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Abstract
As Artificial Intelligence (AI) methods are being widely adopted by industries in multiple domains,
there is an increasing concern in the ethics and transparency of decisions made by AI tools. Although
these black box agents improve the speed of decision making, we have seen quite a few scenarios
where the agent displays clear biases in the decisions made. Hence, it has become increasingly
important that the AI agent behaviour is transparent. Such transparency can be brought about either
by making the agent’s decision making process interpretable or by utilizing external tools to view the
decision making process (white box equations or visualization tools).
Reinforcement Learning (RL) methods are widely used in problem spaces involving continuous con-
trol, such as games, self-driving cars and robotics. RL methods commonly involve an agent that learns
to update its behaviour over time, through feedback generated from continuous interactions with an
environment. Widely used RL agents utilize Deep Neural Networks (DNNs) to make decisions, and
this makes the agent behaviour difficult to explain, since the complexity of DNNs increase with each
layer.
The Tsetlin Machine is an alternative learning mechanism to deep neural networks, which has been
shown to have comparable accuracy to state of the art machine learning algorithms with the additional
advantages of interpretability and computational simplicity. In this project, we aim to implement an
interpretable reinforcement learning framework utilizing Tsetlin Machines and Q-learning. We will
then test this agent out on two classical control environments and try to understand how patterns in
the input lead to decisions and also compare its performance with existing reinforcement learning
methods.



Chapter 1

Introduction

Artificial Intelligence (AI) has been adopted for a wide variety of tasks varying from the detection of
diseases to playing games, with reasonable success in understanding underlying pattern distributions
and reducing the time taken to make a decision. However, underlying algorithms do not successfully
explain how a decision was arrived at. Interpretability of algorithms would allow humans to identify
how patterns contribute to a decision [1], address any inherent biases in the decision-making process
and augment the models’ decisions with additional data where available.
Reinforcement learning is a machine learning methodology wherein an agent learns to solve a problem
through repeated interactions with a dynamic environment. Agents learn to choose optimal actions for
the given environment through rewards and punishments without actually being taught how to solve
the problem [2]. Reinforcement learning strategies have been applied in the fields of memory control
in computers, simulating video game players, mastering strategy games, [3], cognitive robotics [4]
and autonomous driving [5].
There exist two approaches to Reinforcement Learning [6]. In Model-based learning, the agent uses a
model of the environment to predict outcomes of possible actions in a given scenario. The effective-
ness of this approach is limited to the accuracy of the model of the environment. Model-free learning
abstracts the agent behaviour into choosing an optimal policy, instead of trying to create an internal
model of the environment [7].
The Tsetlin Machine [8] is an alternative learning mechanism to deep neural networks, which has
been shown to have comparable accuracy to state-of-the-art machine learning algorithms with the
additional advantages of interpretability and computational simplicity. In its most simplest form, the
Tsetlin Machine is a pattern mining framework, utilizing binary inputs to decide the state of each
automaton in the pool. These states form internal pattern representations, which are interpretable
as propositions. Each proposition may be considered similar to a vote, cast by the automaton, on
whether it finds a sub pattern in the input. The set of active propositions can then be used to perform
classification [8, 9, 10] and regression [11, 12], depending on the function used to compute the total
votes.
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Applications of reinforcement learning in various continuous control situations require the reinforce-
ment learning model or agent to make quick decisions in real-time. The implications of erroneous
decisions may be catastrophic, as in the case of networked devices, autonomous vehicles and au-
tomated manufacturing lines, where reinforcement learning approaches are commonly used. There
have been a few approaches to improve the interpretability of the decisions made by agents, such as
interpretable Q-learning [13, 14] and interpretable deep reinforcement learning using symbolic plan-
ning [15]. These approaches utilize secondary frameworks to enforce interpretability [16], increasing
the computational costs involved as well as the time taken to make decisions. Although an external
framework may seem an ideal way to improve agent interpretability, it is not ideal in the case of prob-
lems involving continuous decision making. The Tsetlin Machine, with its interpretable clause based
approach to learning, is thus an interesting alternative to neural networks for interpretable Reinforce-
ment Learning.
In this thesis, we aim to implement a reinforcement learning framework utilizing Tsetlin Machines
and Q-learning[17], a model-free reinforcement learning algorithm. We will also attempt to test the
interpretability, trying to understand how patterns in the input lead to decisions and compare our
automaton-based agent’s performance with existing reinforcement learning methods. In the subse-
quent sections in this chapter, we will discuss the pertinent research questions, the significance of this
study and conclude with a section presenting the layout of the chapters that follow.

1.1 Research Questions

The thesis attempts to answer the following research questions:

Q1. How can we design a Reinforcement Learning
system utilizing Regression Tsetlin Machines?

Q2. How does the performance of the Tsetlin Machine Reinforcement Learning
agent compare with an agent trained using a Deep Q Network?

Q3. How understandable is the decision making process of the Tsetlin Machine
Reinforcement Learning agent?

1.2 Significance of the Study

Firstly, the study aims at creating an architecture facilitating Q-learning using the Regression Tsetlin
Machine. The architecture is expected to be a first step in utilizing Tsetlin Machines for Reinforce-
ment Learning problems, specifically in problems involving continuous input spaces.
Secondly, the new architecture is expected to preserve the interpretability of the Tsetlin Machine,
enabling us to study how input patterns from the environment directly contribute to the computed
Q-values for a state-action pair. As an extension, the interpretability would allow us to understand
reinforcement learning problems better, translating to design of better algorithms that can generalize
well over a wide range of problems.
Finally, interpretable reinforcement learning may assist industry in designing better input and feed-
back systems, particularly in domains involving automated control of agents such as robotics and
self-driving cars.
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1.3 Thesis Layout
The structure of the thesis is as follows. The first chapter introduced the research topic of the study
and presented the research questions we aim to answer. The second and third chapters discuss the the-
oretical background for the study, introducing Tsetlin Machines in chapter two and a brief discussion
of Reinforcement Learning methods in chapter three. In the fourth chapter, we introduce the approach
to Reinforcement Learning using two variants of the Regression Tsetlin Machine for Q-learning. The
fifth chapter describes the experiments used to evaluate the new approach. In the sixth chapter, we
present the results from our experiments, leading to a discussion and possible future directions in the
final chapter.



