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Abstract

Bézout’s theorem states that, given two projective curves, the number of intersection points is
at most the product of their degrees. Moreover, we have equality if we work over an algebraically
closed field. However, when looking at the intersection of two affine curves, we often find that
the number of intersection points we expect by Bézout’s theorem is higher than we can perceive
by plotting them, even when working over an algebraically closed field. The latter shows that
the hypothesis that we work over a projective space is essential to have a uniform result, i.e., one
that depends only on the degrees of the curves. We can go from the affine space to the projective
space by compactifying the affine space. One possible compactification of the affine plane is the
projective plane P2. It is natural to wonder what kind of results one gets when considering other
compactifications, such as P1×P1. In contrast to P2, where we have one line at infinity, in P1×P1

we have two lines at infinity. This will change the intersection behaviour of curves. Using divisors
on surfaces we will discover a version of Bézout’s theorem in P1 × P1. Before this can be done, we
will learn about plane curves and their intersection behaviour to prove Bézout’s theorem in the
classical sense. At the end of the paper, the two versions of Bézout’s theorem are compared and
we will shed a light on how the techniques used to find Bézout’s theorem in P1 × P1 can be used
to find a version of Bézout’s theorem on even more surfaces.
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Introduction

The fundamental theorem of algebra states that every polynomial in one variable f(x) over an al-
gebraically closed field k of degree n has exactly n roots, when counted with multiplicity. This fact
admits an interpretation in terms of the so-called algebraic curves. Indeed, the graph of f , which is
given by the zeros of g(x, y) = y − f(x) is an algebraic curve and the fundamental theorem of algebra
tells us that it intersects the algebraic curve y = 0 exactly n times, counting multiplicities.

We would like to generalize this result in a way that our second curve y = 0 could also be any curve
h(x, y) = 0. This is where Bézout’s theorem comes into play. It tells us the following:

Let f and g be two algebraic curves that do not share an irreducible component. Let m and n be the
degrees of f and g respectively. Their corresponding projective curves F and G intersect in exactly
mn points, assuming we work in an algebraically closed field.

This result is not always clear when graphing the curves, as we will see at the start of Chapter 2.
We might find that our curves do not intersect in our field k. This is easily solved by only working
in an algebraically closed field. Some curves do not intersect transversally at every point and hence
what seems one intersection point might be two or even more. This can be solved by defining the
intersection multiplicity well.

Most interesting is our third problem. This problem deals with curves not intersecting in the affine
plane, but in the projective plane. As an example, consider the two affine curves defined by f(x, y) =
x + 1 and g(x, y) = x2 − y. According to Bézout’s theorem, their projective curves should intersect
at two points. However, f and g only intersect in one point in the affine plane, namely (−1, 1), and
hence their corresponding projective curves will also only intersect once in the affine plane. To make
sure that the projective curves satisfy Bézout’s theorem, we do a compactification of the affine plane,
in this case the compactification P2. The idea is to extend the affine plane by adding points at infinity.
However, two non-parallel lines should not meet at infinity, as they already satisfy Bézout’s theorem.
Hence we add one point at infinity for each direction in the affine space.

In Chapter 1 of this thesis we will give background information that is needed throughout the whole
thesis, but more specifically to understand the concepts of Chapter 2. In this chapter we look at the
theory used to prove Bézout’s theorem in P2 and then prove it in Chapter 3. In this way we can get
used to the definitions and theorems in an accessible setting.

After we have proven Bézout’s theorem in P2, we start looking at the problem of intersecting curves
more generally. In order to do this, we need to work in a specific topological space, related to algebraic
varieties. We will do this in Chapter 4. We also introduce a more general way of looking at curves in
Chapter 5, namely the concept of divisors.

The focus of the last two chapters will be to construct versions of Bézout’s theorem in both P2 and
P1×P1. We will do the former in Chapter 6 and the latter in Chapter 7. In Chapter 7 we will moreover
compare the two statements of Bézout’s theorem and look at how the techniques used to construct a
version of Bézout in P1 × P1 can be used to find a version of Bézout on other surfaces.
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1 Background

1.1 Projective space

Before we can start talking about any sort of curves, we will first introduce the projective space. I’d
like you to imagine that you are standing on a train track. Since you’ve probably been on a train, you
know the rails will never meet each other, as they are parallel. However, from the position you are in
now, they do seem to meet very far in the distance in a point, of which you cannot exactly pinpoint
its location. This is the intuition behind the point at infinity.

Going back to the affine plane, we find ourselves in the same situation. It appears as though two
parallel lines never meet anywhere. In order to get a more uniform theory on the intersection of
curves, we would like that any pair of distinct lines meet in a single point. So, this means that we
need to add points at infinity to the affine plane. The question that arises is: Would one such point
at infinity be enough? The answer is no. Consider the following situation.

We have two parallel lines, L1 and L2, which intersect in a point P at infinity. Now, let there be
another set of parallel lines L′1 and L′2 meeting at infinity in P ′. Now suppose that L1 and L′1 are not
parallel and they meet in a point Q different from P and P ′. If we had that P = P ′, L1 and L′1 would
moreover meet in P . A consequence of Bézout’s theorem is that any two lines can only meet in one
point, which contradicts the fact from before. So P and P ′ are distinct. Hence we add one point at
infinity in each direction of the affine plane [6, App. A.1].

So, the projective plane is actually the affine plane together with a set containing a point for each
direction in the affine plane. The set of all points at infinity forms a projective line, where each
direction of a line through the origin in affine space corresponds to a point on the projective line. In
good notation we would write:

P2 = A2 ∪ P1.

We will now dive deeper into how the projective plane actually works. From here on, we work over an
algebraically closed field k.

Remark 1. A field k is called algebraically closed if every polynomial f ∈ k[x] has at least one root.
For example, R is not algebraically closed, as x2 +1 = 0 does not have a root in R. On the other hand,
C is algebraically closed.

Recall that the affine space denoted by An = Ank is simply equal to kn. We define that projective plane
as:

P2 = (k3 \ {0})/ ∼,

where the equivalence relation is defined as

Definition 1.1. [2, Not. 3.3]

[x, y, z] ∼ [x′, y′, z′] ⇐⇒ ∃λ ∈ N such that x = λx′, y = λy′ & z = λz′.

We denote the equivalence class of the point [x, y, z] by [x : y : z] ∈ P2. We call these coordinates
x, y, z the homogeneous coordinates of the point [x, y, z].

Looking at the projective plane geometrically, we would like to embed the affine plane A2 = k2 in the
vector space k3 by adding a new coordinate equal to 1. We do this with the following map:

φ : A2 → k3, [x, y]→ [x, y, 1].

To make it more visual, we will look at how this situation works in the projective line (see Figure 1).
Here the blue dot represents the point [x, y] and the yellow dot represents the point [x′, y′]. Given
any line through the origin, except for the line y = 0, we map all points on that line to the point of
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intersection with the red line, with y-coordinate equal to 1. Indeed, when two points lie on the same
line, they only differ by a factor λ and hence lie in the same equivalence class given by Definition 1.1.
This works the same in the projective plane, but here our line at height one will become a plane at
height one.

Figure 1: The projective line as a visual representation.

Let us go back to the projective plane again. Looking at the projective plane like this, we are missing
the points with z-coordinate equal to 0, or the plane z = 0. These points represents the so-called
points at infinity. So, in conclusion, in the projective plane, there are two types of points. First the
ones with homogeneous coordinates [x, y, 1], for any value of x and y. Second are the points at infinity
with homogeneous coordinates [x, y, 0].

This idea is the same as above when talking about the projective plane as the union of the affine plane
with its directions. The points with homogeneous coordinates [x, y, 1] are in bijection with the affine
plane A2 and the points with homogeneous coordinates [x, y, 0] are in bijection with the projective line
P1.

1.2 Affine plane curves

Since we are not only interested in the intersection between lines, but in the intersection of any two
curves, we will now define affine plane curves. They are given by the zeros of a polynomial, so in order
to define them, we first need to define what such a zero set is.

Definition 1.2. [2, Def 1.3] Given a subset S ⊂ k[x1, . . . , xn] of polynomials we call

V (S) := {P ∈ An : f(P ) = 0 for all f ∈ S} ⊂ An

the affine zero locus of S.
Such subsets V (S) are called affine varieties. If S is a finite set, S = {f1, . . . , fk}, we also write
V (S) = V ({f1, . . . , fk}) = V (f1, . . . , fk).

