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Abstract: Recently, transformers, originally purposed for natural language processing, have
begun demonstrating a strong potential to not only compete, but outperform convolutional
neural networks (CNN) in machine vision tasks. This paper investigates the transfer learning
potential of vision transformers (ViT) in differing contexts, such as with small sample sizes
and low- and high-degree differences between the source and target domains. Ultimately, when
compared to state of the art CNNs, the ViT significantly outperforms the former on the grand
majority of the carried experiments. Particularly, ViTs transfer with ease to depth-prediction
tasks regardless of sample size. Results align with previous research, exposing new questions
regarding the structure and a possible trade-off of performance versus training time and suggest
real-life use cases in biomedical, material and processing industries where the conditions fit the
experimental environment used.

1 Introduction

Architectures based on self-attention currently
dominate as the standard method by which nat-
ural language processing (NLP) tasks are tackled.
Attention is a mechanism introduced by Bahdanau
et al. (2016) in an effort to improve on the ma-
nipulation of long-term semantic relations. More
specifically, transformer models have demonstrated
exemplary performance in the aforementioned do-
main (Vaswani et al., 2017)). For instance, models
such as BERT (Devlin et al., 2019) or the GPT line
of work (Radford et al., 2019; Brown et al., 2020)
convey an ability to learn the latent fundamental
syntactic relationships in text. In turn, this per-
mits the acquisition of representations capable of
generalizing across tasks. Furthermore, some newer
transformer models also demonstrate a significant
potential in scaling to larger models (Khan et al.,
2021). For instance, this is shown by Fedus et al.
(2021), with the Switch transformer capable of scal-
ing to 1.6 trillion parameters, and Lepikhin et al.
(2020) with the Gshard implementation scaling up
to 600 billion parameters. Transfer learning is a
method whereby a model trained on a specific task
is reused on an other problem (Bozinovski and Ful-
gosi, 1976; Gao and Mosalam, 2018). At present,
the most prevalent approach to NLP tasks with
transformers lies in transfer learning: pre-training

on sizeable (more than 1000 samples) text corpora
and fine-tuning on smaller datasets tailored to the
task at hand (Devlin et al., 2019). The consider-
able advantages exhibited by transformer models
have inspired many in the computer vision (CV)
community to explore them under the scrutiny of
their performance in CV tasks. This includes: im-
age recognition (Touvron et al., 2021; Dosovitskiy
et al., 2021), object detection (Carion et al., 2020),
segmentation (Ye et al., 2019), image-super resolu-
tion (Yang et al., 2020), video understanding (Sun
et al., 2019), image generation (Chen et al., 2021),
text-image synthesis (Ramesh et al., 2021) and vi-
sual question answering (Su et al., 2020). However,
little literature exists regarding the transferability
of transformers to such tasks. At present, convolu-
tional neural networks (CNN) represent the main
architecture used in machine vision models (LeCun
et al., 1989; Krizhevsky et al., 2012; He et al., 2015).
CNNs have been extensively examined with regards
to their transferability. Thus, this implies a lim-
ited understanding of the transfer learning poten-
tial of transformers, justyfing this paper’s empiri-
cal exploration of the overarching question: How do
vision transformers perform compared to convolu-
tional neural networks in transfer learning regard-
ing visual task adaptation?. This question is pri-
marily answered by comparing the transferability
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of visual transformers, namely ViT/L32, to that
of CNNs, mainly Resnet152. Either model is ini-
tially pre-trained on image classification tasks such
as ImageNet and is then transferred, in a supervised
manner, to contexts where the target tasks vary
in degree of dissimilarity or datasets contain few
samples. This includes SmallNorb and its object
azimuth/elevation prediction tasks, a grayscaled
CIFAR-10, and Kitti with object depth predic-
tion. Overall, findings establish the transformer’s
superiority in previously unexplored areas includ-
ing their ability to perform well with little data,
and their transferability to the aforementioned tar-
get domains. Moreover, this paper also paves the
way for further research into the learning quality of
transformers. Namely, the ViT/L32 with a major-
ity of frozen parameters achieves 97.33% on Kitti,
96.33% on SmallNorb and 96.00% on the grayscaled
CIFAR-10, where it either outperforms or remains
competitive to unfrozen ViT and CNN alike. The
rest of the paper is divided in the following man-
ner: Section 2 summarizes the related works to
this paper and Section 3 describes the ViT and
CNN architectures. Section 4 presents the method-
ology used in this paper, including the datasets,
pre-processing, pre-training and fine-tuning steps
taken to train and test the models. Section 5 de-
picts the results obtained from the transferring of
models, Section 6 discusses these results and lastly,
the conclusion is established in Section 7.

2 Related Work

Amongst the numerous attempts at incorporating
self-attention in CNNs, relevant instances include
the introduction of non-local relationships to cap-
ture long-range dependencies (Wang et al., 2018),
and channel-based attention (Hu et al., 2019). How-
ever, in these earlier applications, pixels are re-
quired to attend to every other pixel on an im-
age. Consequently, naive implementations remain
inefficient when scaling to realistic input sizes due
to these models’ cost growing quadratically with
image size. As a result, numerous approximations
of self-attention have been attempted. Particu-
larly, one prominent method involves applying self-
attention only locally rather than globally. This
marks the introduction of local multi-head dot-
product blocks similar to those seen in channel-

based attention (Hu et al., 2019). There is strong
evidence that these self-attention layers are compe-
tent in replacing convolutions entirely (Ramachan-
dran et al., 2019; Zhao et al., 2020). Alternative ap-
proaches focusing on scalable, global self-attention
exist. Weissenborn et al. (2020) achieves this by ap-
plying attention to differently sized blocks; Sparse
Transformers in Child et al. (2019) utilize approxi-
mations that are scalable by nature. These mod-
els yield favorable results on CV tasks. In spite
of these benefits, efficient implementations in more
function-specific contexts, such as hardware accel-
eration, demand intricate engineering for a large
part of these models.

In newer solutions, Cordonnier et al. (2020) ap-
ply self-attention to 2×2 dimensional patches that
are extracted from the original input. However, as
the patches are relatively small in size, this pre-
vents the application of this model to larger im-
ages. Building on the aforementioned, recent exper-
iments by Dosovitskiy et al. (2021) used larger sized
patches in their ViT line of work for vision trans-
formers. In such tasks, this resulted in precision
scores inferior by a few percentage points relative
to traditional residual networks (ResNet) of com-
parable size. Yet, these results are sensible: some of
the inductive bias achieved by CNNs, such as trans-
lation equivariance and locality, do not apply to
transformers. Consequently, in this context, a trend
observed in training transformer architectures is
their difficulty in generalizing successfully when
this is performed using sparse amounts of data.
Following these findings, further testing by Doso-
vitskiy et al. (2021) found that upon pre-training
on larger datasets, such as 14M-300M images, con-
trasting results are obtained when transferring to
tasks with less data points. This suggests that large
scale training may overcome inductive bias, with
the aforementioned model approaching and beat-
ing state-of-the art on multiple image recognition
benchmarks.