Chapter 2

Tsetlin Machine

Deep Networks using interconnected Artificial Neurons have become a fundamental building block
of Artificial Intelligence systems, with the ability to perform well on supervised and unsupervised
learning problems. Although they have very simple structures as neurons, the complexity of compu-
tations increases with the number of interconnected neurons in a network. The depth of the network
and other architectural features such as the activation functions also decide the functions the network
can express [18]. With this increase in complexity, and the layers of abstraction between the input
and the output, decisions made by deep neural networks are difficult to interpret.
The Tsetlin Automaton, developed by M.L. Tsetlin in the 1960s, is a simpler alternative to the Artifi-
cial Neuron. A single Tsetlin Automaton (as in Figure 2.1), designed to solve the multi-armed bandit
problem [19], is capable of learning optimal actions in an environment through reward mechanism
triggered by changes in state. A simple two-action Tsetlin Automaton is defined by the quintuple
[20]:

{Φ,α,β,F(·, ·),G(·)}

• Φ: set of internal states (Φ = {φ1, . . . ,φ2N})

• α: set of automaton actions (in Figure 2.1, α = {α1,α2})

• β: set of feedback given to the automaton, in terms of reward and penalty

• F(φt ,βv): transition function, determining the internal state of the automaton, based on
state φt and the feedback βv (v can be either a reward or a penalty)

• G(φt): output function, determining the action αt performed by the automaton given the
current state φt

Figure 2.1: Tsetlin Automaton for two-action environments. Source: The Tsetlin Machine – A Game
Theoretic Bandit Driven Approach to Optimal Pattern Recognition with Propositional Logic [8]

4
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In its programmatic implementation, the Tsetlin Automaton only tracks a state index, the learning
mechanism increments or decrements this state index based on the transition function F(φt ,βv). This
makes the automaton much simpler than an artificial neuron, giving it a smaller memory footprint as
well.
Similar to a deep neural network, the Tsetlin Machine is made up of teams of Tsetlin Automaton
[8]. As in Figure 2.2, a an input vector of length o is passed through conjunctive clauses (Tsetlin
Automaton) for evaluation. The sum of these votes from individual Tsetlin Automaton are then
passed through a threshold function (a unit step function). The final output of the team of automaton
is thus given by [8]:

ŷ = u

(
n/2

∑
j=1

C1
j (X)−

n/2

∑
j=1

C0
j (X)

)
(2.1)

• ŷ is the predicted output (in this case, ŷ ∈ 0,1)

• X is the input vector of size o (X ∈)

• C1
j (X) are the clauses assigned positive polarity

• C1
j (X) are the clauses assigned negative polarity

• u is the unit step threshold function

Figure 2.2: Inference structure of the Tsetlin Machine with clause polarity, vote calculation and a
threshold function. Source: The Tsetlin Machine – A Game Theoretic Bandit Driven Approach to
Optimal Pattern Recognition with Propositional Logic [8]

Unlike the neural network, which relies on back-propagated error to learn patterns, the Tsetlin Ma-
chine performs clause mining on binarized inputs and utilizes a feedback loop to update the states of
the automaton to facilitate learning behaviour. The behaviour of each individual automaton is used to
form clauses, generally represented in disjunctive normal form, allowing the Tsetlin Machine to rep-
resent complex non-linear patterns as a product of literals. The clauses may be treated as individual
Tsetlin Machines voting on the presence of a sub-pattern. A two-step feedback system incorporated
into the learning algorithm decides whether to include or exclude votes, based on the truth value of
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the clause and the truth value of the literal (Type I and Type II feedback)[8]. An overview of the
transition probability definitions in the feedback mechanism is shown in Tables 2.1 and 2.2. The
probability values are computed based on the specificity (s) of clauses mined (programmatically, this
is implemented as a user defined parameter).

Table 2.1: Type I Feedback, as designed for the Classifying Tsetlin Machine Game[8]

Truth value of Clause Ci+
j 1 0

Truth value of Clause lk 1 0 1 0

Include Literal lki+
j

P(Reward) s−1
s NA 0 0

P(Inaction) 1
s NA s−1

s
s−1

s
P(Penalty) 0 NA 1

s
1
s

Exclude Literal lki+
j

P(Reward) 0 1
s

1
s

1
s

P(Inaction) 1
s

s−1
s

s−1
s

s−1
s

P(Penalty) s−1
s 0 0 0

Table 2.2: Type II Feedback, as designed for the Classifying Tsetlin Machine Game[8]

Truth value of Clause Ci+
j 1 0

Truth value of Clause lk 1 0 1 0

Include Literal lki+
j

P(Reward) 0 NA 0 0
P(Inaction) 1 NA 1 1
P(Penalty) 0 NA 0 0

Exclude Literal lki+
j

P(Reward) 0 0 0 0
P(Inaction) 1 0 1 1
P(Penalty) 0 1 0 0

Since the initial advent of Tsetlin Machines in 2018, a few variants of the learning algorithm have
been created, enabling the Tsetlin Machine to perform both regression as well as classification tasks.
In the following sections, we will discuss three of these variants.
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2.1 Classification Tsetlin Machine
The clauses mined by the Tsetlin Machine can be utilized for classification purposes, by utilizing an
argmax function instead of the threshold. The output of the Multi-Class Tsetlin Machine (as in figure
2.3 is given by

ŷ = argmaxi=1,...,m

(
n/2

∑
j=1

Ci+
j (X)−

n/2

∑
j=1

Ci−
j (X)

)
(2.2)

where m is the number of distinct classes of objects specified in the problem and the + and− symbols
indicate the clause polarity (include literals and exclude literals).

Figure 2.3: Multi-Class Tsetlin Machine. Source: The Tsetlin Machine – A Game Theoretic Bandit
Driven Approach to Optimal Pattern Recognition with Propositional Logic [8]

The Classification Tsetlin Machine(CTM) has been shown to be effective compared to standard meth-
ods in the Iris classification [21] task, the MNIST hand-written digit classification [22] and the Binary
Digits [21] tasks.

2.2 Regression Tsetlin Machine
In order to enable the Tsetlin Machine to compute real valued outputs, we remove the clause polarity
that we were using to include and exclude literals[11]. We then utilize all the clauses to vote, based
on the inputs. The votes are then mapped to a continuous output using Equation 2.3.

ŷo =
∑

m
j=1C j(Xo)× ymax

T
(2.3)

• ŷo is the predicted output for the oth input

• Xo is the ioth input

• C j(Xo) are the clauses mined for the oth input

• T is voting threshold (programmatically, this is implemented as a user defined parameter)
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In the CTM, learning was facilitated by increasing the number of votes for a class using Type I feed-
back when the number of clauses is less than the threshold necessary for classification, and conversely
reducing the number of active clauses using Type II feedback when the predicted class is incorrect.
We update the feedback mechanism to Equation 2.4 for the Regression Tsetlin Machine, thus allowing
the clause updates to be performed for continuous outputs.

