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Abstract

Cognitive computing mimics human reasoning techniques. A way to look at the
development of cognitive computing systems, is the electrical systems point of
view. In order to develop these systems, electrical circuits with memristors can
be studied. This paper discusses a framework for modeling electrical circuits
with capacitors and memristors based on graph theory. In a classical modeling
approach, this would yield a system in which both the capacitor voltages and
memristor fluxes are states. However, in this report the obtained equations are
partially solved analytically. This gives a reduction in the state-space dimension
and provides an easier way to analyze the system. Both the stability of the
nonlinear ordinary differential equation and the influence of the change of input
on the state is studied.
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1 Introduction

Cognitive computing is a part of artificial intelligence. Cognitive computing
systems are sometimes regarded as a more human part of artificial intelligence.
This part of artificial intelligence mimics human reasoning techniques. It can for
example deal with uncertainties in solving problems. Furthermore, it can learn
from the past from both errors and successful findings. From a theoretical point
of view, cognitive computing could replace existing calculators in a lot of ap-
plications, such as analyzing emerging patterns or state critical process-centric
issues in real time, but hardware requirements are still high (Coccoli, Maresca,
and Stanganelli 2016).

In order to develop new cognitive computing systems, technological and the-
oretical innovations are needed to advance the field of cognitive computing.
Self-learning materials that perform the tasks that are currently assigned to
thousands of transistors and complex algorithms have to be created in a more
efficient manner. Such a self-learning material can be a physical building block
with intrinsic cognitive functionality via cross-linked networks at nanoscale. A
way to look at the development of cognitive computing systems is the electri-
cal systems point of view. In order to develop these systems, electrical circuits
with certain properties can be studied. An electrical component of interest is
the memristor. The study of memristors is motivated by the fact that material
scientists are developing materials with memristive behavior. A memristor is a
contraction of memory and resistor. As its name already suggests, it is a resistor
with memory. This paper focuses on a circuit with at least one memristor, called
memristive circuits, and its modeling and analysis.

Before being able to study these circuits, a theoretical foundation is needed.
Chapter 2 shows a theoretical framework in which four topics will be discussed.
Since we look at the electrical circuits from a graph theoretical perspective,
graph theory is studied first. By the fact that we consider electrical circuits,
physical laws are needed. The two most important laws for electrical circuits
are Kirchhoff’s Laws. Thereafter, memristors and capacitors are introduced.
Finally the basic algebraic equations for the electrical components are studied.
After defining the theoretical background information, mathematical modeling
can be done. The equations needed for the mathematical modeling are given
by the Kirchhoff’s Laws and the Constitutive Relations. For a given electrical
component, the constitutive relation gives the corresponding relation between
current and voltage. In chapter three, a mathematical model is derived. After
deriving this mathematical model, this model is solved partially analytically in
order to obtain a reduction in state-space dimension. With this reduced model,
numerical modeling is done in Chapter 4. In this chapter, first some elements of
the obtained nonlinear ordinary differential equation are explained. Thereafter,
the numerical implementation using MATLAB can be found. The results of this
chapter are elaborated in Chapter 5, which discusses the analysis of a class of
memristor-capacitor circuits. This chapter starts with the notion of stability
of both linear and nonlinear systems. Thereafter, the results of the numerical
implementation will be studied with respect to the stability. Finally, state tra-
jectories resulting from a step input on the system will be studied. This paper
concludes with a brief conclusion showing all the subjects explored throughout
this paper. In the end, some recommendations for further research are given.
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2 Theoretical framework

In order to study memristors and their (dynamic) behaviour, a theoretical frame-
work is required. Within this section, four topics will be elaborated. The first
topic studied is graph theory. Graph theory provides a background to under-
stand electrical circuits. The next topics studied are Kirchhoff’s laws. These
laws are the basic laws for electrical circuits and describe the relation between
voltages and currents in a circuit. Thirdly, memristors and capacitors are stud-
ied since this research focuses on electrical circuits consisting of these two basic
elements. The mathematics needed can be derived from the constitutive rela-
tions of these basic elements together with the laws of Kirchhoff. First, let us
start with the notion of graph theory.

2.1 Graph theory

When looking at electrical circuits from a graph theoretical perspective, a useful
mathematical framework to describe the interconnection structure in an electri-
cal circuit is provided (Shen 2019). This section will recall the basic notions of
graph theory.