On the other hand, vision transformer experi-
ments of similar essence have focused on compar-
isons which only fine-tune their models on target
domains that directly overlap with the source do-
main. For instance, Dosovitskiy et al. (2021) train
and fine-tune only on datasets containing natu-
ral images, acknowledging the necessity for fur-
ther exploration of transferring to different com-
puter vision tasks and domains. Furthermore, all
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fine-tuning is performed using a constant 1000 ex-
amples per task. Hence, the relationship between
the size of the fine-tuning dataset and the model’s
performance is not analyzed either. Thus, there is
little knowledge regarding the extent to which vi-
sion transformers succeed in transfer learning. Vi-
sual information plays a vital role in the decision
process of image classification; degradation of im-
age features such as resolution can drastically alter
complex visual information (Kannojia and Jaiswal,
2018). Zhai et al. (2020) presented the Visual Task
Adaptation Benchmark (VTAB), designed for eval-
uating models on their ability to adapt to diverse
unseen tasks with little examples. VTAB holds
19 tasks grouped in three sets that indicate the
degree of dissimilarity relative to natural image
classification: natural, representing standard vision
problems; specialized, containing domain-specific
images such as medical images; and structured,
including synthetically generated images with a
higher degree of domain-specificity. There is a lack
of vision transformer literature analyzing transfer
learning, namely in specialized and structured do-
mains. In contrast, the same cannot be said for lit-
erature regarding CNN transfer learning, which is
plentiful (Gu et al., 2017; Li et al., 2017; Shaha
and Pawar, 2018; Kolesnikov et al., 2020). Trans-
fer learning across tasks by usage of deep con-
volutional neural networks in unsupervised learn-
ing settings has been extensively analyzed (Raina
et al., 2007; Mesnil et al., 2011). Similarly, sev-
eral attempts at domain adaptation in a supervised
fashion have been carried (Donahue et al., 2013).
Srivastava and Salakhutdinov (2013) proposes dis-
criminative transfer learning with tree-based pri-
ors using a multi-layer CNN, at their current time
achieving state-of-the-art results on CIFAR100 and
the MIR Flickr image-text dataset. Oquab et al.
(2014) outperforms their year’s top models, taking
deep CNNs as seen in Krizhevsky et al. (2012) pre-
trained on ImageNet and transferring to object de-
tection tasks on PASCAL VOC. Numerous others
have followed suit and found success in transferring
from deep CNNs pre-trained in generalized image
classification to differing target domains (Akçay
et al., 2016; Redmon and Farhadi, 2016; Sun et al.,
2017; Zhou et al., 2018). Hong et al. (2015) uses
the pre-trained R-CNN model from Girshick et al.
(2013) with help from a support vector machine
to achieve performances competitive with state-of-

the-art when transferring to online image tracking
tasks. Rahman et al. (2020) pre-trained on colored
images and evaluated on grayscale chest x-rays us-
ing a combination of AlexNet (Krizhevsky et al.,
2012), ResNet18 (Lecun et al., 2010), DenseNet201
(Huang et al., 2018) and SqueezeNet (Iandola et al.,
2016) for pneumonia detection, achieving perfor-
mances higher than all other available literature on
pathology detection. Last, Djolonga et al. (2020);
Kolesnikov et al. (2020) explored the impacts of
multiple factors, such as dataset size and visual
information-related changes in pre-preprocessing,
on the transferability and robustness of CNN mod-
els, primarily Resnets. This paper hence extends
Djolonga et al. (2020); Dosovitskiy et al. (2021), not
only contributing to the overall sparse literature re-
garding visual adaptation of transformers, but also
exploring the benefits of parameter-freezing which
can allow a model to outperform its regular vari-
ant. This suggests a significant enhancement to the
transferability potential of such models, in turn
raising new questions regarding additive pathways
for research and a likely trade-off of performance
versus training time.

3 Methods

The vision transformer model’s design follows
Dosovitskiy et al. (2021), which in turn follows the
original transformer (Vaswani et al., 2017). This
entails a simplistic model, justified by the idea
that the implementation of a scalable NLP trans-
former architecture enables near off-the-shelf usage.
Moreover, maintaining similar models facilitates a
meaningful aggregation of the results obtained in
Dosovitskiy et al. (2021). The rationale behind the
choice of CNN architecture follows a similar rea-
soning, with Djolonga et al. (2020) instead serving
as the point of comparison for CNN transferability.

3.1 ViT: Overall Architecture

The overall architecture of the vision transformer
can be explained in a stepwise manner, beginning
with an input image as seen on Figure 3.1. As the
transformer is originally an NLP architecture, it
can only process 1D token embedding sequences
as input. In order to allow inputs of higher di-
mensions, in this case 2D images, the input se-
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Class Token MLP Head

Transformer Encoder

Patch and Position Embeddings

Linear Projection of Flattened Patches

Image Patches

Input image

Figure 3.1: Vision Transformer (ViT) architec-
ture (Dosovitskiy et al., 2021)

quence (see Input Image in Figure 3.1) is reshaped
from Is ∈ RH×W×C to flattened two-dimensional
patches Ip ∈ RN×(S2C) (see Image Patches in Fig-
ure 3.1), wherein the product of H and W is the
resolution of the source image, the square of S the
resolution of each patch, C the amount of chan-
nels and N the per-input count of patches (Doso-
vitskiy et al., 2021). A linear projection is applied
to the flattened patches and maps them to a hidden
vector, constant through all of the transformer’s
layers (see Linear Projection of Flattened Patches
in Figure 3.1). 1D Position embeddings are added
to these patches in order to extract positional in-
formation (see Patch and Position embeddings in
Figure 3.1). Following this, a trainable 1D embed-
ding is added to the beginning of the input se-
quence containing embedded patches. This embed-
ding serves in acquiring an overall representation of
the input image. The embedded patches are then
introduced as inputs to the transformer encoder
(see Figure 3.1, explained in section 3.2) (Vaswani
et al., 2017), which is responsible for mapping the
input sequence Ip of discrete token representations
(in this case pixels) to a sequence of continuous rep-
resentations. A classification head (see MLP Head
in Figure 3.1) is attached to the output of the trans-
former encoder. It is implemented by a multi-layer
perceptron (MLP) with one linear layer (Dosovit-
skiy et al., 2021). In BERT, (Devlin et al., 2019),
each input sequence begins with a special ([CLS])
classification token (see Class Token on Figure 3.1).

The final hidden state of this token holds an over-
all representation of the sequence used in classifi-
cation. The 24-layer, ”Large” 32 × 32 (ViT/L32)
input-patch variant of the vision transformer intro-
duced by Dosovitskiy et al. (2021) was used for all
experiments. In turn, this variant is heavily based
off of BERT’s structure (Devlin et al., 2019).

