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Preface

A complex multiplication field (CM-field) of degree 2g is a totally imaginary quadratic
extension of a totally real field of degree g over Q. An abelian variety of dimension g has
complex multiplication if its endomorphism ring contains an order of a CM-field of degree 2g.
Let K be a CM-field of degree 2g with maximal order OK By the first main theorem of CM
([ST61, Main Theorem 1]) a principally polarized simple abelian variety of dimension g that
has CM by OK is defined over the Hilbert class field of a reflex field of K. An implication
of this theorem is that if a principally polarized simple abelian variety with CM by OK for
primitive (K,Φ) is defined over a reflex field of K, then the CM class group is trivial ([Kıl16,
Corollary 1.5.7]). The CM class number one problem asks to determine CM-pairs (K,Φ),
where K is a CM field and Φ is a primitive CM-type of K, with a trivial CM class group.

When g = 1 the problem becomes the usual class number one problem, which was solved
by Heegner [Hee52], Baker [Bak67] and Stark [Sta67]. For g = 2 the problem was solved by
[KS18]. For g = 3 all possible CM-fields are given in [Dod84, Section 5.1.1]. For sextic CM-
fields containing an imaginary quadratic subfield, the problem was solved by Kılıçer [Kıl16].

In this thesis we discuss the problem for sextic CM-fields that do not contain an imaginary
quadratic subfield and that have a Galois closure of degree 24 over the rational numbers.
Chapter 1 of this thesis contains preliminaries on CM-fields, Representation Theory and
L-functions. In Chapter 2 we examine the subfield structures of a sextic CM-field K whose
Galois closure L has Galois group (C2)3oC3 and its reflex field for each primitive CM type Φ.
We give relations between the discriminants and relative class numbers of such a sextic CM
field and its reflex field. We prove sufficient conditions for such fields to be of CM class
number one and show that there exist finitely many CM class number one fields of this form.
We give algorithms for computing these fields in SageMath and provide some examples. In
Chapter 3 we assume that K is a CM class number one field and find restrictions on K and
give an expression for h∗K depending on the number of primes that ramify in K/K+. We give
a full ramification table for fields K and Kr as subfields of L. Furthermore, we find a bound
for dK/dK+ and prove finiteness in Theorem 3.3.6. Finally we list all CM class number one
fields K where dKr

+
≤ 108 and dk ≤ 104 such that at most 2 primes are ramifying in k/Q.
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List of Notation

OK Ring of integers of number field K

dK Discriminant of K

IK Group of fractional ideals of K

PK Group of principal fractional ideals of K

ClK Class group IK/PK of K

hK Class number of K

O×K Unit group of K

Reg(K) Regulator of K

r1(K), r2(K) Number of real embeddings, respectively pairs of complex embeddings of K

WK Group of roots of unity of K

µK Cardinality of WK

NK/F Ideal norm of number field extension K/F

KL Smallest field containing both fields K,L

KH Subfield of a field K Galois over Q fixed by subgroup H ⊂ Gal(K/Q)

K+ Maximal totally real subfield of a CM-field K

h∗K Relative class number hK
hK+

of a CM-field K

(K,Φ) CM-pair with K a CM-field and Φ a CM type of K

(Kr,Φr) Reflex pair of (K,Φ) with Kr a reflex field and Φr the reflex type of Φ

NΦ Type norm map for a CM-type Φ of CM-field K

QK Hasse unit index [O×K : WKO×K+
] for a CM-field K
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1. Preliminaries

1.1. Complex multiplication

We introduce elementary concepts and results from complex multiplication theory, which
are mostly due to Shimura and Taniyama [ST61]. For the structure of the section we fol-
low [Mil06, Chapter 1], [Lan83, Section 1.2 and 1.5] and [Str10, Chapter 1.2 and 1.3].

1.1.1. CM fields and CM types

Let K be a number field.

Definition 1.1.1. The field K is totally real if ϕ(K) ⊂ R for all embeddings ϕ : K → C. It
is totally imaginary if ϕ(K) 6⊂ R for all ϕ.

Write K = Q(α) ∼= Q[X]/(f(X)) with α ∈ C and minimal polynomial f(X) of α.
Then K is totally real if all roots of f(X) are real and totally imaginary if none of the roots
of f(X) are real. This is equivalent to Definition 1.1.1.

Definition 1.1.2. A number field K is a CM-field if it is a totally imaginary quadratic
extension of a totally real number field.

We denote the totally real subfield of a CM-field K by K+. Here K+ is the maximal
totally real subfield of K. Definition 1.1.2 implies that if n := [K+ : Q], then [K : Q] = 2n.

Let · denote the regular complex conjugation. For every embedding ϕ : K → C of K and
for every a ∈ K we have (· ◦ ϕ)(a) = ϕ(a). We give an alternative definition of a CM-field
in Proposition 1.1.3.

Proposition 1.1.3. A number field K is a CM-field if and only if K is not totally real and
there exists a nontrivial automorphism ρK of K such that for all embeddings ϕ of K we
have ϕ ◦ ρK = · ◦ ϕ.

Proof. Assume K is a CM-field. Because [K : K+] = 2 and K is Galois over K+, there exists
a unique nontrivial automorphism ρ of K that has order 2 and fixes K+. Then ρ is complex
conjugation on K and ρK := ρ satisfies the desired condition.
Conversely, assume there exists a nontrivial ρK ∈ Aut(K) such that for all embeddings ϕ ofK
we have ϕ ◦ ρK = · ◦ϕ. Then (ϕ ◦ ρK) ◦ ρK = · ◦ (· ◦ϕ) = ϕ, so ρK has order 2. Take F to be
the fixed field of ρK , then K is an imaginary quadratic extension of F . Moreover, F is fixed
by complex conjugation and therefore totally real. So K is a CM-field with K+ := F .

We call the automorphism ρK in Proposition 1.1.4 the complex conjugation on K.

Corollary 1.1.4. A finite composite KM of two CM-fields K,M is a CM-field.
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Proof. All complex embeddings of KM are induced from those of K,M . Since K,M are
CM-fields, by Proposition 1.1.3 each embedding on K,M commutes with complex conjuga-
tion on K,M . Let ρKM be the automorphism on KM induced from complex conjugation
on K,M . We have ϕ ◦ ρKM = · ◦ ϕ for all embeddings ϕ : KM → C, hence KM is a
CM-field.

Corollary 1.1.5. Let K be a non-Galois CM-field with Galois closure L, then L is a CM-
field.

Proof. Since L is the Galois closure of K, it is the smallest Galois extension of K. Moreover,
it is the smallest extension containing the Galois conjugates Kσ of K. This makes L the
composite field of K and its Galois conjugates, so L is a CM-field by Corollary 1.1.4.

For K a number field with Galois closure L, define Hom(K,L) to be the group of
embeddings of K with values in L.

Definition 1.1.6. Let K be a CM-field with Galois closure L. A CM-type Φ of K is a
subset of Hom(K,L) such that Hom(K,L) = Φ t Φ. The pair (K,Φ) is called a CM-pair.

For every complex conjugate pair {ϕ, ϕ} ⊂ Hom(K,L) a CM-type Φ of K contains
precisely one embedding of said pair. That is, no two elements in Φ are complex conjugates
of each other.

Definition 1.1.7. Two CM-types Φ1,Φ2 of a CM-field K are called equivalent if there
exists σ ∈ Aut(K) such that σΦ1 = Φ2.

Let (K,Φ) be a CM-pair such that K ⊂ M is an extension of CM-fields and let N be
the Galois closure of M . Define

ΦM := {ϕ ∈ Hom(M,N) : ϕ|
K

= ψ for some ψ ∈ Φ}. (1.1)

Here ΦM is a CM-type of M , because for every ϕ ∈ ΦM we have ϕ /∈ ΦM .

Definition 1.1.8. The set ΦM as in (1.1) is called the CM-type of K induced by Φ.

Definition 1.1.9. A CM-type of a CM-field K is called primitive if it is not induced from
a CM-type of a CM-subfield of K.

Proposition 1.1.10. [Mil06, Proposition 1.9] Let (K,Φ) be a CM-pair. There exists a
unique primitive CM-pair (F,ΦF ) such that K/F is a field extension and Φ is induced
from ΦF . Moreover, for M a CM-field extension of K such that M is Galois over Q,
let ΦM be the CM-type of M induced from ΦF . Then F is the fixed field of

{σ ∈ Gal(M/Q) : ΦMσ = ΦM}.
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Proof. First let K/Q be Galois and define F := KH where H := {σ ∈ Gal(K/Q) : Φσ = Φ}.
We show that F is a CM-field and that Φ|

F
is a CM-type on F . By Proposition 1.1.3 there

exists ρK ∈ Gal(K/Q) such that ΦρK = Φ. Since Φ ∩ ΦK = ∅ we have ρK /∈ H.
Next we show that for every ϕ ∈ Hom(F, F ) also ϕ ◦ ρK |F = ϕ. Let σ ∈ H, then

Φ(ρK ◦ σ ◦ ρK) = Φ(σ ◦ ρK) = ΦρK = Φ.

So ρK ◦σ ◦ρK ∈ H, hence for all x ∈ F we have (σ ◦ρK)|
F

(x) = ρK |F (x). This shows that F
is invariant under H, so indeed ϕ ◦ ρK |F = ϕ for every embedding ϕ of F . This makes F a
CM-field. Now suppose that Φ|

F
is not a CM-type of F . Then there exist ϕ, ψ ∈ Φ such

that ψ|
F

= ϕ|
F

. Because F is fixed by H we have

ψ−1ϕ ∈ H ⇐⇒ ϕ ∈ ψH ⊂ ΦK .

However ϕ ∈ ΦK , so this is a contradiction and hence Φ|
F

is a CM-type of F .
Left to show is that F is a primitive CM-field. Suppose there exists another CM-field F ′

such that F ′ ⊂ K with CM-type Φ|
F ′ . Then Φ is induced by ΦF ′ . Let σ ∈ Gal(K/Q) such

that σ fixes F ′, so ΦF ′ ◦ σ = ΦF ′ . Since Φ is induced by ΦF ′ , this implies that Φ ◦ σ = Φ
hence σ ∈ H. It follows that F ′ ⊃ F which makes F primitive.
The above proves the proposition for the case where K is Galois, hence M = K. For the
second part assume K is not Galois and M is its Galois closure. Then there exists a CM-
type ΦM of M such that ΦM |K= Φ. By the above there exists a primitive CM-field F ⊂ K
with a CM-type ΦF that induces ΦM , hence ΦF = ΦM |F .

Corollary 1.1.11. [Mil06, Corollary 1.10] Let M/K be an extension of CM-fields where M
is Galois over Q. Then (K,Φ) is primitive if and only if there exists ΦM induced from Φ
such that

{σ ∈ Gal(M/Q) : ΦMσ = ΦM}

fixes K.

Proof. Assume that (K,Φ) is primitive and let M/K be an extension of fields. Define ΦM

as in Definition 1.1.8, then ΦM is the CM-type of M induced by Φ. From Proposition 1.1.10
it follows that K is fixed by the given subgroup. Conversely, for (M,ΦM) and (K,Φ) it was
shown in the proof of Proposition 1.1.10 that K must be primitive.

Proposition 1.1.12. Let K be a CM-field and K a Galois closure of K. Take σ ∈ Aut(K)
and let Φ be a CM-type of K with values in K. Then σΦ is a CM-type K.

Proof. Suppose not, then there exist ϕ, ψ ∈ Φ such that σ ◦ ϕ = σ ◦ ψ ∈ σΦ. Since K is a
CM-field, by Proposition 1.1.3 there exists ρK ∈ Aut(K) such that

σ ◦ ϕ = (σ ◦ ϕ) ◦ ρK = σ ◦ (ϕ ◦ ρK) = σ ◦ ϕ ∈ σΦ.

Then σ ◦ ϕ = σ ◦ ψ, and because σ is an automorphism it follows that ψ = ϕ ∈ Φ. This is a
contradiction, so σΦ is a CM-type on K.
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1.1.2. Reflex fields

Let K be a CM-field and let L := K be the Galois closure of K. Then L is a CM-field by
Corollary 1.1.5. Let Φ be a CM-type of K and ΦL a CM-type of L induced from Φ. That is,

ΦL = {σ ∈ Gal(L/Q) : σ|
K
∈ Φ}.

The elements of ΦL are automorphisms of L, so we can define Φ−1
L to be the set of inverses

of elements in ΦL. Then Φ−1
L is a CM-type of L by [Lan83, Theorem 5.1(ii)]. By Proposi-

tion 1.1.10 there exists a unique primitive CM-pair (Kr,Φr) such that Kr ⊂ L is an extension
of fields and Φ−1

L is induced from Φr.

Definition 1.1.13. A CM-pair (Kr,Φr) as described above is called the reflex pair of a
CM-pair (K,Φ). Here Kr is its reflex field and Φr its reflex type.

Proposition 1.1.14. Let (K,Φ) and (L,ΦL) be CM-pairs such that L is the Galois closure
of K and ΦL is induced from Φ. Then

Gal(L/Kr) = {σ ∈ Gal(L/Q) : σΦL = ΦL}.

Proof. Recall that (Kr,Φr
K) is a primitive CM-pair that induces (L,Φ−1

L ). For any ϕ ∈ ΦL

and σ ∈ Gal(L/Q) we have

ϕ−1 ◦ σ = ϕ−1 ⇐⇒ ϕ−1 ◦ σ ◦ ϕ = idL ⇐⇒ σ ◦ ϕ = ϕ.

Combine this with the result of Proposition 1.1.10 to obtain

Gal(L/Kr) = {σ ∈ Gal(L/Q) : Φ−1
L σ = Φ−1

L } = {σ ∈ Gal(L/Q) : σΦL = ΦL}.

Proposition 1.1.15. [ST61, paragraph above Proposition 29] Let (K,Φ) be a CM-pair with
reflex pair (Kr,Φr). Then (Kr,Φr) has a reflex pair (Krr,Φrr), where Krr ⊆ K and Φ is
induced by primitive type Φrr. If Φ is primitive, then Krr = K and Φrr = Φ.

Proof. From the definition of a reflex field it follows immediately that Krr ⊂ K
and Φ|Krr= Φrr. Assume that Φ is primitive. Because Φrr is primitive by the definition of
the reflex and Φrr induces Φ, it follows that Φ = Φrr and hence K = Krr.

Lemma 1.1.16. Let K be a CM-field and let Φ1,Φ2 equivalent CM-types of K. Then (K,Φ1)
and (K,Φ2) correspond to the same reflex fields.

Proof. There exists σ ∈ Aut(K) such that Φ1 = Φ2σ. Let L be the Galois closure of K and
let ΦL,1,ΦL,2 be CM-types of L induced from respectively Φ1,Φ2. Let Kr

1 , K
r
2 denote the

reflex fields corresponding to (K,Φ1), (K,Φ2). It suffices to show that Kr
1 and Kr

2 are fixed
by the same elements in Gal(L/Q). Let τ ∈ Gal(L/Kr

1), then

τ |
K

Φ1 = Φ1 ⇐⇒ τ |
K

Φ2σ = Φ2σ ⇐⇒ τ |
K

Φ2 = Φ2,

hence τ ∈ Gal(L/Kr
2). This argument is reversible, so Gal(L/Kr

1) = Gal(L/Kr
2).
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1.1.3. Type norm and CM-class group

Let (K,Φ) be a CM-pair with reflex pair (Kr,Φr) and let L be the Galois closure of K.
Define a map

NΦ :K → Kr, x 7→
∏
ϕ∈Φ

ϕ(x). (1.2)

By Proposition 1.1.14, Kr ⊂ L is fixed by σ ∈ Gal(L/Q) such that σ|
K

Φ = Φ. For such σ
we have

σ|
K
◦
(∏
ϕ∈Φ

ϕ
)

=
∏
ϕ∈Φ

σ|
K
◦ϕ =

∏
ϕ∈Φ

ϕ.

It follows that σ(
∏

ϕ∈Φ ϕ(x)) =
∏

ϕ∈Φ ϕ(x) for all x ∈ K, so the image of NΦ lies in Kr (see
also [ST61, Proposition 29]).

Definition 1.1.17. The map NΦ defined as (1.2) is the CM-type norm of (K,Φ).

For any number field F , let IF denote the group of fractional ideals of its ring of inte-
gers OF and let ClF denote the class group of fractional ideals of F .

Lemma 1.1.18. [Str10, Lemma 8.3] Let (K,Φ) be a CM-pair with reflex (Kr,Φr) and Galois
closure L of K. The type norm NΦ induces the following homomorphisms:

NΦ :IK → IKr , a 7→ a′;

NΦ : ClK → ClKr , [a] 7→ [a′].

Here a′OL :=
∏

ϕ∈Φ ϕ(a)OL.

Proof. The image of NΦ on IK lies in IKr by the second statement in [ST61, Proposition 29].
The image of NΦ on ClK lies in ClKr by the first result and because NΦ as in (1.2) maps
from K× to Kr,×.

For νOK ∈ PK with ν ∈ K×,

NΦ(νOK) = NΦ(ν)OKr ∈ PKr .

So we have that NΦr(PKr) ⊂ PK .

Lemma 1.1.19. Let (K,Φ) be a CM-pair, (Kr,Φ) its reflex pair and let NK/Q denote the
norm map for K as a number field over Q. Then for x ∈ K× and a ∈ IK,

NΦ(x)NΦ(x) = NK/Q(x) ∈ Q,
NΦ(a)NΦ(a) = NK/Q(a)OKr ∈ IKr .

Proof. Let L such that K ⊂ L be Galois over Q. Complex conjugation on K commutes with
every embedding in Hom(K,L), so for all x ∈ K× we have

NΦ(x)NΦ(x) =
∏
ϕ∈Φ

ϕ(x)ϕ(x) =
(∏
ϕ∈Φ

ϕ(x)
)(∏

ψ∈Φ

ψ(x)
)

=
∏

ϕ∈Hom(K,L)

ϕ(x) = NK/Q(x).