Feedback =

{
Type I if ŷo < yo

Type II if ŷo > yo
(2.4)

The clause activation probability is also updated, with the probability of feedback being directly
proportional to the error[11], and the activation probability function Pact is defined as in Equation 2.5.

Pact =
K×|ŷo− yo|

ymax
(2.5)

The constant K is a scaling factor which adjusts the magnitude of the activation function, preventing
severe oscillation between predictions.
The RTM thus takes binarized inputs and converts them into continuous valued outputs using the
voting mechanism and normalization equation shown above. This behaviour iis what we will utilize
in our architecture for Reinforcement Learning using Q-value approximation.

2.3 Integer Weighted Tsetlin Machine
The CTM and RTM perform clause mining on binarized inputs. If the input space is large, the CTM
and RTM require a large number of clauses to represent the inputs. This would result in slower com-
putations and loss of interpretability. [12] introduced a novel approach to represent the patterns in
a compact manner using weighted clauses. The Integer Weighted RTM (RTM-IW) uses stochastic
searching on the line, in tandem with the feedback mechanism defined in Equation 2.4. This pre-
serves the interpretability, since the weights increase when an automaton receives Type I feedback
and decrease when the automaton receives Type II feedback, instead of activating more clauses. The
compact representation also results in a lower memory footprint and faster computation times. The
regression computation discussed in Equation 2.3 is updated to use the weighted sum, instead of the
sum of clauses, as in Equation 2.6.

ŷo =
1
T

m

∑
j=1

w jC j(Xo) (2.6)

In their research, [12] show that the RTM-IW performs well with artificial datasets, requiring fewer
clauses than an RTM to learn representations on the same datasets.

In Chapter 3, we will discuss some literature on Reinforcement Learning, focusing on the methods
we utilize in our research.



Chapter 3

Reinforcement Learning

Reinforcement Learning (RL) refers to a set of problems and solution methods, in which agents learn
to maximize a reward from interacting with the environment through the exploration of possibilities
and exploitation of gained knowledge [6]. Generally, RL problems involve sequential decision mak-
ing, such as in games, or the continuous control of robots, where decisions are made to solve a part
of a problem at each time step, and each of these steps then contribute to solving a larger problem
or reaching a predefined goal. Problems are formulated as a finite Markov Decision Process (MDP),
such as the one shown in Figure 3.1:

Figure 3.1: Simple 4 state, 2 action Markov Chain. The transition probabilities between connected
states are given for each state-action pair. Dotted lines represent penalties, solid lines represent reward
obtained from a transition.

• S: Set of states the agent receives as inputs

• A: The set of actions the agent can take in the environment

• R(s,a): The reward function, reward is calculated given a state s and an action a taken

The agents learn to maximize obtained rewards over time through an RL algorithm and an efficient
exploration strategy. The information obtained from the agent’s interactions with the environment can
be processed using one of the following approaches [2].

9
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Model-based Learning
Model-based algorithms utilize planning methods to determine optimal actions given a model for
a fixed window of time. The planning is facilitated by the knowledge of the dynamics of the RL
problem, that is, the state transition probabilities and the associated reward function. Over many
agent-environment interactions, the algorithm aims to reduce the errors in the estimation of future
steps.

Model-free Learning
Model-free learning algorithms do not depend on knowledge of the dynamics of the problem, instead
they approximate a policy which determines how the agent behaves given the current state. Model-
free methods explore the environment until a preset end criteria is met. Repeated exploration allows
the agent to refine the behavioural policy and maximize rewards obtained.
Existing model-free methods for solving RL problems utilize one of the following approaches to
learning:

• Value-Function Methods:
Assume an agent follows a control policy π in a reinforcement learning environment,
the value function of a state s for such an agent is defined as the expected reward for the
agent when it starts at s, and all actions are defined by the policy π for a fixed time frame.

V π(s) = E[R(s,a)|s,π] (3.1)

An optimal value function, V ∗ can thus be defined as follows:

V ∗(s) = max
π

V π(s) (3.2)

Value function methods maintain a table of the values of a state given a control pol-
icy π, generated by repeated action sampling over mini-batches of interactions with the
environment. All optimal policies share the same optimal value function [6], thus, op-
timizing the value function should give us an optimal policy. Q-learning [17], SARSA
[23] and Temporal Difference learning [24] algorithms utilize value function methods to
determine an optimum control policy.

• Policy Search Methods:
Let us assume an agent follows a control policy, π, which is a function mapping a state
s to the probabilities of choosing an action a. An optimum policy is one which, given
a state, takes an action that maximizes the reward obtained by the agent over a defined
time frame.

There are two popular approaches to compute an optimal policy:

– Policy Gradient Methods:
Policy gradient methods involve mapping finite-dimensional parameter vec-
tors to the policy space, in a stochastic setting, followed by the use of gra-
dient ascent methods on the noisy estimate of gradients in the parameter
space. Such methods are highly popular in the context of robotics [25].
Examples of Policy-Gradient Methods include PEGASUS [26], Proximal
Policy Optimization [27] and Vanilla Policy-Gradient Networks [28].
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– Gradient-Free Policy Search:
Direct policy search involves the use of metaheuristics to approximate the
global optimum for an optimization problem, such as the optimum policy
function. These methods iteratively update the policy based on samples and
the value of a cost function that is specific to the problem and the meta-
heuristic used. Some implementations of gradient free methods are the Co-
variance Matrix Adaptation [29] and the Cross-Entropy Method [30].

For the scope of this research, we choose to focus on one specific model-free method, Q-Learning
[17].

3.1 Q-learning

Q-Learning is an off-policy, value-based, model-free RL method. The algorithm is based on the
concept of Temporal Difference (TD) learning, computing the best action to take in a given state
and continuously updating estimates of the value-function based on the history of states visited and
actions taken. Thus, the algorithm maps a state-action pair to a ”quality” value in the real number
space, as in 3.3.

Q : S×A→ R (3.3)

Specifically, an agent utilizing the Q-learning algorithm estimates the Q-value of a state using Equa-
tion 3.4.

Q∗(st ,at)← Q(st ,at)+α(rt + γ ·max
a

Q(st+1,a)−Q(st ,at)) (3.4)

• st is the state at time t

• at is the action taken at time t

• rt is the reward obtained from performing action at on state st

• st+1 is the state at time t +1, resulting from taking action at on state st

• Q∗ is the updated Q-value

• α is the learning rate

• γ is the discount factor

• max
a

(Q(st+1,a) is the estimate of the optimum future value

This approach differs from Monte Carlo methods in the frequency of updates to the estimates of the
value function. The Monte Carlo method only updates the value function at the end of each episode,
whereas in TD methods, the value function estimate is updated using known history at every step.
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Figure 3.2: Sample Q-value table for a 3 state, 2 action environment.