A finite, directed graph, D is defined as a pair D = (N,B). Here N =
{n1, n2, . . . , nk} is a set of k nodes. The set B is the set of branches, which
consists of elements of the form (ni, nj), where (ni, nj) ∈ B if there is a con-
nection from node ni to node nj (Wang et al. 2009). An example of a directed
graph D can be found in Figure 1.

n1 n2

n3n4

Figure 1: A directed graph with 4 nodes. The nodes are denoted by
N = {n1, n2, n3, n4} and the branches are denoted by
B = {(n1, n2), (n4, n1), (n3, n2), (n4, n2), (n4, n3)}.

A graph is called an undirected graph, denoted by G, if it satisfies the following
property

(ni, nj) ∈ B ⇐⇒ (nj , ni) ∈ B.

Note that for undirected graphs, the branches are represented as straight lines
rather than arrows (Bapat 2010).

As this paper focuses on the graph theoretical perspective for electrical circuits,
undirected graphs with an associated orientation will be studied. A graph can
be represented using various matrices. For electrical circuits, a matrix of interest
is the incidence matrix D. The incidence matrix of an undirected graph with an
associated orientation, D ∈ RN×B, is given by

D = djm,
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with djm defined as follows

djm =


1 if nj is the head of bm,

−1 if nj is the tail of bm,
0 otherwise

.

see, e.g., (Rahmani et al. 2009). Recall that in total there are N nodes and there
are B branches. Note that for an undirected graph with an associated direction,
the orientation will determine the signs of the variables in the incidence matrix.
In order to define the incidence matrix for our example in Figure 1, we first need
to define our branches B = {b1, b2, b3, b4, b5}. This can be found in Figure 2.

n1 n2

n3n4

b1

b2

b3

b4
b 5

Figure 2: An undirected graph with an associated orientation with 4 nodes and
5 branches.

When studying the undirected graph with an associated orientation with 4 nodes
and 5 branches, we obtain the incidence matrix D ∈ R4×5 given by

D =


−1 0 0 1 0
1 1 0 0 1
0 −1 1 0 0
0 0 −1 −1 −1

 .
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Another matrix that plays a role in graph theoretical aspects of electrical circuits
is the graph Laplacian matrix which is defined as

L = DDT

see, e.g., (Rahmani et al. 2009).
Another way to define the graph Laplacian matrix is by using the adjacency
matrix and the degree matrix. The adjacency matrix A ∈ RN×N is defined as

A = aij ,

with aij defined as follows

aij =

{
1 if {ni, nj} ∈ B
0 otherwise.

see, e.g., (Bapat 1996). The degree matrix is defined by

Q =


deg(n1) 0 . . . 0

0 deg(n2) . . . 0
...

...
. . .

...
0 0 . . . deg(nk)

 ,

where deg(nk) denotes the number of neighbors of node k. The graph Laplacian
matrix then satisfies

L = Q−A

see, e.g., (Camlibel 2021).

For an undirected graph, one finds that the Laplacian matrix is symmetric.
When one considers a directed graph, a non-symmetric Laplacian matrix is ob-
tained (Dong and Qiu 2014). After studying (un)directed graphs and their
properties, the next section introduces Kirchhoff’s laws.

2.2 Kirchhoff’s Laws

Before deriving any mathematical model for a physical phenomenon, physical
laws need to be studied. In order to study mechanical systems, Newton’s laws
are used. In this paper, in which we want to study electrical circuits, two impor-
tant physical laws need to be taken into account: Kirchhoff’s Voltage Law and
Kirchhoff’s Current Law. In short, Kirchhoff’s Current Law states that the sum
of electric currents flowing from a node equals zero while Kirchhoff’s Voltage
Law states that all voltages around a closed path sum to zero (Nise 2020).

We start by noticing that Kirchhoff’s Laws follow directly from Fundamental
Laws, like the Law of Conservation of Energy. From Kirchhoff’s Laws and the
Fundamental Laws, it can be seen that neither voltages nor currents can get lost
in a circuit. Kirchhoff’s Laws show a simple and powerful tool to quantitatively
analyse the processes in an electrical circuit (Robbins and Miller 2012).

When one takes a look at Kirchhoff’s Voltage Law from a graph theoretical
perspective, the voltage law can be written as

For v ∈ Rm, ∃ p ∈ Rn s.t. v = DTp.
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Note that D is the incidence matrix which was defined in Section 2.1, v is the
vector of voltages across the branches. As such, the length of this vector equals
the number of branches and p is the vector of voltage potentials, which are
defined at the nodes. The length of this vector equals the number of nodes. In
the example in Figure 3, it can be seen that there are five voltages belonging to
the five branches. Each branch represents a basic algebraic element such as a
resistor or memristor, which will be studied in Section 2.4.

n1 n2

n3n4

v1, i1

v2, i2

v3, i3

v4, i4
v 5
, i 5

Figure 3: An undirected graph with an associated orientation with 4 Nodes
and 5 Measured Voltages and Currents.