Definition 1.3. [2, Rem. 3.4] An affine plane curve C over k is given by the zero locus of a polynomial
in 2 variables. This is denoted as

C = V (f) = {(x, y) ∈ A2
k : f(x, y) = 0}.

The degree of the curve C is equal to the degree of the polynomial f .

Notation. As we go on, we will refer just to the polynomial f when talking about an affine curve.
This is intended to avoid clumsy notation. The curve is still defined as in Definition 1.3 and whenever
it is desirable for clarity we will use the notation from above.

Example 1. Here our field k is the real numbers R. The affine curve that you can see in Figure 2a is
determined by the polynomial f(x, y) = y − x2 and the affine curve that you can see in Figure 2b is
determined by the polynomial g(x, y) = y − x.

Definition 1.4. [7, Def 5.1.1] A polynomial f ∈ k[x, y] is called irreducible if it only allows trivial
factorisations. In other words, no matter how you factorise the polynomial, one of the elements of the
factorisation must be a unit in k[x, y].

Example 2. Let f(x) = x2 + 1. The polynomial f is irreducible over R, as it is a polynomial of degree
2 without any roots. However, in C[x], we have the decomposition x2 + 1 = (x− i)(x+ i). Since x− i
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(a) The parabola (b) The identity line

Figure 2: Two examples of affine plane curves.

and x+ i are not units in C[x], f is not irreducible over C.

Definition 1.5. [2, Def 1.5] Let f(x, y) be a polynomial and C = V (f) its corresponding affine curve.

• The curve C is irreducible if f(x, y) is an irreducible polynomial in k[x, y].

• If f = fa11 · . . . fann is the irreducible decomposition of f as a polynomial, we also call this
the irreducible decomposition of the curve C. The curves f1, . . . , fn are called the irreducible
components of f and a1, . . . an their multiplicities.

• The curve C is called reduced if all its irreducible components have multiplicity 1.

1.3 Properties of affine plane curves

In this section we will treat several properties of zero loci of affine plane curves.

Remark 2. [2, Rem. 1.4] For two polynomials f, g ∈ k[x, y] we have

a. V (f) ∪ V (g) = V (fg),

b. V (f) ∩ V (g) = V (f, g).

Lemma 1.6. [2, Lem 1.11] Let f be an affine curve.

a. If k is algebraically closed, V (f) is infinite.

b. If k is infinite, then A2\V (f) is infinite.

Proof. First note that when k is algebraically closed, it is moreover infinite. If k = {c1, . . . cn} was
finite, then the polynomial g =

∏n
i=1(x − ci) + 1 would have no zero and k would no longer be

algebraically closed. The opposite is not true.

As f is a nonconstant polynomial, it has positive degree in at least one of the variables x or y. Without
loss of generality we may assume this is x, so let f = anx

n + · · ·+ a0 for some a0, . . . , an ∈ k[y], with
n > 0 and an 6= 0.

As an ∈ k[y] is nonzero, it has finitely many zeros. Hence there are infinitely many y ∈ k such that
an(y) 6= 0. For each such y, the polynomial f(x, y) is nonconstant in x.

In case a this means that there is an x ∈ k such that f(x, y) = 0, hence giving infinitely many
solutions. In case b this means that there is an x ∈ k with f(x, y) 6= 0, as f(x, y) has only finitely
many solutions.

Proposition 1.7. [2, Prop 1.12] If two affine curves f and g have no common component, i.e. their
decompositions into irreducible factors share no common factor, then their intersection V (f, g) is finite.
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Proof. By assumption, f and g are coprime in k[x, y]. We want to argue that f and g are also coprime
in k(x)[y]. Suppose this is not the case, and f and g have a common component in k(x)[y]. This would
mean, that after clearing denominators we have

af = Hf ′ ag = Hg′,

for some H, f ′, g′ ∈ k[x, y] of positive y-degree and nonzero a ∈ k[x]. But this means that every
irreducible factor of a must divide either H or both f ′ and g′ in k[x, y]. Replacing H or both f ′ and
g′ by these quotients we get

f = Hf ′ g = Hg′,

where H, f ′, g′ ∈ k[x, y], of positive y-degree. However, this would mean that f and g are not coprime
in k[x, y], which is a contradiction.

Since k(x)[y] is a principal ideal domain and f and g are coprime, we can write 1 as a linear combination
of f and g with coefficients in k(x)[y] by Bézout’s lemma. So we have that 1 = D

C f + E
C g and after

clearing denominators we get C = Df + Eg for some D,E ∈ k[x, y] and a nonzero C ∈ k[x].

Then, for any P ∈ V (f, g) we have that

C(P ) = D(P )f(P ) + E(P )g(P ) = D(P ) · 0 + E(P ) · 0 = 0,

so the x-coordinate of all points P ∈ V (f, g) is restricted to the finitely many zeros of C. This process
is similar for y, so when multiplying the two results together we still find only finitely many points in
the intersection of f and g.

Notation. If it is clear from the context what is meant, we will write

a. P ∈ f instead of P ∈ V (f), i.e. f(P ) = 0.

b. f ∩ g instead of V (f, g).

1.4 Projective plane curves

If we want to define projective plane curves, we must keep something in mind. Since any point
in the projective plane can be represented by different homogeneous triples, we would like to only
work with functions that give the same output, no matter the factor λ. In other words, we only
want polynomials F (X,Y, Z) such that when F (a, b, c) = 0, also F (λa, λb, λc) = 0. We call these
polynomials homogeneous. This gives us the following definition.

Definition 1.8. [6, Sect. A.2] Let F ∈ k[X,Y, Z] be a polynomial. We say that F is a homogeneous
polynomial of degree d ∈ Z>0 if F is of the form

F =
∑

i≥0,j≥0

FijX
iY jZd−i−j ,

where Fij are coefficients in k. Moreover, a homogeneous polynomial satisfies

F (λX, λY, λZ) = λdF (X,Y, Z).

We are now ready to define a projective plane curve.

Definition 1.9. [2, Def 3.8] For a subset S ⊂ k[x1, . . . , xn, xn+1] of homogeneous polynomials we call

V (S) := {P ∈ Pn : F (P ) = 0 for all F ∈ S}

its projective zero locus.
Subsets of Pn of this form are called projective varieties.
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Definition 1.10. [6, Sect. A.2] A projective plane curve D over k is given by the zero locus of a
nonconstant homogeneous polynomial in 3 variables. This is denoted as

D = V (F ) = {(X,Y, Z) ∈ P2
k : F (X,Y, Z) = 0}.

The degree of the curve D is the degree of the polynomial F .

Notation. Similar to affine curves, we will refer to the homogeneous polynomial F (X,Y, Z) when
talking about a projective curve. Moreover, if not indicated else, lower case letters will from now on
refer to affine curves and capital letters will refer to projective curves. If clarity is needed, it will be
stated which type of curves we are talking about.

Remark 3. The results from Remark 2, Lemma 1.6 and Proposition 1.7 also hold for homogeneous
polynomials and projective curves.

Example 3. Given below are two curves D1 and D2 in k[x, y], both of degree 2.

D1 : X2 + 2XY + Y Z + 4Z2 D2 : X2 + 2XY + Y Z + 4Z2 + 8X.

We would like to determine if these curves are projective curves. As you can see, in D1, all powers
add up to 2, so we expect it to be homogeneous. In D2, our last term only has a power of 1, so it
should not be homogeneous. Let us check this: Take two points [1 : 1 : 1] and [2 : 2 : 2], which are in
the same class in P2. We have that

D1(1, 1, 1) = 1 + 2 + 1 + 4 = 8 D2(1, 1, 1) = 1 + 2 + 1 + 4 + 8 = 16

D1(2, 2, 2) = 4 + 8 + 4 + 16 = 32 = 22 · 8 D2(2, 2, 2) = 4 + 8 + 4 + 16 + 16 = 48 6= 22 · 16 = 64.

Indeed, we see that the polynomial given by the curve D1 is a homogeneous polynomial and the
polynomial given by curve D2 is not a homogeneous polynomial. Hence we must conclude that the
curve D1 is a projective curve and that the curve D2 is not a projective curve.

Definition 1.11. We define irreducible/reducible/reduced projective curves as well as irreducible com-
ponents and their multiplicities in the same way as for affine curves in Definition 1.5.

Lemma 1.12. [2, Ex. 3.11] Every homogeneous polynomial in two variables over an algebraically
closed field k can be written as a product of linear polynomials.

1.5 Homogenization

The question we would like to answer now: How are affine and projective curves related to each
other? The processes of transforming an affine curve into a projective curve and vice versa are called
homogenization and dehomogenization respectively.