3.1.1 Tabular Q-learning
Initial approaches to Q-learning utilised a Q-table, which mapped state-action pairs to Q-values.
When the agent visited a state and performed an action, the Q-value for that pair was updated in
the table. The simplest representation of a Q-value table is shown in Figure 3.2.
As is evident, this approach would not scale well for tasks with a large number of states and/or
actions. Tabular approaches work well for limited state and action environments, like Tic-Tac-Toe or
small scale maze problems. For problems on a larger scale, it would be more effective to construct a
function that estimates the Q-value for each state-action pair without explicitly storing the values in
memory, as we see in the following subsection.

3.1.2 Deep Q Networks
In their work on human level control for Atari game environments [31], the team at DeepMind utilized
a convolutional neural network to estimate the Q-values for classic Atari games. With this architec-
ture, an agent continuously updates a Q-value estimate over multiple episodes of the game, improving
the estimation function using back-propagation. Deep Q-networks (DQNs) have since been the state-
of-the-art in playing video games such as Atari Pong, Breakout and Space Invaders, inspiring many
extensions, such as the double DQN [32], DQVN [33] and Actor-Critic Methods [34, 35].
Simpler approaches to DQN may utilize a Multi-Layer Perceptron (MLP) to compute the Q-values
depending on the nature of the inputs presented [36]. For classical environments such as CartPole, a
simple 3-layer MLP is sufficient to approximate the Q-values. The MLP only acts as an approximator,
and is trained on the experience gained by the agent over multiple episodes of interacting with the
environment.
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3.2 Explore or Exploit: Epsilon-greedy methods
In a dynamic environment, it is important to make decisions using what we already know (experience)
and knowing when we should update our knowledge (exploration). In terms of RL agents, knowing
when to explore and when to rely on experience is important for convergence of the learning process
and stability of agent behaviour. Classically, we use ε-greedy (Epsilon greedy) methods and the
stochasticity of the system to decide when to explore and when to rely on experience. Algorithm 1
explains the ε-greedy method, specifically for Q-learning.

Algorithm 1 ε-greedy method applied to Q-learning
Require:

ε ∈ (0,1): Exploration Probability
Q(s,a): Q-value table
while not terminal state do
Generate random number rand

if ε≥ rand then
Take a random action from action space A . Explore possibilities

else
Take action based on last Q(s,a) estimate . Exploit learned behaviour

end if
Update Q(s,a) estimates
end while

The ε-greedy approach works well for a small environment, but in a larger environment where we
move from tabular methods to function approximation, we need to utilize more than just ε-greedy
searches in order to converge to optimal agent behaviour.

εn+1 = εmax ·∆ε
n (3.5)

εn+1 = 1.1− 1

cosh(e−
n−α·nmax

β·nmax )+ n·δ
nmax

(3.6)

We tested two slightly different methods to compute the decay of ε with each episode. The simplest
of these is the Exponential decay function shown in Equation 3.5. This simple function has a uniform
decay rate which quickly reaches the minimum cap of 0.01 quite quickly, restricting the exploration
capability of the agent. Hence we decided to utilize the Stretched Exponential Decay (SED) function
for our agents, since it provides greater exploration over the same number of episodes as compared to
the Exponential decay function. The SED function is as given in Equation 3.6. The parameters α, β

and δ, all belonging to the interval [0,1] control the following aspects of the decay curve:

• α controls the time between exploration and exploitation. Values above 0.5 force high
exploration.

• β controls the slope of the transition between exploration and exploitation.

• δ controls the steepness of the left and right tails of the decay curve.

From our initial set of experiments, we notice that the values α = 0.4, β = 0.3 and δ = 0.3 gave us a
good trade-off between exploration and exploitation for our Tsetlin Machine agents.1

1A sample plot comparing the decay functions over 1000 episodes is shown in the Appendix.
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3.3 Experience Replay
When using a non-linear approximator, such as a neural network, to estimate the Q-value, we notice
the preservation of correlations of historic state-action pairs, that is, the network learns too much from
its immediate history, resulting in errors in Q-value estimation. In order to tackle this, [31] suggests
using a biologically inspired feedback system, which uses random subsets of the agent’s history to up-
date its expectations of Q-values. This technique, called Experience Replay, reduces the correlations
between historic and current states, preventing large unnecessary updates to the estimation function.

3.3.1 Prioritized Experience Replay
Experience Replay classically uses randomized samples of the agent’s history to update the agent’s
behaviour. This stochastic sampling may lead to certain important state-action pairs being skipped
in a limited number of training cycles, affecting the net change in the agent behaviour and hence
convergence. A variation of the Experience Replay method which uses utilizes a weighted sampling
method was introduced in [37]. In Prioritized Experience Replay (PER), the learning efficiency is
improved through repeatedly learning from the more common transitions, using the TD-error of a
transition to measure its priority. In their work [37], the authors showcase this approach to be much
more effective in the training of DQN agents on Atari games.

The above discussed methods form the base of the implementation we are building with the Regres-
sion Tsetlin Machine. The general pipeline for Q-learning remains the same, with the RTM being
used as the Q-value approximator which decides agent behaviour instead of the neural network.
In Chapter 4, we discuss the implementation of a Regression Tsetlin Machine based Q-learning agent,
utilizing classical Experience Replay as well as PER.
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Regression Tsetlin Machine for Q-Learning

In this chapter, we will lay out the architectural changes made to the RTM to facilitate Q-learning.
As mentioned in Chapter 2, the Tsetlin Machine works on binarized inputs, hence we will also visit
some input binarization schemes we tested.

4.1 Considerations while Utilizing the RTM for Reinforcement
Learning

The architecture and normalization equation for the RTM have been discussed in Chapter 2. This
architecture is suitable for supervised learning from a labelled dataset. Since the most common RL
environments involve continuous inputs, such as sensor readings or vector values (in simulators), we
first tested a few input binarization methods. We also had to update the normalization equation to
utilize expected Q-value ranges as the limits. The expected Q-value ranges are environment specific,
since they depend on the reward and the number of steps in an episode of learning. We will now
discuss in detail the changes that were made to individual components.