Similarly it follows that NΦ(a)NΦ(a) = NK/Q(a)OKr for all a ∈ IK .
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Let (K,Φ) be a CM-pair and (Kr,Φr) its reflex pair. Define

I0(Φr) := {a ∈ IKr : NΦr(a) = (α) for some α ∈ K× such that αα ∈ Q}.

Proposition 1.1.20. I0(Φr) is a subgroup of IKr .

Proof. The ring OKr ∈ IKr is an element of I0(Φr). Let a, b ∈ I0(Φr), where NΦr(a) = (α)
and NΦr(b) = (β) for α, β ∈ Kr× such that αα, ββ ∈ Q. Then

NΦr(ab) = NΦr(a)NΦr(b) = (α)(β) = (αβ).

Then ab ∈ I0(Φr), so I0(Φr) is closed under the group action of IKr . For a ∈ I0(Φr)
with NΦr(a) = (α) and αα ∈ Q there exists c ∈ IKr such that ac = OKr . Then

NΦr(ac) = NΦr(a)NΦr(c) = NΦr(OKr) = OK = (1).

Therefore NΦr(c) = (α−1) with α−1 ∈ K× and α−1α−1 = (αα)−1 ∈ Q. So c ∈ I0(Φr). This
makes I0(Φr) a subgroup of IKr .

Definition 1.1.21. Let (K,Φ) be a CM-pair with reflex (Kr,Φr). The quotient group IKr/I0(Φr)
is called the CM-class group of (K,Φ). The CM-class number of (K,Φ) is the cardinality
of IKr/I0(Φr).

Because IKr/I0(Φr) ∼= ClKr/(I0(Kr)/PKr) and the cardinality of ClKr is finite, the CM
class number of K is also finite.

1.2. Representation theory of finite groups

We will give preliminaries of representation theory of finite groups, mainly following [Ser77,
Chapters 1-3]. We will use Proposition 1.2.14 and Corollary 1.2.15 to prove the Dedekind
zeta function relation in Proposition 2.4.2.

Let G be a finite group.

Definition 1.2.1. A representation of G over C is a vector space V over C together with a
group homomorphism τ : G→ GL(V ). Here GL(V ) is the group of automorphisms on V .

In the rest of the section we will assume that V is finite dimensional.

Definition 1.2.2. Let τ : G → GL(V ) be a representation and define deg(τ) := dimC(V ).
Then deg(τ) is called the degree of τ .

A representation of degree 1 is of the form τ : G → C×. If τ(s) = 1 for all s ∈ G, we
call τ the trivial representation. For a finite group G the trivial representation always exists.

Let τ : G → GL(V ) be a representation of G and let W ⊂ V be a subspace of V
such that W is invariant under the action of G. That is, if w ∈ W then for every s ∈ G
also τ(s)(w) ∈ W . Then τ |

W
: G→ GL(W ) is also a representation of G.

Definition 1.2.3. Let W ⊂ V and τ |
W

be as defined above; then W is called a
subrepresentation of V .
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Definition 1.2.4. Let τ : G→ GL(V ) be a representation of G such that V 6= {0}. Then V
is called irreducible if the only subrepresentations of V are {0} and V itself.

Corollary 1.2.5. [Ser77, Theorem 2] Every representation is the direct sum of irreducible
representations.

Let τ : G → GL(V ) be a representation of G with dimC(V ) = n < ∞. Then for
every A := (aij) ∈ GL(V ) we define its trace as Tr(A) :=

∑n
i=1 aii.

Definition 1.2.6. Given a representation τ : G→ GL(V ), the map

χτ : G→ C, s 7→ Tr(τ(s))

is the character of τ .

For s ∈ G and χ the character of some representation of G, let χ(s) denote the complex
conjugate of χ(s) in C.

Proposition 1.2.7. [Ser77, Proposition 1] Let τ be a representation of degree n and let χ
be the character of τ . Then the following hold:

1. χ(1) = n;

2. χ(s) = χ(s−1) for s ∈ G;

3. χ(s) = χ(t−1st) for s, t ∈ G.

For representations τ1 : G → GL(V1), τ2 : G → GL(V2) of G with respective charac-
ters χ1, χ2, the character of V1 ⊕ V2 is given by χ1 + χ2 (see [Ser77, Proposition 2]).

Theorem 1.2.8 (Schur’s Lemma). [Ser77, Proposition 4] Let τ1 : G→ GL(V1)
and τ2 : G → GL(V2) be irreducible representations of G. Define a linear map f : V1 → V2

such that for all s ∈ G, τ2(s) ◦ f = f ◦ τ1(s). Then

1. If τ1, τ2 are not isomorphic, then f is the zero-map.

2. If V1 = V2 and τ1 = τ2, then f is a scalar multiple of the identity map.

Consider functions ϕ, ψ : G → C and let g denote the order of G. Let ψ(s) denote the
complex conjugate of ψ(s) and define

〈ϕ, ψ〉 :=
1

g

∑
s∈G

ϕ(s)ψ(s).

The following lemmata give some results about isomorphic and irreducible representa-
tions.

Lemma 1.2.9. [Ser77, Theorem 5] Let χ be the character of a representation
τ : G→ GL(V ). Then 〈χ, χ〉 = 1 if and only if V is irreducible.
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Lemma 1.2.10. [Ser77, Theorem 3] Let τ1, τ2 be non-isomorphic representations with
respective characters χ1, χ2. Then 〈χ1, χ2〉 = 0.

Lemma 1.2.11. [Ser77, Theorem 7] The number of irreducible representations of G up to
isomorphism is equal to the number of conjugacy classes of G.

Let H ⊂ G be a proper subgroup and let V be a representation of G. Choose a sub-
space W ⊂ V such that W invariant is under the action of H. That is, for any w ∈ W we
have that τ(t)(w) ∈ W for all t ∈ H. Define

S := {s ∈ G : sH ∈ G/H}

to be the set of representatives of the left cosets of H in G.

Definition 1.2.12. Let H ⊂ G be a subgroup as above. A representation τ̃ of G in V is
induced from the representation τ of H in W if

V =
⊕
s∈S

τ(s)W.

Uniqueness and existence of induced representations are proven in [Ser77, Theorem 11].
Let (V, τ̃) be the induced representation of G of the representation (W, τ) of subgroup H ⊂ G.
Let h denote the order of H and g the order of G.

Theorem 1.2.13. [FH94, (3.18)] Let R := {rH : r ∈ G} be the set of left cosets of H in G.
For any s ∈ G the character χ̃ of τ̃ is defined as

χ̃(s) =
1

h

∑
t∈G,τ∈R
tτ=τ

χ(t−1st).

Proposition 1.2.14. [FH94, Exercise 3.19(a)] Let C be a conjugacy class of G and let Di

be the conjugacy classes of H ∩ C for i = 1, ..., r. Then the formula in Theorem 1.2.13 is
equivalent to

χ̃(C) =
g

h

r∑
i=1

|Di|
|C|

χ(Di).

Proof. Choose arbitrary s ∈ G and let C be the conjugacy class of G containing s. Recall
that S is the set of representatives of the cosets of H in G. Let the elements of H be given
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by x1, ..., xh and define Tj := {rxj : r ∈ S}, it follows that G = thi=1Ti. Then

χ̃(C) =
1

|C|
∑
c∈C

χ̃(c)

=
1

|C|
∑
c∈C

1

h

∑
t∈G,τ∈R
tτ=τ

χ(t−1ct)

=
1

|C|h
∑
c∈C

h∑
i=1

∑
t∈Ti

χ(t−1ct)

=
1

|C|h
∑
c∈C

∑
t∈G

χ(t−1ct)

=
1

|C|h

r∑
i=1

gχ(Di)|Di|

=
g

h

r∑
i=1

|Di|
|C|

χ(Di).

Corollary 1.2.15. [FH94, Exercise 3.19(b)] Let C be a conjugacy class of G. If τ is the
trivial representation of H, the character of induced representation τ̃ of τ is given by

χ̃(C) =
[G : H]

|C|
· |C ∩H|.

Proof. Here τ is the trivial representation, so χ(x) = 1 for every x ∈ H.
Because C ∩H = tri=1Di this gives

r∑
i=1

|Di|χ(Di) =
r∑
i=1

|Di|= |C ∩H|.

The result then follows from Proposition 1.2.14.

1.3. Dirichlet L-functions

We discuss preliminaries about Dirichlet L-functions. We conclude in (1.3) that for a
normal Galois field K the Dedekind zeta function is a product of Artin L-functions. This
result will be used to prove the Dedekind zeta function relation in Proposition 2.4.2.

Let n ∈ Z≥1 and define a multiplicative homomorphism χ : (Z/nZ)× → C×. The values
of χ in C× are roots of unity because χ is a homomorphism on a finite cyclic group.

Definition 1.3.1. A homomorphism of the form χ is called a Dirichlet character.

For every m ∈ Z≥0 such that n divides m, χ induces a character χ̃ : (Z/mZ)× → C× via
the natural map ϕ : (Z/mZ)× → (Z/nZ)×, a mod m 7→ a mod n such that χ̃ = χ ◦ ϕ.

13



Definition 1.3.2. If χ is not induced by any character of modulus k such that k | n then χ
is a primitive character.

Definition 1.3.3. Let d1, ..., dr be the divisors of n such that χi : (Z/diZ)× → C× induces
χ for i = 1, ..., r. Then fχ := gcd(d1, ..., dr) is called the conductor of χ.

Extend a Dirichlet character Z/nZ→ C with conductor f to χ1 : Z/nZ→ C,
where χ1(a) = 0 if a /∈ (Z/nZ)×. Define χ : Z→ C such that χ = χ1◦π, where π : Z→ Z/nZ
is the canonical homomorphism.

Definition 1.3.4. The Dirichlet L-series of χ is a function of the form

L(s, χ) =
∞∑
k=1

χ(k)

ks
,

with s a complex variable such that Re(s) > 1.

Let χ0 be a principal (trivial) character. Then the corresponding L-function

ζ(s) =
∞∑
k=1

k−s

is the Riemann zeta function.
Given a finite group of Dirichlet characters we can describe an associated number field as

follows (see also [Was82, Page 20-21]). Since (Z/mZ)× ∼= Gal(ζm/Q) for m ∈ Z≥1, a Dirichlet
character mod m is a function on Gal(Q(ζm)/Q), where ζm is the primitive m-th root of
unity. Let X = {χ1, . . . , χr} be such a finite group with respective conductors f1, . . . , fr and
define n := lcm(f1, . . . , fr). Let H be the subgroup of Gal(Q(ζn)/Q) that is isomorphic
to ∩ri=1ker(χi) ⊂ (Z/nZ)×. We call the fixed field K := Q(ζn)H the field associated to X.
We have that X ∼= Gal(K/Q).

Theorem 1.3.5. [Was82, Theorem 4.3] Let X be a finite group of Dirichlet characters and
let K be its associated number field. Then

ζK(s) =
∏
χ∈X

L(s, χ).

Let K be a Galois number field. We will show that the Dedekind zeta-function ζK(s)
of K is a product of L-functions ranging over the irreducible characters of the Galois group
Gal(K/Q).

We look at the Frobenius substitution following [Cog, Section 2.1(b)]. Let M/K be an
extension of number fields, let p ⊂ OK be a prime of K and P ⊂ OM a prime above p.
Define κp := OK/p, κP := OM/P denote the residue fields of respectively p,P.
Let DP, IP ⊂ Gal(M/K) denote the decomposition and inertia groups of P. We have the
following exact sequence:

1→ IP → DP → Gal(κP/κp)→ 1.

For P unramified in M/K there exists ϕP/p ∈ Gal(κP/κp) defined by ϕP/p(x) := xN(p) for
all x ∈ OM .
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Definition 1.3.6. For P and ϕP/p as defined above ϕP/p is the Frobenius automorphism
attached to prime P.

If P is unramified in M/K the inertia group IP with respect to P is trivial.

Definition 1.3.7. Let M/K be a Galois extension of number fields, G := Gal(M/K)
and (V, τ) a representation of G with character χ. Let P denote the set of unramified
primes of K. Then the Artin L-function of χ is defined as

L(s, χ,M/K) :=
∏
p∈P

det
(
Id−N(p)−sτ(ϕP/p)

)−1
.

Theorem 1.3.8 (Artin). [blo, Proposition 29(1)] Let M/K be a Galois number field exten-
sion and let χ, χ1, χ2 be characters of representations of Gal(M/K) such that χ := χ1 + χ2.
Then

L(s, χ,M/K) = L(s, χ1,M/K)L(s, χ2,M/K).

Let K be Galois over Q and χ0 the character of the trivial representation of Gal(K/Q).
Define X as the set of characters of irreducible representations of Gal(K/Q). Then by
[blo, Remark 13] we have

ζK(s) = L(s, χ0, K/Q) =
∏
χ∈X

L(s, χ,K/Q). (1.3)

15



2. Sextic CM-fields K with degree 24 Galois closure

We discuss the structure of the sextic CM-fields K with Galois closure L such
that Gal(L/Q) ∼= (C2)3oC3 in Section 2.1. Then in Section 2.2 we look at the reflex fields Kr

of K and the corresponding reflex CM-types. We prove in Lemma 2.2.3 that the isomorphism
class of the CM-class of K does not depend on the CM-type Φ. In Section 2.3 we discuss
the subfields of Kr

1 and compute its reflex fields. In Section 2.4 we derive discriminant and
class number relations between the discriminants of K,Kr and their subfields.

2.1. Subfields of K

Let K be a sextic CM-field with Galois closure L such that Gal(L/Q) ∼= (C2)3 o C3.
Represent the factors of the semidirect product as follows:

C3 = 〈x : x3 = 1〉, (C2)3 = 〈a, b, c : a2 = b2 = c2 = 1, ab = ba, bc = cb, ac = ca〉.

In the remainder of the document we write G := Gal(L/Q). Denote by a, b, c, x the elements
in G that correspond to respectively (a, 1), (b, 1), (c, 1), (1, x) ∈ (C2)3 o C3. Then G has
representation

G = 〈a, b, c, x :a2 = b2 = c2 = x3 = 1, ab = ba, ac = ca, bc = cb,

x−1ax = c, x−1bx = a, x−1cx = b〉.

Proposition 2.1.1. The maximal totally real subfield K+ of K is Galois over Q.

Proof. We have [K : Q] = 6 and |G|= 24, so [L : Q] = 24 and therefore [L : K] = 4.
Let L′ ⊂ L be the Galois closure of K+ over Q. This gives the following exact sequence of
groups:

1→ Gal(L/L′) ↪→ G� Gal(L′/Q)→ 1

Let δ0 ∈ K+ be square-free and strictly greater than 0, such that K = K+(
√
−δ0). Following

the proof of lemma 2.2 in [BCL+14]: δ0 ∈ K+ implies Q(δ0) ⊂ K+, so [Q(δ0) : Q] divides 3.
Then there are 3 conjugates

√
−δ0,

√
−δ1,

√
−δ2 under the action of Gal(L′/Q). This implies

that L = L′(
√
−δ0,

√
−δ1,

√
−δ2). It follows that [L : L′] = 8 = [L : K+], so L′ = K+

and K+/Q is a Galois extension.

The proof of Proposition 2.1.1 gives

L = K+(
√
−δ0,

√
−δ1,

√
−δ2).

Moreover, by [Bak20, Lemma 3.3] we have K+(
√
−δ0) ∼= K+(

√
−δ1) ∼= K+(

√
−δ2). The

corresponding field lattices are shown in Figure 1.
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L 〈1〉

K = K+(
√
−δ0) K+(

√
−δ1) K+(

√
−δ2) 〈b, c〉 〈a, c〉 〈a, b〉

K+ 〈a, b, c〉

Q 〈a, b, c, x〉

4 4
4

∼

2

6

∼

2
2

∼ ∼

3

Figure 1: The (incomplete) lattices of L containing K and its isomorphic fields.

Proposition 2.1.2. The element abc ∈ G is complex conjugation on L.

Proof. By [Bak20, Lemma 3.10] we have Z(G) = 〈abc〉, where ord(abc) = 2. Since L is a
CM-field by Corollary 1.1.5 and hence totally imaginary, complex conjugation is nontrivial
and the result follows.

2.2. Reflex types of K

Let K,L and G be as in Section 2.1. Because L is Galois over Q, the complex embed-
dings of L correspond one-to-one to the elements of G. By Proposition 2.1.2 the complex
conjugation on L is · = abc. We will use notation ρ := abc. By [Bak20, Proposition 3.5] the
embeddings K ↪→ L are

Hom(K,L) = {1|
K
, x|

K
, x2|

K
, ρ|

K
, ρx|

K
, ρx2|

K
}.

The 8 CM-types of K are subsets of Hom(K,L). Under the equivalence relation defined
in Definition 1.1.7, they form 4 equivalence classes:

Φ1 = {1|
K
, x|

K
, x2|

K
} ∼ {ρ|

K
, ρx|

K
, ρx2|

K
} = Φ5 = Φ1

Φ2 = {ρ|
K
, x|

K
, x2|

K
} ∼ {1|

K
, ρx|

K
, ρx2|

K
} = Φ6 = Φ2

Φ3 = {1|
K
, ρx|

K
, x2|

K
} ∼ {ρ|

K
, x|

K
, ρx2|

K
} = Φ7 = Φ3

Φ4 = {1|
K
, x|

K
, ρx2|

K
} ∼ {ρ|

K
, ρx|

K
, x2|

K
} = Φ8 = Φ4

The following proposition gives that all CM-types of K are primitive.

Proposition 2.2.1. Let K be a sextic CM-field that does not contain an imaginary quadratic
subfield. Then all CM-types of K are primitive.