Definition 1.13. [2, Const. 3.13] The homogenization of a polynomial

f(x, y) =
∑
i+j≤d

aijx
iyj

of degree d is defined to be

fh(X,Y, Z) = F (X,Y, Z) :=
∑
i+j≤d

aijX
iY jZd−i−j .

Indeed, following Definition 1.8, the resulting polynomial is indeed homogeneous.

When we are given a homogeneous polynomial, we would like to be able to go back to a non-
homogeneous polynomial again. This process is called dehomogenization. We can dehomogenize
with respect to every variable, depending on what we are trying to achieve.

Definition 1.14. [2, Const. 3.13] The dehomogenization with respect to the coordinate Z of a homo-
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geneous polynomial

F (X,Y, Z) =
∑

i+j+k=d

aijkX
iY jZk

of degree d is defined to be

F i(x, y) = f(x, y) := F (X,Y, 1) =
∑

i+j+k=d

aijkx
iyj .

Example 4. Let C : x2 − y2 − 1 = f(x, y) = 0. If we want to transform into a projective curve, we
apply the process of homogenization:

D : X2Y 0Z(2−2−0) −X0Y 2Z(2−0−2) −X0Y 0Z(2−0−0) = X2 − Y 2 − Z2 = F (X,Y, Z) = 0.

If we would now apply the process of dehomogenization as described in Definition 1.14, we would get:

C : f(x, y) = F (X,Y, 1) = x2 − y2 − 1,

which is indeed the curve we started with.

In Definitions 1.13 and 1.14 above we have written the notations fh and F i for the process of homog-
enization and dehomogenization respectively. These notations will be used in the rest of the paper
when referring to the homogenization or dehomogenization of a specific curve. In what follows, the
reader will find formal definitions of these notions.

Definition 1.15. [2, Rem. 3.15] For a projective curve D, its affine set of points is

Vp(D) ∩ A2 = Va(F (X,Y, 1))

= Va(F i).

So we will call F (X,Y, 1) = F i the affine part of F (X,Y, Z).

Notation. [2, Not 2.18] For a polynomial f ∈ k[x, y] of degree d and i = 0, . . . , d, we define the degree
i-part of f to be the sum of all term of f of degree i. We can then write f = f0 + · · ·+ fd, so all fi are
homogeneous. We call f0 the constant part of f , f1 the linear part of f and fd the leading part of f .

Definition 1.16. [2, Rem 3.15] Given an affine curve f , we call the curve fh = F its projective
closure. By Definition 1.13 it is a projective curve whose affine part is f , but does not contain the line
at infinity as a component.

However, F may contain points at infinity. If f = f0 + · · ·+ fd is the decomposition into homogeneous
parts, we have F = zdf0 + zd−1f1 + · · · + zfd−1 + fd and hence F (X,Y, 0) = fd. So the points at
infinity of f are given by the projective zero locus of the leading part of f .
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2 Intersection multiplicities

Now that we know how curves are defined, we are interested in the intersection properties of curves.
Let us first start with a general example. Let C1 and C2 be two affine curves of degree d1 and d2
respectively. The curves are given by the polynomials:

C1 : f1(x, y) = 0 deg(C1) = d1,

C2 : f2(x, y) = 0 deg(C2) = d2.

Our question is now: At how many points do these curves intersect? The points in the intersection
C1 ∩ C2 are the solution to

f1(x, y) = f2(x, y) = 0. (1)

We now interpret f1 as a polynomial in the variable y with coordinates in k[x]. As f1 has degree d1,
we expect d1 roots y1, . . . , yd. We can now substitute each of these roots in our polynomial f2, to find
d1 equations for x, namely

f2(x, y1) = 0, f2(x, y2) = 0, . . . , f2(x, yd1) = 0.

These polynomials are all polynomials in the variable x. Since they all have degree d2, each polynomial
has d2 roots. So we should get d1d2 pairs that satisfy Equation 1. Hence we expect that #(C1∩C2) =
d1d2.

However, although that is true in some cases, there are also many situations in which we seem to
run into problems. We will now treat examples of different cases where the result from above doesn’t
necessarily hold.

Examples 5 to 7 are based on examples from appendix A.3 from Silverman [6].

Example 5 (Curves only intersect in complex space). Let f(x, y) = x+ y+ 2 and g(x, y) = x2 + y2− 1.
From the reasoning above we expect these curves to have 2 intersection points, but in Figure 3a we
can see that they seem to not intersect at all. Indeed, when solving the equation f(x, y) = g(x, y) = 0,
we find the solutions (

−1 +

√
2

2
i,−1−

√
2

2
i

)
,

(
−1−

√
2

2
i,−1 +

√
2

2
i

)
,

which lie in the complex plane. Hence we always need to work in an algebraically closed field.

Example 6 (Curves intersect twice in the same point). Let h = x + y − 2 and k = x2 + y2 − 2. We
again expect 2 intersection points, but Figure 3b shows us that they only intersect at one point. This
means we need to find a way to count intersection points properly.

Example 7 (Curves intersect in points at infinity). Let m = x + 1 and n = x2 − y. Again, we expect
#(m ∩ n) = 2, but looking at Figure 3c we again see one point of intersection. However, these curves
also intersect in a point at infinity, so we need to find a way to also take these points into account.

In the rest of this section, we will explain in detail how the intersection multiplicity is defined, discuss
several properties of it and give an algorithm on how to calculate the intersection multiplicity explicitly.
We will then relate these concepts to tangents and multiplicities of curves. Since the intersection at a
given point is a local property, most of the definitions and other statements in this chapter will only
be treated in the affine case. If needed, we will explain how to translate these concepts into projective
space.
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(a) Intersection of the
curves f and g.

(b) Intersection of the
curves h and k.

(c) Intersection of the
curves m and n.

Figure 3: Examples of missing intersection points.

2.1 Intersection multiplicity and its properties

Definition 2.1. [2, Def 2.1] Let P be a point in the affine plane A2.

1. We define the local ring of A2 at P as

OP := OA2,P =

{
f

g
: f, g ∈ k[x, y] with g(P ) 6= 0

}
⊂ k(x, y).

2. We can define a well-defined ring homomorphism

φP : OP → k, φP

(
f

g

)
=
f(P )

g(P )

called the evaluation map. Its kernel is given by:

MP := MA2,P :=

{
f

g
: f, g ∈ k[x, y] with f(P ) = 0 and G(P ) 6= 0

}
.

Definition 2.2. For any point P = (x0, y0, 1) ∈ P2 there is an isomorphism

OP2,(x0,y0,1) → OA2,(x0,y0),
f

g
7→ f i

gi
,

where f i, gi denote the dehomogenization of the curves as defined in Definition 1.15.
Hence the local ring in projective space is defined the same as in affine space. However, f and g are
required to be homogeneous and of the same degree. Moreover, note that here OP ⊂ k(x, y, z) instead
of k(x, y).

Definition 2.3. [7, Def 2.2.8] Let f1, f2, . . . fn ∈ k[x, y]. The ideal generated by f1, f2, . . . fn is defined
as

〈f1, f2, . . . fn〉 := {x1f1 + x2f2 + · · ·+ xnfn : x1, x2, . . . xn ∈ k[x, y]}.

Definition 2.4. [2, Def 2.3] For a point P ∈ A2 and two curves f and g we define the intersection
multiplicity of f and g at P as

IP (f, g) := dim(OP /〈f, g〉),

where 〈f, g〉 is defined as in Definition 2.3 above. Here dim denotes the dimension as a k-vector space.
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Example 8. Let f = y − x2 and g = y + x2. Our only point of intersection is P = (0, 0). Then

O(0,0) =

{
h

l
: h, l ∈ k[x, y] : l(0, 0) 6= 0

}
=

{
h

l
: h, l ∈ k[x, y] : l = c+ l′

}
,

where c 6= 0 and l any curve with deg(l′) ≥ 1 and l′(0) 6= −c. Moreover,

〈f, g〉 = 〈y − x2, y + x2〉 = 〈y − x2, y + x2 + (y − x2)〉
= 〈y − x2, 2y〉 = 〈y − x2, y〉 = 〈−x2, y〉 = 〈x2, y〉.

So, in O(0,0)/〈f, g〉 we send y to 0 and x2 to 0. Hence any term of y and any term of x with a power
higher than or equal to 2 will vanish. We conclude that a basis for this space is {1, x}. Hence the
intersection multiplicity of f and g at (0, 0) is equal to 2.