3.2 Transformer Encoder

As depicted by Figure 3.2, the transformer encoder
is composed of repeating layers of multi-head self-
attention and MLP blocks. The general attention
function maps a set of queries and a set of keys both
in dimensions dk, which are mapped to value pairs
in dimension dv obtained from the input sequence
Ip (see Section 3.1), with the query, Q, keys, K,
and values, V , being matrices. The output, which
is also a matrix, is then computed as the weighted
sum over all values, wherein each weight depends
on a compatibility function of the query and its re-
lated key. In the case of scaled dot-product atten-
tion (Vaswani et al., 2017) the self-attention im-
plemented in the ViT, the compatibility function
is a softmax function, which transforms the output
into values between 0 and 1 so as to interpret it
as probabilities. Additionally, The dot products of
the queries and their related keys are computed,
and divided each by the square root of dk. Hence,
this yields the equation:

Attention(Q,K, V ) = softmax
(QK>√

dk
V
)

(3.1)

The aforementioned linear projection maps Ip and
its queries, keys and values to a trainable hidden
vector in dk, dk and dv, respectively. In multi-head
self-attention, this is done h times, corresponding to
the number of heads (in our case h = 8), and with
the attention function computed simultaneously in
each head. Ultimately, this yields an output matrix,
WO in dimension dv. The values obtained from WO

are concatenated and once again projected, result-
ing in the final values used as input for the MLP
blocks. This is best described by the equation:

MultiHead(Q,K, V ) = Concat(head1...headh)WO

with any headi = Attention(QWi
Q,KWi

K , V Wi
V )
(3.2)
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The MLP includes two layers and a Gaussian Er-
ror Linear Unit (GELU) is used as an activation
function (Hendrycks and Gimpel, 2020). Layer nor-
malization (Ba et al., 2016) is applied before every
block by computing the mean and variance utilized
in batch normalization (Ioffe and Szegedy, 2015),
from all of the summed inputs to the neurons in a
layer, on a single training case. Conversely, residual
connections (He et al., 2015) are applied after every
block.

+

MLP

Normalization

+

Multi-head Self-Attention

Normalization

Embedded Patches

L×

Figure 3.2: Transformer encoder architecture
(Vaswani et al., 2017)

3.3 Convolutional Neural Network

As described in Sabatelli (2021), the primary math-
ematical operation underlying CNNs is the convo-
lution. Convolutions require an input vector u ∈
RM , and a kernel v ∈ RN , which output a second
vector of size M −N + 1 such that:

(u ∗ v[i]) =

n−1∑
d=0

ud+ivd (3.3)

Where the ∗ symbol indicates a convolution opera-
tion which does not flip the kernel. Djolonga et al.
(2020); Dosovitskiy et al. (2021) utilized ResNets
(He et al., 2015) and EfficientNets (Tan and Le,
2019) for transferability evaluation and comparison
to transformers. ResNets, specifically, Big Transfer

(BiT) (Kolesnikov et al., 2020) and ResNet-101x3
offered the best results in image classification, su-
perior to the EfficientNets’ performances. BiT re-
quires a specific upstream pre-training procedure.
ResNet-101x3 was not utilized in both studies. On
the other hand, ResNet-152, the model BiT is based
on, is therefore indirectly utilized for BiT and is also
evaluated in Djolonga et al. (2020). Therefore, as it
follows the relevant studies, ResNet-152 was opted
for.

Weight Layer

Weight Layer

+

ReLu

ReLu

Figure 3.3: Residual network block unit (He
et al., 2015).

3.4 ResNet: Overall Architecture

In residual learning, some, but not necessarily all,
layers of the network attempt to approximate a
function H(x) − x, where H(x) is taken to be the
original underlying mapping which must be fitted
by the aforementioned layers. A plain residual net-
work (ResNet), one without residual connections,
consists of an initial 7×7 convolutional layer, which
applies a convolution operation to the input, fol-
lowed by a max pooling layer. Max pooling cal-
culates the maximum value for each patch of the
feature map obtained from the convolutional layer
(LeCun et al., 1989; Gholamalinejad and Khosravi,
2020). The main body of any ResNet is composed
of repeatedly alternating 3× 3 convolutional layers
(weighted layers) and rectified linear units (ReLu)
(Nair and Hinton, 2010). Last, a global average
pooling layer averages the output for each patch of
the feature map obtained before sending it as input
to a 1000-way fully-connected layer with softmax.
Actual ResNets, which contain residual connec-
tions, are built using repeating residual block units,
which replicate the aforementioned plain ResNet
architecture with the addition of shortcut connec-
tions capable of skipping the outputs of a number
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of layers (see Figure 3.3). One residual block is de-
fined by the equation:

y = F (x, {Wi}) + x (3.4)

Where x and y are the input and output vectors
of the layer where such residual connection exists.
F (x, {Wi}) represents the residual mapping (i.e,
H(x)) to be learned. Therefore, when factoring in
the ReLu present between layers, noted as σ, the
function for the repeating residual block in Figure
3.3 is F = W2σ(W1x). The ResNet152 used in this
paper only contains more weighted layers, totaling
152. It still maintains the over-arching previously
mentioned architecture.

4 Experimental Setup

Three individual empirical experiments were car-
ried in order to investigate the transferability of
transformers and compare it to that of CNNs. Par-
ticularly, the influence of fine-tuning dataset size
and differing degrees of domain dissimilarity on
transferability are explored. All experiments were
performed on 32GB NVIDIA Tesla K-40 and V100
GPUs.

4.1 Datasets

Figure 4.1: Example of ImageNet samples.

Overall, four datasets were involved in the per-
formed experiments. Two variants of ImageNet
(Deng et al., 2009), a database of natural human-
annotated images used for image classification,
were specifically used for pre-training in all exper-
iments. This includes ImageNet-21k, with 21000
classes and 14 million images and ImageNet-1k,
with 1000 classes and 1.3 million images. The other
three datasets were used in fine-tuning. The Kitti
dataset (Geiger et al., 2012), depth prediction and

object detection tasks, with 10 classes and 7481 im-
ages, was used in both experiment 1 and 3. How-
ever, in experiment 1, a large, medium and small
version of Kitti is used. The large dataset repre-
sents the entire dataset, with the two others con-
taining 3741, and 1871 images respectively, while
still maintaining the same number of classes. A
grayscale version of CIFAR-10 (Krizhevsky et al.)
and its collection of natural photos was used in ex-
periment 2. CIFAR-10 has 60000 images and 10
classes. Lastly, SmallNorb (LeCun et al., 2004),
containing artificial object azimuth and elevation
prediction tasks, was used in experiment 3. Small-
Norb holds 48600 images and five classes. Datasets
which did not come with class-balanced or uneven
phase splits were shuffled randomly and assigned
the same number of classes manually. This is partic-
ularly relevant to the fine-tuning datasets. For such
datasets, the same random seed was used for each
model in a single experiment run and was changed
in between runs. The training/validation/testing
split followed a ratio of 20:4:1, which also trans-
lates into an 80%/16%/4% split, respectively. The
dataset splits were renewed at each run. Lastly, im-
age resolution is left intact to prevent any introduc-
tion of inductive bias (see Appendix A).