Proof. Let (K,ΦK) be a CM-pair and suppose ΦK is not primitive. Then K contains a proper
subfield F that is CM and has a CM-type ΦF that induces ΦK . Because K is sextic, F must
be an imaginary quadratic field. This contradicts the assumption, so all CM-types of K
must be primitive.
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Denote by LH the subfield of L fixed by a subgroup H ⊂ G. For a CM-pair (K,Φi) of K,
let (Kr

i ,Φ
r
i ) denote the corresponding reflex pair.

Theorem 2.2.2. [Bak20, Theorem 3.9] The reflex pairs of K are

(Kr
1 ,Φ

r
1) = (L〈x〉, 〈b, c〉) (Kr

5 ,Φ
r
5) = (L〈x〉, ρ〈b, c〉)

(Kr
2 ,Φ

r
2) = (L〈xac〉, ρ〈b, c〉) (Kr

6 ,Φ
r
6) = (L〈xac〉, 〈b, c〉)

(Kr
3 ,Φ

r
3) = (L〈xab〉, 〈b, c〉) (Kr

7 ,Φ
r
7) = (L〈xab〉, ρ〈b, c〉)

(Kr
4 ,Φ

r
4) = (L〈xbc〉, 〈b, c〉) (Kr

8 ,Φ
r
8) = (L〈xbc〉, ρ〈b, c〉).

Moreover, the reflex fields in these reflex pairs are isomorphic.

By Theorem 2.2.2 the isomorphism class of the CM class of (K,Φ) does not depend on
the reflex field Kr. In Lemma 2.2.3 we prove that it is also independent of Φ and hence
Φr. As a consequence, in the following chapters we only need to prove results for one reflex
pair (Kr,Φr) of K and they be true for all of them.

Lemma 2.2.3. Let K be a sextic CM-field with Galois group (C2)3 o C3. Then for a
CM-type Φ of K, the isomorphism class of the CM-class of (K,Φ) does not depend on Φ.

Proof. We follow the proof of [KS18, Lemma 2.4]. Let L be the Galois closure of K and
let ρ ∈ Gal(L/Q) be the complex conjugation on L. Let Φ,Ψ be arbitrary CM-types of K
with corresponding reflex pairs (Kr

Φ,Φ
r), (Kr

Ψ,Ψ
r). By Theorem 2.2.2 there exists an

isomorphism ϕ : Kr
Φ → Kr

Ψ that induces isomorphism ϕ : IKr
Φ
→ IKr

Ψ
. Restricting ϕ to

subgroup I0(Kr
Φ) ≤ IKr

Φ
gives

ϕ|
I0(Φr)

: I0(Φr)→ IKr
Ψ
.

By the proof of [Bak20, Theorem 3.9] we have that ϕ ∈ {1, a, b, c} such that ϕ(Kr
Φ) = Kr

Ψ.
Because a, b, c all have order 2 in G, we have ϕ−1 = ϕ. We will take two particular reflex
fields Kr

Φ, K
r
Ψ such that ϕKr

Φ = Kr
Ψ and show that Ψr = Φr ◦ ϕ. Let Kr

Φ = L〈x〉, Kr
Ψ = L〈xac〉

with respective CM-types 〈b, c〉|
L〈x〉 and ρ〈b, c〉|

L〈xac〉 , where ρ is complex conjugation on L.

Then ϕ = a and for every α ∈ L〈x〉 we have a(α) ∈ L〈xac〉. Let β ∈ Kr
Ψ, then we have:

ρbc|
L〈xac〉 (β) = a|

L〈xac〉 (β) = a(β);

ρb|L〈xac〉(β) = ac|
L〈xac〉 (β) = ca|

L〈xac〉 (β) = c|
L〈x〉a(β);

ρc|
L〈xac〉 (β) = ab|

L〈xac〉 (β) = ba|
L〈xac〉 (β) = b|

L〈x〉a(β);

ρ(β) = abc|
L〈xac〉 (β) = bc|

L〈x〉a(β).

The above gives ρ〈b, c〉|
L〈xac〉= 〈b, c〉|L〈x〉◦ a. For all pairs of reflex fields Kr

Φ, K
r
Ψ in

Theorem 2.2.2 the proof is similar to the above, so in general Ψr = Φr ◦ ϕ. It then follows
that

NΨr = NΦr ◦ ϕ. (2.1)

From (2.1) we conclude that the image of ϕ|I0(Φr) lies in I0(Ψr), so

ϕ|I0(Φr): I0(Φr)→ I0(Ψr).

18



We will now prove that ϕ|I0(Φr) is an isomorphism. It is an injective group homomorphism
because it is the restricted map of ϕ. To show that it is surjective, let a ∈ I0(Ψr). By
definition of the CM class group there exists α ∈ K× such that αα ∈ Q and NΨr(a) = αOK .
Then by (2.1) we have

NΨr(a) = NΦr ◦ ϕ−1(a) = αOK .

Since ϕ is an isomorphism and therefore surjective, for every a ∈ I0(Ψr) there exists b :=
ϕ−1(a) ∈ I0(Φr) such that ϕ|I0(Φr)(b) = a. Then I0(Φr) and I0(Ψr) are isomorphic and the
result follows.

2.3. Subfields of the reflex fields of K

By Theorem 2.2.2 all reflex fields are isomorphic and by Lemma 2.2.3 the isomorphism
class of the CM-class of (K,Φ) is independent of the choice of Φ. Therefore we can find all
CM class number one fields by only looking at one CM-pair of Theorem 2.2.2. All results
in this section and in Chapter 3 are given for (Kr

1 ,Φ
r
1) and will then also hold for the other

reflex pairs. In the remainder of the document we use notation Φ := Φ1, Kr := Kr
1

and Φr := Φr
1.

By Proposition 2.1.2 complex conjugation on L is abc, so complex conjugation on Kr ⊂ L
is abc|Kr . We will write abc as shorthand notation for abc|Kr . The field Kr is fixed by non-
normal subgroup 〈x〉 ⊂ G, so Kr is not Galois over Q. By Galois theory any subgroups of
G that contain 〈x〉 fix subfields of Kr. For instance, the subgroup 〈x, abc〉 ⊂ G fixes the
maximal totally real field Kr

+ of Kr. This is not a normal subgroup in G, so Kr
+ is not Galois

over Q. The normal subgroup 〈x, ab, ac〉 fixes a subfield k ⊂ Kr, where k is an imaginary
quadratic field. Since Kr is of degree 8 over Q it follows that Kr = kKr

+. The subfield
lattices of K and Kr as subfields of L are in Figure 2.

L

Kr

Kr
+

k

Q

K

K+

3

2

4

4

2

4

2

3

{1}

〈x〉

〈x, abc〉

〈x, ab, ac〉
G

〈b, c〉

〈a, b, c〉

Figure 2: Lattices containing all subfields of K and Kr.

The field L is the normal closure of both K and Kr, so it is a CM-field by Corollary 1.1.5.
The maximal totally real field L+ of L is fixed by 〈abc〉 ⊂ G, and we have [L+ : Q] = 12.
Then K+, K

r
+ ⊂ L+ with [L+ : K+] = 4 and [L+ : Kr

+] = 3. By Galois theory there exist
intermediate fields L+ ⊃ Ni ⊃ K+ fixed by respective subgroups 〈a, bc〉, 〈b, ac〉, 〈c, ab〉 ⊂ 〈abc〉
such that [Ni : K+] = 2 for i = 0, 1, 2. Then there exist αi ∈ K+ \K2

+ such
that Ni := K+(

√
αi). Recall from Section 2.1 that

K = K+(
√
−δ0) ∼= K+(

√
−δ1) ∼= K+(

√
−δ2),
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where K+(
√
−δ1), K+(

√
−δ2) are the sextic CM-fields fixed by respectively 〈a, c〉, 〈a, b〉.

Write k = Q(
√
−m) for some m ∈ Q \ Q2, then δi = mαi for i = 0, 1, 2 (see [LLO99,

Section 1.4]). In particular, for α := α0 we have K = K+(
√
−mα). Since K+(

√
α0) is fixed

by 〈b, ac〉 we have that α0 = δ0δ2. Similarly, α1 = δ1δ2 and α2 = δ0δ1. The subfield structure
of the intermediate fields in L+/K

r
+ is shown in Figure 3.

L

L+

K+(
√
δ0δ2) K+(

√
δ1δ2) K+(

√
δ0δ1)

K+

Q

2

2
2

2

2
2

2

3

{1}

〈abc〉

〈b, ac〉 〈a, bc〉 〈c, ab〉

〈a, b, c〉

G

Figure 3: Lattices for the intermediate fields of L+/K+.

To make Algorithm 3.4.5 more efficient, we compute the reflex fields of Kr and show that
there exists only one sextic reflex field of Kr up to isomorphism. Then we can terminate the
algorithm when one sextic CM class number one field has been found.

The embeddings from Kr into L up to equivalence are 〈a, b, c〉|
Kr := Gal(L/Q)/〈x〉. When

it is clear from the context that we mean embeddings of Kr into L, we write 〈a, b, c〉 for
notation purposes. In that case, let abc := abc|

Kr denote complex conjugation on Kr.

Proposition 2.3.1. The automorphism group of Kr is 〈abc〉.

Proof. Since Kr is not Galois over Q and [Kr : Q] = 8 we have |Aut(Kr)|< 8. The order
of abc is 2 and 〈abc〉 ⊂ Aut(Kr). Moreover, all elements in Aut(Kr) have order 1 or 2,
so |Aut(Kr)|∈ {2, 4}. Suppose |Aut(Kr)|= 4. Then Kr〈abc〉 = k, but k is an imaginary
quadratic field and cannot be fixed under complex conjugation. So |Aut(Kr)|= 2 and we
must have Aut(Kr) = 〈abc〉.

By Proposition 2.3.1 there exist 8 equivalence classes of CM-types that are of the form {Φi,Φi}.
The 16 CM-types of Kr form 8 equivalence classes that are given by

Φ1 = {1, a, b, c} ∼ {abc, bc, ac, ab} = Φ1

Φ2 = {abc, a, b, c} ∼ {1, bc, ac, ab} = Φ2

Φ3 = {1, bc, b, c} ∼ {abc, a, ac, ab} = Φ3

Φ4 = {1, a, ac, c} ∼ {abc, bc, b, ab} = Φ4

Φ5 = {1, a, b, ab} ∼ {abc, bc, ac, c} = Φ5

Φ6 = {abc, bc, b, c} ∼ {1, a, ac, ab} = Φ6

Φ7 = {abc, a, ac, c} ∼ {1, bc, b, ab} = Φ7

Φ8 = {abc, a, b, ab} ∼ {1, bc, ac, c} = Φ8
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Not all CM-types of Kr are primitive because k ⊂ Kr is an imaginary quadratic subfield,
hence a CM-field. So one of the equivalence classes above consists of CM-types that are
induced from the CM-types of k.

Proposition 2.3.2. Let k be the imaginary quadratic subfield of Kr. The pairs {Φi,Φi}
give the following reflex fields of Kr:

• {Φ2,Φ2} corresponds to k;

• {Φ3,Φ3}, {Φ4,Φ4}, {Φ5,Φ5} correspond to respectively K,K+(
√
−δ1), K+(

√
−δ2);

• {Φ1,Φ1}, {Φ6,Φ6}, {Φ7,Φ7}, {Φ8,Φ8} correspond to Kr up to isomorphism.

Proof. Since equivalent CM-types give the same reflex field, it suffices to find the reflex fields
corresponding to CM-types Φ1, ...,Φ8. In the notation of the previous sections we have
that Φ3 = Φr = 〈b, c〉, so the reflex pair corresponding to (Kr,Φ3) is (K,Φ). For the
remainder of the CM-types we compute the reflex fields one by one.

Let Φ4,L be the CM-type of L induced by Φ4. Then

Φ4,L = Φ4 Gal(L/Kr) = {1, a, c, ac, x, ax, cx, acx, cx, x2, ax2, cx2, acx2}.

Computing the set S ⊂ G such that σΦ4,L = Φ4,L for all σ ∈ S gives S = 〈a, b〉, which

fixes the sextic field K+(
√
−δ1). From similar computations it follows that Φ5 corresponds

to sextic field K+(
√
−δ2), fixed by 〈a, c〉.

Similar computations for the remaining CM-types give that Φ1,Φ6,Φ7,Φ8 correspond
to Kr up to isomorphism. Finally CM-type Φ2 corresponds to the imaginary quadratic
field k fixed by 〈x, ab, ac〉. This covers all CM-types, so all sextic reflex fields of Kr are
isomorphic.

The following corollary of Proposition 2.3.2 is applied in step 6 of Algorithm 3.4.5.

Corollary 2.3.3. All sextic reflex fields of Kr are isomorphic.

Proof. By Proposition 2.3.2 the sextic reflex fields of Kr are K,K+(
√
−δ1) and K+(

√
−δ2).

From Section 2.1 we know that that these are all isomorphic, so the result follows.

2.4. Discriminant and relative class number relations

Given a CM-field F with maximal totally real subfield F+ the relative class number of F
is defined as h∗F = hF/hF+ . We derive a relation between the discriminants of K,Kr and k
in Proposition 2.4.3 and a relation between their relative class numbers in Theorem 2.4.5.

In the following lemma we look at the number of roots of unity of K and Kr.

Lemma 2.4.1. Let K be a sextic CM that does not contain an imaginary quadratic subfield.
Let Kr be a reflex field of K with imaginary quadratic subfield k = Q(

√
−m) ⊂ Kr and

denote by µK , µKr , µk the number of roots of unity of each respective field. Then

µK = 2 and µKr ∈ {2, 4, 6}.

In particular, if m 6= 1, 3 then µKr = 2. Moreover, µKr = µk.
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Proof. For K, suppose there exists an n-th root of unity with n > 2. Then Q(ζn) ( K,
excluding equality because K is non-normal. Then we must have [Q(ζn) : Q] ∈ {1, 2, 3},
reducing to [Q(ζn) : Q] ∈ {2, 3} because n > 2. Then n ∈ {3, 4, 6}, so either

√
−1 or

√
−3 is

an element in K. This is a contradiction because K does not contain an imaginary quadratic
field, so n ≤ 2 and therefore µK = 2.

For Kr, let ζn ∈ Kr with n > 2. Since [Kr : Q] = 8 and Kr is non-normal, we must
have Q(ζn) ( Kr with [Q(ζn) : Q] ∈ {2, 4}. This gives n ∈ {3, 4, 5, 6, 8, 10, 12}. Because Kr

does not contain a degree 4 imaginary subfield, we can reduce this to n ∈ {3, 4, 6}. We have

µQ(ζ3) = µQ(
√
−3) = 6,

µQ(ζ4) = µQ(
√
−1) = 4,

µQ(ζ6) = µQ(
√
−3) = 6.

This gives µKr ∈ {4, 6}. Including the case when n ≤ 2 then gives µKr ∈ {2, 4, 6}.
For the statements in the last line, recall that Kr = kKr

+. Since Kr
+ is a totally real field

we have µKr
+

= 2. Since k is a totally imaginary quadratic field and Kr is a totally imaginary

quadratic extension of Kr
+, it follows that µKr = µk. If k = Q(

√
−m) with m /∈ {1, 3},

then µKr = µk = 2.

For a number field F , let ζF (s) denote the Dedekind zeta function of F . We use shorthand
notation ζF .

Proposition 2.4.2. Let K be a sextic CM-field whose Galois closure has Galois
group (C2)3 o C3. Then

ζKr

ζKr
+

=
ζK
ζK+

ζk
ζQ
.

Proof. The conjugacy classes of elements in G := Gal(L/Q) are given by

C(1) = {1}
C(abc) = {abc}
C(x2) = {x2, abx2, acx2, bcx2}
C(ab) = {ab, ac, bc}

C(abcx2) = {abcx2, ax2, bx2, cx2}
C(a) = {a, b, c}
C(x) = {x, abx, acx, bcx}

C(abcx) = {abcx, ax, bx, cx}.

By Lemma 1.2.11 the number of irreducible characters of G is equal to the number of
conjugacy classes, which is 8. Let ψ0, . . . , ψ7 denote these irreducible characters.
The corresponding character table below was computed using the preliminaries in Section
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1.2.

C(1) C(abc) C(x2) C(ab) C(abcx2) C(a) C(x) C(abcx)
ψ0 1 1 1 1 1 1 1 1
ψ1 1 -1 1 1 -1 -1 1 -1
ψ2 1 -1 −ζ3 − 1 1 ζ3 + 1 -1 ζ3 −ζ3

ψ3 1 -1 ζ3 1 −ζ3 -1 −ζ3 − 1 ζ3 + 1
ψ4 1 1 −ζ3 − 1 1 −ζ3 − 1 1 ζ3 ζ3

ψ5 1 1 ζ3 1 ζ3 1 −ζ3 − 1 −ζ3 − 1
ψ6 3 -3 0 -1 0 1 0 0
ψ7 3 3 0 -1 0 -1 0 0

For H a subgroup of G let LH be the subfield of L fixed by H. Denote by χLH the character
on H induced by the character of the trivial representation on G. Define A := L〈ab,ac〉, which
is a cyclic sextic CM-field with Gal(A/Q) = 〈xabc〉 and A+ = K+. Using Corollary 1.2.15
we find the characters χLH with respect to subgroups H ⊂ G. The results are given in the
following table.