For the example in Figure 3, from a graph theoretical perspective, the following
incidence matrix is given

D =


−1 0 0 1 0
1 1 0 0 1
0 −1 1 0 0
0 0 −1 −1 −1

 ,

From a graph theoretical perspective, the physical formula for the Kirchhoff’s
Current Law is given by

For i ∈ Rm, Di = 0,

where D is again the incidence matrix and i is the vector consisting of all n cur-
rents measured (Bretschneider and De Weille 2018). In the example in Figure 3,
it can be seen that also five currents belong to the five branches. But what
happens with Kirchhoff’s Current Law when there is another current incoming?
Take for example four grounded capacitors, an example of such an undirected
graph with an associated orientation can be found in Figure 4.
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n1 n2

n3n4

v1, i1

v2, i2

v3, i3

v4, i4
v 5
, i 5

j
1

j 2

j
3

j 4

Figure 4: An undirected graph with an associated orientation with 4 Nodes
and 4 Incoming Currents.

Note that for each node nk, there is an incoming current jk and hence it can be
seen that the Kirchhoff’s Current Law in such a case is given as

For i ∈ Rm and for j ∈ Rn, Di = j,

with D and i as above and j the vector consisting of all n incoming currents.

In this section, we concluded that Kirchhoff’s Laws consist of two different laws,
namely the Kirchhoff’s Current Law and the Kirchhoff’s Voltage Law. In the
next section, both memristors and capacitors are studied.

2.3 Memristors and capacitors

There are four basic algebraic elements for electrical circuits; resistors, mem-
ristors, capacitors and inductors. The mathematical representation for all four
elements can be found in Section 2.4. As the focus of this paper is mainly on
memristor-capacitor circuits, this section will give more insight in what these
two elements actually are and show their role within an electrical circuit.

A capacitor is a basic algebraic element that stores electrical energy in an electric
field. The capacitor is also know as a condensor or condensator. The effect of a
capacitor is known as the capacitance. In order to understand the capacitor, an
analogy of a water tank can be used. In this analogy, the flow of electric current
is compared to the flow of water out of a tank. The water tank represents the
capacitor and it will be charged by a battery, a pump, to fill it up. The amount
of water in the tank represents the amount of charge in the capacitor. The height
of the water above a certain reference point can be compared to the voltage to
which the capacitor is pumped up by the battery. Finally, the capacitance is
represented by the area of the tank. Note that a tall skinny tank can contain
the same amount of water as a shallow flat tank, but it holds it at a higher pres-
sure. This can be compared to a capacitor; a tall, skinny capacitor has a higher
voltage and lower capacitance than a shallow, flat capacitor. Another thing to
notice is, when a capacitor is charged by a battery, then one electrode of the
capacitor will be positively charged, while the other one will correspondingly
charged negatively which can be seen in Figure 5.
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Figure 5: A Capacitor Charged by a Battery.

The water flow analogy can also be used to understand a resistor. Note that
this knowledge is needed in order to understand how memristors work since a
memristor is a resistor with memory. When the valve in Figure 6 is opened, the
water inside runs out. Note that the valve is a resistor and a switch (Kaiser
2012). If the resistance is high and hence the opening of the valve is small, the
water runs slowly while when the resistance is low, the water runs more freely.
To conclude, the capacitor is the tank, the battery is the pump and the resistor
is given by the valve. This whole analogy can be found in Figure 6 (Brophy and
Schwartz 1998).

Figure 6: The Water Flow Analogy depicted for the capacitor, resistor
and memristor.

The name memristor is a contraction of memory resistor. As its name already
suggests, it can be regarded as a class of two-terminal resistive device. It shows
the behavior of a non-linear resistor and it shows volatile or non-volatile memory
properties. Volatile memory is memory that is lost when power is cut off, while
non-volatile memory remains stored in case the power is cut off (Pham, Volos,
and Kapitaniak 2021). Focussing on the water flow analogy, also a memristor
can be represented. The representation of the memristor is given by a sand
filter, which is used in water-purification plants. When contaminated water
flows through the sand filter, sediment clogs the pores of the filter. By this fact,
the resistance gradually increases. When this process is reversed, the sediment is
flushed out and hence the resistance is reduced. Note that the process described
is different than the valve described above since for the sand filter, the direction
of the flow controls the state of the device. At any given instant the resistance
of the sand filter is the same in both directions. At that point, the memristor,
too, is symmetric (Hayes 2011a). Although the water flow analogy gives some
intuition in how a component works, a more mathematical framework is needed.
This mathematical framework can be found in the next section.
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2.4 Basic algebraic elements

For a given electrical component, the corresponding relation between current
and voltage can be given, this is sometimes referred to as a constitutive relation.
These equations can be combined and rewritten in order to obtain mathematical
models of these basic algebraic elements. The four basic algebraic elements are
the resistor, the capacitor, the inductor and the memristor. These elements can
be described by Constitutive Relations, abbreviated as CR, that take the form
of a mathematical model.