Remark 4. [2, Rem. 2.4] The intersection multiplicity has the following properties:

a. It is symmetric, i.e. we have that

IP (f, g) = IP (g, f)

for all f and g.

b. For all f, g and h we have that 〈f, g + fh〉 = 〈f, g〉 and hence

IP (f, g + fh) = IP (f, g).

Lemma 2.5. [2, Lem. 2.5] Let P ∈ A2 and let f and g be two curves. We have

a. IP (f, g) ≥ 1 if and only if P ∈ f ∩ g.

b. IP (f, g) = 1 if and only if 〈f, g〉 = MP in OP .

Proof. First assume that f(P ) 6= 0. Then f is a unit in OP and hence 〈f, g〉 = OP , i.e. IP (f, g) = 0,
as dim(OP /OP ) = 0. Moreover, we have that P /∈ f and f 6= Mp, which proves both (a) and (b). The
reasoning for g(P ) 6= 0 is similar.

So now assume that f(P ) = g(P ) = 0, i.e. P ∈ f ∩ g. The evaluation map at P (Definition 2.1.2)
induces a well defined and surjective map ψ : OP /〈f, g〉 → k. Since dim(k) ≥ 1 we also have that
dim(OP /〈f, g〉) ≥ 1, proving part a. We have that IP (f, g) = 1 if and only if the map ψ is an
isomorphism, i.e. if it is moreover injective and hence its kernel is {0}. This then implies that the
kernel of the evaluation map is precisely 〈f, g〉, proving part b.

Corollary 2.6. [2, Exercise 2.7] Let f and g be two curves through a point P ∈ A2. If f and g have
a common component through P , we have that IP (f, g) =∞.

Before we can define more properties of the intersection multiplicity, we first need to explain the
following construction.

We say that a sequence

0→ U
ϕ−→ V

ψ−→W → 0

of linear maps between vector spaces (where 0 denotes the zero vector space) is exact if the following
hold:

1. ker(ϕ) = 0,

2. im(ϕ) = ker(ψ),

3. im(ψ) = W .

13



These properties imply that

dim(U) + dim(V ) = dim(W ).

Proposition 2.7. [2, Prop 2.5] Let P ∈ A2 and let f, g and h be three curves.

1. If f and g have no common component through P , then there is an exact sequence

0→ OP /〈f, h〉
g−→ OP /〈f, gh〉

π−→ OP /〈f, g〉 → 0,

where π is the natural map.

2. IP (f, gh) = IP (f, g) + IP (f, h).

Now, using property 2 of Proposition 2.7 and the properties discussed before in Remark 4 and Lemma
2.5, we will now propose an algorithm to calculate the intersection multiplicity.

Algorithm 2.8. Let f and g be any two curves with f(0, 0) = g(0, 0) = 0. If f(x, y) and g(x, y)
intersect in P = (x0, y0), we shift coordinates to x′ = x−x0 and y′ = y− y0. We then have two cases:

1. If f and g both contain a monomial independent of y, we will write

f = axm + (other terms)

g = bxn + (other terms)

for some a, b ∈ K∗ and m,n ∈ N, where without loss of generality we have m ≥ n. We then set

f ′ := f − a

b
xm−ng

By Remark 4b we then have that I0(f ′, g) = I0(f, g). As f ′(0) = g(0) = 0, we can repeat the
algorithm recursively.

2. If, however, f or g does not contain a monomial independent of y, without loss of generality take
f , we can write f = yf ′ and we find by Proposition 2.7.2 that

I0(f, g) = I0(y, g) + I0(f ′, g)

To calculate I0(y, g), note that by Remark 4b we can remove all multiples of y from g, so we
replace g by g(x, 0). Then we can take out the lowest power of x, i.e. the multiplicity m of 0 and
write g(x, 0) = xmh, with h nonzero at the origin. Now we find that

I0(y, g) = I0(y, xmh)

= I0(y, xm) + I0(y, h)

= mI0(y, x) + I0(y, h)

= m

In other words, it is equal to the lowest power of x in a term of g independent of y. For I0(f ′, g),
if f ′ does not vanish at 0 then I0(f ′, g) = 0 by Lemma 2.5a. If f ′(0) = 0 we repeat the algorithm
now computing IP (f ′, g).

Example 9. Let us get back to our example from before with the curves f = y − x2 and g = y + x2.
Since f(0, 0) = g(0, 0) = 0, we can use the algorithm immediately. We have a monomial independent
of y in both f and g, so we start by using strategy 1 from Algorithm 2.8.

f ′ = −x2 + y + (x2 + y)

= 2y

Since f ′ does not contain a monomial independent of y anymore, we now apply strategy 2 to split up
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2 and y to find

I0(f, g) = I0(f ′, g)

= I0(y, g) + I0(2, g)

= 2.

As expected, we get the same answer as in Example 8.

Let us look at another example.

Example 10. Let f = 3y2 − x4 and g = x2 − 5y3 + y4. They have an intersection point at P = (0, 0),
so we will be calculating I0(f, g). Then

f = −1 · x4 + 3y2

g = 1 · x2 − 5y3 + y4.

So we get

f ′ = −x4 + 3y2 + x2(x2 − 5y3 + y4)

= 3y2 − 5x2y3 + x2y4

= y2(3− 5x2y + x2y2)

= y2 · f ′′.

This then gives us

I0(f, g) = I0(f ′, g)

= I0(y2, g) + I0(f ′′, g)∗

= 2I0(y, g)

= 4.

∗ = 0 as f ′′(0, 0) = 3 6= 0.

Now, suppose we calculated the intersection multiplicity of two curves in the affine plane and found
that it is not equal to the product of their respective degrees. Then we need to transform these affine
curves into projective curves using the process of homogenization (Definition 1.13). Then we find all
the intersection points (x0, y0, z0) in the projective plane. We then have 2 cases

1. P = (x0 : y0 : 1), i.e it lies the in the affine part of P2. Via the isomorphism from Definition 2.2
we see that 〈F,G〉 = 〈F i, Gi〉 and hence we have that IP (F,G) = I(x0,y0)(F

i, Gi).

2. P = (x0 : y0 : 0). In this case, we choose a different nonzero coordinate to define the line at
infinity and proceed as in 1.

Example 11. Now that we have the knowledge from above, let us finish Examples 8 and 9. So, we have
f = y − x2 and g = y + x2. Their respective projective curves are F = Y Z −X2 and G = Y Z +X2.
We have one point in the affine part, P = (0 : 0 : 1), so that will give us intersection multiplicity 2
as seen in Example 9. For the other point, Q = (0 : 1 : 0) we choose a different coordinate to define
the line at infinity. As y is the only nonzero coordinate here, we take it to be the line at infinity and
hence x and z are our affine coordinates. This gives us

IQ(F,G) = IQ(F (Y = 1), G(Y = 1))

= IQ(z − x2, z + x2)

= 2,

as it is the same calculation as for P , but with z instead of y. So, we find that the total intersection
multiplicity is equal to 4.

We would like to have an easier way to determine if the intersection multiplicity is equal to one. For
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this, recall Notation 1.5.

Proposition 2.9. [2, Prop 2.19] Let f and g be two curves through the origin. Then I0(f, g) = 1 if
and only if the linear parts f1 and g1 are linearly independent.

2.2 Tangents and multiplicities

We could also look at the problem of intersection curves more geometrically. In this section we will
look at different properties of curves, such as their multiplicity and tangents at different points. From
this information we can deduce if a curve is singular or regular. Based on this information we will
discover some interesting properties of the intersection number.

Definition 2.10. [2, Def 2.20] Let f be an affine curve.

a. The smallest m ∈ N for which the homogeneous part fm (Notation 1.5) is nonzero is called the
multiplicity m0(f) of f at the origin. Any linear factor of fm is called a tangent to f at the origin.

b. For a general point P = (x0, y0) ∈ A2, we define the multiplicity mP (f) and tangent at P by first
shifting coordinates to x′ = x− x0 and y′ = y − y0. Then apply a at the new origin (x′, y′).

Definition 2.11. Let F be a projective curve.

a. Let P = (x0, y0, 1) be a point on F in the affine part A2. In this case we define the multiplicity
mP (F ) to be m(x0,y0)(F

i) as in Definition 2.10 above. A tangent to F at P is given by the projective
closure of a tangent to F i at (x0, y0).

b. Let P be a point not lying the affine part A2. In this case we choose a different coordinate for the
line at infinity. Then multiplicity and tangents are defined as in a.

