. This function forces the ray tracer to use floats for
location data and makes it difficult to parallelize the ray casting process. An external
ray tracer could make use of doubles instead of floats, increasing precision and would
be easier to parallelize which would improve performance.

e Everything ray traced With the current development of real time ray tracing capable
graphic cards it would be really interesting to see if it can be used for the application.
By using ray tracing to render everything there would be no difference between the
scene and the images generated by the camera object in the application. The rays we
visualise within the application would actually be equal to the rays used to create what
the user sees on his screen.

e Virtual reality: By adding virtual reality to the application, a mode where the user
wears goggles that allows them to perceive and interact with the virtual world like it is
the real world, the user could literally walk through the scene and interact with objects
using special controllers in their hands. It would be interesting to research what kind
of influence this would have on the learning process for ray tracing.

o Better level system The level system in the application has only one main track
and is packed with information. The application would become a lot more accessible
if the level system would be expanded. I propose a level system with groups of levels
for each concept of ray tracing and goals the user could achieve. Having a group for
each concept makes it easier for the user to deduce what could be learned from that
section and splitting each concept into multiple levels decreases the information density.
Adding goals to each level will help guide the user trough the levels. Achieving a goal
will signal the user that the user is done with the level and can continue to the next. It
will also clarify what each level is about.

e User coded ray tracer One of the users suggested to allow the user to run his own ray
tracer code within the application. Although it would be really interesting to research
what the influence of this concept would be on the learning process, it would be rather
hard to implement it. One possibility would be a sort of module system. The modules
refer to specific sections of the ray tracer allowing the backbone of the ray tracer to stay
the same and making it more robust for user errors. Then the user could put his own
code within the modules and see what the effect would be on the ray tracer.

e Larger user study: Due to time constrains our current user study had many limi-
tations. It had a minimal amount of question, a limited group of participants and an
imprecise way of measuring the influence of our application on the learning process of
ray tracing. In further research it would be interesting to set up a larger user study with
more questions and a larger group of participants to get a broader view of the influence
of our application and the factors that play a role.

22

e Split participants: The participants of a new user study could be split beforehand
effectively creating two smaller user studies. One conducted on the Computer Graphics
students and one for the rest of the users. By splitting them up question could be
specifically focused on each group. The Computer Graphics user study could have an
exam to measure the influence of the application or specific questions for each ray tracing
concept, how did the visualisation of x help and how could it be improved. The other
user study could stay similar to the current one to not discourage the participants from
joining it. Together with the user study even the application could be split in a more
advanced version for the Computer graphics students and a simplified version for the
rest group to help make it more accessible.

e Exam: I briefly mentioned an exam in the previous paragraph. Conducting an exam
would greatly improve the data. The knowledge of the participants would preferably be
measured before and after they used the application. Our current user study only asked
the users if they perceived any influence from our application, to not discourage them.
Measuring before and after would result in two data sets that could be compared with
each other allowing for a preciser estimate of the influence of our application. It would
also eliminate the vague notion of what the participant believed that the influence of
the application was.

23

ACKNOWLEDGEMENTS

I would like to thank both my supervisors Jiri Kosinka and Steffen Frey for their support,
patience, input and feedback during the project. Without their support this thesis would
not have been completed. I also want to thank my project partner Willard Verschoore de la
Houssaije for working together with me on this project. Finally I want to thank Ferry van
Wezel, who proof read most of my thesis and added suggestions for improvements, and friends
and family who supported me during this project.

24

REFERENCES

1]

A. Appel. Some techniques for shading machine renderings of solids. In Proceedings of
the April 30-May 2, 1968, Spring Joint Computer Conference, AFIPS '68 (Spring), page
37-45, New York, NY, USA, 1968. Association for Computing Machinery.

Nvidia Corporation. Nvidia Turing GPU Architecture, 2018. https://www.
nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/

turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf, Last ac-
cessed on 2021-03-23.

Nvidia Corporation. NVIDIA Unveils Quadro RTX, World’s First
Ray-Tracing GPU, 2018. https://nvidianews.nvidia.com/news/
nvidia-unveils-quadro-rtx-worlds-first-ray-tracing-gp, Last accessed on

2021-03-23.

W.A Verschoore de la Houssaije. A Virtual Ray Tracer. Bachelor thesis, University of
Groningen RUG, 2021.

Epic Games. Unreal Engine 4 Documentation, 2021. https://docs.unrealengine.
com/4.27/en-US/|, Last accessed on 2021-12-24.