First, the equations for the four basic algebraic elements will be explored. Let
us start with some notation: vk represents the voltage across a component on a
certain branch k, ik denotes the current through the component on the branch
k. Furthermore, the charge on the branch k is denoted by qk, while the flux on
a branch k is given by the symbol φk. When the time derivative of the charge is
taken, the current through the component is obtained, i.e. dqk(t)

dt = ik(t), while
the time derivative of the flux is denoted by the voltage across a component, so
dφk(t)

dt = vk(t) (W. K. Chen 2004).

Let us now explore the equations for the components. First, start with the
resistor. For the resistor, the constitutive relation is given by Ohm’s Law, i.e.,

vk(t) = Rik(t).

The constant R given in Ohm (Ω) denotes the resistance. Note that this is the
explicit form. In implicit form, one can write

fR(vk(t), ik(t)) = vk(t)−Rik(t) = 0.

Next is the capacitor. The constitutive relation in explicit form is given by

qk(t) = Cvk(t),

where the constant C is called the capacitance. This equation can be rewritten
in terms of vk(t) and ik(t). Observe that by taking the derivative of both sides
of this equation yields

dqk(t)

dt
=

d(Cvk(t))

dt

= C
d(vk(t))

dt
.

Note that dqk(t)
dt = ik(t) and thus

ik(t) = C
d(vk(t))

dt
.

The next basic element is the inductor. The equation for the inductor reads,

φk(t) = Lik(t).

The goal is again to rewrite this in a form consisting of vk(t) and ik(t). By
taking the derivative with respect to time, one obtains

dφ(t)

dt
=

d(Li(t))

dt

= L
di(t))

dt
.
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Note that dφk(t)
dt = vk(t) and hence,

vk(t) = L
d(ik(t))

dt
.

The constant L is called the inductance (Corinto, Forti, and Chua 2020).

The final basic algebraic element that is taken into consideration is the memris-
tor. The equation is given as,

φk(t) = Mqk(t).

After deriving this in a similar fashion as the resistor, the following is obtained

vk(t) = Mik(t).

The constant M is named the memristance (Hayes 2011b). From this, it can be
seen that linear memristor is just a resistor where the resistance R is replaced
by the memristance M . Therefore, memristors are always regarded as nonlinear
elements.

In order to describe the nonlinear relation between the flux and the charge for
the memristor, either q can be given by some nonlinear function g which depends
on φ or φ is denoted as some nonlinear function h which depends on q. These
nonlinear functions are respectively called flux-controlled and charge-controlled
representations. These representations are given by:{

q = g(φ)

φ = h(q)

When one describes a memristor, only one of these functions is needed. The
nonlinear relation chosen throughout this paper is q = g(φ). In the next chapter
the mathematical modelling together with partially solving the corresponding
equations analytically will be shown.
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3 Mathematical modeling

Within this section the network consisting of at least one memristor and at least
one capacitor is modelled. The parallel and series circuits of a memristor and a
capacitor are foundational building blocks for realistic memristive circuits and
hence the composite characteristic of memristor-capacitor, abbreviated as MC,
circuits have been studied due to their wide applications (L. Chen et al. 2019).
After the mathematical modeling has been done, the dynamics of the network
can be analyzed. The main question arises within learning via inputs. How does
collected memory change due to external input, or phrased more mathematically,
how does the state x change when the input u changes?

3.1 Derivation of equations

In this section, the main goal is to model an electrical circuit consisting of
memristors and capacitors. In the end, something of the form ẋ = f(x, u) should
be obtained where x represents the state and u represents the input. Note that
x will also contain the state of the memristor and thus represents memory. The
input u is described by current and voltage. Recall that by Kirchhoff’s Laws we
have the following two equations

j = Di Kirchhoff’s Current Law (KCL) and

DTp = v Kirchhoff’s Voltage Law (KVL)

Furthermore, remember from Section 2.2, the meaning for the following symbols
was given. Notice that n represents the number of nodes and that m represents
the number of branches.