Looking at multiplicities of curves is most interesting when mP (f) = 1. Namely, in this case there is
a nonzero local linear approximation of f around P.

Definition 2.12. [2, Def 2.22] Let f be a curve.

a. We call a point P on f smooth if we have mP (f) = 1. In this case f has a unique tangent at P ,
denoted TP f . In case P = (0, 0), we have T0f = f1, the linear part of f .

b. If P is not smooth, i.e. mP (f) ≥ 1, we call P a singular point or singularity of f . In particular, in
the case that mP (f) = 2 and f has 2 tangents at P , we call P a node.

c. If all points P on f are smooth, f is called a smooth curve. Otherwise, f is called singular.

Definition 2.13. Using the definitions of multiplicity and tangents from Definition 2.11, we define
the concepts of a smooth point/curve and singular points/curves in the exact way as in the affine case.

Example 12. Let us look at three different curves and discuss their multiplicities and tangents at
P = (0, 0).

1. Let f : y − x2. The curve f has a linear term, so m0(f) = 1. By Definition 2.12a we have that
T0f = y.

2. Let f = y2 − x2 − x3. f has a lowest term of degree 2, so m0(f) = 2. To see if (0, 0) is a node,
note that y2 − x2 = (y− x)(y+ x), so we have two tangents, y− x and y+ x. So (0, 0) is indeed
a node.

3. Let f = y2−x3. Again, m0(f) = 2. However, here the quadratic term does not split into factors
and hence we have only 1 tangent of multiplicity 2. So we conclude that (0, 0) is not a node.

Checking if a curve f is smooth using Definition 2.10 is very tedious, especially since you have to
change coordinates every time. Let us now propose a criterion that makes finding singular points
easier.

Proposition 2.14. [2, Prop 2.26] Let P = (x0, y0) be a point on a curve f . Then

a. P is a singular point of f if and only if ∂f
∂x (P ) = ∂f

∂y (P ) = 0.
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b. If P is a smooth point of f the tangent to f at P is given by

TP f =
∂f

∂x
(P )(x− x0) +

∂f

∂y
(P )(y − y0).

Example 13. Let f = y2 − x3 − x2. We would like to find its singular points using Proposition 2.14.
We first need to calculate the partial derivatives:

∂f

∂x
(x, y) = −3x2 − 2x = −x(3x+ 2)

∂f

∂y
(x, y) = 2y

The common zeros are (0, 0) and (− 2
3 , 0). Note that f(− 2

3 , 0) 6= 0, so we conclude that P = (0, 0) is
our only singular point.

Using the information above, we can now reformulate Proposition 2.9.

Proposition 2.15. [2, Prop 2.24] Let P ∈ f ∩ g. Then IP (f, g) = 1 if and only if P is a smooth point
of both f and g, and TP f 6= TP g. In this case we say that f and g intersect transversally at P .

In projective space, we have a similar construction.

Proposition 2.16. [2, Prop 3.25] Let P be a point on a curve F. Then

a. P is a singular point of F if and only if

∂F

∂X
=
∂F

∂Y
=
∂F

∂Z
= 0.

b. If P is a smooth point of F then the tangent to F at P is given by

TPF =
∂F

∂X
(P )X +

∂F

∂Y
(P )Y +

∂F

∂Z
(P )Z.
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3 Bézout’s theorem

We’ve now acquired enough information to state and prove Bézout’s theorem in projective space.

Theorem 3.1. Let F and G be two projective curves with no common component over an infinite field
k. Then ∑

P∈F∩G
IP (F,G) ≤ deg(F ) · deg(G). (2)

If k is moreover algebraically closed, equality holds.

To prove this theorem, we first need the results of the following lemmas:

Lemma 3.2. Let F and G be two affine curves without a common component. There is a ring
homomorphism

ϕ : k[x, y]/〈F,G〉 −→
∏

P∈F∩G
OP /〈F,G〉

that sends the class of a polynomial f ∈ k[x, y] to the class of f ∈ OP in each factor OP /〈F,G〉. This
homomorphism satisfies the following:

1. ϕ is surjective

2. If k is algebraically closed, ϕ is an isomorphism, i.e. ϕ is moreover injective.

Then, using the rank-nullity theorem we find that∑
P

IP (F,G) ≤ dim
(
k[x, y]/〈F,G〉

)
with equality if k is algebraically closed.

Lemma 3.3. Let F and G be two affine curves without a common component, of degrees m := deg(F )
and n := deg(G). We have that

a. dim
(
k[x, y]/〈F,G〉

)
≤ m · n,

b. If the leading parts Fm and Gn of F and G have no common component, then equality holds in a.

Using these lemmas, we can now prove Bézout’s theorem 3.1.

Proof. First, recall that here F and G are projective curves. By Lemma 1.6b, there is a point Q in
the affine part of P2 that lies neither on F nor G, i.e. Q /∈ F i ∪ Gi. Moreover, as k is infinite but
V (F,G) is finite by Proposition 1.7, we can pick a line L through Q that does not intersect any point
P ∈ V (F,G).

We then do a coordinate transformation, so L is our new line at infinity. This ensures that neither
F nor G contains the line at infinity as a component, so deg(F ) = deg(F i) and deg(G) = deg(Gi).
Moreover, we have that all intersection points of F and G lie in the affine part and hence they are also
intersection points of the curves F i and Gi.

This construction ensures that we can use the lemmas proposed earlier in this section. We have∑
P∈F∩G

IP (F,G) =
∑

P∈F i∩Gi

IP (F i, Gi) ≤ dim
(
k[x, y]/〈F i, Gi〉

)
≤ deg(F i) · deg(Gi) = deg(F ) · deg(G)

where we used Lemma 3.2 is step 2 and Lemma 3.3a in step 3.

Now, if k is algebraically closed, we have equality in step 2 by Lemma 3.2. The equality in step 3 is not
as straightforward. We know that the leading parts of F i and Gi are homogeneous polynomials in two
variables by definition and hence they are a product of linear factors by Lemma 1.12. By Definition
1.16 these factors correspond to the points at infinity. By our choice of L there are no such common
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points, so the leading parts of F i and Gi do not have a common component. Then, by Lemma 3.3b
equality also holds in step 3.

Example 14. We can also use Bézout’s theorem to calculate intersection multiplicities more easily.
Let us go back to our example with f = y − x2 and g = y + x2 once more. According to Bézout’s
theorem the total sum of the intersection multiplicities is equal to 4. Once we have calculated that the
intersection multiplicity of the point (0, 0) in the affine plane is equal to 2 and determined that there
is only one point at infinity, by Bézout’s theorem that point has multiplicity 4− 2 = 2. This will save
us an extra calculation, for which we otherwise would have needed Algorithm 2.8.
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4 The Zariski topology

In this chapter we will introduce more generally the topics treated before in Section 1.2 and the
beginning of Section 2.1. We will first define what closed sets in our space are and from there we will
give several definitions in order to define the local ring at the end of this chapter.

4.1 Closed sets

Definition 4.1. A topological space T = (X,T ) consists of a nonempty set X together with a fixed
family T of subsets of X satisfying

1. X, ∅ ∈ T ,

2. The intersection of a finite collection of sets in T is in T ,

3. The union of any collection of sets in T is in T .

The family T is called a topology for X. The members of T are called the open sets of T . The closed
sets are then the sets that are a complement of an open set. For example, let U be an open set in
T = (X,T ). Then X/U is a closed set.

Definition 4.2. [2, Def 1.3] Let S ⊂ k[x1, . . . , xn] be a subset of polynomials. Then

V (S) := {P ∈ An : f(P ) = 0 for all f ∈ S} ⊂ An

denotes the common zeros of the elements of S, which we call the the affine zero locus of S.

We say that a subset Y ⊂ An is an affine variety if there exists S ⊂ k[x1, . . . , xn] such that Y = V (S).

We would now like to prove the following about affine varieties. Let S,R ⊂ k[x1, . . . , xn]. Then

1. The intersection of an arbitrary collection of affine varieties is a variety.

2. The union of a finite collection of affine varieties is a variety.

3. ∅ and An an affine variety.

Proof. 1. In order to show this we will show that V (S ∪R) = V (S) ∩ V (R).
⊂ Let P ∈ V (S ∪ R). Then for all f ∈ S ∪ R, f(P ) = 0. So, moreover, for all f ∈ S and for all
f ∈ R, f(P ) = 0. This precisely means that P ∈ V (S) ∩ V (R).