4.1.1 Input discretization techniques
As our baseline environments, since this research aims to implement a simple RTM based RL agent,
we chose the classic environments from OpenAI Gym[38], specifically CartPole and MountainCar,
partly due to their popularity at being baseline environments and partly because of the simplicity of
inputs provided. These environments represent states as a vector of continuous values (input length
being 4 for CartPole and 2 for MountainCar). These inputs need to be discretized for the RTM.
Since it is difficult to directly represent floating point numbers in binary format, we built a custom
discretizer.
Based on our tests, we found that a simple unsigned binarization scheme that divided the input space
into a fixed number of bins and assigned 1 to the bin to which the number belonged worked best,
since it had lower noise compared to some of the other schemes we tested.1

1A complete list of the binarization algorithms we tested are given in the Appendix.
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4.1.2 Q-value Range Computation
Utilizing the Bellman update equation (Equation 3.4), we can compute the range of Q-values that the
agent needs to normalize the votes to. Applying the summation of infinite terms to this equation, we
get the following:

Q ∈
[

r,α · r · (1− γn)

(1− γ)

]
(4.1)

n is the maximum number of steps in an episode.
We will utilize this range when computing the Q-value using the RTM agent. In the case of cer-
tain games, the maximum and minimum values are interchanged, if the reward for each timestep is
negative (such as for MountainCar, where the reward is −1 for each timestep).

4.1.3 Q-learning with the RTM
The RTM is modified and combined with the Q-learning framework. The salient points of our archi-
tecture are as follows:

• We have one RTM agent per action, each agent computes the Q-value for a given state
and the action index that it is associated to.

• We utilize the experience-replay method to train the agents and update the ε value to
control exploration.

• We introduce a binarization step before the agent is fed an input to compute the Q-value
from.
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Algorithm 2 Q-learning with Regression Tsetlin Machine
Require:

n actions: Number of actions in the environment
bin scheme: The input binarization scheme
Initialize RTM agent with n action sub-agents.
Initialize replay memory Mem
Initialize action-value function Q
for episode ∈ [0,epmax] do

Initialize input sequence s1 = x1
Binarize state φ1 = φ(s1)
Initialize step counter t
while not terminal state do

Generate random number rand
if ε≥ rand then

Take a random action from action space A . Explore possibilities
else

Take action based on max(Q(φ(st),a = 0), . . . ,Q(s,a = n actions)) . Exploit agent
Execute at , observe reward rt and state st+1
Binarize and commit (φ(st),at ,rt ,φ(st+1)) to memory Mem

end if
Increment t

end while
Sample random batch from memory
Update Q(s,a) estimates for all n action agents from memory states
Update ε value

end for
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Experimental Setup

As discussed in Chapter 4, we utilize two of the most popular classical mechanics environments from
OpenAI Gym [38], CartPole and MountainCar. We will discuss the structure of these environments
briefly and follow it up with our experimental structure and performance criteria.

5.1 Environments

5.1.1 CartPole
The CartPole environment, designed based on the work of Barto et al. [39], is a 2-action simple
environment. The environment consists of a pole attached by a hinge to a cart moving on a horizontal
track, as in figure 5.1. The agent controls the system by applying a force of ±1 to the cart (symbol
signifies direction of applied force), moving the cart right or left (2 actions). At the beginning of an
episode, the pole is perfectly upright. The goal of the game is to prevent the pole from deviating more
than 15 degrees from the vertical. The agent receives a reward of +1 for each timestep when the pole
remains within ±15 degrees of the vertical. In order to limit the length of an episode, we consider
more than 195 timesteps without the pole toppling as a win.

Figure 5.1: The CartPole environment as in OpenAI gym. [38]

18
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As inputs, we are given 4 features as in Table 5.1. Over the course of our experiments, we noticed that
the distribution of values during an actual run belong to a subset of the architectural range of these
features as speciified in the package. Table 5.1 shows the values we used in order to restrict the bins
for binarizing these features.

Feature Architectural Range Experimental Range

Cart Position [-4.8, 4.8] [-1.5, 1.5]
Cart Velocity (-∞,∞) [-100, 100]
Pole Angle [-24, 24] [-15, 15]

Pole Angular Velocity (∞,∞) [-100, 100]

Table 5.1: Range of features for the CartPole environment. Architectural limit is the limit specified in
[39]. Experimental range is the limited range of inputs based on experiments.

5.1.2 MountainCar
The MountainCar environment, designed by Moore [40], is a 2-action simple environment with nega-
tive rewards. The goal of the game is to move a car from a valley to the top of a mountain (denoted by
the flag in figure 5.2). However, the car requires to build enough momentum to climb the mountain,
through repeated oscillation between the left and right slopes of the mountain. The reward mechanism
for this game is different from the previous environment, with the agent receiving higher rewards for
achieving the c=goal in the least amount of steps.

Figure 5.2: The MountainCar environment as in OpenAI gym. [38]
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As inputs, we are given 2 features, as in Table 5.2. As with the CartPole environment, we noticed
while experimenting that the distribution of values during an actual run belong to a subset of the
architectural range of these features. Table 5.2 shows the values we used in order to restrict the bins
for binarizing these features.

Feature Architectural Range Experimental Range

Car Position [-1.2, 0.6] [-1.2, 1.2]
Car Velocity (-0.7, 0.7) [-0.1, 0.1]

Table 5.2: Range of features for the MountainCar environment. Architectural limit is the limit speci-
fied in [40]. Experimental range is the limited range of inputs based on experiments.

5.2 Hyperparameters
In our initial experiments while constructing the algorithm, we tested out many combinations of the
following hyperparameters necessary for the RTM agents:

• Specificity s: We tested values of specificity between 0.001 and 1000. From our initial
experiments we noticed that s = 5 gave us reasonable results with respect to changes in
Q-value over each iteration.

• Number of Clauses: We tested between 32 to 3000 clauses for our agents.

• Threshold T : We tested agents with T = number of clauses/2 and T = 1.

Combinations of the above hyperparameters were tested within the experimental framework that we
designed. The results and analysis are detailed in the subsequent chapter.

5.2.1 Motivation for Threshold and Specificity Values
When we deconstruct the Regression Tsetlin Machine, we see that the Threshold value is a control
on the number of votes that contribute to an output. We opted to test the default setting which is
Number of clauses/2 and also 1, since setting the Threshold to 1 implies that all clause votes are
utilized to compute the Q-value.
The Specificity controls the fineness of clauses learnt. Ideally, this would mean higher is better,
hence we initially chose really high values of specificity. We then contrasted agent behaviour at low
Specificity values, keeping all other hyperparameters constant. This allowed us to narrow down values
of Specificity that enabled learning behaviour.

5.3 Performance Criteria
In order to measure individual agent performance in each game, we will utilize the metrics provided
by OpenAI gym to compute the win rates of agents. The desired goal is for the agents to achieve
similar performance as compared to a Multi-Layer Perceptron (MLP) agent in the same number of
episodes.
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We will also take a note of computation time necessary for the agents in order to compare the RTM
approaches to the MLP agent. We would ideally like the RTM agents to take lesser time as compared
to the MLP agent for the same number of episodes.