Symbol Meaning

j n incoming currents
i m measured currents
p n measured potentials
v m measured voltages
D Incidence matrix

From Section 2.4, for the memristor, the following memristor law chosen is
q = g(φ). Furthermore note that the derivative of the charge is equal to the
current and the derivative of the flux is equal to the voltage. Hence,{

dq
dt = i
dφ
dt = v.
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Before doing the modeling, an important remark has to be made. We consider
a very specific class of circuits. We study circuits with at least one memristor
and a grounded capacitor attached to each node. An example of such a circuit
can be found in Figure 7.

Figure 7: Circuit with one memristor and
grounded capacitors attached to each node.

For these type of circuits, the following equation for the capacitor is derived,

C
dp

dt
= −j, with C representing the capacitance.

This equation holds since we consider circuits with grounded capacitors.

Note that by KCL we have, j = Di. Furthermore, by the equation for the
capacitor we have −C dp

dt = j and it is given that dq
dt = i. By substitution the

following can be obtained,

C
dp

dt
= −D

dq

dt
.

By the Chain Rule, dq
dt can be split up in the multiplication of two derivatives,

∂q
∂φ

∂φ
∂t . It is already known that ∂φ

∂t = v = DT p by Kirchhoff’s Voltage law.
Therefore,

C
dp

dt
= −D

∂q

∂φ

∂φ

∂t

= −D
∂q

∂φ
DT p =⇒

dp

dt
= −C−1D

∂g(φ)

∂φ
DT p.

This is just a nonlinear expression since the representation for the memristor is
given by q = g(φ). Hence, this gives something of the form ẋ = h(x) and thus,
the system can be represented in the following manner,

x =

[
p
φ

]
ẋ =

[
ṗ
φ̇

]
=

[
−C−1D ∂g(φ)

∂t DT 0
DT 0

] [
p
φ

]
.
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Note that the equation above is a derivation for a circuit without an input u.
Next, let us have a look at an circuit with an input u. An example of such an
input is when a current source is added to a circuit. An example of such a circuit
can be found in Figure 8.

Figure 8: Circuit with one memristor, one current source and
grounded capacitors attached to each node.

The next model that will be considered is a model where an external input u
is added. In the end, a system of the form ẋ = f(x, u) can be derived. Note
that we have by Kirchhoff’s Current Law that j = Di. When an input is added,
the incidence matrix can be split up in two parts, namely D = [Dm Ds]. Dm

collects the memristor branches, whereas Ds collects the branches on which
sources are located. Furthermore, the measured currents, i can be split up in
two parts. First the measured currents im are associated to the branches on
which memristors are located, whereas is are the currents associated to the
branches on which sources are located. Hence the KCL can therefore be defined
as j = Dmim +Dsis. Furthermore, the measured voltages, v can be split up in
two parts as well. First, the voltages associated to the branches on which mem-
ristors are located are given by vm. The voltages associated to the branches on
which the sources are located are given by vs. Hence the Kirchhoff’s Voltage
Law, ∃ p s.t. v = DT p, can be rewritten as,[

vm
vs

]
=

[
DT

m

DT
s

]
p.

for some p. A similar reasoning as the derivation for the mathematical model
without external input can be implemented in order to derive the mathematical
model for the electrical circuit with external input. Note that we can use the
following relations; j = Dmim+Dsis by Kirchhoff’s Current Law and −C dp

dt = j

by the equation derived for the capacitor and finally dqm
dt = im.

Note that after substituting the three last-mentioned relations in the KCL,
j = Dmim +Dsis, leads to

C
dp

dt
= −Dm

dqm
dt

−Ds
dqs
dt

.

By the chain rule, dqm
dt can be split up as dqm

dt = ∂qm
∂φm

∂φm

∂t .

Note that from Section 2.4 is(t) =
dqs
dt .

14



Since ∂φm

∂t = vm = DT
mp, we can obtain our final equation. Namely,

C
dp

dt
= −Dm

∂qm
∂φm

∂φm

∂t
−Dsis

= −Dm
∂qm
∂φm

DT
mp−Dsis.

By assuming that C is invertible and using the memristor law,

ṗ = −C−1Dm
∂g(φm)

∂φm
DT

mp− C−1Dsis.

Note that this gives something of the form ẋ = f(x, u), where the system can
be represented in the following manner where the input u therefore is chosen as
is,

x =

[
p
φ

]
ẋ =

[
ṗ
φ̇

]
=

[
−C−1Dm

∂g(φm)
∂t DT

m 0
DT

m 0

] [
p
φ

]
+

[
−C−1Ds

0

]
is.