C(1) C(abc) C(x2) C(ab) C(abcx2) C(a) C(x) C(abcx)
χL 24 0 0 0 0 0 0 0
χL+ 12 12 0 0 0 0 0 0
χK 6 0 0 2 0 4 0 0
χK+ 3 3 0 3 0 3 0 0
χKr 8 0 2 0 0 0 2 0
χKr

+
4 4 1 0 1 0 1 1

χk 2 0 2 2 0 0 2 0
χA 6 0 0 6 0 0 0 0
χQ 1 1 1 1 1 1 1 1

Let Lψi
:= L(s, ψi, L/Q) be the Artin L-function corresponding to ψi. Then the char-

acter tables give the following relations and factorisations of Dedekind zeta functions (see
Theorem 1.3.8 and (1.3)):

χL = ψ0 + ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + 3ψ6 + 3ψ7

χL+ = ψ0 + ψ4 + ψ5 + 3ψ7

χK = ψ0 + ψ4 + ψ5 + ψ6

χK+ = ψ0 + ψ4 + ψ5

χKr = ψ0 + ψ1 + ψ6 + ψ7

χKr
+

= ψ0 + ψ7

χk = ψ0 + ψ1

χA = ψ0 + ψ1 + ψ2 + ψ3 + ψ4 + ψ5

χQ = ψ0

ζL = Lψ0Lψ1Lψ2Lψ3Lψ4Lψ5L
3
ψ6
L3
ψ7

ζL+ = Lψ0Lψ4Lψ5L
3
ψ7

ζK = Lψ0Lψ4Lψ5Lψ6

ζK+ = Lψ0Lψ4Lψ5

ζKr = Lψ0Lψ1Lψ6Lψ7

ζKr
+

= Lψ0Lψ7

ζk = Lψ0Lψ1

ζA = Lψ0Lψ1Lψ2Lψ3Lψ4Lψ5

ζQ = Lψ0 .
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From these relations we conclude

ζKr

ζKr
+

=
ζK
ζK+

ζk
ζQ
.

Let F be a number field with discriminant dF . We denote by r1(F ) the number of real
embeddings from F to C and by r2(F ) the number of pairs of complex embeddings from F
to C. Let Γ(s) be the Gamma function. The completed zeta function is defined as

ΛF (s) := |dF |s/2(π−s/2Γ(s/2))r1(F )(2(2π)sΓ(s))r2(F )ζF (s), (2.2)

where ΛF (s) satisfies the functional equation ΛF (s) = ΛF (1− s).

Proposition 2.4.3. Let K be a sextic CM-field whose Galois closure has Galois
group (C2)3 o C3 and let k be the imaginary quadratic subfield of the reflex field Kr of K.
Then

dK
dK+

dk =
dKr

dKr
+

.

Proof. The proof is similar to the proof of [Lou94a, Theorem A]. Let D :=
dKrdK+

dKr
+
dKdk

and

define the function

f(s) :=

(
ΛKr(s)ΛK+(s)ΛQ(s)

ΛKr
+

(s)ΛK(s)Λk(s)

)2

,

where ΛF (s) is defined as in (2.2) for any number field F . Then (2.2) gives

f(s) = Ds(π−s/2Γ(s/2))2m(2(2π)−sΓ(s))2n

(
ζKr(s)ζK+(s)ζQ(s)

ζKr
+

(s)ζK(s)ζk(s)

)2

, (2.3)

where

m := r1(Kr) + r1(K+) + r1(Q)− r1(Kr
+)− r1(K)− r1(k), (2.4)

n := r2(Kr) + r2(K+) + r2(Q)− r2(Kr
+)− r2(K)− r2(k). (2.5)

Moreover, by the functional equation for (2.2) gives f(s) = f(1 − s). By Proposition 2.4.2
we have

ζKr(s)ζK+(s)ζQ(s)

ζKr
+

(s)ζK(s)ζk(s)
= 1,

so m + 2n = 0. For any CM-field F we have r2(F ) = [F : Q]/2 and r1(F+) = [F+ : Q],
while r1(F ) = r2(F+) = 0. Plugging this into (2.4) and (2.5) for K,Kr, k gives m = n = 0.
Then (2.3) gives f(s) = Ds. From the relation f(s) = f(1 − s) we find that Ds = D1−s,
so D = 1 and the discriminant relation follows.
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Let F be a number field with r1(F ) real embeddings and r2(F ) pairs of complex em-
beddings. Let RF denote the regulator of F and Res(ζF ) the residue of Dedekind zeta
function ζF . Then the analytic class number formula gives

hF =
µK
√
|dF |Res(ζF )

2r1(2π)r2RF

. (2.6)

Furthermore, if F is a CM-field we define the Hasse unit index of F as

QF := [O×F : WFO×F+
],

where QF ∈ {1, 2} ([Lem95, Proposition 1(a)]). The following proposition gives a relation
between the regulator and the Hasse unit index of a CM-field.

Proposition 2.4.4 (Proposition 4.16, [Was82]). Let F be a CM-field with 2n := [F : Q].
Then

RF

RF+

=
2n−1

QKr

.

Theorem 2.4.5. Let K be a sextic CM-field whose Galois closure has Galois group (C2)3oC3

and let k be the imaginary quadratic subfield of the reflex field Kr of K. Then

2h∗KrQK = h∗KhkQKr . (2.7)

Proof. The relation for the Dedekind zeta functions of K,Kr and their subfields in
Proposition 2.4.2 extends to their residues. Combining the zeta function relation with (2.6)
for these fields gives

(2π)4hKrµKr
+

√
|dKr

+
|

24hKr
+
µKr

√
|dKr |

RKr

RKr
+

=
(2π)4hKhkµK+µQ

√
|dK+dQ|

24hK+hQµKµk
√
|dKdk|

RKRk

RK+RQ
. (2.8)

The fields Q, K+, K
r
+ are totally real, so µQ = µK+ = µKr

+
= 2. Moreover µK = 2

and µKr = µk by Lemma 2.4.1. Because k is an imaginary quadratic field, O×k = Wk.
Since O×Q = {±1} this gives Qk = [O×k : WkO×Q ] = 1. By Proposition 2.4.4 we then have

RK

RK+

=
22

QK

,
RKr

RKr
+

=
23

QKr

,
Rk

RQ
= 1.

Plugging the above into (2.8) gives

2hKr

√
|dKr

+
|

QKrhKr
+

√
|dKr |

=
hKhk

√
|dK+dQ|

QK

√
|dKdk|

. (2.9)

By applying Proposition 2.4.3 to (2.9) we get 2h∗KrQK = h∗KhkQKr .
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3. The CM class number one problem

The CM class number one problem for CM-fields K of degree 2g consists of determining
all primitive CM-pairs (K,Φ) that correspond to principally polarized absolutely simple
abelian varieties of dimension 2g defined over the corresponding reflex field Kr. Let Φr be
the corresponding reflex CM-type and recall that

I0(Φr) := {a ∈ IK : NΦr(a) = (α) for some α ∈ K∗ such that αα ∈ Q}.

An equivalent way to describe the CM class number one problem is as follows.

Definition 3.0.1. The CM class number one problem for CM-fields K of degree 2g asks to
determine the primitive CM-pairs (K,Φ) such that IKr = I0(Φr).

In this chapter we give sufficient conditions such that K is a CM class number one field.
In Section 3.1 we give the full decomposition table of primes in Kr and K as subfields of
normal field L. In Section 3.2 we give in Proposition 3.2.9 an expression for h∗K depending
only on tK when K is a CM class number one field. We then prove in Section 3.3 that there
exist finitely many CM class number one sextic fields K (Theorem 3.3.6), by bounding the
discriminant quotient dK/dK+ assuming K has CM class number one. In Section 3.4 we list
the CM class number one fields K where dKr

+
≤ 109 and dk ≤ 104 such that tk ≤ 2.

3.1. Decompositions of primes in L/Q

We give the full ramification table of Kr and K as the subfields of Galois CM-field L in
Table 3.1. From this table we make several observations. Lemma 3.1.1 provides a criterion
that excludes several ramification cases in Table 3.1 if K is a CM class number one field.

Lemma 3.1.1. Let K be a sextic CM field whose Galois closure has Galois
group (C2)3oC3. Assume IKr = I0(Φr), then there exist no primes pKr ∈ IKr above a prime
number p satisfying NKr/Q(pKr) = p and NΦr(pKr)2 = pOK.

Proof. Suppose there is a prime pKr such that NKr/Q(pKr) = p and NΦr(pKr)2 = pOK . By
the assumption IKr = I0(Φr) there exists α ∈ K× such that NΦr(pKr) = αOK and αα ∈ Q.
Then

ααOK = NΦr(pKr)NΦr(pKr) = NKr/Q(pKr) = pOK

and hence αα = p. Moreover,

α2OK = NΦr(pKr)2 = pOK .

This gives u · α2 = p = αα with u ∈ O×K and hence α
α

= u. Since α
α
α
α

= 1, the unit u is
a root of unity. Since WK = {±1} by Lemma 2.4.1, we get α = ±α. This gives α2 = ±p,
hence α =

√
±p. This gives a contradiction because K does not contain a quadratic field,

so these cases can not happen.
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Case D E Decomp. in L Decomp. in Kr Decomp. in Kr
+ Decomp. in k Decomp. in K Decomp. in K+ NΦr(pKr,1) CM

1 G G p24
L,1 p8

Kr,1 p4
Kr

+,1
p2
k,1 p6

K,1 p3
K+,1

p3
K,1 ×

2 G 〈ab, ac, x〉 p12
L,1 p4

Kr,1 p4
Kr

+,1
pk,1 p6

K,1 p3
K+,1

pOK X

3 G 〈a, b, c〉 p8
L,1 p8

Kr,1 p4
Kr

+,1
p2
k,1 p2

K,1 pK+,1 pK,1 ×
4 G 〈ab, ac〉 p4

L,1 p4
Kr,1 p4

Kr
+,1

pk,1 p2
K,1 pK+,1 pOK X

5 〈ab, ac, x〉 〈ab, ac, x〉 p12
L,1p

12
L,abc p4

Kr,1p
4
Kr,abc p4

Kr
+,1

pk,1pk,abc p6
K,1 p3

K+,1
p3
K,1 ×

6 〈ab, ac, x〉 〈ab, ac〉 p4
L,1p

4
L,abc p4

Kr,1p
4
Kr,abc p4

Kr
+,1

pk,1pk,abc p2
K,1 pK+,1 pK,1 ×

7 〈a, b, c〉 〈a, b, c〉 p8
L,1p

8
L,xp

8
L,x2 p8

Kr,1 p4
Kr

+,1
p2
k,1 p2

K,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 ×

8 〈a, b, c〉 〈a, bc〉 p4
L,1p

4
L,xp

4
L,x2 p4

Kr,1 p2
Kr

+,1
p2
k,1 p2

K,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pOK X

9 〈a, b, c〉 〈b, ac〉 p4
L,1p

4
L,xp

4
L,x2 p4

Kr,1 p2
Kr

+,1
p2
k,1 p2

K,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pOK X

10 〈a, b, c〉 〈c, ab〉 p4
L,1p

4
L,xp

4
L,x2 p4

Kr,1 p2
Kr

+,1
p2
k,1 p2

K,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pOK X

11 〈a, b, c〉 〈a, b〉 p4
L,1p

4
L,xp

4
L,x2 p4

Kr,1 p4
Kr

+,1
p2
k,1 p2

K,1p
2
K,xpK,x2 pK+,1pK+,xpK+,x2 pOK X

12 〈a, b, c〉 〈a, c〉 p4
L,1p

4
L,xp

4
L,x2 p4

Kr,1 p4
Kr

+,1
p2
k,1 p2

K,1pK,xp
2
K,x2 pK+,1pK+,xpK+,x2 pOK X

13 〈a, b, c〉 〈b, c〉 p4
L,1p

4
L,xp

4
L,x2 p4

Kr,1 p4
Kr

+,1
p2
k,1 pK,1p

2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pOK X

14 〈a, b, c〉 〈ab, bc〉 p4
L,1p

4
L,xp

4
L,x2 p4

Kr,1 p4
Kr

+,1
pk,1 p2

K,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pOK X

15a 〈abcx〉 〈abcx〉 p6
L,1p

6
L,ap

6
L,bp

6
L,c p2

Kr,1p
6
Kr,b pKr

+,1
p3
Kr

+,b
p2
k,1 p6

K,1 p3
K+,1

p3
K,1 ×

15b 〈ax〉 〈ax〉 p6
L,1p

6
L,ap

6
L,bp

6
L,c p6

Kr,1p
2
Kr,b p3

Kr
+,1

pKr
+,b

p2
k,1 p6

K,1 p3
K+,1

p3
K,1 ×

15c 〈bx〉 〈bx〉 p6
L,1p

6
L,ap

6
L,bp

6
L,c p6

Kr,1p
2
Kr,c p3

Kr
+,1

pKr
+,c

p2
k,1 p6

K,1 p3
K+,1

p3
K,1 ×

15d 〈cx〉 〈cx〉 p6
L,1p

6
L,ap

6
L,bp

6
L,c p6

Kr,1p
2
Kr,a p3

Kr
+,1

pKr
+,a

p2
k,1 p6

K,1 p3
K+,1

p3
K,1 ×

16a 〈abcx〉 〈x〉 p3
L,1p

3
L,ap

3
L,bp

3
L,c pKr,1p

3
Kr,a pKr

+,1
p3
Kr

+,a
pk,1 p3

K,1 p3
K+,1

pOK X

16b 〈ax〉 〈bcx〉 p3
L,1p

3
L,ap

3
L,bp

3
L,c p3

Kr,1pKr,b p3
Kr

+,1
pKr

+,b
pk,1 p3

K,1 p3
K+,1

pOK X

16c 〈bx〉 〈acx〉 p3
L,1p

3
L,ap

3
L,bp

3
L,c p3

Kr,1pKr,c p3
Kr

+,1
pKr

+,c
pk,1 p3

K,1 p3
K+,1

pOK X

16d 〈cx〉 〈abx〉 p3
L,1p

3
L,ap

3
L,bp

3
L,c p3

Kr,1pKr,a p3
Kr

+,1
pKr

+,a
pk,1 p3

K,1 p3
K+,1

pOK X

17a 〈abcx〉 〈abc〉 p2
L,1p

2
L,ap

2
L,bp

2
L,c p2

Kr,1p
2
Kr,b pKr

+,1
pKr

+,b
p2
k,1 p2

K,1 pK+,1 pOK X

17b 〈ax〉 〈abc〉 p2
L,1p

2
L,ap

2
L,bp

2
L,c p2

Kr,1p
2
Kr,b pKr

+,1
pKr

+,b
p2
k,1 p2

K,1 pK+,1 pOK X

17c 〈bx〉 〈abc〉 p2
L,1p

2
L,ap

2
L,bp

2
L,c p2

Kr,1p
2
Kr,c pKr

+,1
pKr

+,c
p2
k,1 p2

K,1 pK+,1 pOK X

17d 〈cx〉 〈abc〉 p2
L,1p

2
L,ap

2
L,bp

2
L,c p2

Kr,1p
2
Kr,a pKr

+,1
pKr

+,a
p2
k,1 p2

K,1 pK+,1 pOK X

18 〈ab, bc〉 〈ab, bc〉 p4
L,1p

4
L,ap

4
L,xp

4
L,axp

4
L,x2p4

L,ax2 p4
Kr,1p

4
Kr,a p4

Kr
+,1

pk,1pk,a p2
K,1p

2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 ×

19a 〈a, bc〉 〈a, bc〉 p4
L,1p

4
L,bp

4
L,xp

4
L,bxp

4
L,x2p4

L,bx2 p4
Kr,1p

4
Kr,b p2

Kr
+,1

p2
Kr

+,b
p2
k,1 p2

K,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 ×

19b 〈b, ac〉 〈b, ac〉 p4
L,1p

4
L,cp

4
L,xp

4
L,cxp

4
L,x2p4

L,cx2 p4
Kr,1p

4
Kr,c p2

Kr
+,1

p2
Kr

+,c
p2
k,1 p2

K,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 ×

19c 〈c, ab〉 〈c, ab〉 p4
L,1p

4
L,ap

4
L,xp

4
L,axp

4
L,x2p4

L,ax2 p4
Kr,1p

4
Kr,a p2

Kr
+,1

p2
Kr

+,a
p2
k,1 p2

K,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 ×

20a 〈a, b〉 〈a, b〉 p4
L,1p

4
L,cp

4
L,xp

4
L,cxp

4
L,x2p4

L,cx2 p4
Kr,1p

4
Kr,c p4

Kr
+,1

p2
k,1 p2

K,1p
2
K,xpK,x2pK,cx2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 X

20b 〈a, c〉 〈a, c〉 p4
L,1p

4
L,bp

4
L,xp

4
L,bxp

4
L,x2p4

L,bx2 p4
Kr,1p

4
Kr,b p4

Kr
+,1

p2
k,1 p2

K,1pK,xpK,bxp
2
K,x2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 X

20c 〈b, c〉 〈b, c〉 p4
L,1p

4
L,ap

4
L,xp

4
L,axp

4
L,x2p4

L,ax2 p4
Kr,1p

4
Kr,a p4

Kr
+,1

p2
k,1 pK,1pK,ap

2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 X
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Case D E Decomp. in L Decomp. in Kr Decomp. in Kr
+ Decomp. in k Decomp. in K Decomp. in K+ NΦr(pKr,1) CM