⊃ Let P ∈ V (S)∩ V (R). Suppose g ∈ S ∪R. If g ∈ S, then g(P ) = 0 since P ∈ V (S). Similarly
if g ∈ R. Hence P ∈ V (S ∪R).

2. In order to show this we will show that V (SR) = V (S) ∪ V (R).
⊂ Let P ∈ V (SR). Suppose P /∈ V (S) ∪ V (R), then there exist f ∈ S and g ∈ R such that
f(P ) 6= 0 and g(P ) 6= 0. If we take h = fg, then h(P ) 6= 0. But h ∈ SR, which is a contradiction,
so P ∈ V (S) ∪ V (R).

⊃ Let P ∈ V (S) ∪ V (R). Again, if h = fg ∈ SR, either f(P ) = 0 or g(P ) = 0, so h(P ) = 0.
Hence P ∈ V (SR).

3. In order to show this we will first show V (∅) = A2 and then V (k[x1, . . . , xn]) = ∅.
If S = ∅, there do not exist f ∈ S. Hence for all P ∈ A2, we have f(P ) = 0.

Suppose f, g ∈ k[x1, . . . , xn] and that f and g are coprime. Then by Proposition 1.7
f(x1, . . . , xn) = g(x1, . . . , xn) = 0 has finitely many solutions. Then there must exist another
function h ∈ k[x1, . . . , xn] such that h(P ) 6= 0 for all P ∈ V (f, g). Hence V (f, g, h) = ∅ already.
Since f, g, h ∈ k[x1, . . . , xn] the affine locus of k[x1, . . . , xn] will certainly be empty as well.

The reasoning above shows that the collection of affine varieties forms a topology on An where the
closed sets are the affine varieties. Namely, as stated in the definition of a topological space, the
closed sets are the complements of the open sets and the statements we proved above are exactly the

20



complements of the statements in Definition 4.1 and hence are true for closed sets. We will call this
topology the Zariski topology and its closed sets are the Zariski closed sets. In the rest of this text
we will use the notions of affine varieties, and Zariski closed sets interchangeably, depending on which
better suits the theory.

4.2 Local ring

Definition 4.3. [3, p. 18] Let X be a Zariski closed set in the affine space An over the field k. We
define the ideal of X to be the ideal

I(X) = {f ∈ k[x1, . . . , xn] : f ≡ 0 on X}

of functions vanishing on X. We then call

A(X) = k[x1, . . . , xn]/I(X)

the coordinate ring of X.

Example 15. If X is a point, then A(X) = k.

Example 16. If X = An, then I(X) = 0 and A(X) = k[x1, . . . , xn].

Now we know what a coordinate ring is, we can define regular functions.

Definition 4.4. [5, p. 25] A function ϕ defined on a Zariski closed set X is called regular at a point
P ∈ X if it can be written as ϕ = f

g for some f, g ∈ A(X) with g(P ) 6= 0. The function ϕ is called
regular if it is regular at every point of X. In the affine space regular functions are polynomials.

Definition 4.5. [5, p. 83] Let X be a closed set and let P ∈ X. The local ring of X at P is defined
as

OX,P =

{
f

g
: f, g ∈ A(X) with g(P) 6= 0

}
,

i.e. the set of all regular functions on X at P .

Let the pair (f, g) denote the regular function f
g ∈ OX,P . The operations on (f, g) are defined as

(f, g) + (f ′, g′) = (fg′ + gf ′, gg′),

(f, g)(f ′, g′) = (ff ′, gg′).

We identify pairs according to the rule

(f, g) = (f ′, g′) ⇐⇒ ∃h ∈ OX,P with h(P ) 6= 0 such that h(fg′ − f ′g) = 0.

Indeed, according to Definition 1.1.1 of [7] this construction defines a ring.

21



5 Intersection of divisors

Before we can define divisors, we first need some background definitions. From now on, to clean up
notation, we will refer only to a variety when we actually mean an affine variety. Recall from last
chapter, these sets are always assumed to be closed.

Definition 5.1. [5, p. 34] Let X be a variety. We say that X is reducible if there are proper closed
subsets X1, X2 such that X = X1 ∪X2. Otherwise, we say that X is irreducible.

Definition 5.2. Let X be a variety. Then Y ⊂ X is a subvariety of X if Y is a subset of X and Y
is an affine variety itself.

For example, with our definition, every variety is a subset of the variety An.

Definition 5.3. [5, p. 67] Let X be a variety and let Y ⊂ X be a subvariety. The codimension of Y
in X is equal to dim(X)− dim(Y ).

In this section we will often be looking at subvarieties with codimension 1, so in this case the dimension
of Y will be one less than the dimension of X. These type of subvarieties are also called hypersurfaces.

5.1 Divisors and their properties

The contents from Definition 5.4 until Corollary 5.6 are based on pages 147-150 from Shafarevich [5].

Definition 5.4. Let X be an irreducible variety. A divisor D on X is given by a finite linear combi-
nation

D =
∑
i

miCi, (3)

where the Ci are closed hypersurfaces of X and the mi integers.

Remark 5. The following definitions are associated to a divisor.

1. If all mi = 0, we say D = 0.

2. If all mi ≥ 0 and some mi > 0 we say D > 0 and we call D effective.

3. We call ∪iCi the support of D, denoted supp(D).

4. We call
∑
imi the degree of D.

Let D and D′ be two divisors on X with the same support, denoted

D = m1C1 + · · ·+mrCr D′ = m′1C1 + · · ·+m′rCr.

We define the operation:

D +D′ = (m1 +m′1)C1 + · · ·+ (mr +m′r)Cr. (4)

With this operation, the set of all divisors on X form a group. We denote this group by Div(X).
Our goal now is to find a map taking a nonzero function f ∈ k[x1, . . . , xn] to its divisor div(f). First,
assume that X is nonsingular in codimension 1, i.e. the set of singular points of X has codimension
greater than or equal to 2. Let C ⊂ X be a hypersurface defined by some regular equation {g = 0},
i.e. the ideal of C is generated by g, notated I(C) = 〈g〉. We then define the order ordC(f) of f along
the hypersurface C to be the largest absolute integer k such that f ∈ 〈gk〉, but f /∈ 〈gk+1〉 [5, p. 148].

Example 17. If X = A1, then ordC(f) is the order of a zero or a pole of f at a point. Let

f =
(x− 1)2(x− 2)

x7
.

Since we define the order of f along the hypersurfaces of A1, we are mostly interested in the hyper-
surfaces

1. C1 = 1, I(C1) = 〈x− 1〉,
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2. C2 = 2, I(C2) = 〈x− 2〉,

3. C3 = 0, I(C3) = 〈x〉.

Indeed, for each of these hypersurfaces, if we choose k one higher than their corresponding order in f ,
we find that

1. f /∈ 〈(x− 1)3〉,

2. f /∈ 〈(x− 2)2〉,

3. f /∈ 〈x−8〉.

So indeed, when working in A1, ordC(f) is equal to the order of a zero or a pole of f at the point
corresponding to the hypersurface C.

Given f, g ∈ k(X), we have

ordC(f · g) = ordC(f) + ordC(g)

ordC(f + g) ≥ min{ordC(f), ordC(g)}

If f is a rational function, so f = m
n , with m,n ∈ A(X), we define the order of f to be

ordC(f) = ordC(m)− ordC(n) (5)

If ordC(f) = k > 0, we say that f has a zero of order k at C. If ordC(f) = k < 0, we say that f has a
pole of order k at C.

The divisor of f is then given by

div(f) =
∑
C

ordC(f)C, (6)

where we sum over all hypersurfaces C of X. A divisor of the form D = div(f) is called a principal
divisor.

Example 18. Coming back to Example 17, we can now write f in the form of Equation 3. Recall,

f =
(x− 1)2(x− 2)

x7
.

So, f has order

1. 2 along the hypersurface 1,

2. 1 along the hypersurface 2,

3. -7 along the hypersurface 0,

4. 0 along every other hypersurface.

Hence we can write

div(f) = 2[1] + 1[2]− 7[0],

where the square brackets denote the hypersurfaces.

Definition 5.5. If div(f) =
∑
i kiCi, then the divisors

div0(f) =
∑

{i:ki>0}

kiCi div∞(f) =
∑

{i:ki<0}

−kiCi

are called respectively the divisor of zeros and the divisor of poles of f .

Corollary 5.6. The divisor of f has the following properties:

a. div0(f),div∞(f) ≥ 0,
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b. div(f) = div0(f)− div∞(f),

c. div(f1 · f2) = div(f1) + div(f2),

d. div(f) = 0⇒ f is constant,

e. If div(f) ≥ 0, then f is regular.