3.2 Analytical solutions

In the previous section, two models were obtained, namely ẋ = h(x) and ẋ =
f(x, u). In this section, it is shown that after partially solving these two models
analytically, a reduction in state-space dimension will be obtained. These mod-
els only involve the state φm. After solving the model obtained in the previous
section partially analytically, these reduced models will be analyzed.

From the derivation of equations where no external inputs are considered, ẋ =
h(x), the following analytical solution can be computed.
Note that the equation derived in the previous section is given as,

C
dp

dt
= −D

dq

dt
.

By integrating this expression over an interval from a starting time τ = 0 till a
certain time τ = t, the following can be obtained∫ t

0
C
dp

dt
dt =

∫ t

0
−D

dq

dt
dt

C(p(t)− p(0)) = −D(q(t)− q(0))

By the memristor law, we have that q = g(φ), so

C(p(t)− p(0)) = −D(q(t)− q(0))

= −D(g(φ(t))− g(φ(0))).

By assuming that C is invertible, we obtain

p(t)− p(0) = −C−1D(g(φ(t))− g(φ(0))) =⇒
p(t) = p(0)− C−1D(g(φ(t))− g(φ(0))).
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Recall that dφ
dt = DT p, which leads to

dφ

dt
= DT p(0)−DTC−1D(g(φ(t))− g(φ(0))),

which is the partially analytical solution to our ordinary differential equation
with no external input. This reduces to a model that only involves the state φ.

Note that the analytical solution of ẋ = f(x, u), for the electrical circuit with
external inputs can be computed in a very similar fashion. Although there is
no physical charge for the branches associated to the current source, we use the
property dqs

dt = is as derived above in order to simplify our equation. In this
case, we start from,

C
dp

dt
= −Dm

dqm
dt

−Ds
dqs
dt

by Kirchhoff’s Current Law. By taking the integrals from a time τ = 0 till a
certain time τ = t, we have,

C

∫ t

0

dp

dt
dt = −Dm

∫ t

0

dqm
dt

dt−Ds

∫ t

0

dqs
dt

dt,

which leads to,

C(p(t)− p(0)) = −Dm(qm(t)− qm(0))−Ds(qs(t)− qs(0))

After again using the memristor law q = g(φ),

C(p(t)− p(0)) = −Dm(g(φ(t))− g(φ(0)))−Ds(qs(t)− qs(0)).

Again, by assuming C is invertible,

p(t)− p(0) = −C−1Dm(g(φ(t))− g(φ(0)))− C−1Ds(qs(t)− qs(0)) =⇒
p(t) = p(0)− C−1Dm(g(φ(t))− g(φ(0)))− C−1Ds(qs(t)− qs(0)).

By substituting the Kirchhoff’s Voltage Law, dφm

dt = DT
mp,

dφm

dt
= DT

mp(0)−DT
mC−1Dm(g(φm(t))− g(φm(0)))−DT

mC−1Ds(qs(t)− qs(0)).

Note that in this case, we obtain indeed the solution in the form ẋ = f(x, u)
with the state x = φm and the input u = qs.

After deriving the analytical solution, the simpler model only involves the state
φm. After obtaining these easier models, numerical modeling will be done to
study the equation φ̇m = f(φm, qs). In the next section, first conditions will be
described to the different parts of the function f(φm, qs), next the function will
be numerically implemented with the use of build-in functions of MATLAB and
finally analysis of the results will be done.
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4 Numerical modeling

In order to study the behavior of the electrical circuits with memristors and
capacitors, numerical methods can be used. From Section 3.2, it can be seen
that the ordinary differential equation that will be studied is the following:

dφm

dt
= DT

mp(0)−DT
mC−1Dm(g(φm(t))− g(φm(0)))−DT

mC−1Ds(qs(t)− qs(0))

Therefore, we are interested in the change of flux over the memristor over time.
Note that this change depends on the incidence matrices, namely the one of the
memristor Dm and the one of the current sources Ds. Furthermore it depends
on the constitutive relation for the memristor which will be discussed in this
section. Furthermore, the matrix C represents the capacitances and finally qs
represents the charge across the current source. In this section, first the choice
for the variables on which the ODE depends will be discussed, next a numerical
method will be applied and finally a mathematical foundation for the obtained
results will be shown.

4.1 Variables

Capacitance Matrix C
Note that the capacitance matrix is a diagonal matrix containing the capac-
itances on the diagonal. Each capacitance is measured on a conductor. For
example, for the first capacitor, we have a capacitance α and this is denoted on
position (1,1) in the capacitance matrix. The second conductor had a capaci-
tance β and this is denoted on position (2,2) in the capacitance matrix. This
procedure is repeated till all capacitances are contained in the matrix C. Note
that for simplicity within this paper, all capacitances are set to 1 and hence C
is equal to the identity matrix.