4.2 Experimental Protocol

In NLP, fine-tuning on downstream tasks is param-
eter inefficient (Houlsby et al., 2019). In fact, Ko-
valeva et al. (2019) finds that for several tasks in
this domain, only the last few layers of the trans-
former change post-fine-tuning. Similarly, Michel
et al. (2019) states that as little as one attention
head per layer is required to be retained to maintain
a sufficiently functioning model. In both transform-
ers and CNNs, freezing parameters not only leads to
an improvement of results (Lee et al., 2019; Eber-
hard and Zesch, 2021) but also in training times
(Brock et al., 2017).Thus, for all experiments, two
variants of each models were used. One wherein all
classification layers were frozen except for the final
classifying layer, and another with no frozen layers.
These are referred to as ”Frozen” and ”Regular”
models, respectively. Transfer learning is considered
successful relative to a model trained from scratch
when either asymptotic, jumpstart or learning-
speed improvements are exhibited (Lazaric, 2012),
as depicted in Figure 4.1 on the next page. In
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Figure 4.2: Visualization of the three possible desired outcomes of transfer learning as seen in
(Lazaric, 2012)

asymptotic improvements, the performance of the
pre-trained model is significantly greater than that
of the scratch model. Jumpstart improvements are
distinguishable by the pre-trained model’s perfor-
mance being closer to its final performance since
its first training iteration. Finally, learning-speed
improvements occur when the pre-trained model
converges faster than its scratch variant. In or-
der to identify any of the three improvements, a
third variant of the ResNet152 was trained from
scratch. It is referred to as the ”Scratch” model.
As a ViT/L32 model contains 307M parameters,
it requires a significantly greater amount of time
to train from scratch. Hence, for temporal reasons,
no third variant is trained for the ViT. All exper-
iments are repeated five times to reduce any pos-
sibility of result volatility consequent from random
initialization. In each of these five runs, the train-
ing/validation/testing split remains the same be-
tween models, but different between runs. This de-
sign choice complements the random initialization
of datasets, further reducing result volatility.

Experiment 1 Djolonga et al. (2020); Dosovit-
skiy et al. (2021) explore pre-training with different

sized datasets. Yet, fine-tuning with different sized
datasets is overlooked. Intuitively, a wider range
of examples in the fine-tuning dataset is likely to
lead to better performance as witnessed with pre-
training. However, the relationship between per-
formance and fine-tuning dataset size in this con-
text has yet to be established. Thus, the relation-
ship between the size of the data set used for
fine-tuning and model performance is considered
in this experiment. Source and target domains are
maintained different to a high degree, where pre-
training uses ImageNet’s natural images in classifi-
cation and fine-tuning uses domain-specific, depth
prediction tasks obtained from Kitti. In order to in-
vestigate the relationship of different sized datasets
(see Datasets), the fine-tuning protocol (see Experi-

Figure 4.3: Example of a Kitti sample.
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mental Protocol, Paragraph 1) was repeated for the
small, medium and large variants of Kitti.

Figure 4.4: Example of grayscaled CIFAR-10
samples.

Experiment 2 Djolonga et al. (2020); Dosovit-
skiy et al. (2021) do not explore transfer learn-
ing with domains which differ only by simple fea-
tures. Though visual information plays an impor-
tant role in model performance, this matters only
if complex visual information is unavailable (Kan-
nojia and Jaiswal, 2018). Tebano et al. (2015) sug-
gests color is not a complex visual feature. Thus,
the ViT’s potential in visual adaptation with re-
gards to simple domain dissimilarities, in this case
color, is examined. This is done through the com-
parison of the performance of a ViT and CNN
where the source domain uses natural photos with
three channels (RGB), and the target domain uses
only single channelled (grayscale) natural images.
If color is not a complex visual feature, then the
transformer architecture is less likely to struggle
in its ability to generalize. Hence, it is expected
that the performance of the vision transformer will
remain unaffected by this reduction of color chan-
nels. Pre-training uses ImageNet in RGB. All fine-
tuning uses the grayscaled CIFAR-10 dataset. As
part of pre-processing, image vectors are repeated
three times on a new dimension to allow grayscale
images to be interpreted as RGB.

Experiment 3 Elaborating on the same ratio-
nale as experiment 2, the transferability of ViTs
using significantly different domains is also eval-
uated. As no previous literature has investigated
this realm, it remains rather difficult to form an
educated guess on the performance of ViTs to this

Figure 4.5: Example of SmallNorb samples.

regard. This is further confirmed by the findings
of Djolonga et al. (2020) which reported that with
high-difference domains, no metric predicts trans-
ferability well. Hence, experiment 3 appeals more
to exploratory research. Nonetheless, most variants
of BiT (see Section 3.3) introduced in Djolonga
et al. (2020) transferred to moderate accuracies on
datasets of similar nature. Therefore, it is expected
that the ResNet152 demonstrates similar results
in this case. Pre-training uses ImageNet and both
ViT and CNN are fine-tuned on datasets containing
tasks defined by VTAB as ”structured” (see Intro-
duction). As VTAB is a visual adaptation bench-
mark, it is better suited to evaluate the transfer
learning potential of transformers, offering a wider
variety of tests. The datasets in question consist of
Kitti and SmallNorb.

Metrics As all datasets were cho-
sen/manipulated in accordance with the criterion
of having balanced classes, performance is mea-
sured using accuracy. We define accuracy as the
percentage of predictions which the model achieves
correctly, following the equation:

Accuracy =
number of correct predictions

total number of predictions
× 100

(4.1)
The total training time for each individual run in
seconds is also recorded so as to obtain an idea
of the efficiency of model training. These metrics
are then calculated using an average of the five
best models found in each run, where the train-
ing/validation accuracy and loss are computed at
each epoch.

4.3 Pre-Training/Fine-Tuning

In all experiments, both ViTs and CNNs were pre-
trained on ImageNet. The ImageNet-21k dataset

8



was used in the pre-training of the ViT. In con-
trast, the ImageNet-1k dataset was used for the
pre-training of the CNN. Moreover, a cross entropy
(CE) (Cox, 1958) loss function was used for all
training and testing. For N class labels i, the pre-
dicted probability p that x is the right observation
and an indicator yi conveying whether the obser-
vation is a correct classification, this is defined by
the equation (as seen in Sabatelli (2021)):

−Ex,y P (X,Y ))

N∑
i=1

yilog pmodelf(x; θ) (4.2)

Where the separate loss per label is calculated and
the result summed up. CE is proven to be a cali-
brated loss function (Tewari and Bartlett, 2005), in
turn promising well-behaved probability estimates.
Consequently, due to its ability to minimize dis-
tances between two probability distributions, CE
has historically offered consistent top-1/top-5 per-
formance in image classification in both binary and
multi-class classification tasks (Cao et al., 2018;
Ruby and Yendapalli, 2020) as well as relatively
high convergence speeds (Martinez and Stiefelha-
gen, 2018). As only multi-class classification is
present across all experiments, this justifies its us-
age. In all runs, stochastic gradient descent (Rob-
bins and Monro, 1951) with a learning rate of 0.001
and momentum of 0.9 (Rumelhart et al., 1986)
is used in order to keep parameters as similar to
Dosovitskiy et al. (2021) as possible. Stopped train-
ing (Sjöberg and Ljung, 1992; Finnoff et al., 1993)
with a patience of seven epochs and an exponential
learning rate decay (An et al., 2017) with a patience
of five epochs and a factor of 0.5 are also utilized
during fine-tuning.