Proposition 5.7. [1, Ch. 8 Prop. 1] Let f be a regular function. The degree of the divisor of f is
equal to zero.

Proof. Since f is regular, we can write f = g
h , with g and h nonzero and of the same degree m. Using

equation 5, we find that

div(f) =
∑
C

ordC(f)C

=
∑
C

(
(ordC(g)− ordC(h))C

)
=
∑
C

(
ordC(g)C − ordC(h)C

)
=
∑
C

ordC(g)C −
∑
C

ordC(h)C

= div(g)− div(h).

So then

deg
(
div(f)

)
= deg

(
div(g)

)
− deg

(
div(h)

)
.

By Definition 5.8 and Remark 6 below, div(g) and div(h) are linearly equivalent and thus have the
same degree. Hence

deg(div(f)) = 0.

5.2 Intersection theory

In this next part, we are going to introduce the intersection theory for divisors.

Definition 5.8. [4, Sect. 1.6] Let X be an affine variety. We say two divisors D and D′ on X are
linearly equivalent, denoted D ∼ D′, if D −D′, as defined in Equation 4, is a principal divisor, i.e.

D ∼ D′ ⇐⇒ D −D′ = div(f)

for some function f ∈ k(X).

Remark 6. The equivalence relation preserves degrees. In other words, if D and D′ are linearly
equivalent to each other, they must have the same degree.

Definition 5.9. [4, Sect. 1.6] We define the class group of X, and denote it by Cl(X), to be the
quotient group of the divisors group of X by the equivalence relation defined above. That is,

Cl(X) = Div(X)/ ∼ .

Let us look at some examples of class groups for specific surfaces X.

Example 19. [5, Ex. 3.1, p. 150] Let X = An. We know that every hypersurface C ⊂ An is defined
by a single polynomial g, so I(C) = 〈g〉, where g ∈ k[x1, . . . , xn].

Hence C = div(g), so every prime divisor is principal. Given a divisor D =
∑
i Ci, it is equal to the

divisor div(
∏
i gi).
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So, every divisor D in An is principal and it is given by the divisor of the product of the generators
of the hypersurfaces in D. As every divisor is principal, the difference between any two divisors is
principal as well and thus all divisors are linearly equivalent. This means that any divisor is equal to
0 in this class group and hence

Cl(An) = 0.

Example 20. Let X = P2. Let L be a line. Consider the sequence

0→ Z ϕ−→ Cl(P2)
ψ−→ Cl(A2)→ 0,

where ϕ maps an integer m to mL and ψ maps a divisor D to D ∩ A2. We would like to show that
this sequence is exact. Recall from Section 2.1 that we need to prove that

1. ker(ϕ) = 0,

2. im(ϕ) = ker(ψ),

3. im(ψ) = Cl(A2).

Since Cl(A2) = 0, fact 3 follows immediately.

For fact 2, notice that ψ(D) = 0 if and only if D ∩ A2 = 0, i.e if D = nL, since P2 = A2 ∪ L. The
image of ϕ is exactly all multiples of the line L, so 〈L〉. We now show these sets are equal.
⊂ Let kL ∈ im(ϕ). Then kL ∩ A2 = 0, so kL ∈ ker(ψ).
⊃ Let nL ∈ ker(ψ). Since nL is a multiple of the line L, we find that nL ∈ im(ϕ).

Now we are left to show that ϕ is injective. Suppose there exists an integer m such that mL = 0. Since
we are working in Cl(P2), this means that mL ∼ div(f) for some function f . Since the equivalence
relation preserves degrees, and in Proposition 5.7 we have seen that deg(div(f)) = 0, we must have
that deg(mL) = 0 is well. But this is an absurd, since deg(mL) = mdeg(L) = m. So we can only have
an equivalence if m = 0. This means that the kernel of ϕ is trivial and hence ϕ is injective.

So, since this sequence is exact, we have that

dim(Z) + dim(Cl(P2)) = dim(Cl(A2)) = 0

dim(Z) = −dim(Cl(P2)) = dim(Cl(P2)).

So it follows that

Cl(P2) ' Z.

Moreover, from the exact sequence it follows that the generator of this group is the line L we chose
at the beginning of the example. Since this line is arbitrary, we take this line to be the line at infinity
(which is actually arbitrary as well, as we saw in the proof of Bézout’s theorem in Chapter 3).

Example 21. [4, Lem 2.7] Let X = P1 × P1. We have that Cl(P1 × P1) = Cl(P1)×Cl(P1). We proved
above that Cl(P2) ' Z, but more generally, we have that Cl(Pn) ' Z for any integer n ≥ 1. So we find
that Cl(P1) ' Z. If we combine these two facts, we find that

Cl(P1 × P1) = Cl(P1)× Cl(P1) ' Z× Z = Z2.

Similar to P2, the generators of this group are the lines at infinity, of which we now have two, denoted
L1 and L2. We will explain more thoroughly what these lines exactly are in Section 7.1.
Alternatively, one can show that

Cl(P1 × P1) = ZL1 ⊕ ZL2

as follows. Let D be a divisor on P1 × P1 and consider the affine open set

U = P1 × P1 \ (L1 ∪ L2).

25



Then U ' A2 and hence Cl(U) = 0. This means that D restricted to U is the divisor of a rational
function ϕ. Thus, in P1 × P1, we can write any divisor D as

D = div(ϕ) + aL1 + bL2,

for some a, b ∈ Z. To see that L1 and L2 are not linearly equivalent, notice that L1 and L2 intersect
transversally while having zero self-intersection. This means that L1 ◦ L2 = 1 and L1 ◦ L1 = 0. If it
were the case that L1 ∼ L2, by Theorem 5.10.3 below we would have that L1◦L2 = 0. This contradicts
the fact that L1 ◦ L2 = 1, showing that L1 and L2 are not linearly equivalent.

Theorem 5.10. [4, p.26] The intersection number of two divisors D1, D2 is defined via a map Div(X)×
Div(X)→ Z, (D1, D2)→ D1 ◦D2, which satisfies the following:

1. It is symmetric, so D1 ◦D2 = D2 ◦D1,

2. It is bilinear in each factor, so D1◦(mD2+nD3) = m(D1◦D2)+n(D1◦D3) and (pD1+qD2)◦D3 =
p(D1 ◦D3) + q(D2 ◦D3),

3. D1 ◦D2 depends on D1 and D2 only up to linear equivalence, so

D1 ∼ D′1 ⇐⇒ D1 ◦D2 = D′1 ◦D2,

4. If D1 and D2 are two effective divisors without common components, then their intersection
number D1 ◦D2 is defined as

D1 ◦D2 =
∑
P

(D1 ◦D2)P ,

where we sum over all points of intersection P ∈ D1 ∩ D2. The local intersection number
(D1 ◦D2)P is defined as

(D1 ◦D2)P = dimkOX,P /〈f1, f2〉.

Here OX,P is the local ring of P ∈ X as defined in Definition 4.5 and f1, f2 are the local equations
of D1 and D2 near P respectively.
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6 Revisiting Bézout

In this chapter we will deduce Bézout’s theorem in P2 using the concepts of Chapter 5. In this process
we will learn techniques that are useful in constructing the version of Bézout’s theorem in P1 × P1.

In Example 20 we have seen that Cl(P2) ' Z. Consider now a map from Cl(P2) to Z that sends a
divisor D to its degree. Recall, if D =

∑
imiCi, then deg(D) =

∑
imi.

As we have seen in Example 20, Cl(P2) is generated by a line L. Since Cl(P2) ' Z, we can say that
Cl(P2) = Z · L. Hence any divisor can be written as

D = mL+ div(f),

where m is an integer and f is some function. In Cl(P2), div(f) = 0 for all f , so we find that D = mL.
In fact, by the map we discussed above, this integer m is equal to the degree of the divisor. So we can
write a divisor of degree d as dL.

Now let D be a divisor of degree d and let E be a divisor of degree e. By the reasoning above, to find
their intersection number, we must find the intersection number of dL and eL. So their intersection
number dL ◦ eL is given by

dL ◦ eL = de(L ◦ L),

since we can pull d and e out in front by property 2 of Theorem 5.10. We now only have to compute
the intersection number of a line with itself.

As the class group of P2 is generated by any line, any two lines must be linearly equivalent. By property
3 of Theorem 5.10, to calculate the intersection number of a line L with itself, we can also take any
line L′ equivalent to L and calculate L2 = L ◦ L = L ◦ L′.