Memristor Constitutive Relation
In order to study the behavior of the memristor, the function of the memristor
has to be determined. For the memristor we want a certain function that has
two properties. First of all this function must be nonlinear. Furthermore, this
function must be monotone meaning that it is either decreasing or increasing
(Abbott 2012), so the function must look like the function in Figure 9.
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Figure 9: The function chosen for the memristor should be a function
that looks like this figure.

The function chosen within the code is

gk(φk) = φk + φ3
k.

If the electrical circuit consists of more than one memristor, the function gk(φk)
depends on different values for φk, since each φk denotes the flux of a certain
memristor and hence g(φ) can be denoted as,

g(φ) =


g1(φ1)
g2(φ2)

...
gl(φl)

 ,

where l denotes the total number of branches containing a memristor.

Function of the charge
The function of the charge across the current source is a step function. It is 0
till a certain time τ and will increase to a certain height A which represents the
charge when the time τ is reached. This can be mathematically rewritten as,{

qs(t) = 0 t < τ

qs(t) = A t ≥ τ.
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4.2 Numerical implementation

After denoting the properties of the capacitance matrix and the two functions,
three examples will be numerically implemented. The first circuit is depicted in
the following representation:

Figure 10: The first circuit containing two capacitors, one current source
and one memristor where the direction is clockwise.

Note that for this circuit we have the following matrices:

Dm =

[
1
−1

]
Ds =

[
1
−1

]
C =

[
c1 0
0 c2

]
=

[
1 0
0 1

]
Furthermore, we set τ = 5 and A = 1 for the step function. Our initial conditions
are φm(0) = 0 and qs(0) = 0. MATLAB code used can be found in Section 8.
From this code, the solution to the dynamics is given in Figure 11. Note that
from this figure the voltage across the memristor, φ̇m, and the solution, denoted
by the flux, φm is obtained,
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Figure 11: The flux and voltage of one memristor, two capacitors and one
current source.

From this figure it can be seen that when the time is equal to 5, the flux is not
constant anymore. This can be explained from the fact that, when t ≥ 5, qs = 1
instead of 0. Note that this means that the charge, qs, was zero all the time
and hence we first considered no input. But when we reached time τ = 5, the
input causes a decrease of the flux which can be explained from the way the input
matrix B is defined. Note that we have a system of the form φ̇m = Ag(φm)+Bqs.
From Section 3, the input matrix B is given as B = −DT

mC−1Ds, with Dm, Ds

and C as above. From this example, the input matrix B reads,

B = −DT
mC−1Ds

= −2.

Since B = −2, when there is an positive input qs, Bqs will be negative. This
can be seen in the figure as a decrease of the flux. Note that the voltage is
the derivative of the flux. This can be seen from the figure as well. Till time
t = 5, there is no change and hence the derivative is zero. When t ≥ 5, first the
decrease of flux is increasing which can be seen by the fact that the voltage is
negative and decreasing. Next, the decrease flux is decreasing, from the figure,
the voltage is still negative but increasing. Around t = 7, the flux is stable
around φm = 0.68 and hence there is no change and thus the derivative is equal
to 0.

20



The second circuit has two memristors instead of one and contains three capac-
itors instead of two.

Figure 12: The second circuit containing three capacitors, one current source
and two memristors where the direction is clockwise.

Note that for this circuit we have the following matrices:

Dm =

 1 0
−1 1
0 −1

 Ds =

 1
−1
0

 C =

c1 0 0
0 c2 0
0 0 c3

 =

1 0 0
0 1 0
0 0 1


Again, we set τ = 5 and A = 1 for the input function. The initial conditions are
again defined as φm(0) = 0 and qs(0) = 0. This gives the following result.

Figure 13: The flux and voltage of two memristors, three capacitors and one
current source.
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Again, after time t = 5, the flux is not constant anymore. Let us again consider
the matrix B. In this case,

B = −DT
mC−1Ds

=

[
−2
1

]
.

This matrix B explains the behavior of the flux in the figure above. When the
time t = 5 is reached, the input is taken into account. In this case,

Bqs =

[
−2
1

]
qs

=

[
−2qs
1qs

]
.

For this second memristor, the input is given as qs. The input is positive if qs
is positive. This can be seen in the figure as an increase of flux when the input
is considered. The behavior of the voltage can be explained in a similar fashion
as in the previous example.