5 Results

For each dataset, the significance in mean accu-
racy difference of six model pairs was investigated:
frozen CNN versus frozen ViT, frozen CNN versus
regular ViT, regular CNN versus frozen ViT, reg-
ular CNN versus regular ViT, scratch CNN versus
frozen ViT and scratch CNN versus regular ViT. As
K-fold cross validation is not utilized during fine-
tuning of the models, the assumption of indepen-
dence is not violated (Demšar, 2006). A Shapiro-
Wilk test was run for each investigated dataset pair

so as to detect any violations of normality. For all
pairs, results lead to acceptance of the null hypoth-
esis that the aforementioned were not different from
normally distributed sets (p > 0.05 for all). Thus,
this justifies the usage of a paired Student’s t-test
to determine any significant difference in mean ac-
curacies between models (Dietterich, 1998). More-
over, the validation accuracies/losses throughout
their epoch counts were both plotted for each in-
dividual dataset/variant. Validation losses may be
visualized in Appendix D. As such, the y-axes of
these graphs constitute the loss/accuracy of any
given model in decimal values, and the x-axes, the
epoch count in numerical values. The shaded areas
around each plotted curve represent their standard
uncertainties. Uncertainties for all graphs were cal-
culated as standard errors of means (SEM), where
the standard deviation of each sample was utilized
in the computation of each SEM. Lastly, tables con-
taining the average percentage test accuracy of each
model over their five runs are displayed in this sec-
tion. Each model’s average training time in minutes
can be found in Appendix B.

5.1 Kitti

Figure 5.1: Validation accuracy for models fine-
tuned on the small variant of the Kitti dataset
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Table 5.1: Average Test Performances (in per-
centages) on Kitti Small

Model CNN ViT
Regular 73.23 ± 0.033 87.93 ± 0.05
Frozen 46.52 ± 0.031 89.99 ± 0.025
Scratch 77.14 ± 0.011

Kitti – Small As seen on Table 3.1, the regu-
lar and frozen ViT produce the best average re-
sults compared to all other models. Significant dif-
ferences in mean performance score were found
between the regular/frozen ViT and the regular,
frozen and scratch CNN (p = 0.002/p < 0.001; p <
0.001 for both; p = 0.02/p < 0.002, respectively).
Table B.1 (see Appendix B) conveys that all CNN
have faster average training times than the ViT
models. However, no significant differences were
found between the mean of the regular/frozen ViT
training times and that of the CNN variants for
any given pair (p > 0.05). Looking at the curves on
Figures 5.1 and D.1, the frozen CNN depicts a high
validation loss and a validation accuracy below 50
percent. This suggests that the frozen CNN model
cannot generalize beyond the training set. Further-
more, taking into account that the regular CNN
model generalizes to a sufficient extent, it also sug-
gests that training only the lower layers of a CNN
alone are not enough for a CNN model to take
on object depth prediction tasks, even when pre-
trained on ImageNet. Last, the scratch and regular
CNN depict validation accuracies which decrease
over time after the first two epochs, possibly indica-
tive of the models overfitting. The regular CNN be-
gins at higher accuracies on epoch one, and not only
converges faster (in two epochs) but to a higher ac-
curacy than its scratch variant. Thus, a visible mix
of asymptotic, learning speed and jumpstart im-
provements are present for the regular CNN model
when compared to its scratch variant’s validation
accuracy plots.

Table 5.2: Average Test Performances (in per-
centages) on Kitti Medium

Model CNN ViT
Regular 75.51 ± 0.025 81.94 ± 0.076
Frozen 46.63 ± 0.043 94.59 ± 0.096
Scratch 78.74 ± 0.026

Figure 5.2: Validation accuracy for models fine-
tuned on the medium variant of the Kitti
dataset

Kitti – Medium As seen on Table 3.2, the reg-
ular and frozen ViT produce the best average re-
sults compared to all other models. Significant dif-
ferences in mean performance score between the
regular ViT and the frozen CNN (p < 0.001) were
found, but not when compared to the regular CNN
and the scratch CNN (p > 0.05 for both). Ad-
ditionally significant differences in mean perfor-
mance score were found between the frozen ViT
and the aforementioned (p < 0.001 for all). Ta-
ble B.2 (See Appendix B) also conveys that all
CNN models have faster average training times
than the ViT models. Though a significant differ-
ence in mean training times was found between
the regular and frozen ViTs and the frozen CNN
(p = 0.04; p = 0.01, respectively), no significant
differences in time were found for any other given
pair (p > 0.05). Looking at the graphs on figures 5.2
and D.2, the frozen CNN once again depicts an in-
creasing high validation loss and a validation accu-
racy below 50 percent which continues decreasing.
As once again the regular CNN model generalizes
successfully, this reinforces the idea that the frozen
CNN’s final layer, by itself, cannot solely make use
of the feature maps acquired through pre-training
on ImageNet in order to solve tasks from the Kitti
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dataset. The regular CNN begins at higher accu-
racies on epoch one, and converges faster (in eight
epochs) than its scratch variant. Thus, a visible mix
of learning speed and jumpstart improvements are
present for the regular CNN model when compared
to its scratch variant’s validation accuracy plots.

Table 5.3: Average Test Performances (in per-
centages) on Kitti Large

Model CNN ViT
Regular 84.25 ± 0.011 95.32 ± 0.022
Frozen 38.77 ± 0.016 97.33 ± 0.035
Scratch 85.98 ± 0.042

Kitti Large As seen on Table 3.3, the regular
and frozen ViT produce the best average results
compared to all other models. Significant differ-
ences in mean performance score between the regu-
lar/frozen ViT and the regular, frozen and scratch
CNN variants (p = 0.01/p < 0.001 for the regu-
lar, p < 0.001 for both, regarding the frozen and
scratch). Table B.3 (See Appendix B) also conveys
that all CNN models have faster average training
times than the ViT models. However, no significant
differences in time were found between the mean of
the regular/frozen ViT training times and that of
the CNN variants for any given pair (p > 0.05).
Similarly to Kitti Small and Medium, looking at
the graphs on figures 5.3 and D.3, the frozen CNN
conveys a high, decreasing validation loss and a
validation accuracy below 50 percent. The regular
and scratch CNNs quickly converge at epoch four,
after which their accuracies begin decreasing and
the models display signs of overfitting. Nonethe-
less, until epoch four the models display no suspi-
cious behaviour. Taking these two observations into
account, this further supplements the initial expla-
nation that for object depth prediction, a ResNet
pre-trained on ImageNet, whose layers are all frozen
except for the final classifying layer, does not have
sufficient training and information to appropriately
classify elements from the Kitti dataset. No jump-
start, learning speed or asymptotic improvements
are visible for the regular CNN. Hence, this sug-
gests the CNN’s transfer from ImageNet to the en-
tire Kitti dataset is not successful.

Figure 5.3: Validation accuracy for models fine-
tuned on the large variant of the Kitti dataset

Kitti Overview One can see that the perfor-
mance of all models on the Small dataset, except
the frozen CNN, is inferior to that on the Medium
dataset, which is in turn inferior to performances
witnessed on the Large dataset, where: the reg-
ular CNN performance increases from 73.23% to
84.25%; the regular ViT increases from 87.93% to
95.32%; the scratch CNN increases from 77.14% to
85.98%, and the frozen ViT increases from 89.99%
to 97.33%.