Since all these lines are arbitrary, let us take two explicit lines to calculate L2. Take L : {x = 0} and
L′ : {y = 0}. We know these lines intersect transversally and they intersect precisely in P = {(0 : 0 :
1)}, so L ◦ L′ = 1.

Hence the intersection number of two divisors is equal to the product of their degrees. And indeed,
this is exactly what Bézout’s theorem tells us.
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7 Bézout in P1 × P1

7.1 Construction of P1 × P1

Since our goal is to prove a version of Bézout’s theorem in P1×P1, we should first take a look at what
P1×P1 actually is. Instead of compactifying A2 directly, we split it up into two copies of A1. We then
compactify those separately and then consider their product to get P1 × P1.

In order to compactify A1, we need to add a point at infinity. This point has homogeneous coordinates
[0 : 1]. So we find that

P1 = A1 ∪ [0 : 1].

What one must realise is that every point in the first copy of P1 corresponds to a line in P1 × P1, so
also our point at infinity. This works the same for every point in the second copy of P1.

So our first line at infinity is precise the line

L1 = [0 : 1]× P1.

Similarly, our second line at infinity is the line

L2 = P1 × [0 : 1].

These two lines are precisely the lines that generate Cl(P1 × P1). Note that the point [0 : 1] is not
a special point. In fact, we could have taken any point [a : b] in P1 and they would have generated
Cl(P1 × P1) as well.

7.2 Homogenization in P1 × P1

If we move from affine space to projective space, we ’add’ a new coordinate z in order to homogenize
the polynomial given by the curve f . This homogenization can be formulated as

F (X,Y, Z) = zd · f
(
x

z
,
y

z

)
,

where d is the degree of f .

In P1 x P1 this works a bit different. We do not homogenize with respect to one variable, but with
respect to two. In essence, we look at the x-coordinate and y-coordinate separately. We then also have
two different degrees, the x-degree d1 and the y-degree d2. We homogenize x with respect to z and y
with respect to w. This gives us the following formula

F (X,Z, Y,W ) = zd2wd1 · f
(
x

w
,
y

z

)
.

Let us now look at how this formula works in action

Example 22. Let f(x, y) = x2 − y + 1. The x-degree is equal to two, and the y-degree is equal to 1.
Applying our formula from above we get

F (X,Z, Y,W ) = z1w2 ·
((

x

w

)2

− y

z
+ 1

)
= zx2 − w2y + zw2.

You can see that the total degree of our polynomial F is one higher than the degree of our polynomial
f . In general we have that

deg(F ) = deg(fx) + deg(fy),
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where deg(fx) denotes the x-degree of f and deg(fy) denotes the y-degree of f .

7.3 A version of Bézout for P1 × P1

Using the ideas from Chapter 6 we will now propose a version of Bézout’s theorem in P1 × P1.

As we showed in Example 21, the generators of P1 × P1 are two distinct lines L1 and L2. Hence any
divisor D in P1 × P1 is of the form

D = m1L1 +m2L2 + div(f),

with m1,m2 integers and again div(f) = 0, since we are working in the class group.

Let D = m1L1 + m2L2 and D′ = m′1L1 + m′2L2 be two divisors in Cl(P1 × P1). Their intersection
number is given by

D ◦D′ = (m1L1 +m2L2) ◦ (m′1L1 +m′2L2) (7)

= (m1m
′
1)L1 ◦ L1 + (m1m

′
2)L1 ◦ L2 + (m2m

′
1)L2 ◦ L1 + (m2m

′
2)L2 ◦ L2 (8)

= (m1m
′
1)L1 ◦ L1 + (m2m

′
2)L2 ◦ L2 + (m1m

′
2 +m′1m2)L1 ◦ L2. (9)

So, in order to find the intersection number of two divisors in Cl(P1 × P1) we need to find

L1 ◦ L1, L2 ◦ L2, L1 ◦ L2.

Let us first look at the cases L1 ◦ L1 and L2 ◦ L2, as they are similar. We will now treat the case
L1 ◦ L1.

Similarly to what we did in Chapter 6, we can look for a line that is equivalent to L1 = [0 : 1] × P1.
As we’ve seen in Section 7.1, we can take any point to define that line. For example, let us take
L′1 = [1 : 0]×P1. No matter what point [x, y] we choose in the second copy of P1, there does not exist
a point with both coordinates [0 : 1 : x : y] and coordinates [1 : 0 : x : y]. Hence they do not intersect
in any point and thus

L1 ◦ L1 = 0.

The reasoning for L2 ◦ L2 works exactly the same, but P1 and [0 : 1] are swapped there.

We are left showing L1 ◦ L2. So, with the same reasoning as above, we need to find a point that
has both homogeneous coordinates equal to [0 : 1 : x : y], and homogeneous coordinates equal to
[w : z : 0 : 1]. This only works if we choose precisely

x = 0 y = 1 w = 0 z = 1,

so we get precisely one point P with homogeneous coordinates [0 : 1 : 0 : 1]. Hence we find that

L1 ◦ L2 = 1.

Coming back to what we said in Equation 7, we then find

D ◦D′ = (m1m
′
1)L1 ◦ L1 + (m2m

′
2)L2 ◦ L2 + (m1m

′
2 +m′1m2)L1 ◦ L2

= (m1m
′
1) · 0 + (m2m

′
2) · 0 + (m1m

′
2 +m′1m2) · 1

= m1m
′
2 +m′1m2.

Our next goal is to find out what these m1,m2,m
′
1 and m′2 are. Similarly to Bézout’s theorem in P2,

it has something to do with the degree of the curve.

Consider a map Cl(P1×P1)→ Z×Z = Z2 that sends a divisor D to its bidegree (d1, d2). As Cl(P1×P1)
is generated by two lines, the d1 and d2 correspond exactly to the integers m1 and m2. So any divisor
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in Cl(P1 × P1) can be written as

D = d1L1 + d2L2.

Hence, Bézout’s theorem in P1 × P1 tells us the following

Theorem 7.1. Let D and E be two effective divisors without common components over an infinite,
algebraically closed field k. The divisors D and E have bidegree (d1, d2) and (e1, e2) respectively. Then

D ◦ E =
∑

P∈D∩E
(D ◦ E)P = d1e2 + e1d2. (10)

7.4 Comparison of Bézout in P2 and P1 × P1

Now that we know what Bézout’s theorem tells us in both P2 and P1×P1, we can compare them. For
example, given two curves, is the intersection number in P1 × P1 equal to, higher than or lower than
in P2. It turns out that there is not one exclusive answer and it depends on the degree of the curves.
Let us look at some examples to see if there is still a certain pattern.

Example 23. Let us go back to the example we have first seen in Example 8. We have f = y− x2 and
g = y + x2.

In P2 we found that the intersection of f and g is equal to 4. In P1 × P1, we have

deg(fx) = 2 and deg(fy) = 1,

deg(gx) = 2 and deg(gy) = 1.

So the intersection number of f and g is 2 · 1 + 1 · 2 = 4. We see that in this case, the intersection
numbers are equal.

Example 24. Now let f = y − x2 and g = y2 + x.

In P2 the intersection number is still 4. In P1 × P1, we have

deg(fx) = 2 and deg(fy) = 1,

deg(gx) = 1 and deg(gy) = 2.

So the intersection number of f and g is 2 · 2 + 1 · 1 = 5, which is greater than in P2.

Example 25. Let f = y4 − x and g = y4 + x.

In P2 the intersection number is 4 · 4 = 16. In P1 × P1, we have

deg(fx) = 1 and deg(fy) = 4,

deg(gx) = 1 and deg(gy) = 4.

So the intersection number of f and g is 1 · 4 + 4 · 1, which is less than in P2.

As you can see, in general, there is not a certain pattern between the intersection numbers of curves
in P2 and P1 × P1.
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7.5 Further study

In this thesis we have focused on a version of Bézout’s theorem for P1×P1 specifically. However, using
the methods explained in Section 5.2 and 7.3 we could be able to find a version of Bézout’s theorem
for many more surfaces.

More precisely, we saw that in order to produce a version of Bézout’s theorem it was enough to know
the generators of the class group and how they intersect among themselves. Thus to generalize this to
other smooth projective surfaces, it is enough to obtain this information. This is not always an easy
task. I conclude this text with two references for cases where the data described above is well-known.
For example, for the class group of Pn1 × · · · × Pnk , one can look at Example 3.3 on page 150 of
Shafarevich [5]. An explanation of the class group of the cubic surface P3 can be found in the example
in Section 1.6 of Reid [4].
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