21a 〈ab, bc〉 〈ab〉 p2
L,1p

2
L,ap

2
L,xp

2
L,axp

2
x2p2

ax2 p2
Kr,1p

2
Kr,a p2

Kr
+,1

pk,1pk,a p2
K,1p

2
K,xpK,x2 pK+,1pK+,xpK+,x2 pOK X

21b 〈ab, bc〉 〈ac〉 p2
L,1p

2
L,ap

2
L,xp

2
L,axp

2
x2p2

ax2 p2
Kr,1p

2
Kr,a p2

Kr
+,1

pk,1pk,a p2
K,1pK,xp

2
K,x2 pK+,1pK+,xpK+,x2 pOK X

21c 〈ab, bc〉 〈bc〉 p2
L,1p

2
L,ap

2
L,xp

2
L,axp

2
x2p2

ax2 p2
Kr,1p

2
Kr,a p2

Kr
+,1

pk,1pk,a pK,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pOK X

22a 〈a, bc〉 〈a〉 p2
L,1p

2
L,bp

2
L,xp

2
L,bxp

2
L,x2p2

L,bx2 p2
Kr,1p

2
Kr,b p2

Kr
+,1

p2
Kr

+,b
p2
k,1 p2

K,1pK,xpK,x2 pK+,1pK+,xpK+,x2 pOK X

22b 〈b, ac〉 〈b〉 p2
L,1p

2
L,cp

2
L,xp

2
L,cxp

2
L,x2p2

L,cx2 p2
Kr,1p

2
Kr,c p2

Kr
+,1

p2
Kr

+,c
p2
k,1 pK,1p

2
K,xpK,x2 pK+,1pK+,xpK+,x2 pOK X

22c 〈c, ab〉 〈c〉 p2
L,1p

2
L,ap

2
L,xp

2
L,axp

2
L,x2p2

L,ax2 p2
Kr,1p

2
Kr,a p2

Kr
+,1

p2
Kr

+,a
p2
k,1 pK,1pK,xp

2
K,x2 pK+,1pK+,xpK+,x2 pOK X

23a 〈a, bc〉 〈bc〉 p2
L,1p

2
L,bp

2
L,xp

2
L,bxp

2
L,x2p2

L,bx2 p2
Kr,1p

2
Kr,b p2

Kr
+,1

p2
Kr

+,b
pk,1 pK,1p

2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pOK X

23b 〈b, ac〉 〈ac〉 p2
L,1p

2
L,cp

2
L,xp

2
L,cxp

2
L,x2p2

L,cx2 p2
Kr,1p

2
Kr,c p2

Kr
+,1

p2
Kr

+,c
pk,1 p2

K,1pK,xp
2
K,x2 pK+,1pK+,xpK+,x2 pOK X

23c 〈c, ab〉 〈ab〉 p2
L,1p

2
L,ap

2
L,xp

2
L,axp

2
L,x2p2

L,ax2 p2
Kr,1p

2
Kr,a p2

Kr
+,1

p2
Kr

+,a
pk,1 p2

K,1p
2
K,xpK,x2 pK+,1pK+,xpK+,x2 pOK X

24a 〈a, bc〉 〈abc〉 p2
L,1p

2
L,bp

2
L,xp

2
L,bxp

2
L,x2p2

L,bx2 p2
Kr,1p

2
Kr,b pKr

+,1
pKr

+,b
p2
k,1 p2

K,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pOK X

24b 〈b, ac〉 〈abc〉 p2
L,1p

2
L,ap

2
L,xp

2
L,axp

2
L,x2p2

L,ax2 p2
Kr,1p

2
Kr,a pKr

+,1
pKr

+,a
p2
k,1 p2

K,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pOK X

24c 〈c, ab〉 〈abc〉 p2
L,1p

2
L,cp

2
L,xp

2
L,cxp

2
L,x2p2

L,cx2 p2
Kr,1p

2
Kr,c pKr

+,1
pKr

+,c
p2
k,1 p2

K,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pOK X

25a 〈a, b〉 〈a〉 p2
L,1p

2
L,cp

2
L,xp

2
L,cxp

2
L,x2p2

L,cx2 p2
Kr,1p

2
Kr,c p2

Kr
+,1

p2
k,1 p2

K,1pK,xpK,x2pK,cx2 pK+,1pK+,xpK+,x2 p2
K,1pK,xp

2
K,x2 X

25b 〈a, b〉 〈b〉 p2
L,1p

2
L,cp

2
L,xp

2
L,cxp

2
L,x2p2

L,cx2 p2
Kr,1p

2
Kr,c p2

Kr
+,1

p2
k,1 pK,1p

2
K,xpK,x2pK,cx2 pK+,1pK+,xpK+,x2 pK,1p

2
K,xp

2
K,x2 X

25c 〈a, c〉 〈a〉 p2
L,1p

2
L,bp

2
L,xp

2
L,bxp

2
L,x2p2

L,bx2 p2
Kr,1p

2
Kr,b p2

Kr
+,1

p2
k,1 p2

K,1pK,xpK,bxpK,x2 pK+,1pK+,xpK+,x2 p2
K,1p

2
K,xpK,x2 X

25d 〈a, c〉 〈c〉 p2
L,1p

2
L,bp

2
L,xp

2
L,bxp

2
L,x2p2

L,bx2 p2
Kr,1p

2
Kr,b p2

Kr
+,1

p2
k,1 pK,1pK,xpK,bxp

2
K,x2 pK+,1pK+,xpK+,x2 pK,1p

2
K,xp

2
K,bx2 X

25e 〈b, c〉 〈b〉 p2
L,1p

2
L,ap

2
L,xp

2
L,axp

2
L,x2p2

L,ax2 p2
Kr,1p

2
Kr,a p2

Kr
+,1

p2
k,1 pK,1pK,ap

2
K,xpK,x2 pK+,1pK+,xpK+,x2 p2

K,1p
2
K,xpK,x2 X

25f 〈b, c〉 〈c〉 p2
L,1p

2
L,ap

2
L,xp

2
L,axp

2
L,x2p2

L,ax2 p2
Kr,1p

2
Kr,a p2

Kr
+,1

p2
k,1 pK,1pK,apK,xp

2
K,x2 pK+,1pK+,xpK+,x2 p2

K,1pK,xp
2
K,x2 X

26a 〈a, b〉 〈ab〉 p2
L,1p

2
L,cp

2
L,xp

2
L,cxp

2
L,x2p2

L,cx2 p2
Kr,1p

2
Kr,c p2

Kr
+,1

pk,1 p2
K,1p

2
K,xpK,x2pK,cx2 pK+,1pK+,xpK+,x2 p2

K,1p
2
K,xp

2
K,x2 X

26b 〈a, c〉 〈ac〉 p2
L,1p

2
L,bp

2
L,xp

2
L,bxp

2
L,x2p2

L,bx2 p2
Kr,1p

2
Kr,b p2

Kr
+,1

pk,1 p2
K,1pK,xpK,bxp

2
K,x2 pK+,1pK+,xpK+,x2 p2

K,1p
2
K,xp

2
K,x2 X

26c 〈b, c〉 〈bc〉 p2
L,1p

2
L,ap

2
L,xp

2
L,axp

2
L,x2p2

L,ax2 p2
Kr,1p

2
Kr,a p2

Kr
+,1

pk,1 pK,1pK,ap
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 p2

K,1p
2
K,xp

2
K,x2 X

27a 〈x〉 〈x〉 p3
L,1p

3
L,ap

3
L,bp

3
L,cp

3
L,abp

3
L,acp

3
L,bcp

3
L,abc pKr,1p

3
Kr,ap

3
Kr,bcpKr,abc pKr

+,1
p3
Kr

+,a
pk,1pk,a p3

K,1p
3
K,a p3

K+,1
p3
K,1 X

27b 〈abx〉 〈abx〉 p3
L,1p

3
L,ap

3
L,bp

3
L,cp

3
L,abp

3
L,acp

3
L,bcp

3
L,abc p3

Kr,1pKr,apKr,bcp
3
Kr,abc p3

Kr
+,1

pKr
+,a

pk,1pk,a p3
K,1p

3
K,abc p3

K+,1
p2
K,1pK,abc X

27c 〈acx〉 〈acx〉 p3
L,1p

3
L,ap

3
L,bp

3
L,cp

3
L,abp

3
L,acp

3
L,bcp

3
L,abc p3

Kr,1pKr,cpKr,abp
3
Kr,abc p3

Kr
+,1

pKr
+,c

pk,1pk,c p3
K,1p

3
K,abc p3

K+,1
p2
K,1pK,abc X

27d 〈bcx〉 〈bcx〉 p3
L,1p

3
L,ap

3
L,bp

3
L,cp

3
L,abp

3
L,acp

3
L,bcp

3
L,abc p3

Kr,1pKr,bpKr,acp
3
Kr,abc p3

Kr
+,1

pKr
+,b

pk,1pk,b p3
K,1p

3
K,abc p3

K+,1
p2
K,1pK,abc X

28a 〈a〉 〈a〉 p2
L,1p

2
L,bp

2
L,cp

2
L,bcp

2
L,xp

2
L,bxp

2
L,cxp

2
L,bcxp

2
L,x2p2

L,bx2p2
L,cx2p2

L,bcx2 p2
Kr,1p

2
Kr,bp

2
Kr,cp

2
Kr,bc p2

Kr
+,1

p2
Kr

+,b
p2
k,1 p2

K,1pK,xpK,cxpK,x2pK,cx2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 X

28b 〈b〉 〈b〉 p2
L,1p

2
L,ap

2
L,cp

2
L,acp

2
L,xp

2
L,axp

2
L,cxp

2
L,acxp

2
L,x2p2

L,ax2p2
L,cx2p2

L,acx2 p2
Kr,1p

2
Kr,ap

2
Kr,cp

2
Kr,ac p2

Kr
+,1

p2
Kr

+,a
p2
k,1 pK,1pK,ap

2
K,xpK,ax2pK,x2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 X

28c 〈c〉 〈c〉 p2
L,1p

2
L,ap

2
L,bp

2
L,abp

2
L,xp

2
L,axp

2
L,bxp

2
L,abxp

2
L,x2p2

L,ax2p2
L,bx2p2

L,abx2 p2
Kr,1p

2
Kr,ap

2
Kr,bp

2
Kr,ab p2

Kr
+,1

p2
Kr

+,c
p2
k,1 pK,1pK,cpK,xpK,cxp

2
K,x2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 X

29a 〈ab〉 〈ab〉 p2
L,1p

2
L,ap

2
L,cp

2
L,acp

2
L,xp

2
L,axp

2
L,cxp

2
L,acxp

2
L,x2p2

L,ax2p2
L,cx2p2

L,acx2 p2
Kr,1p

2
Kr,ap

2
Kr,cp

2
Kr,ac p2

Kr
+,1

p2
Kr

+,c
pk,1pk,c p2

K,1p
2
K,xpK,x2pK,cx2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 X

29b 〈bc〉 〈bc〉 p2
L,1p

2
L,ap

2
L,bp

2
L,abp

2
L,xp

2
L,axp

2
L,bxp

2
L,abxp

2
L,x2p2

L,ax2p2
L,bx2p2

L,abx2 p2
Kr,1p

2
Kr,ap

2
Kr,bp

2
Kr,ab p2

Kr
+,1

p2
Kr

+,a
pk,1pk,a pK,1pK,ap

2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 X

29c 〈ac〉 〈ac〉 p2
L,1p

2
L,ap

2
L,bp

2
L,abp

2
L,xp

2
L,axp

2
L,bxp

2
L,abxp

2
L,x2p2

L,ax2p2
L,bx2p2

L,abx2 p2
Kr,1p

2
Kr,ap

2
Kr,bp

2
Kr,ab p2

Kr
+,1

p2
Kr

+,b
pk,1pk,b p2

K,1pK,xpK,bxp
2
K,x2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 X

30 〈abc〉 〈abc〉 p2
L,1p

2
L,ap

2
L,bp

2
L,cp

2
L,xp

2
L,axp

2
L,bxp

2
L,cxpL,x2p2

L,ax2p2
L,bx2p2

L,cx2 p2
Kr,1p

2
Kr,ap

2
Kr,bp

2
Kr,c pKr

+,1
pKr

+,a
pKr

+,b
pKr

+,c
p2
k,1 p2

K,1p
2
K,xp

2
K,x2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 ×
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Case D E Decomp. in L Decomp. in Kr Decomp. in Kr
+ Decomp. in k Decomp. in K Decomp. in K+ NΦr(pKr,1) CM

31a 〈ax〉 〈e〉 pL,1pL,apL,bpL,c pKr,1pKr,b pKr
+,1

pKr
+,b

pk,1 pK,1 pK+,1 p3OK X

31b 〈bx〉 〈e〉 pL,1pL,apL,bpL,c pKr,1pKr,c pKr
+,1

pKr
+,c

pk,1 pK,1 pK+,1 p3OK X

31c 〈cx〉 〈e〉 pL,1pL,apL,bpL,c pKr,1pKr,a pKr
+,1

pKr
+,a

pk,1 pK,1 pK+,1 p3OK X

31d 〈abcx〉 〈e〉 pL,1pL,apL,bpL,c pKr,1pKr,a pKr
+,1

pKr
+,a

pk,1 pK,1 pK+,1 p3OK X

32a 〈x〉 〈e〉 pL,1pL,apL,bpL,cpL,abcpL,abpL,acpL,bc pKr,1pKr,apKr,abcpKr,bc pKr
+,1

pKr
+,a

pk,1pk,a pK,1pK,a pK+,1 pK,1p
2
K,a X

32b 〈abx〉 〈e〉 pL,1pL,apL,bpL,cpL,abcpL,abpL,acpL,bc pKr,1pKr,apKr,abcpKr,bc pKr
+,1

pKr
+,a

pk,1pk,a pK,1pK,a pK+,1 pK,1p
2
K,a X

32c 〈bcx〉 〈e〉 pL,1pL,apL,bpL,cpL,abcpL,abpL,acpL,bc pKr,1pKr,bpKr,abcpKr,ac pKr
+,1

pKr
+,b

pk,1pk,b pK,1pK,a pK+,1 pK,1p
2
K,a X

32d 〈acx〉 〈e〉 pL,1pL,apL,bpL,cpL,abcpL,abpL,acpL,bc pKr,1pKr,cpKr,abcpKr,ab pKr
+,1

pKr
+,c

pk,1pk,c pK,1pK,a pK+,1 pK,1p
2
K,a X

33a 〈a〉 〈e〉 pL,1pL,bpL,cpL,bcpL,xpL,bxpL,cxpL,bcxpL,x2pL,bx2pL,cx2pL,bcx2 pKr,1pKr,bpKr,cpKr,bc pKr
+,1

pKr
+,b

pk,1 pK,1pK,xpK,cxpK,x2pK,cx2 pK+,1pK+,xpK,x2 pK,1p
2
K,xp

2
K,x2 X

33b 〈b〉 〈e〉 pL,1pL,apL,cpL,acpL,xpL,axpL,cxpL,acxpL,x2pL,ax2pL,cx2pL,acx2 pKr,1pKr,apKr,cpKr,ac pKr
+,1

pKr
+,a

pk,1 pK,1pK,apK,xpK,ax2pK,x2 pK+,1pK+,xpK+,x2 p2
K,1pK,xp

2
K,x2 X

33c 〈c〉 〈e〉 pL,1pL,apL,bpL,abpL,xpL,axpL,bxpL,abxpL,x2pL,ax2pL,bx2pL,abx2 pKr,1pKr,apKr,bpKr,ab pKr
+,1

pKr
+,a

pk,1 pK,1pK,apK,xpK,axpK,x2 pK+,1pK+,xpK+,x2 p2
K,1p

2
K,xpK,x2 X

34a 〈ab〉 〈e〉 pL,1pL,apL,cpL,acpL,xpL,axpL,cxpL,acxpL,x2pL,ax2pL,cx2pL,acx2 pKr,1pKr,apKr,cpKr,ac pKr
+,1

pKr
+,a

pk,1pk,a pK,1pK,xpK,x2pK,cx2 pK+,1pK+,xpK+,x2 pK,1pK,xp
2
K,x2 X

34b 〈bc〉 〈e〉 pL,1pL,apL,bpL,abpL,xpL,axpL,bxpL,abxpL,x2pL,ax2pL,bx2pL,abx2 pKr,1pKr,apKr,bpKr,ab pKr
+,1

pKr
+,a

pk,1pk,a pK,1pK,apK,xpK,x2 pK+,1pK+,xpK+,x2 p2
K,1pK,xpK,x2 X

34c 〈ac〉 〈e〉 pL,1pL,bpL,cpL,bcpL,xpL,bxpL,cxpL,bcxpL,x2pL,bx2pL,cx2pL,bcx2 pKr,1pKr,bpKr,cpKr,bc pKr
+,1

pKr
+,b

pk,1pk,b pK,1pK,xpK,axpK,x2 pK+,1pK+,xpK+,x2 pK,1p
2
K,xpK,x2 X

35 〈abc〉 〈e〉 pL,1pL,abpL,acpL,bcpL,xpL,abxpL,acxpL,bcxpL,x2pL,abx2pL,acx2pL,bcx2 pKr,1pKr,abpKr,acpKr,bc pKr
+,1

pKr
+,ab

pKr
+,ac

pKr
+,bc

pk,1 pK,1pK,xpK,x2 pK+,1pK+,xpK+,x2 pOK X

36 〈e〉 〈e〉 pL,1 · · · pL,abcx2 pKr,1pKr,apKr,bpKr,cpKr,abcpKr,abpKr,acpKr,bc pKr
+,1

pKr
+,a

pKr
+,b

pKr
+,c

pk,1pk,a pK,1pK,xpK,x2pK,apK,axpK,ax2 pK+,1pK+,xpK+,x2 pK,1pK,xpK,x2 X

Table 3.1: The complete prime decompositions for K and Kr as subfields of L with Gal(L/Q) ∼= (C2)3×C3 and the image of pKr under
the type norm NΦr . In the last column × indicates that the decomposition cannot occur if K is CM-class number one as a consequence
of Corollary 3.1.2; otherwise we write X.
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The following corollary follows from Lemma 3.1.1 and allows us to eliminate fields Kr in
steps 1, 3, 4 of Algorithm 3.4.2.

Corollary 3.1.2. Let K be as in Lemma 3.1.1 and assume IKr = I0(Φr), then
cases 1–3, 5–8, 16a–16d, 19a–21 in Table 3.1 do not occur.

Proof. This follows from checking every case in Table 3.1.1 and applying Lemma 3.1.1.

For a CM-field F , let tF denote the number of primes in F+ that ramify in F/F+. The
statements in the following Lemma are immediate consequences of Table 3.1.