5.2 Grayscale CIFAR-10

Table 5.4: Average Test Performances (in per-
centages) on Grayscale CIFAR-10

Model CNN ViT
Regular 94.23 ± 0.0077 96.26 ± 0.0036
Frozen 76.66 ± 0.0049 96 ± 0.0044
Scratch 93.98 ± 0.0089

As seen on Table 3.4, the regular and frozen
ViT produce the best average results compared to
all other models. Significant differences in mean
performance score were found between the regu-
lar/frozen ViT and the regular, frozen and scratch
CNN variants (p = 0.02/p = 0.01; p < 0.001/p =
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Figure 5.4: Validation accuracy for models fine-
tuned on the grayscale variant of the CIFAR-10
dataset

0.01; p < 0.001/p = 0.004, respectively). Table B.4
(See Appendix B) also conveys that all CNN mod-
els have faster average training times than the ViT
models. A significant difference in mean training
time was found between the regular/frozen ViT and
the scratch CNN (p = 0.005/p < 0.001). No signif-
icant differences in time were found for any other
given pair (p > 0.05). Looking at the graphs on fig-
ures 5.4 and D.4, learning speed improvements for
the regular CNN can be extracted from the valida-
tion accuracy plots when compared to the scratch
CNN’s curves, where the regular CNN converges at
epoch eight and the frozen CNN at epoch nine.

5.3 SmallNorb

As seen on Table 3.5, the regular ViT and CNN pro-
duce the best average results compared to all other
models, with that of the CNN being slightly greater
in performance. Significant differences in mean per-
formance score between the regular/frozen ViT and
the frozen CNN variant (p < 0.001) were found. On
the other hand, the opposite is true regarding per-
formance comparison between the regular/frozen
ViT and regular and scratch CNN (p > 0.05). Table
B.5 (See Appendix B) also conveys that all CNN
models have faster average training times than the

ViT models. However, no significant differences in
time were found for any given pair (p > 0.05).
Looking at the graphs on figures 5.5 and D.5, vis-
ible learning speed, jumpstart and asymptotic im-
provements are visible for both the frozen and reg-
ular CNN as they converge faster and to greater
accuracies than their scratch variant.

Figure 5.5: Validation accuracy for models fine-
tuned on the SmallNorb dataset

Table 5.5: Average Test Performances (in per-
centages) on SmallNorb

Model CNN ViT
Regular 96.85 ± 0.0078 96.82 ± 0.0042
Frozen 90.80± 0.0037 96.14 ± 0.0014
Scratch 96.08 ± 0.017

6 Discussion

6.1 Experiment 1

Extending the research carried by (Dosovitskiy
et al., 2021), the first experiment aimed to investi-
gate the transfer learning potential of vision trans-
formers with fine-tuning datasets of not only highly
different target domains, but also containing sparse
amounts of data. Irrespective of ViT or CNN, one
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can see that for all regular and scratch variants
the average performance increases as the size of
the fine-tuning dataset increases. Hence, this re-
inforces the initial hypothesis that larger amounts
of data lead to better performance. This follows
the findings of (D’souza et al., 2020), which inves-
tigated the transfer learning optimization of CNN
structures using smaller sample sizes. Building on
this and factoring in the overall performance of the
ViT compared to that of the CNN, a second no-
table trend is the ViT’s significant positive differ-
ence in performance. Additionally, it was noted for
all three size dataset variants that the frozen CNN
had poor prediction accuracy and could not gen-
eralize beyond its training set. Both frozen models
of the ViT and CNN had all layers frozen except
for the final classifying layer. Therefore this sug-
gests that the feature maps acquired through the
pre-training of a ResNet on ImageNet is not suf-
ficient to solve object depth prediction tasks. On
the other hand, as the frozen ViT performed bet-
ter than all other models, it also supports the idea
that the information acquired by a ViT pre-trained
on ImageNet is enough for it to solve the afore-
mentioned tasks. Thus, this all contributes to the
suggestion that the transferability of transformers
to depth task predictions with smaller dataset sizes
is significantly superior to that of a CNN. (D’souza
et al., 2020) also suggests that as sample size de-
creases, the importance of network structure in-
creases. One likely explanation for the ViT’s greater
performance in such conditions may then span from
the structural differences visible in transformers.
Notably, there are two substantial structural differ-
ence in ViTs: their incorporation of attention-based
learning caked in each layer and their relative lack
of inductive bias. As such, this suggests that ei-
ther appropriate incorporation of self-attention in
neural structures or building architectures which
do not rely on inductive bias may serve in improv-
ing their transfer learning potential, as the informa-
tion learned by such architectures appears to hold
greater generalized value. However, one must take
into account that the ViT/L32 model is pre-trained
on Imagenet-21k, while Imagenet-1k is used for the
ResNet152. Therefore, another possible explana-
tion for the significant difference in performance
may span from the substantially larger dataset the
ViT is pre-trained on. Last, one can see that in
both the small and large variants of the per-epoch

accuracy plots the regular and scratch ResNet152’s
validation accuracies decrease over time. This may
imply an issue specific to CNNs in the parameters
used for experiment 1. In this case, it is likely the
learning rate that may have been too high for as
the regular CNN model converges in as little as two
epochs. Further experimenting with lower learning
rates in Appendix C reveals that indeed, with a
lower learning rate the CNN’s validation accuracy
does not decrease over time. However, the average
accuracies obtained do not exceed that which were
obtained with the higher learning rates. Hence, it
is unlikely that this explains the CNN’s relatively
poorer performance.

6.2 Experiment 2

Further extending (Djolonga et al., 2020; Dosovit-
skiy et al., 2021), the second experiment aimed
to investigate the transferability of vision trans-
formers with regards to low-degree differences in
source/target domains. This was approached by
changing non-complex visual information in the
fine-tuning dataset’s images through the manipula-
tion of color. Irrespective of ViT or CNN, one can
see that target domains which only differ slightly to
their source domain by means of changes in simple
visual information are not an obstacle to transfer
learning as either structure achieves higher perfor-
mances than the scratch CNN. This supports the
initial hypothesis that changes in simple visual in-
formation does not significantly affect model per-
formance. These results also corroborate the sim-
ilar works of (Kannojia and Jaiswal, 2018) which
were performed using changes in resolution, as well
as that of (Tebano et al., 2015) which suggested
that color does not hold complex visual informa-
tion. Hence, the absence of color, does not affect a
model’s transfer learning potential. Building on this
and factoring in overall ViT performance compared
to CNN performance, the regular and frozen ViT
convey a positive significant difference in perfor-
mance. These combined findings contribute to the
idea that ViT models may hold greater transferabil-
ity than CNNs in low-difference transfer learning.
In spite of this, the average training times remain
lower in CNN models than for ViTs. Although a
significant difference was found regarding any ViT
versus the scratch CNN model, all other models
revealed insignificant differences. Regardless, this
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suggests a possible trade-off of training time versus
performance for the ViT models. However, recall
that training was performed on single GPUs which
varied in type (either Tesla K-40/Tesla V100) and
thus varied in processing speed. Moreover, the clus-
ter used to train such models was also charged with
a variety of different other tasks. Errors in the clus-
ter and latency times were not available for record-
ing. Therefore, it is possible that the training times
may not represent the true training time if this ex-
periment was to be carried under ideal controlled
conditions.