5.4 Experimental Configurations
We have a total of 5 algorithms that are each being tested on 2 environments. We consider the
agents using the MLP to approximate Q-values as the baseline for both environments. We will then
compare the Regression Tsetlin Machine agents (vanilla RTM, RTM with Prioritized Experience
Replay, Integer Weighted RTM, Integer Weighted RTM with Prioritized Experience Replay) for a
range of hyperparameters. We run five individual trials for each hyperparameter setting with different
initial seed values for consistency. The results reported for each hyperparameter setting are average
and deviation of the scores accumulated by the agents in the 5 trials.

5.5 Implementation
All the simulations for our experiments were done on Python3 [41]. Baseline experiments using
a Multi-Layer Perceptron agent were programmed with Keras [42]. The Tsetlin Machine agents are
slightly modified variants of the Regression Tsetlin Machine available on the CAIR GitHub repository
[43, 12].
All experiments were carried out on the Peregrine HPC and Pallas AI systems at the University of
Groningen. The experiments were exclusively programmed to compute on CPU.



Chapter 6

Results

After initial experimentation to build the agents and test a few hyperparameters, we created group
experiments with 5 fixed seed values. We ran the RTM based agents on each environment with
common hyperparameters. We also ran sets with MLP agents, in order to create a baseline. The most
important results from each environment are discussed below, a list of the other experiments can be
found in the Appendix.

6.1 Cartpole
The cartpole environments provides an input vector of four floating point numbers, which we con-
verted into binarized form. We tested different binarization schemes, starting with 4 bins per input (an
input length of 16 bits) to 16 bits per input (an input length of 64 bits). We noticed in doing so that the
binarization range can be shortened to the Experimental ranges mentioned in Table 5.1. Fixing these
values gave us better results as compared to an agent learning form the entire input space. Once the
input ranges were fixed, we tested out different binarization schemes. The best performing scheme,
Unsigned binarization (see Algorithm 3), was then utilised for our group experiments. We then tested
out different clause lengths, Thresholds and Specificity values for each of the 4 RTM agents. For all
experiments, we utilized binarized input vectors of length 32.
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6.1.1 Comparison of Architectures
In our tests we noticed that the simple RTM agent required atleast 2000 propositional clauses to
achieve high scores. We obtained the best results with an agent using 2000 clauses, with a Threshold
of 1 and a Specificity of 5, as shown in Figure 6.1.

Figure 6.1: Performance of the best RTM agents as compared to the MLP on CartPole environment.
Average and deviation of the scores depicted in graph for RTM agents. (n clauses = 2000,T = 1,s =
5)

The agent behaviour is not stable, and increasing the number of clauses did not improve agent be-
haviour. The value of Specificity controls the granularity of the clauses mined by the Tsetlin Automa-
ton. Ideally, this would mean that the higher the value of s, the better the clause mining process, but
in our experiments, we noticed that high values of s caused the learning to stagger. This could be
attributed to the automaton resetting clauses repeatedly, whenever minor variations within the clauses
are viewed while training.
Increasing the Threshold (T = n clauses/2) resulted in the limiting the agents learning, since that
would be the same as using only half the total number of clauses to compute the same range of
continuous values. For the best agents, we set the Threshold T to 1, utilizing the entire clause space
to compute Q-values.
The Integer Weighted RTM agent required fewer number of clauses to achieve similar learning. We
noticed peak performance at 1000 clauses, as in Figure 6.2. This is due to the condensed clause
notation that the Integer Weighted RTM utilized. Increasing the number of clauses did not lead to any
significant improvement for the Integer Weighted RTM agent, since some weights were seen to be set
to zero after multiple episodes of the game.
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Figure 6.2: Performance of the RTM agents as compared to the MLP on CartPole environment.
Average and deviation of the scores depicted in graph for RTM agents. (n clauses = 1000,T = 1,s =
5)

Agent Type Memory Type Number of Clauses Threshold Specificity Win Rate

RTM ER 2000 1 5 10%
RTM PER 2000 1 5 12%
RTM ER 2000 1000 5 0%
RTM PER 2000 1000 5 0%

IW-RTM ER 1000 1 5 20%
IW-RTM PER 1000 1 5 20%
IW-RTM ER 1000 500 5 2%
IW-RTM PER 1000 500 5 2%

Table 6.1: Performance of selected RTM agents on the CartPole environment for different hyperpa-
rameter configurations.

Between the two memory methods, we notice that agents using Prioritized Experience Replay have
much better win rates as compared to agents using simple Experience Replay, as can be seen in Table
6.1.
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6.2 Mountain Car
The MountainCar environment is more complex than the CartPole environment due to the sparsity
of rewards and the continuous cost of movement. As with the CartPole environment, we performed
a set of initial experiments to narrow the input range for the binarizers as in Table 5.2. We utilise
the same binarization scheme as we had for CartPole, with inputs ranging from 16 bits to 64 bits per
state (each state is a vector of size 2). For all experiments, we used a binarized input vector of length
32. A complete set of the results with the different hyperparameter configurations tested is given in
the Appendix (Table 3). The results for the MountainCar environment suggest that the current clause
update mechanism is not ideal for extreme sparse reward environments.

6.2.1 Comparison of Architectures
With a simple MLP agent as baseline, we did not get the agent to learn the game. The behaviour of
the RTM agents is similar to the baseline, with the agents not winning at this environment. A sample
performance of the agents is as shown in Figure 6.3. The agents used 2000 clauses, with a Threshold
of 1 and a Specificity of 5.

Figure 6.3: Performance of the best RTM agents as compared to the MLP on the MountainCar en-
vironment. Average and deviation of the scores depicted in graph for RTM agents. (n clauses =
2000,T = 1,s = 5)

We noticed that the agents always computed Q-values to be marginally different in the order of 1e−3.
The Q-values were almost always equal to the lowest reward possible from the game.
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6.3 Clause Mining and Interpretability
Generally, Q-value approximation functions are non-linear. The complexity of the Q-value function is
not easily translated into the domain of propositional clauses that the RTM utilizes to learn. With the
approximation of complex functions requiring very large number of clauses, we do not achieve better
interpretability of calculation of Q-values and hence the behaviour of agents. The Integer Weighted
RTM agents are more promising in this aspect. However, we would need to address the issue with
stability of agent behaviour before we can utilize the agents.
The clause mining behaviour is also not inherently interpretable. Initial analysis gives us the impres-
sion that the clause activation is random, and that the clause is just an internal representation that the
RTM utilizes. However, this is not the case, since with a stable agent, we could link individual input
features to clause activation.
In the next chapter, we will discuss the main contributions of our work, the shortfalls of the approach
we took and some prospective directions for future research in the field.
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Conclusion

In this chapter, we will discuss the main points of our research. We will also discuss the reasons for
some of the shortfalls that we see in the architectures we experimented with. We will conclude this
section, and hence the report, with a discussion of possible future directions of research.