E. Haines and T. Akenine-Moller, editors. Ray Tracing Gems. Apress, 2019.

S. Marschner and P. Shirley. Fundamentals of computer graphics. CRC Press, Taylor &
Francis Group, Boca Raton, FL, 2015.

C. Miiller and F. Gértner. Student Project - Portable Real-Time 3D Engine. In J. Bour-
din, J. Jorge, and E. Anderson, editors, Eurographics 2014 - Education Papers. The
Eurographics Association, 2014.

Unity Technologies. Unity Manual, 2021. https://docs.unity3d.com/Manual/index.
html, Last accessed on 2021-02-23.

N. Vitsas, A. Gkaravelis, A. Vasilakis, K. Vardis, and G. Papaioannou. Rayground: An
online educational tool for ray tracing. In M. Romero and B. Sousa Santos, editors,
Eurographics 2020 - Education Papers. The Eurographics Association, 2020.

25

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://nvidianews.nvidia.com/news/nvidia-unveils-quadro-rtx-worlds-first-ray-tracing-gp
https://nvidianews.nvidia.com/news/nvidia-unveils-quadro-rtx-worlds-first-ray-tracing-gp
https://docs.unrealengine.com/4.27/en-US/
https://docs.unrealengine.com/4.27/en-US/
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html

DIVISION OF WORK

Task Willard ~ Chris
Prepare GitHub and setup the project within unity X X
Integrate the C++ ray tracer X
Add simple ray visualisation to the application X

Update ray visualisation to work with the ray tracer X
Scene management X

Object selection X

Object move tools X

Adding more ray tracer integration X
Help Menu X

3D rays instead of 2D X
Switch to Unity ray tracer X X
Create the Ul X
Improved 3D ray rendering X

Adding high resolution image functionality to ray tracer X
Adding a shaders to better match scene and the ray tracer X

UI improvements X

Beyond this line most of the framework for the application was done and only smaller
tasks remained.

Task Willard ~ Chris
Ray tracer optimisation X

Adding transparent objects and make them behave well X
Adding a level system and menu to access them X
Adding a main screen X
Adding levels X X
Adding a information pop-up to each level X

Allow objects to be added and removed for sandbox level X
Overall bug fixes X X
Creating the user study format and questions X X
Creating and maintaining the User study X
Building the application for Windows, Linux and Mac-OS X X
Manage the distribution of the user study and application X
Create the presentation X X
Create a cycling intro screen used for the presentation X

Table 5: The division of work.

26

USER STUDY QUESTIONS

Q1:
R:

Q2:
R:

Q3:

R:

QT:

Q8:

What is your relation towards computing science?
CS (ex)student, CS related (ex)student, No relation to CS.

Have you followed the RUG Computer Graphics course?
Passed, Failed, No.

If you followed the course, do you think the application would be helpful to future
students of the course?
Yes, No.

Did the application help you understand ray tracing better?
Yes, No but I already understood it well beforehand, No.

Do you think the application can help other people understand ray tracing better?
Yes very helpful, Yes moderately helpful, No.

For this question multiple responses where allowed.
Which of the following things do you think where successful in helping you understand
ray tracing?
Information texts, Visualisation of ray tracing, Ability to experiment with various
settings.

Open question.
If you have any comments about the educational part of the application you can leave
them here.

Did you find the application easy to use?
Yes, Yes but some things were confusing or difficult, No but it was not very confusing
or difficult either, No.

this question allowed a rating for each sub topic: S.
What do think of these aspects of the application?
The visuals, The user interface, The controls, The scenes and explanation of raytrac-
ing.
Very good, Good, Neutral, Bad, Very Bad.

27

Q10:

Q11:

Q12:

What do you think of the complexity of the application?
To simple, Perfect, To complex.

Open question.
If you have any comments about the technical aspects of the application you can
leave them here.

Open question.
This field is for overall feedback, bugs, things you wanted to do in the application
but where unable to, or just a comment for the creators.

28

	Introduction
	Background Information
	Ray tracing
	Current implementations
	Education

	Requirements
	Implementation
	Tools and Languages
	Initial Sketch
	Ray tracer
	Application

	User Study
	Questions
	Personal Questions
	Educational Questions
	Technical Questions
	Feedback

	Results
	The study group
	Helpfulness
	Usability

	Discussion
	Application
	User study

	Conclusion
	Future work