Lemma 3.1.3. Let p be a prime number. If there exists a prime pKr
+

of Kr
+ above prime

number p such that pKr
+

ramifies in Kr/Kr
+, then

(i) p ramifies in k/Q;

(ii) the primes above p in OK+ are all ramified in K/K+.

Furthermore,

(iii) if p ramifies in k/Q, then there is at least one prime above p in OK+ that ramifies in
K/K+;

(iv) if IKr = I0(Φr), then dk and dK+ have no prime factors in common.

Proof. All statements follow from Table 3.1.

3.2. Relative class numbers

We give several properties of the relative class number h∗K of K and sufficient conditions
on h∗K such that K has CM class number one. Most notably we prove in Corollary 3.2.9
that if K is of CM class number one, then h∗K ∈ {2tK , 2tK−1}. Furthermore, Corollary 3.2.7
provides a criterion to exclude fields Kr of the list of fields left to check in Algorithm 3.4.2.

Let F be a CM-field and let · denote complex conjugation on F . Define HF := Gal(F/F+)
and

IHF
F := {a ∈ IF : a = a}, PHF

F := PF ∩ IHF
F .

The following lemmata give an expression for the relative class number h∗F .

Lemma 3.2.1. [Kıl16, Lemma 2.2.1] Let F be a CM-field and let tF be the number of primes

in F+ that ramify in F . Then h∗F = 2tF
[IF :I

HF
F PF ]

[P
HF
F :PF+

]
.

Recall that QF = [O×F : WFO×F+
].

Lemma 3.2.2. [Kıl16, Lemma 2.2.2] If QF = 1 then [PHF
F : PF+ ] = 2. Moreover, we

have h∗F = 2tF−1[IF : IHF
F PF ].

Proposition 3.2.3. [BL02, Proposition 1] Let F be a sextic CM-field, then tF ≥ 1.
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Let K be a sextic CM-field with Galois closure L such that Gal(L/Q) ∼= (C2)3 o C3.
Proposition 3.2.3 implies that dK/d

2
K+

> 1. Furthermore, we have the following result.

Lemma 3.2.4. Let F be a CM-field such that WF = {±1}. Then [PHF
F : PF+ ] ∈ {1, 2}.

Proof. Define the map

λ : PHF
F → WF , αOF 7→

α

α
.

Then λ is a group homomorphism. By Lemma 2.4.1 we have WF = 2. For (α) ∈ ker(λ)
we have α = α and hence α ∈ F+. Then (α) ∈ PF+ . This argument is reversible,
so ker(λ) = PF+ . Then

PHF
F /PF+

∼= im(λ) ⊂ WF .

We have that WF = {±1}, so [PHF
F : PF+ ] ∈ {1, 2}.

We know from Lemma 2.4.1 that WK = {±1}, so Lemma 3.2.4 gives

[PHK
K : PK+ ] ∈ {1, 2}. (3.1)

We will now prove several statements about the relative class number of K under the
condition IKr = I0(Φr).

Proposition 3.2.5. Let K be a non-normal sextic CM-field with Galois group (C2)3 o C3.
Assume IKr = I0(Φr), then the following hold:

(i) For every a ∈ IK, [a]2 = [a]2 in ClK.

(ii) There exists u ∈ Z≥0 such that h∗K = 2tK+u.

Proof. (i) Let a ∈ IK , then

NΦrNΦ(a) =
a2

a2NK/Q(a)2 ∈ IK .

Since IKr = I0(Φr), there exists λ ∈ K× with λλ ∈ Q such that

a2

a2NK/Q(a)2 = λOK .

Then a2

a2 = λNK/Q(a)−2OK ∈ PK , so [a]2 = [a]2 ∈ ClK .

(ii) For this part we use ideas from the proof of [Kıl16, Lemma 2.2.3]. By Lemma 3.2.1 we
have

h∗K = 2tK
[IK : IHK

K PK ]

[PHK
K : PK+ ]

, (3.2)

Let α := NK/Q(a)2 ∈ Q. Then by part (i) there exists λ ∈ K× with λλ ∈ Q such that

α
a2

a2 = λOK .
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Moreover,

λλOK = αα
a2a2

a2a2
= ααOK .

This gives that λλ = αα ∈ Q. Define δ := λ
α

, so we have a2

a2
= δOK . Then

δδ =
λλ

αα
= 1.

Then by Hilbert’s theorem 90 there exists γ ∈ K∗ such that δ = γ
γ
. This gives

a2 = γa2

(
1

γ
OK

)
∈ IHK

K PK .

For every a ∈ IK we have that a2 ∈ IHK
K PK , so [IK : IHK

K PK ] = 2u0 for some u0 ∈ Z≥0.
Moreover we have [PHK

K : PK+ ] ∈ {1, 2} by (3.1). Then

[IK : IHK
K PK ]

[PHK
K : PK+ ]

= 2u,

where u ∈ {u0, u0 − 1}. Combining this with (3.2) gives h∗K = 2tK+u with u ≥ −1.

The following proposition is a generalisation of [Hor92, Theorem 1].

Proposition 3.2.6. [Oka00, Theorem 1] Let F0, F be two CM-fields such that F0 ⊂ F .
Then h∗F0

| 4h∗F .

The following corollary of of Proposition 3.2.5(ii) and Proposition 3.2.6 provides a
criterion that we use to eliminate fields in step 5 of Algorithm 3.4.2.

Corollary 3.2.7. Assume IKr = I0(Φr), then 4h∗Kr/hk is a power of 2.

Proof. Proposition 3.2.6 implies hk | 4h∗Kr . From (2.7) we have

4h∗Kr

hk
= 2h∗K

QKr

QK

.

Here h∗K is a power of 2 by Proposition 3.2.5(ii). Moreover QK , QKr ∈ {1, 2}, so 4h∗Kr/hk is
a power of 2.

In the proof of Proposition 3.2.5(i) we showed that every element in the quotient IK/I
H
KPK

has order 1 or 2. Assuming IKr = I0(Φr) we prove IK = IHKPK by looking at all possible
ramifications of primes in K/Q. We then use this to conclude h∗K ∈ {2tK , 2tK−1} in
Corollary 3.2.9.
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Proposition 3.2.8. Let K be a non-normal sextic CM-field with Galois group (C2)3 o C3.
Assume IKr = I0(Φr), then IK = IHKPK.

Proof. In the proof of Proposition 3.2.5(ii) we showed the following:

for any ideal a ∈ IK we have
a2

a2
= δOK for some δ ∈ K× with δδ = 1. (3.3)

If we can prove that for every a ∈ IK there exists β ∈ K× such that a
a

= βOK and ββ = 1,

then by the same argument as in the proof of the proposition we have a = γa
(

1
γ

)
∈ IHKPK

for some γ ∈ K×. Because we chose a arbitrarily, it then follows that IK = I0(Φr).
Claim. For any prime ideal pK ∈ IK we have

pK
pK

= βOK

for some β ∈ K× with ββ = 1.
Proof of the claim. Let pK+ ⊂ OK+ with p := pK+ ∩ Z and let pK ⊂ OK be such that
pK ∩ OK+ = pK+ . If pK+ is inert or ramified in OK then pK is fixed under complex conju-
gation, hence pK ∈ IHKPK . In the remainder of the proof we will consider the case where
pK+OK = pKpK such that pKpK and show that then also pK ∈ IHKPK . We split this case
into subcases with respect to the decomposition of p in OK+ . We will prove the result
for each decomposition separately by going over cases in Table 3.1 that are possible when
assuming IKr = I0(Φr).

(i) p is inert in K+/Q: We have pK+OK = pKpK = pOK , which only happens in case 32
of the table. Write pK := pK,a. There exists α ∈ K× such that αα ∈ Q and

NΦr(pKr) = pKp
2
K = ppK = αOK .

This gives pK = α
p
OK , hence

pK = (pOK)p−1
K =

p2

α
OK .

Then
pK
pK

=
p3

α2
OK ,

where αα = (ppK)(ppK) = p3. Let β := p3

α2 , then ββ = p6

p6 = 1 which proves the claim.

(ii) p ramifies in K+/Q: Then p3
K+
OK = p3

Kp
3
K = pOK , which is case 27 in the table. For

27a NΦr(pKr) decomposes differently than for 27b-d, so we will look at these separately.

(27a) Assuming IKr = I0(Φr) there exists α ∈ K× such that αα ∈ Q and

NΦr(pKr) = p3
K = αOK .
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This implies p3
K = p

α
OK . By (3.3) there exists δ ∈ K× such that

pK
pK

=
p3
K

p3
K

p2
K

p2
K

=
p3
K

p3
K

1

δ
=
α2

pδ
OK .

This gives
pK
pK

= βOK ,

where β = α2

pδ
and

ββ =
α2α2

p2δδ
= 1.

(27b-d) We have
NΦr(pKr) = pKp

2
K = αOK .

By (3.3) there exists δ ∈ K× such that
p2
K

p2
K

= δOK and δδ = 1. Then

pK
pK

=
pK
pK

p2
K

p2
K

=
pK
pK

p2
Kδ

p2
K

=
αδ

α
OK .

This gives
pK
pK

= βOK ,

where β = αδ
α

and ββ = ααδδ
αα

= 1.

(iii) p splits in K+/Q: Because K+ is Galois over Q, the only case where p splits is given
by pK+,1pK+,xpK+,x2 = pOK+ . The possible decompositions are given in cases 20, 25,
26, 28, 29, 33, 34 and 36 of Table 3.1. For each of these we prove the claim for the
subcase a. The other subcases follow identically.

(20) We prove the claim for 20a. We have p2
K,1p

2
K,xpK,x2pK,cx2 = pOK and

NΦr(pKr,1) = pK,1pK,xpK,cx2 = αOK .

for some α ∈ K×. Write pK,x2 := pK,cx2 , then

pK,x2

pK,x2

=
p2
K,1p

2
K,xpK,x2pK,x2

(pK,1pK,xpK,x2)2
.

We have
NΦr(pKr)NΦr(pKr) = NKr/Q(pKr) = pf(pKr,1/p) = p,

so αα = p. Then
pK,x2

pK,x2
= βOK where β = p

α2 with

ββ =
p2

α2α2 = 1.
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(25) We have p2
K,1pK,xpK,x2pK,x2 = pOK and NΦr(pKr,1) = p2

K,1pK,xp
2
K,cx2 = αOK for

some α ∈ K×. Write pK,x2 := pK,cx2 , then for δ as in (3.3) we have

pK,x2

pK,x2

= δ
pK,x2

pK,x2

= δ
p2
K,1pK,xpK,x2pK,x2

p2
K,1pK,xpK,x2

=
p

NΦr(pKr,1)
OK .

Then
NΦr(pKr,1)NΦr(pKr,1) = NKr/Q(pKr) = pf(pKr,1/p) = p2.

This gives αα = p2, so
pK,x2

pK,x2

= βOK

where β := p
α

with ββ = p2

αα
= 1.

(28) We have p2
K,1pK,xpK,cxpK,x2pK,cx2 = pOK . There exist α1, α2 ∈ K× such that

NΦr(pKr,1) = pK,1pK,xpK,x2 = α1OK , NΦr(pKr,c) = pK,1pK,xpK,cx2 = α2OK .

Write pK,x := pK,cx and pK,x2 := p2
K,cx. For δ as in (3.3) we have

pK,x
pK,x

= δ
pK,x
pK,x

= δ
p

p2
K,1p

2
K,xpK,x2pK,x2

= δ
p

α1α2

OK .

We have

NΦr(pKr,1)NΦr(pKr,c)NΦr(pKr,1)NΦr(pKr,c) = NKr/Q(pKr,1pKr,c)

= pf(pKr,1/p)pf(pKr,c,p)

= p2,

so α1α2α1α2 = p2. Then
pK,x

pK,x
= βOK with β := δp(NΦr(pKr,1)NΦr(pKr,c))

−1

gives ββ = 1. Similarly for δ′ as in (3.3) we have

pK,x2

pK,x2

= β′OK ,

where β′ := δ′p(NΦr(pKr,1)NΦr(pKr,b))
−1 and we have ββ = 1.

(29) We have p2
K,1p

2
K,xpK,x2pK,x2 = pOK and NΦr(pKr,1) = pK,1pK,xpK,x2 = αOK

for α ∈ K×. Write pK,x2 = pK,cx2 , then for δ as in (3.3) we get

pK,x2

pK,x2

= δ
pK,x2

pK,x2

= δ
p2
K,1p

2
K,xpK,x2pK,x2

p2
K,1p

2
K,xp

2
K,x2

=
pδ

α2
OK .

We have

NΦr(pKr,1)NΦr(pKr,1) = NKr/Q(pKr,1) = pf (pKr,1/p) = p,

so αα = p. Then
pK,x2

pK,x2
= βOK , where β := δα

p
with

ββ =
αα

p2
= 1.
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(33) We have pK,1pK,xpK,xpK,x2pK,x2 = pOK and NΦr(pKr,1) = pK,1p
2
K,xp

2
K,x2 = αOK .

Write pK,x := pK,cx and pK,x2 := pK,cx2 . For δ, δ′ as in (3.3) we have

p2
K,x

p2
K,x

= δOK ,
p2
K,x2

p2
K,x2

= δ′OK .

Then we have

pK,x
pK,x

= δ
pK,x
pK,x

= δ
pK,1pK,xpK,xpK,x2pK,x2

pK,1p2
K,xpK,x2pK,x2

= δδ′
p

pK,1p2
K,xp

2
K,x2

=
pδδ′

α
OK .

Since f(pKr,1/p) = 2, we have

NΦr(pKr)NΦr(pKr) = NKr/Q(pKr) = p,

so αα = p. Then
pK,x

pK,x
= βOK , where β := pδδ′

α
with

ββ =
p2

αα
= 1.

Similar to the above we also have

pK,x2

pK,x2

=
pδδ′

α
OK ,

hence
pK,x2

pK,x2
= βOK .

(34) We have pK,1pK,xpK,x2pK,x2 = pOK and NΦr(pKr) = pK,1pK,xp
2
K,x2 = αOK .

Write pK,x2 := pK,cx2 , then

pK,x2

pK,x2

=
pK,1pK,xpK,x2pK,x2

pK,1pK,xp2
K,x2

=
p

α
OK .

Since f(pKr/p) = 2, we have

NΦr(pKr)NΦr(pKr) = NKr/Q(pKr) = p2,

hence αα = p2. For δ as in (3.3) we have
p2
K,x

pK,x2
= δOK . Then

pK,x2

pK,x2
= βOK ,

where β := δα
p

with

ββ =
αα

p2
= 1.

(36) We have pK,1pK,1pK,xpK,xpK,x2pK,x2 = pOK and there exist α1, α2 ∈ K× such that

NΦr(pKr,1) = pK,1pK,xpK,x2 = α1OK , NΦr(pKr,bc) = pK,1pK,xpK,x2 = α2OK .

Write pK,1 = pK,a, pK,x = pK,ax, pK,x2 = pK,ax2 , then

pK,1
pK,1

=
pK,1pK,1pK,xpK,xpK,x2pK,x2

p2
K,1pK,xpK,xpK,x2pK,x2

=
p

α1α2

OK .
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Since f(pKr,1/p) = f(pKr,bc/p) = 1, we have

NΦr(pKr,1)NΦr(pKr,bc)NΦr(pKr,1)NΦr(pKr,bc) = NKr/Q(pKr,1pKr,bc) = p2.

For δ as in (3.3) we have
p2
K,x

p2
K,x

= δOK . Then
pK,x2

pK,x2
= βOK , where β := δα

p
with

ββ =
α1α2α1α2

p2
= 1.

Similarly we have δ′, δ′′ as in (3.3) such that

pK,x
pK,x

= β′OK ,
pK,x2

pK,x2

= β′′OK ,

where β′ := δ′p(NΦr(pKr,1)NΦr(pKr,ac))
−1 and β′′ := δ′′p(NΦr(pKr,1)NΦr(pKr,ab))

−1.
In the same way as above we can show β′β′ = β′′β′′ = 1.

Corollary 3.2.9. Let K be as in Proposition 3.2.8. Assume IKr = I0(Φr),
then h∗K = 2tK−δK for δK ∈ {0, 1}.

Proof. Assuming IKr = I0(Φr) we have by Proposition 3.2.8 that [IK : IHK
K PK ] = 1. Then

by Lemma 3.2.1,

h∗K =
2tK

[PHK
K : PK+ ]

. (3.4)

By (3.1), δK = 0 if [PHK
K : PK+ ] = 1 and δK = 1 if [PHK

K : PK+ ] = 2.

We will now give a few additional results regarding the relation between h∗Kr and hk. By
Lemmata 3.2.1 and 3.2.2 we have

h∗Kr = 2tKr [IKr : IHKr

Kr PKr ]

[PHKr

Kr : PKr
+

]
, hk = 2tk−1[Ik : IHk

k Pk]. (3.5)

The second equality in (3.5) follows because Qk = [O×k : WkO×Q ] = [Wk : Wk] = 1. In
Proposition 3.2.11 we give a relation between h∗Kr and hk.

Lemma 3.2.10. [Was82, Theorem 5, Appendix 3] Let M/F be an extension of number fields
that contains no unramified subextensions M/F0 with F0 6= F . Then the norm map NM/F :
ClM → ClF is surjective and therefore hF divides hM .

Proposition 3.2.11. Let Kr be a CM field of degree 8 with Galois group (C2)3 o C3.
Let k ⊂ Kr be the imaginary quadratic subfield of Kr. Then [Ik : IHk

k Pk]
divides [IKr : IHKr

Kr PKr ].
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Proof. Define NKr/k : IKr −→ Ik/I
Hk
k Pk such that a 7→ NKr/k(a) ·IHk

k Pk. This is a surjective

map, since IHk
k Pk ⊃ Pk and the norm map NKr/k : ClKr → Clk is surjective by Lemma 3.2.10.