7.1 Summary of Main Contributions

How can we design a Reinforcement Learning system utilizing Regression Tsetlin
Machines?

We started this research with an aim of building Regression Tsetlin Machine based Q-learning agents.
We have successfully built 4 different RTM agents that are capable of playing games without super-
vision, learning solely from the signals received from the environments they interact with.

How does the performance of the Tsetlin Machine Reinforcement Learning
agent compare with an agent trained using a Deep Q Network?

We tested the agents out on standard environments provided by OpenAI, CartPole and MountainCar.
The CartPole agents show promise, with the agents able to win games, albeit not as continuously as
Neural Network agents can. The sparsity of rewards in the MountainCar environment do not seem to
enable learning behaviour in the RTM agents. In terms of computation, the RTM agents do take more
time than their Multi Layer Perceptron counterparts. This is mostly because of the number of clauses
required to approximate Q-values.

How understandable is the decision making process of the Tsetlin Machine Re-
inforcement Learning agent?

In terms of interpretability, we notice that our approach may not have been the best. As discussed
earlier, representing complex functions using propositional clauses requires a large number of clauses,
which detriments the interpretability of the agent.

27
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7.2 Future Work

We shall now discuss in detail some of the issues we faced with the architecture of the RTM agents
and how these issues may be addressed in future research.
The first issue is the binarization of continuous values to a discrete space, without losing the magni-
tude of values. Bin based binarization schemes are limited in the precision of magnitudes they may
represent. We cannot utilize one-hot encoding style approaches directly in the case of unsupervised
learning, since we do not have a dataset to learn from. The current approach to binarization introduces
some noise to the system, which is detrimental to learning behaviour in such dynamic environments.
The first step to utilizing the RTM would require better binarization schemes for dynamic environ-
ments, which are also interpretable in terms of mapping back to the continuous inputs provided by
the environment.
The vanilla RTM agents require a lot of propositional clauses, which affect both the computation time
as well as the interpretability of agent behaviour. Based on the limited results, we notice that this
can be avoided by using a Integer Weighted RTM agent. However, we would also have to restrict the
weight updates on the Integer Weighted RTM, since we noticed that in some cases, the weights were
increased to the order of 1e4. Also, we would need to perform more experiments which enable us
to study the clause activation behaviour of RTMs in such environments, since without understanding
this, we would not be able to improve the interpretability of the agents.
While analyzing the results, we noticed that the RTM needs a lot of clauses for learning non-linear
functions like the Q-value approximation. We are also not sure how the propositional clauses map to
the non-linear function. It would help to delve deeper into how these relate, since we could then un-
derstand the relation between the hyperparameters necessary for agent design. Being able to compute
the minimum number of clauses necessary for approximating a function could allow for more robust
agent design.
An alternative architecture, suggested by Glimsdal and Granmo [44], would allow us to combine
commonly used clauses without replication, thus reducing the number of clauses necessary to repre-
sent a function. The Coalesced TM architecture would thus enable condensed representation of the
propositional clauses, improving interpretability and agent robustness. A suggested approach would
be to use the Coalesced TM to mine the most common clauses and fine tune the RTM architecture on
top to have more precise computations of Q-values and hence more concise agent behaviour.
It is also suggestible to look into using alternate approaches to Reinforcement Learning, such as Actor-
Critic agents with Classifier Tsetlin Machines, since the computation of Q-values may be avoided,
removing a layer of abstraction. This may also perform better in complex environments such as
MountainCar. The CTM does not abstract the inputs into a continuous value, instead choosing to
convert the agent votes into a decision directly. The removal of one layer of abstraction could improve
the overall interpretability of the system.
In our experiments, we have noticed a significant difference between the learning behaviour of the
RTM agents on the MountainCar and CartPole environments. One of the reasons for this is the
nature of rewards. While Cartpole generates a positive rewards for each timestep, the MountainCar
environment is a punishment based environment, with a negative reward for each step. We tested out
basic reward engineering approaches with a Markovian reward structure, but the punishment scheme
seems to confuse the RTM agent, since it updates and resets the clauses frequently while training,
losing patterns or learning erroneous patterns. Using a non-Markovian reward system could skew the
learning behaviour of the automaton, since the approximation of the Q-function is different in case of
non-Markovian rewards. We have tested out a wide range of hyperparameters for both environments,
the complete results are tabularized in the Appendix. We also noticed that the simple neural network
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agent we utilized in the MountainCar environments did not learn the game very well, which brings
us to the conclusion that the function we approximate for MountainCar is more complex than the
Q-value approximation function for CartPole. In extension, this means the RTM for MountainCar
would need a very high number of clauses, which means very high computation costs and very low
interpretability.
As a final note, with respect to the choice of hyperparameters, more experimentation is necessary. As
mentioned earlier, we do not completely understand how many clauses are necessary to represent a
function and what the relation between the number of clauses is to the length of the binarized input.
The values of Specificity tested in our experiments were also limited, due to the high computation
time for some of our environments.

7.3 Conclusion
In this thesis, we built a Reinforcement Learning agent utilizing Tsetlin Machines. We expected
this method to be interpretable and less compute intensive as compared to neural networks, but the
approach we utilized, combining the Regression Tsetlin Machine with Q-learning, did not give us
expected results. However, we have seen that it is possible to represent the Q-value approximation
functions using the RTM.
We have further explored the usage of different types of RTM agents on the two chosen environments
and analyzed the performance of these agents. This has given us insight into the design of interpretable
agents for the purpose of Reinforcement Learning. We also discuss some of the issues that have to
be addressed in future iterations of research in order to improve agent stability and make the learning
pipeline interpretable throughout.
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Appendices

A Epsilon Decay Algorithms: Comparison

Figure 1: Comparison of epsilon decay functions over 1000 episodes.

Figure compares the Exponential Decay function (ED) with ∆ε = 0.99 and the Stretched Exponential
Epsilon Decay function (SED) with α= 0.4, β= 0.3 and δ= 0.3. We notice that the ED decays to εmin
in under 40% of the total number of episodes, leaving a majority of episodes to utilize exploitation.
The SED decays slowly, providing more exploration, ensuring that the agent continues to learn from
experiences until late into the game.
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B Input Binarization Algorithms
As part of our initial experiments, we tested out 4 different binarization techniques:

• Simple Binning Binarizer with Sign Bit

• Unsigned Binarizer

• Greater than Binarizer with Sign Bit

• Less than Binarizer [45]

The Less than and Greater than binarizers provide dense inputs, whereas the other schemes return
sparse binarized inputs. In our experiments, we found that the Unsigned Binarizer performed best,
hence we utilize the Unsigned binarizer in all reported results.