6.3 Experiment 3

Extending experiment 2 and its associated studies,
experiment 3 aimed to investigate transfer learn-
ing in the context of high-degree differences be-
tween source and target domains. Irrespective of
ViT or CNN, one can see that target domains which
greatly differ from their source domain are not nec-
essarily an obstacle to transfer learning. In object
prediction tasks, the regular CNN achieves similar
performances to its scratch variant. All ViT vari-
ants significantly outperform the aforementioned.
In object elevation/azimuth prediction, the valida-
tion accuracy plots depict both frozen and regular
CNNs achieving all three types of improvements
when compared to the scratch CNN, suggesting a
success in transfer learning. Additionally, all vari-
ants achieve higher performances than the scratch
CNN. In spite of that, differences in performance
observed with all variants except the frozen CNN
were found to be insignificant. Hence, this suggests
that transfer learning to object elevation/azimuth
prediction may not automatically be the best ap-
proach to achieving top performance. Looking at
the comparative performance of ViTs to CNNs in
the aforementioned, both regular models achieve
nearly identical performances, with the CNN out-
performing by a small degree. Additionally, this
difference in performance was also found to be in-
significant, further reinforcing the idea that these
two models perform on a highly similar level. Due
to the novelty of transformers, little literature in-
volving ViTs in a transfer learning context exists.
However, putting these findings together with that
of (Djolonga et al., 2020; Dosovitskiy et al., 2021),
the suggestion that ViT models transfer to domains
of high dissimilarity with more ease than CNNs is

only reinforced. Yet, average training times for the
CNN models are faster than that of the ViT for
both datasets. However, in the SmallNorb dataset
these differences were found to be insignificant.
Conversely, on the Kitti dataset a significant dif-
ference in training times was found when compar-
ing any ViT to the frozen CNN. Still, this model
performed poorly with an accuracy well below 50%.
Thus, this only suggests a likely insignificant trade-
off in training time versus performance for ViT
models in these contexts.

7 Conclusion

This paper aimed to investigate the transferability
of vision transformers and compare it to that of
convolutional neural networks. Through the three
sub-experiments which were carried, ViTs were
seen and confirmed to transfer significantly bet-
ter than CNNs when constrained to small sam-
ple sizes or with a low-degree difference between
the source and target domains. Furthermore, com-
pared to CNNs, ViTs also demonstrated superior
transferability regarding object depth prediction
tasks, and near identical transferability to object
azimuth/elevation prediction tasks. These afore-
mentioned tasks represent transfer with regards to
high-degree differences in target and source do-
main. In conclusion, as the ViT performed better
than CNNs in a majority of tasks, this suggests
that ViTs have a significant advantage in transfer
learning potential when compared to CNNs. The
most likely explanation for such transcendence in
transfer learning potential lies in a ViT’s structural
differences compared to a CNN (D’souza et al.,
2020). Additional experiments are necessary in or-
der to understand whether it is the lack of induc-
tive bias, the addition of self-attention or a com-
pletely different force altogether responsible for the
ViT’s observed edge in transfer learning. However,
this may be explained when noting that the frozen
ViT model consistently offers the best results in
some datasets and similar results as that of its reg-
ular variant, while the frozen ResNet model pales
in comparison. Mainly, the ViT’s edge may lie in
its ability to learn longer-term dependencies, which
spans from its incorporation of self-attention. In
some cases, such as object-depth prediction, this
ability may result in the quality of the level of
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knowledge attained by a ViT to be of higher value
compared to that of a CNN. Thus, this not only
poses a possible explanation for such edge in trans-
ferability, it also suggests that longer-term depen-
dencies may hold a higher degree of complexity or
generalization, introducing a possible relationship
between the transferability of an architecture and
the quality of the knowledge it crystallizes. A fol-
lowing examination of the ViT’s off-the-shelf per-
formance on Kitti and other object depth predic-
tion tasks can further develop the aforementioned
explanation. The ViT’s transferability to other dif-
ferent target domains such as semantic segmenta-
tion or image retrieval (Sinha et al., 2018) are also
still required to ascertain its predominant perfor-
mance. However, the ViT model requires more fine-
tuning time than a CNN. This particular latency
suggests a trade-off between its performance and
the time taken for the model to generalize. As the
differences in training time between ViT and CNN
were found to be insignificant, further studies are
required to confirm whether this trade-off can put
the ViT at a disadvantage. Nevertheless, the frozen
ViT model’s prowess builds on (Lee et al., 2019),
supporting the findings that even with a fourth of
the layers unfrozen, a ViT performs similarly to
its regular counterpart. Moreover this seems par-
ticularly relevant to small sample sizes, where the
frozen ViT outperformed all other models. All in
all, with time, one might find that the usage of
transfer learning with ViTs or other self-attention
based architectures may find their place in real-life
cases where samples do not exist in high numbers,
such as in biomedical engineering, the process in-
dustry or material science (Zhu et al., 2020).
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Learning methods for generic object recognition
with invariance to pose and lighting. Proceed-
ings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2:
II97–II104, 2004. ISSN 1063-6919.

Yann Lecun, Koray Kavukcuoglu, and Clement
Farabet. Convolutional networks and applica-
tions in vision. pages 253–256, 05 2010.

Jaejun Lee, Raphael Tang, and Jimmy Lin. What
would elsa do? freezing layers during transformer
fine-tuning. CoRR, abs/1911.03090, 2019.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong
Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng
Chen. Gshard: Scaling giant models with con-
ditional computation and automatic sharding. 6
2020.

Xiaogang Li, Tiantian Pang, Biao Xiong, Weixi-
ang Liu, Ping Liang, and Tianfu Wang. Convo-
lutional neural networks based transfer learning
for diabetic retinopathy fundus image classifica-
tion. In 2017 10th International Congress on Im-
age and Signal Processing, BioMedical Engineer-
ing and Informatics (CISP-BMEI), pages 1–11,
2017.

Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte,
and Luc Van Gool. Localvit: Bringing locality to
vision transformers, 2021.

Manuel Martinez and Rainer Stiefelhagen. Taming
the cross entropy loss, 2018.
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A Inductive Bias

One substantial difference between transformers
and CNNs consists of inductive bias. Inductive bias
is defined by a set of assumptions a learning algo-
rithm adopts in order to practice the generaliza-
tion of observed data into a model (also known as
induction) (Hüllermeier et al., 2013). As stated ini-
tially, transformers do not hold inductive biases to
the same extent as CNNs, where CNNs have bet-
ter induction potential Cohen and Shashua (2017).
This is explained by two characteristics present in
the latter but not the former: translational equiv-
ariance and locality. Battaglia et al. (2018) de-
fine locality as the idea that in the input space,
points relatively close to each other share some re-
lational meaning. Following Gordon et al. (2020),
a function f : Z → Z is translation equivari-
ant to a translation operation Tt : X × Z →
Z if f(Tt(Zf )) = Tt(f(Zf )) for all t ∈ X and
Z ∈ Zf . For instance, take Z to be a set of M
measurements m at locations l, such that Z =
((l1,m1), ..., (lM ,mM )). If the translation operation
is defined as TtZ = ((l1–t,m1), ..., (lM–t,mM )) and
initially shifting the measurements and then apply-
ing the function leads to the same results as the
performing these same operations in reverse order
then f is translation equivariant with respect to
shifts of measurement locations (Horn et al., 2021).
In CNNs, the aforementioned two are present in
each convolutional layer, thus throughout the whole
model. Conversely, in transformers, locality and
translational equivariance are solely witnessed in
the MLP layers (Li et al., 2021; Horn et al., 2021).
Dosovitskiy et al. (2021) increase the resolution
of their images for fine-tuning to ensure optimal
results (Touvron et al., 2021; Kolesnikov et al.,
2020). However, this introduces new inductive bias
to the ViT. In order to minimize introduction of
other inductive biases and thus ensure the trans-
former learns relevant representations, this fine-
tuning procedure was discarded.