We will show IHKr

Kr PKr ⊂ Ker(NKr/k).

Let a ∈ IHKr

Kr PKr be arbitrary, then there exist b ∈ IHKr

Kr and β ∈ Kr× such that a = bβ.
This gives

NKr/k(a) = NKr/k(b)NKr/k(β),

such that NKr/k(b) = NKr/k(b) = NKr/k(b) and NKr/k(β) ∈ k×. So NKr/k(a) ∈ IHk
k Pk and

hence a ∈ Ker(NKr/k). So we have IHKr

Kr PKr ⊂ Ker(NKr/k) ⊂ IKr and by the isomorphism
theorem we have

[Ik : IHk
k Pk] = [IKr : Ker(NKr/k)]

∣∣∣[IKr : IHKr

Kr PKr ].

A consequence of Proposition 3.2.11 is that, if K is a CM class number one field, the odd
prime factors in h∗Kr are precisely those in hk.

3.3. A bound for dK/dK+

Assuming that K is a CM class number one field we give an upper bound for dK/dK+ .
In Theorem 3.3.6 we conclude that there exist finitely many non-normal sextic CM class
number one fields with Galois group (C2)3 o C3.

For a number field F , let fF denote the conductor of F .

Theorem 3.3.1. [BL99, Theorem 4] Let K be a sextic CM-field with Galois closure L such
that Gal(L/Q) ∼= (C2)3 o C3. Define εK := 1− (6πe1/24/d6

K). Then

h∗K ≥ εK

√∣∣dK/dK+

∣∣
e1/8π3(log

(
fK+

)
+ 0.05)2 log(dL)

.

Moreover, dL ≤ d12
K . Therefore h∗K goes to infinity and there are only finitely many fields K

of this form of a given class number.

Theorem 3.3.2. Let K be a sextic CM-field whose Galois closure L has Galois
group (C2)3 o C3. Assume dK ≥ 6 · 107, then

h∗K ≥

√∣∣dK/dK+

∣∣
213(log

(∣∣dK/3dK+

∣∣)+ 0.05)2 log
(∣∣dK/3dK+

∣∣) . (3.6)

Proof. Consider the bound for h∗K given in Theorem 3.3.1. For dK ≥ 6 · 107 we have that
εK ≥ 0.99. Moreover fK+ =

√
dK+ and dL ≤ d12

K , so the bound becomes

h∗K ≥
0.99

√∣∣dK/dK+

∣∣
12e1/8π3(1

2
log
(
dK+

)
+ 0.05)2 log(|dK |)

. (3.7)
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There is at least one prime ramifying in K/K+ by Proposition 3.2.3, so dK/3dK+ ≥ dK+

and dK ≤ d2
K/3d

2
K+

. Combining this with (3.7) gives

h∗K ≥
0.99

√∣∣dK/dK+

∣∣
24e1/8π3(1

2
log
(∣∣dK/3dK+

∣∣)+ 0.05)2 log
(∣∣dK/3dK+

∣∣) .
Since 0.99/6e1/8π3 > 1/213 the result follows.

Lemma 3.3.3. For a real number D ≥ 1 and integer t ≥ 1 define

f(D) :=

√
D

213(log(D/3) + 0.05)2 log(D/3)
and g(t) = 2w−tf(49∆t),

where ∆t is the product of the first t primes and w ∈ {0, 1}. Then f is monotonically
increasing for D > 263 and g(t) is monotonically increasing for t ≥ 12.

Proof. We follow the proof of [KS18, Lemma 3.11]. The derivative of f(D) is strictly positive
for D > 263, so f(D) is monotonically increasing for D > 263. Define

h(t) = 2w−tf(49∆dt/2e∆bt/2c).

We have that ∆4 = 210 and ∆5 = 2310, so f(49∆t) ≥ f(49∆dt/2e∆bt/2c) for all t ≥ 6
and hence g(t) ≥ h(t) for all t ≥ 6. We will now show that h(t) increases monotonically
for t ≥ 12. We have that ∆t+1 = pt+1∆t, where pt+1 is the prime factor in position t + 1 in
the product ∆t+1. Then

∆d(t+1)/2e∆b(t+1)/2c

∆dt/2e∆bt/2c
=

∆d(t+1)/2e

∆bt/2c
= pd(t+1)/2e.

Let Dt := ∆dt/2e∆bt/2c for all t ≥ 1, then this gives

h(t+ 1)

h(t)
=

√
pd(t+1)/2e

2

(1
2

log(49Dt/3) + 0.05)2 log(49Dt/3)

(1
2

log(49Dt+1/3) + 0.05)2 log(49Dt+1/3)
. (3.8)

Similar to the proof of [KS18, Lemma 3.11], by Bertrand’s Postulate we have for s ≥ 4
that ps+1 ≤ 2ps. This gives for s ≥ 4

p4
s+1 < 24p4

s < 26p2
sp

2
s−1 < 49∆2

s

Then for all t ≥ 8,

p4
d(t+1)/2e < 49∆2

bt/2c ≤ 49Dt.

This implies

log
(
pd(t+1)/2e/3

)
<

1

4
log(49Dt/3) < (

√
2− 1) log(49Dt/3). (3.9)
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We have that Dt+1 = Dtpd(t+1)/2e, so from (3.9) we obtain

log(49Dt+1/3) = log(49Dt/3) + log
(
pd(t+1)/2e/3

)
<
√

2 log(49Dt/3). (3.10)

Then we have

1

2
log(49Dt/3) +

1

2
log
(
pd(t+1)/2e/3

)
+ 0.05 <

1

2
(
√

2 log(49Dt/3) + 0.05). (3.11)

Applying (3.11) to the bound in (3.8) gives

h(t+ 1)

h(t)
>

√
pd(t+1)/2e

4
.

This gives that h(t) increases for t ≥ 12, hence g(t) increases monotonically for t ≥ 12.

The following results are consequences of Theorem 3.3.2.

Corollary 3.3.4. Let K be as in Theorem 3.3.2 and assume IKr = I0(Φr). Then tK ≤ 20
and dK/dK+ ≤ 5.6 · 1026.

Proof. We follow the proof of [KS18, Proposition 3.13]. The smallest possible discriminant
for a totally real cyclic cubic field is 49 (see [Voi]). Let tK be the number of primes ramifying
in K/K+, then for tK ≥ 4 we have

dK/dK+ ≥ dK+∆tK ≥ 49∆tK ≥ 49∆dtK/2e∆btK/2c > 263.

By Corollary 3.2.9 we have h∗K = 2tK−δK for δK ∈ {0, 1}, so take f(D), g(t) as in Lemma 3.3.3.
These were shown to be monotonically increasing for D > 263 and t ≥ 12. Then Lemma 3.3.3
implies

2tK−δK ≥ f(dK/dK+) ≥ f(49∆tK )

and hence g(tK) ≤ 1 for tK ≥ 1. However from Lemma 3.3.3 it also follows that g(tK)
increases monotonically for tK ≥ 12. For both δK = 0 and δK = 1 we have that g(tK) ≤ 1
for tK ≥ 20. Then the restriction f(dK/dK+) ≤ 2tK−δK gives dK/dK+ ≤ 5.6 · 1026.

Remark 3.3.5. When K is a non-Galois quartic CM field with CM class number one,
in [KS18, Lemma 3.25] Kılıçer-Streng found a bound for dKr/dKr

+
. They showed that the

ramified primes p in Kr/Kr
+ contribute to dKr/dKr

+
with p2, where p := p ∩ Z. So in the

quartic case the right hand side of the lower bound for h∗Kr grows with the product of primes
numbers. However, in our case the right hand side of (3.6) grows with the square root of the
product of the prime numbers p, such that at least one of the primes lying above p in K+

ramifies in K. Therefore, our discriminant bound is much larger compare to the bound in
the quartic case.

Moreover, when K is a sextic CM field containing an imaginary quadratic field with CM
class number one, in [Kıl16, Proposition 3.4.1] Kılıçer showed that the imaginary quadratic
field contained in K has class number one. This gives tK ≤ 3 and hence a small discriminant
bound. If K is a sextic CM class number one field with degree 24 Galois closure, the
imaginary quadratic field k ⊂ Kr does not always have class number one. See Table 3.2 for
counter-examples. For this reason we deal with a larger bound for tK and hence a much
larger bound for dK/dK+ , as given in Theorem 3.3.2.
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Theorem 3.3.6. There exist finitely many sextic CM class number one fields whose Galois
closure has Galois group (C2)3 o C3.

Proof. Under the assumptions IKr = I0(Φr) and hK+ , we have dK/dK+ ≤ 5.6 · 1026 by
Corollary 3.3.4. By Proposition 3.2.3 at least one prime of K+ ramifies in K/K+, so

3dK+ ≤ dK/dK+ ≤ 5.6 · 1026.

Then dK+ ≤ 5.6 · 1026/3 and this gives

dK ≤ 5.6 · 1026 · dK+ ≤ (5.6 · 1026)2/3.

This implies that there exist finitely many CM class number one fields K.

Unfortunately the bound for dK/dK+ in Corollary 3.3.4 is too large to compute all CM
class number one fields K up to this bound. In Section 3.4 we compute all CM class number
one fields K that give dKr

+
≤ 109 and dk ≤ 104 such that tk ≤ 2.

Remark 3.3.7. It is possible to give a bound for dK/dK+ because if K is CM class number
one we showed that h∗K is a power of 2 that depends only on tK . For h∗Kr this is not the
case, see the examples in Table 3.2. We could therefore not compute a bound for dKr/dKr

+

in the same way without imposing further restrictions. In Appendix B we construct a lower
bound for h∗Kr .

3.4. Listing CM class number one fields

We compute all CM class number one fields K for dKr
+
≤ 108 and dk ≤ 104 such that

tk ≤ 2. The totally real quartic field Kr
+ is a non-normal primitive field with Galois closure

L+ such that Gal(L+/Q) ∼= A4. We construct the fields Kr
+ up to discriminant bound 109

using the method in [CDO02, Section 3] (available in PARI/GP [PAR21] via the function
nflist). We obtain all fields k such that dk ≤ 104 and tk ≤ 2 from [LMF21], where the
list is complete for dk ≤ 2 · 106.

In Algorithm 3.4.2 we construct Kr and simultaneously eliminate fields that will not
give IKr = I0(Φr). For all resulting fields Kr we find sextic fields K that are CM class
number one in Algorithm 3.4.5. Both algorithms implemented in SageMath [Sag20].

The following lemma gives a criterion to eliminate fields Kr that do not give a CM class
number one field K.

Lemma 3.4.1. Let K be a non-normal sextic CM-field not containing an imaginary quadratic
field. Let Kr be the reflex field of K such that IKr = I0(Φr). If a prime number p splits

completely in Kr/Q, then p ≥
3

√
dK/d2

K+

4
.

Proof. The result is a special case of [Lou94b, Theorem D] and the proof is an adaptation of
the proof of [Kıl16, Lemma 2.3.17] to this specific case. Let p split completely in Kr/Q and
let pKr be a prime of Kr above p. Under the assumption IKr = I0(Φr) there exists µ ∈ K∗
such that NΦr(pKr) = (µ) and µµ = p. Since K does not contain any quadratic field we
have

√
±p ∈ K, so µ 6= µ. There exists positive β ∈ OK+ \O2

K+
such that K = K+(

√
−β),
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hence µ = a+bβ
2

for some a, b ∈ OK+ . This gives OK ⊃ OK+ [µ]. Moreover we have the
discriminant ideal δ(K/K+) = (µ− µ)2 for K/K+. Then

dK/d
2
K+

= NK+/Q(δ(K/K+)) ≤ NK+/Q((µ− µ)2).

On the other hand µµ = p implies φ((µ − µ)2) ≤ 4p for all embeddings φ : K+ → R.
Because K+ is Galois over Q with Gal(K+/Q) = 〈x〉, this gives

dK/d
2
K+

= NK+/Q((µ− µ)2) = (µ− µ)2x((µ− µ)2)x2((µ− µ)2) ≤ 43p3.

Algorithm 3.4.2. Constructing Kr from Kr
+ and k such that dKr

+
≤ 108, dk ≤ 104 and

tk ≤ 2:
Input: Primitive totally real non-normal quartic field Kr

+ whose Galois closure has Galois
group A4, imaginary quadratic field k.
Output: octic CM-field Kr = kKr

+ whose Galois closure has Galois group (C2)3 o C3.

Step 1 For all prime numbers p dividing both dk and dKr
+

, check if it decomposes as in cases
1, 3, 5, 15 of Table 3.1. If it does, end the algorithm.

Step 2 Construct Kr by extending Kr
+ with k.

Step 3 For all p dividing dKr
+

and not dk, check if p decomposes as in cases 5, 6, 18 of Table 3.1.
If it does, end the algorithm.

Step 4 For all p dividing both dKr
+

and dk, check if p decomposes as in case 19 of Table 3.1.
If it does, end the algorithm.

Step 5 If 4h∗Kr/hk is a power of 2, store Kr.

Proof. Step 1, 3 and 4 only eliminate fields Kr that do not give a CM class number one field
by Corollary 3.1.2. Step 3 eliminates only such fields by Lemma 3.4.1. If the ratio 4h∗Kr/hk
is not a power of 2 in step 5, then Kr will also not give a CM class number one field K by
Corollary 3.2.7.

Remark 3.4.3. In our computations we assumed the General Riemann Hypothesis for step 5
of Algorithm 3.4.2. This way the class numbers could be computed using the Bach bound
instead of the Minkowski bound.

Remark 3.4.4. In Algorithm 3.4.5 steps 1 and 3 will eliminate some fields, while step 4 will
eliminate very few fields. The elimination by step 5 is by far the most effective, in particular
for the case when dKr

+
≤ 108, dk ≤ 104 such that tk ≤ 2. However the computation of class

numbers makes this step slower than steps 1,3 and 4, even when assuming the GRH (see
Remark 3.4.3). For this reason we execute this elimination step last.
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Algorithm 3.4.5. Find CM class number one fields K from Kr, if they exist:
Input: octic CM-field Kr whose Galois closure has Galois group (C2)3 o C3.
Output: sextic field K whose Galois closure has Galois group (C2)3 o C3 such that K has
CM class number one, if it exists.

Step 1 Compute the set of CM-types Φr of Kr up to equivalence classes with functions CM_Field,
CM_types from [Str].

Step 2 Fix a CM-type Φr found in step 1 and compute the reflex field K of Φr with function
reflex_field from [Str]. If [K : Q] 6= 6 repeat step 2, otherwise continue.

Step 3 If there exists a prime number p up to the bound 3

√
dK/d2

K+
/4 that splits completely

in Kr, go back to step 2. Otherwise continue.

Step 4 Compute the generators of the class group of Kr and find a representative prime ideal p
for each generator.

Step 5 If for all p in step 4 there exists α such that NΦr(p) = (α) and αα ∈ Q with function
a_to_mu from [Str], store K.

Proof. It suffices to only consider CM-types Φr of Kr up to equivalence class in step 1,
because equivalent CM-types correspond to the same reflex fields by Lemma 1.1.16. In step
5 we check if Kr is the reflex field of a CM class number one field K by testing
if IKr = I0(Φr). After a CM class number one field K of degree 6 has been found in step 6, all
other degree 6 reflex fields of Kr are isomorphic to K by Corollary 2.3.3. This implies that
if we find one sextic field K, we have found all for the given field Kr and we can terminate
the algorithm.

Remark 3.4.6. We run Algorithm 3.4.2 only for fields with dk ≤ 104 and tk ≤ 2, so

by Lemma we get 3

√
dK/d2

K+
/4 ≤ 5. However in Corollary 3.3.4 the absolute bound

is dK/dK+ ≤ 5.6 · 1026, where tK ≤ 20. The discriminant of k is much larger in the-
ory, so then eliminating fields using step 3 may be useful.