Algorithm 3 Unsigned Binning Binarizer
Require:

input: Floating point feature
n bins: Number of bins the input range is divided into
range max: Maximum of input feature range
range min: Minimum of input feature range
Initialize binary rep array of size n bins
Compute bin delta = (range max− range min)/n bins
for i ∈ [0,n bins] do
min bin = range min+ i ·bin delta
max bin = range min+(i+1) ·bin delta

if min bin≤ abs(input)≤ max bin then
binary rep[i] = 1

end if
end for
return binary rep
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Algorithm 4 Simple Binning Binarizer with Sign Bit
Require:

input: Floating point feature
n bins: Number of bins the input range is divided into
range max: Maximum of input feature range
range min: Minimum of input feature range
Initialize binary rep array of size n bins+1
Compute bin delta = (range max− range min)/n bins
if input < 0 then

Set binary rep[0] = 1 . Negative input
else

Set binary rep[0] = 0 . Positive input
end if
for i ∈ [1,n bins+1] do
min bin = range min+(i−1) ·bin delta
max bin = range min+ i ·bin delta

if min bin≤ abs(input)≤ max bin then
binary rep[i] = 1

end if
end for
return binary rep

Algorithm 5 Greater Than Binarizer with Sign Bit
Require:

input: Floating point feature
n bins: Number of bins the input range is divided into
range max: Maximum of input feature range
range min: Minimum of input feature range
Initialize binary rep array of size n bins+1
Compute bin delta = (range max− range min)/n bins
if input < 0 then

Set binary rep[0] = 1 . Negative input
else

Set binary rep[0] = 0 . Positive input
end if
for i ∈ [1,n bins+1] do
min bin = range min+(i−1) ·bin delta
max bin = range min+ i ·bin delta

if abs(input)≥ min bin then
binary rep[i] = 1

end if
end for
return binary rep
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Algorithm 6 Less Than Binarizer
Require:

input: Floating point feature
n bins: Number of bins the input range is divided into
range max: Maximum of input feature range
range min: Minimum of input feature range
Initialize binary rep array of size n bins
Compute bin delta = (range max− range min)/n bins
for i ∈ [0,n bins] do
max bin = range min+ i ·bin delta

if input ≤ max bin then
binary rep[i] = 1

end if
end for
return binary rep

C Tables of experimental results
Computation Time: CartPole

Agent Type Number of Clauses Approx. Computation Time

RTM 3000 17hrs
RTM 2000 14hrs
RTM 1000 10hrs
RTM 500 4hrs

IW-RTM 3000 18hrs
IW-RTM 2000 14hrs
IW-RTM 1000 12hrs
IW-RTM 500 5hrs

Table 1: Average computation time of RTM agents for CartPole environment, 300 episodes. The
MLP agent took 8 hours on the same CPU.
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Average Wins: CartPole

Agent Type Memory Type Number of Clauses Threshold Specificity Win Rate

RTM ER 2000 1 5 10%
RTM PER 2000 1 5 12%
RTM ER 2000 1000 5 0%
RTM PER 2000 1000 5 0%
RTM ER 1000 1 5 10%
RTM PER 1000 1 5 12%
RTM ER 500 1 5 0%
RTM PER 500 1 5 0%

IW-RTM ER 1000 1 5 20%
IW-RTM PER 1000 1 5 20%
IW-RTM ER 1000 500 5 2%
IW-RTM PER 1000 500 5 2%
IW-RTM ER 500 1 5 0%
IW-RTM PER 500 1 5 0%
IW-RTM ER 500 250 5 0%
IW-RTM PER 500 250 5 0%

Table 2: Performance of selected RTM agents on the CartPole environment for different hyperparam-
eter configurations.
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Average Wins: MountainCar - RTM

Agent Type Memory Type Number of Clauses Threshold Specificity Win Rate

RTM ER 2000 1 5 0%
RTM PER 2000 1 5 0%
RTM ER 2000 1000 5 0%
RTM PER 2000 1000 5 0%
RTM ER 1000 1 5 0%
RTM PER 1000 1 5 0%
RTM ER 500 1 5 0%
RTM PER 500 1 5 0%
RTM ER 2000 1 100 0%
RTM PER 2000 1 100 0%
RTM ER 2000 1000 100 0%
RTM PER 2000 1000 100 0%
RTM ER 1000 1 100 0%
RTM PER 1000 1 100 0%
RTM ER 500 1 100 0%
RTM PER 500 1 100 0%

Table 3: Performance of selected RTM agents on the MountainCar environment for different hyper-
parameter configurations.
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Average Wins: MountainCar - IW-RTM

Agent Type Memory Type Number of Clauses Threshold Specificity Win Rate

IW-RTM ER 1000 1 5 0%
IW-RTM PER 1000 1 5 0%
IW-RTM ER 1000 500 5 0%
IW-RTM PER 1000 500 5 0%
IW-RTM ER 500 1 5 0%
IW-RTM PER 500 1 5 0%
IW-RTM ER 500 250 5 0%
IW-RTM PER 500 250 5 0%
IW-RTM ER 1000 1 100 0%
IW-RTM PER 1000 1 100 0%
IW-RTM ER 1000 500 100 0%
IW-RTM PER 1000 500 100 0%
IW-RTM ER 500 1 0.001 0%
IW-RTM PER 500 1 0.001 0%
IW-RTM ER 500 250 0.001 0%
IW-RTM PER 500 250 0.001 0%

Table 4: Performance of selected IW-RTM agents on the MountainCar environment for different
hyperparameter configurations.
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D Graphs comparing methods
CartPole

Figure 2: Performance of the RTM agents as compared to the MLP on CartPole environment. Average
and deviation of the scores depicted in graph for RTM agents. (n clauses = 500,T = 1,s = 5)

Figure 3: Performance of the RTM agents as compared to the MLP on CartPole environment. Average
and deviation of the scores depicted in graph for RTM agents. (n clauses = 200,T = 1,s = 5)
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MountainCar

Figure 4: Performance of the RTM agents as compared to the MLP on MountainCar environment.
Average scores depicted in graph for RTM agents. (n clauses = 500,T = 1,s = 5)

Figure 5: Performance of the RTM agents as compared to the MLP on MountainCar environment.
Average scores depicted in graph for RTM agents. (n clauses = 1000,T = 1,s = 5)