B Extra Results: Training
Time

Below you may find all experimental results regard-
ing the average training times in minutes for all
models and their respective variants.

Table B.1: Average Training Times (in minutes)
on Kitti Small

Model CNN ViT
Regular 37.25 ± 3.61 83.35 ± 5.53
Frozen 15.77 ± 8.25 75.88 ± 10.73
Scratch 31.73 ± 11.70

Table B.2: Average Training Times (in minutes)
on Kitti Medium

Model CNN ViT
Regular 62.050 ± 2.95 99.10 ± 15.63
Frozen 26.68 ± 2.01 128.91 ± 5.70
Scratch 84.87 ± 15.23

Table B.3: Average Training Times (in minutes)
on Kitti Large

Model CNN ViT
Regular 116.86 ± 27.76 208.23 ± 54.18
Frozen 134.03 ± 20.65 241.50 ± 67.11
Scratch 99.20 ± 24.40

Table B.4: Average Training Times (in minutes)
on Grayscale CIFAR-10

Model CNN ViT
Regular 133.88 ± 16.35 149.76 ± 22.62
Frozen 122.61± 26.85 158.35 ± 38.86
Scratch 57.03 ± 24.8

Table B.5: Average Training Times (in minutes)
on SmallNorb

Model CNN ViT
Regular 28.87 ± 2.45 39.28 ± 3.33
Frozen 36.16 ± 9.4 61.08 ± 19.7
Scratch 32.87 ± 4.47

C Overfitting CNN: Learning
Rate Experiment

In experiment 1, the regular and scratch CNN con-
verge rather fast (< 5 epochs), before their vali-
dation accuracies begin decreasing. As the frozen
variant is incapable transferring at all, in the con-
text of object depth prediction, it was omitted. Fur-
ther experiments were carried by fine-tuning the
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CNN with half of the learning rate used in experi-
ment 1. This entails a learning rate of 0.0005. These
experiments ensure that the data in obtained in
experiment 1 truly captures the accuracies which
should be exhibited from the regular and scratch
ResNet variants. It is also carried in order to ver-
ify whether the CNN models were overfitting from
start. This additional experiment was also run five
times, where the averaged test accuracy and vali-
dation plot accuracies of each variant is displayed
in the tables below.

C.1 Kitti: Small

Looking at the graphs on figures C.1 and C.2, vis-
ible asymptotic, jumpstart and learning speed im-
provements are observable when comparing the reg-
ular CNN to its scratch variant. It is noted that the
regular ResNet still converges at a relatively fast
rate of less than three epochs. Furthermore, com-
paring Table 5.1 to Table C.1 demonstrates that
in spite of the results in Table C.1 being relatively
lower, they remain nonetheless similar to those ob-
tained in experiment 1.

Figure C.1: Validation loss for models fine-tuned
on the small variant of the Kitti dataset

Figure C.2: Validation accuracy for models fine-
tuned on the small variant of the Kitti dataset

Table C.1: Average Test Performances (in per-
centages) on Kitti Small

Model CNN
Regular 71.91 ± 0.024
Scratch 76.52 ± 0.018

C.2 Kitti: Medium

Looking at the graphs on figures C.3 and C.4, vis-
ible asymptotic and jumpstart improvements are
observable when comparing the regular CNN to its
scratch variant. It is noted that both scratch and
regular ResNets still converge at a relatively fast
rate of less than four epochs. Furthermore, com-
paring Table 5.2 to Table C.2 conveys that the re-
sults for the regular CNN are marginally higher,
whereas those for the scratch CNN are marginally
lower. Nonetheless, these averages remain similar
to those obtained in experiment 1.

Table C.2: Average Test Performances (in per-
centages) on Kitti Medium

Model CNN
Regular 75.80 ± 0.034
Scratch 78.12 ± 0.029
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Figure C.3: Validation accuracy for models fine-
tuned on the medium variant of the Kitti
dataset

Figure C.4: Validation loss for models fine-tuned
on the medium variant of the Kitti dataset

C.3 Kitti: Large

Looking at the graphs on figures C.5 and C.6, vis-
ible asymptotic and jumpstart improvements are
observable when comparing the regular CNN to

its scratch variant. It is noted that both scratch
and regular ResNets converge at a rate of less than
seven epochs. Furthermore, comparing Table 5.3 to
Table C.3, it is noted that the results for the reg-
ular CNN are lower, whereas those for the scratch
CNN are also marginally greater. Once again, these
results remain similar to those obtained in experi-
ment 1.

Figure C.5: Validation loss for models fine-tuned
on the large variant of the Kitti dataset

Table C.3: Average Test Performances (in per-
centages) on Kitti Large

Model CNN
Regular 81.19 ± 0.039
Scratch 85.92 ± 0.023

C.4 Kitti: Overview

All in all, it is made clear that the accuracies and
behaviour observed in experiment 1 are not in fact
suspicious. This is explained by the idea that in
experiment 1, the learning rate is at a magnitude
sufficiently high that the CNN converges in less
than four epochs and then quickly begins to over-
fit. However, as noted on each graph analysis, most
validation accuracy plots convey the idea that both
regular and scratch ResNets tend to converge in a
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Figure C.6: Validation accuracy for models fine-
tuned on the large variant of the Kitti dataset

relatively low amount of training iterations on the
Kitti dataset, regardless of the utilized size variant.
Hence, this alternative experiment demonstrates
that this is not a model-related issue and that the
models are not overfitting from the beginning of
their training. Consequently, it is unlikely that this
would affect or contradict either end-results or fur-
ther analyses which takes the plots in experiment 1
into account. Additionally, this is further reinforced
by the fact that average test performances do not
deviate from those observed in experiment 1.

D Validation Loss Plots: Ini-
tial Experiments

Below are the initial validation losses plotted for all
model variants on a single run of each experiment.

Figure D.1: Validation loss for models fine-tuned
on the small variant of the Kitti dataset

Figure D.2: Validation loss for models fine-tuned
on the medium variant of the Kitti dataset
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Figure D.3: Validation loss for models fine-tuned
on the large variant of the Kitti dataset

Figure D.4: Validation loss for models fine-tuned
on the CIFAR-10 dataset

Figure D.5: Validation loss for models fine-tuned
on the SmallNorb dataset
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