By repeating Algorithm 3.4.5 for all fields Kr constructed with Algorithm 3.4.2, we find
all sextic CM class number one fields K with dKr

+
≤ 108 and dk ≤ 104 such that tk ≤ 2. The

computed fields are given in Table 3.2.
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p(x) hK hK+ hKr hKr
+

hk
∣∣dK/d2

K+

∣∣ ∣∣∣dKr/d2
Kr

+

∣∣∣ |dk|
x6 − x5 − 6x4 + 20x3 + 33x2 − 15x+ 9 1 1 1 1 1 3 1 3

x6 − x5 − x4 + 2x3 − 3x2 − 9x+ 27 1 1 1 1 1 23 1 23

x6 − 2x5 − 2x4 + 11x3 − 6x2 − 18x+ 27 1 1 1 1 1 11 1 11

x6 − x5 + 3x3 − 4x+ 8 1 1 3 1 3 31 1 31

x6 − x5 + 2x4 − 5x3 + 4x2 − 4x+ 8 1 1 5 1 5 47 1 47

x6 − 3x5 + 9x4 − 13x3 + 15x2 − 9x+ 3 1 1 7 1 7 71 1 71

x6 − 2x5 + 3x4 − 3x3 + 6x2 − 8x+ 8 1 1 5 1 5 79 1 79

x6 − 2x5 + 5x4 − 7x3 + 10x2 − 8x+ 8 1 1 11 1 11 167 1 167

x6 + 9x4 + 24x2 + 19 2 1 2 1 1 26 · 19 1 19

x6 − 2x5 + 3x4 + x3 + 8x2 + 9x+ 7 1 1 3 1 3 83 1 83

x6 − x5 + 4x4 − 3x3 + 8x2 − 4x+ 8 1 1 15 1 15 239 1 239

x6 − 3x5 + 10x4 − 15x3 + 21x2 − 14x+ 7 1 1 7 1 7 251 1 251

x6 + 3x4 − x3 + 6x2 + 8 1 1 9 1 9 199 1 199

x6 + 12x4 + 41x2 + 43 2 1 2 1 1 26 · 43 1 43

x6 − 2x5 + 7x4 − 12x3 + 21x2 − 15x+ 13 1 1 3 1 3 379 1 379

x6 − 2x5 + 7x4 − 5x3 + 14x2 − x+ 13 1 1 9 1 9 491 1 491

x6 − x5 + 6x4 − 2x3 + 16x2 − 4x+ 13 1 1 3 1 3 547 1 547

x6 − 2x5 + 9x4 − 10x3 + 23x2 − 9x+ 29 1 1 5 1 5 1051 1 1051

x6 − 3x5 + 9x4 − 12x3 + 15x2 − 12x+ 19 1 1 3 1 3 379 1 379

x6 − 3x5 + 9x4 − 12x3 + 24x2 − 21x+ 19 1 1 5 1 5 523 1 523

x6 − 3x5 + 12x4 − 19x3 + 33x2 − 24x+ 17 1 1 5 1 5 739 1 739

Table 3.2: Defining polynomials for all sextic CM class number one fields K whose Galois closure has Galois group (C2)3 o C3,
such that dKr

+
≤ 108, dk ≤ 104 and tk ≤ 2.
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Summary and discussion

A complex multiplication field (CM-field) of degree 2g is a totally imaginary quadratic
extension of a totally real field of degree g over Q. An abelian variety of dimension g has
complex multiplication if its endomorphism ring contains an order of a CM-field. Let K
be a CM-field of degree 2g over Q and let L be its Galois closure. A CM-type Φ of K
is a subset of Hom(K,L) of cardinality g that contains no embeddings that are complex
conjugates. Let (K,Φ) be a CM-pair, to which we associate a reflex field Kr and a reflex
CM-type Φr. By the first main theorem of CM ([ST61, Main Theorem 1]) a principally
polarized simple abelian variety of dimension g that has CM by the maximal order OK in K
is defined over the Hilbert class field of Kr. An implication of this theorem is that the CM
class group IKr / I0(Φr) is trivial ([Kıl16, Corollary 1.5.7]).

The CM class number one problem asks to determine CM pairs (K,Φ) such that K
has a trivial CM class group. For g = 1 the problem reduces to the usual class number
one problem, which was solved by Heegner [Hee52], Baker [Bak67] and Stark [Sta67]. For
g = 2 (CM-fields of degree 4) the problem was solved by Kılıçer-Streng. For g = 3 it was
solved for sextic CM-fields that contain an imaginary quadratic subfield by Kılıçer [Kıl16].
For g = 6 Somoza [Hen19] solved the problem for the specific case of CM-fields of degree 12
that contain Q(ζ5), where ζ5 is the primitive 5th root of unity.

In this thesis we discuss the CM class number one problem for sextic CM-fields K whose
Galois closure has Galois group (C2)3 o C3. We give relations between the discriminants
and relative class numbers of K, its reflex field Kr and their subfields. We also give a full
ramification table for prime fractional ideals of K and Kr as subfields of L. Furthermore,
we give a bound for dK/dK+ and prove that there exist finitely many CM class number one
fields K in Theorem 3.3.6. We give algorithms for computing these fields in SageMath and
list all CM class number one fields K such that dKr

+
≤ 108, dk ≤ 104 and tk ≤ 2.

With the bounds dK/dK+ ≤ 5.6 · 1026 and tK ≤ 20 in Corollary 3.3.4 we were able to
prove the finiteness result in Theorem 3.3.6. However, these bounds are too large to compute
all CM class number one fields K. For non-Galois quartic CM-fields with CM class number
one, Kılıçer-Streng [KS18, Lemma 3.25] showed that the ramified primes Kr/Kr

+ contribute
to dKr/dKr

+
with squares of prime numbers. For this reason in their case the lower bound

for h∗Kr grows with the product of primes, while in our case the right hand side of (3.6) grows
with the square root of the product prime numbers. Furthermore, for a CM class number one
sextic CM-field K containing an imaginary quadratic subfield, this subfield has class number
one by [Kıl16, Proposition 3.4.1]. This gives tK ≤ 3 and hence a small discriminant bound.
In our case this is not true for k ⊂ Kr, see Table 3.2. This gives a much larger discriminant
bound compared to the non-Galois quartic case or the case where a sextic CM-field contains
an imaginary quadratic subfield.

In Chapter 3 we focused on results for K and h∗K , assuming IKr = I0(Φr). The main
result is that h∗K ∈ {2tK , 2tK−1}, see Theorem 3.2.9. It is not the case that h∗Kr is also a power
of two if K has CM class number one, see Table 3.2. For non-Galois quartic CM-fields K
not only is h∗Kr a power of two by [KS18, Proposition 3.1], but we also have tK = tKr by
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[KS18, Corollary 3.10]. Because this is not the case for sextic CM-fields with Galois closure of
degree 24, we could not give sufficient conditions on h∗Kr such that K has CM class number
one without imposing severe restrictions. Therefore it was not possible to give a bound
for dKr/dKr

+
. Assuming the GRH we give a lower bound for h∗Kr in Appendix B.

The overview of prime decompositions in Table 3.1 could be used in other types of
research. For instance, in [GL10] the authors give a bound on the denominators of Igusa
class polynomials of genus 2 curves with CM on non-Galois quartic CM-fields. Using the
table this could be extended to genus 3 curves with CM on sextic CM-fields with Galois
closure of degree 24.
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Appendices

In Appendix A we assume that the narrow class number of the maximal totally real
subfield K+ of K is odd. Under this additional condition we determine the structure of ClK
and prove that h∗K = 2tK−1. In Appendix B we construct a lower bound for the relative class
number of octic CM-fields, assuming the GRH.

A. Narrow class number of the totally real subfield

Let K be a sextic CM-field whose Galois closure has Galois group (C2)3oC3. We assume
that the the narrow class number of K+ is odd and give the class group structure of K. We
also prove that, if K is a CM class number one field, h∗K = 2tK−1.

Definition A.1. Let F be a number field and let P+
F ≤ PF be the group of principal

fractional ideals of F with a totally positive generator. Then the narrow class group and
narrow class number of F are defined as

Cl+F := IF/P
+
F , h+

F := |Cl+F |.

Lemma A.2. Let F be a totally real number field such that n := [F : Q] and let O×+
F contain

all totally positive elements of unit group O×F . Then the following are equivalent:

(i) PF = P+
F ;

(ii) sign : O×F → (Z/2Z)n is surjective;

(iii) O×,+F = (O×F )2.

Proof. (ii) =⇒ (i) : Let αOF ∈ PF with α ∈ OF . By surjectivity of the map sign there
exists β ∈ O×F such that sign(α) = sign(β). Then sign(αβ) = 1, hence αβ is totally positive.
Since β is a unit, (αβ) = (α) and it is generated by a totally positive element.
(i) =⇒ (ii) : Assume PF = P+

F and extend the sign map to OF . Then (α) ∈ PF for
arbitrary α ∈ OF . There exists β ∈ O+

F such that (α) = (β), so α = uβ for some u ∈ O×F .
Because β is totally positive, sign(β) = (1, · · · , 1). Since sign is a homomorphism, we have
sign(α) = sign(u) sign(β) = sign(u). Because α was chosen arbitrarily, for every i ∈ {±1}n
there exists uα ∈ OF such that sign(α) = sign(uα) = i. This makes sign surjective.
(ii) =⇒ (iii) : The map sign is a homomorphism with ker(sign) = O×,+F . If sign is surjective
then O×F /O

×,+
F
∼= {±1}n. This gives [O×F : O×,+F ] = 2m and because

(O×F )2 ⊂ O×,+F ⊂ O×F ,

the result follows.
(iii) =⇒ (ii) : From Dirichlet’s unit theorem we know that O×F = WF × ε1Z× · · · × εn−1Z,
where the εi are fundamental units. Because F is totally real we have WF

∼= Z/2Z.
Because O×F /(O×F )2 contains all elements of order 2 in O×F , O×F /(O×F )2 ∼= (Z/2Z)n. Be-
cause O×,+F = (O×F )2 this gives O×F /O

×,+
F
∼= (Z/2Z)n. So sign is a surjective homomorphism,

because ker(sign) = O×,+F .
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Proposition A.3. For any number field F of degree g over Q, we have

h+
F = [O×,+F : (O×F )2]hF .

Moreover, every non-trivial element in O×,+F /(O×F )2 is of order 2.

Proof. We have surjective homomorphism

ν : Cl(F )+ → Cl(F )

with kernel PF/P
+
F . So it follows that h+

F = [PF : P+
F ]. If (α) ∈ PF for some α ∈ OF ,

then (α2) ∈ P+
F since α2 � 0. So every non-trivial element in PF/P

+
F is of order 2. By

Lemma A.2 have [PF : P+
F ] = [O×,+F : O×2

F ], so the statement follows.

Corollary A.4. If F is a totally real cubic number field, then either hF = h+
F or h+

F = 4hF .

Proof. First assume h+
F is odd. Since [O×,+F : (O×F )2] is always a power of 2, it follows

from Proposition A.3 that h+
F = hF . Now assume h+

F is even and hF 6= h+
F . Then we

have [O×,+F : (O×F )2] = 2l for l ≥ 1. The quotient group O×F /(O×F )2 contains all elements of
order 2 in O×F . Because F is a totally real cubic field, we have O×F /(O×F )2 ∼= (Z/2Z)3. This
gives

[O×F : O×,+F ][O×,+F : (O×F )2] = 23.

Here [O×F : O×,+F ] = 2, because for every η ∈ O×F we have η2 ∈ O×,+F . Then the above
gives [O×,+F : (O×F )2] = 4 and the result follows.

Lemma A.5. [LLO99, Page 395] Let K be a sextic CM-field that does not contain an
imaginary quadratic subfield. If h+

K+
is odd, then QK = 1.

Proof. By Lemma 2.4.1 we have µK = 2. Let K = K+(
√
α) for some totally negative

α ∈ OK+ such that αOK = a2 for some a ∈ IK . Suppose we are in case (i)-2(a) of [Lem95,
Theorem 1], with a principal and QK = 2. Then there exists β ∈ O×K such that a = βOK .
Then (α) = a2 = (β2), hence α = uβ2 for some totally negative u ∈ O×K+

. Then

K = K+(
√
uβ2) = K+(

√
u).

But since h+
K+

is odd, we have that −u = v2 for some v ∈ O×K+
. Then

K = K+(
√
−v2) = K+(

√
−1).

Because K does not contain an imaginary quadratic subfield, this is a contradiction. So we
must be in case (i)-2(a) and QK = 1.

Proposition A.6. Assume IKr = I0(Φr) and let h+
K+

be odd. Then h∗K = 2tK−1.

Proof. Lemma A.5 gives that QK = 1, so by Lemma 3.2.2 we have [PHK
K : PK+ ] = 2. Then

by (the proof of) Corollary 3.2.9 we have h∗K = 2tK−δK , with δK = 1 if [PHK
K : PK+ ] = 2.

We will now determine the structure of ClK . For a CM-field F with maximal totally real
subfield F+, let iF/F+ : ClF+ → ClF be the natural map between class groups. That is, for a
prime p ∈ IF+ it gives iF/F+([p]) = [pOF ].
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Lemma A.7. Let K be a sextic CM-field that does not contain an imaginary quadratic
subfield. Then iK/K+ is injective.

Proof. We combine the proofs of [Lou94b, Statement 2.(1) and (2)] and adapt these to sextic
CM-fields that do not contain an imaginary quadratic subfield. Let p ∈ IK+ be a prime in
the kernel of iK/K+ such that pOK = (γ) for some γ ∈ K×. Then γOK = γOK , so there
exists η ∈ O×K such that γ = ηγ. Then

ηη =
γγ

γγ
= 1,

so we have η ∈ WK . By Lemma 2.4.1 we have WK = {±1}. First assume η = 1, then γ = γ
and hence γ ∈ K+. This implies p = γOK+ ∈ PK+ , so iK/K+([p]) = [OK ] is the trivial
element in ClK .
Now assume η = −1, then γ = −γ. Then we have

γ2 = −γγ = −NK/K+(γ) ∈ K+.

From Section 2.1 we have K = K+(
√
−δ0) for δ0 := mα0, where m ∈ Z>0 and α0 ∈ K+.

Define β := γ
√
−δ, then

β = −γ
√
−δ = γ

√
−δ = β,

so β ∈ K+. We have β2 = −δγ2, so δ = −β2

γ2 ∈ K+.

It follows that δOK+ = β2

γ2OK+ is a square ideal. Then NK+/Q(δ) is a square in Q, so K
is normal over Q. This is a contradiction, hence η = 1. Then the kernel of iK/K+ is trivial
and the result follows.

For ClK the class group of a number fieldK, the 2-class group ClK [2] of ClK is its subgroup
containing all elements of at most order 2. The 2-rank of ClK is the order of ClK [2].

Proposition A.8. Let K be a sextic CM-field that does not contain an imaginary quadratic
subfield. Assume that h+

K+
is odd, then the 2-rank of ClK is tK − 1.

Proof. Since h+
K+

is odd, by Proposition A.3 we must have that hK+ is odd as well

and O×+
K+

= O×2
K+

. Since we have

O×2
K+
⊂ O×+

K+
∩NK/K+(K×) ⊂ O×+

K+
,

also O+
K+
∩ NK/K+(K×) = O2

K+
. Moreover, by Lemma A.7 the map i(K/K+) is injective

and by Lemma A.5 we have QK = 1. Then by [Lou96, Proposition 9] the 2-rank of ClK
is tK − 1.

Theorem A.9. Let K be a sextic CM-field whose Galois closure has Galois group (C2)3oC3

and assume IKr = I0(Φr). Let h+
K+

be odd. Then ClK ∼= ClK+ ×(Z/2Z)tK−1, where ClK+ is
a product of odd order subgroups.
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Proof. By Lemma A.7 we have that ClK+ is isomorphic to a subgroup of ClK , which we will
simply denote by ClK+ . If h+

K+
is odd, then hK+ is odd. This gives

ClK [2] ∩ ClK+ = {[OK ]}

and hence
ClK+ ⊕ClK [2] ⊂ ClK .

By Proposition A.8 the 2-rank of ClK is tK − 1, so ClK [2] ∼= (Z/2Z)tK−1 and ClK [2] is
isomorphic to a subgroup of ClK/ClK+ . On the other hand we have h∗K Proposition A.6, so

ClK/ClK+
∼= ClK [2] ∼= (Z/2Z)tK−1.

B. Lower bound for the relative class number of octic CM-fields

We give a lower bound for the relative class number of a non-normal octic CM-field F
with Galois group (C2)3 o C3 or (C2)3 o S3.

Define HF := Gal(F/F+) and

IHF
F := {a ∈ IF : a = a}, PHF

F := PF ∩ IHF
F .

By Lemma 3.2.2 we have

h∗F = 2tF
[IF : IHF

F PF ]

[PHF
F : PF+ ]

.

Assuming the generalised Riemann Hypothesis (GRH) we construct a lower bound for h∗F
and use this to obtain a bound for dF+ . Let Res(ζF ),Res(ζF+) denote the residues of respec-
tively ζF (s) and ζF+(s) at s = 1. We have the following class number identities:

hF =
µFRes(ζF )

√
dF

24π4RF

, hF+ =
Res(ζF+)

√
dF+

23RF+

(12)

Proposition B.1. [Lou11, Theorem 1] Let F be a totally real number field of degree 4
over Q. Then

Res(ζF ) ≤ 1

48
log3(dF ).

Theorem B.2 (J.Oesterlé). Let F be a number field not equal to Q. Assume the Riemann
Hypothesis for ζF , then

Res(ζF ) ≥ e−3/2√
log(|dF |)

exp

{
−1√

log(|dF |)

}
.
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Theorem B.3. Let F be an octic CM-field, then

h∗F ≥
µF
146

√
dF/dF+√

log(dF ) log3(dF+)
exp

{
−1√

log(dF )

}
.

Proof. By Proposition 2.4.4 we have

RF

RF+

=
23

QF

. (13)

Then

h∗F =
µFRF+

2π4RF

Res(ζF )

Res(ζF+)

√
dF
dF+

=
µFQF

16π4

Res(ζF )

Res(ζF+)

√
dF
dF+

.

Assume the Riemann Hypothesis for ζF . Applying Proposition B.1 to Res(F+) and
Theorem B.2 to Res(F ) gives the lower bound

h∗F ≥
µF
146

√
dF/dF+√

log(dF ) log3(dF+)
exp

{
−1√

log(dF )

}
.

In Corollary B.4 we give a lower bound for h∗F that only depends on dF/dF+ .

Corollary B.4. Let F be as in Theorem B.3. Assume the Riemann Hypothesis for ζF , then

h∗F ≥
√
dF/dF+

73
√

2 log
(
dF/dF+

)
log3(dF/dF+)

exp

 −1√
log
(
dF/dF+

)


Proof. We have that dF+ ≤ dF/dF+ and dF ≤ d2
F/d

2
F+

, hence

1√
log(dF )

≥ 1√
2 log

(
dF/dF+

) .
Moreover dF/dF+ ≤ dF , so

exp

 −1√
log
(
dF/dF+

)
 ≥ exp

{
−1√

log(dF )

}
.

Applying these to the bound in Theorem B.3 gives

h∗F ≥
µF
√
dF/dF+

146
√

2 log
(
dF/dF+

)
log3(dF/dF+)

exp

 −1√
log
(
dF/dF+

)
.

Remark B.5. If Kr is the octic reflex field of a sextic CM-field K with Galois closure of
degree 24 over Q and we assume IKr = I0(Φr), then h∗Kr is not generally a power of 2. For
instance, see Table 3.2. For this reason we could not use the lower bound in Corollary B.4
to give a bound on dKr/dKr

+
and tKr in Chapter 3.
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