22



The third and final circuit consists of three memristors and contains four capac-
itors. Still, there is one current source within this circuit.

Figure 14: The third circuit containing four capacitors, one current source
and three memristors where the direction is clockwise.

Note that for this circuit we have the following matrices:

Dm =


1 0 0
−1 1 0
0 −1 1
0 0 −1

 Ds =


1
−1
0
0

 C =


c1 0 0 0
0 c2 0 0
0 0 c3 0
0 0 0 c4

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



For the input function, the chosen value for τ is five and for A it is one. The
initial conditions are φm(0) = 0 and qs(0) = 0. This gives the following result.

Figure 15: The flux and voltage of three memristors, four capacitors and one current source.
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Note that in the third case, the input matrix B is given as,

B = −DT
mC−1Ds

=

−2
1
0

 .

In order to study the input, we look again at Bqs, which is in this case,

Bqs =

−2
1
0

 qs

=

−2qs
1qs
0

 .

For this third memristor, there is on immediate effect of the input. From the
figure it can be seen that the flux is changing a little bit. This can be explained
from the fact, when t ≥ 5, also the state matrix A plays a role. Note that the
current source is only attached to the first two nodes. Hence, the input matrix
B does not affect this graph.

If more memristors will be added in the way that is done in Figure 12 and
14, the new fluxes all behave in a similar fashion as φ3 as can be seen in Fig-
ure 15. When new sources are added the fluxes will change. In this chapter,
numerical results and the explanation of these results were discussed. The next
chapter will elaborate on the explanation and analysis of the results.
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5 Analysis

In this chapter, first the general notion of stability for linear systems will be
given. After defining stability for linear systems it will be expanded to defining
stability for nonlinear systems. After presenting the definition the stability, it
will be applied to the examples in the previous section. Finally, the impact of
the change of the input qs on the state φm will be studied.

5.1 Stability

The first topic that will be studied is the stability of the nonlinear system. If a
system is stable, a small perturbation does not have a too big influence on the
system. Stability is the first requirement for control systems. Before being able
to define the theorem for the stability, some definitions will be given.
First of all, note that we consider systems that are defined in the following way,{

ẋ = Ax+Bu

y = Cx+Du

where x represents the state, u the input and y the output. The matrix A is
called the system matrix, B is called the input matrix, C is the output matrix
and finally D is the feedthrough matrix. The spectrum of A, denoted by σ(A)
consists of all eigenvalues of A, where each eigenvalue is denoted by λi, with
i = 1, ..., n, meaning that there are in total n eigenvalues. The following notion
of stability for linear systems can be defined (Besselink 2020).

Definition 5.1. A linear system is stable if for all eigenvalues in the spectrum
of A, the real part of these eigenvalues is located in the left-hand side of the
complex plane, i.e. ∀ λi ∈ σ(A), Re(λi) ≤ 0 for i = 1, ..., n.

Note that the equation studied is the following,

dφm

dt
= DT

mp(0)−DT
mC−1Dm(g(φm(t))− g(φm(0)))−DT

mC−1Ds(qs(t)− qs(0)).

This equation is nonlinear since the ordinary differential equation depends on
the nonlinear function g(φm). Hence, in order to say something about stabil-
ity, a linearization of the system around equilibrium points should be considered.

In order to find equilibrium points, the equation ˙̄x = f(x̄, ū) = (0, 0) needs
to be studied (Kulakowski, Gardner, and Shearer 2007). First note the case
where no input is considered, so ū = 0. In this case the equation that needs to
be solved is ˙̄x = f(x̄, 0) = 0. The equation considered is,

dφm

dt
= DT

mp(0)−DT
mC−1Dm(g(φm(t))− g(φm(0)))−DT

mC−1Ds(qs(t)− qs(0)).

When no input is considered, u = qs(t) = 0 and hence the equation can be
simplified to

dφm

dt
= DT

mp(0)−DT
mC−1Dm(g(φm(t))− g(φm(0))).

In order to find the equilibrium points, we need to solve

DT
mp(0)−DT

mC−1Dm(g(φm)− g(φm(0))) = 0.
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Note that this is obtained if

DT
mp(0) = DT

mC−1Dm(g(φm)− g(φm(0))).

In order to find the equilibrium points, first the initial conditions need to be
defined. For p(0), the condition chosen is p(0) = 0. Also for φm(0), the initial
condition is equal to zero. Now, the build-in function fzero of MATLAB can be
used. This can be found in Section 8. The equilibrium point found after using
this function is the point f(x̄, ū) = (0, 0).

After determining the equilibrium point, the following definition for a nonlinear
system will be applied (Nise 2020).

Definition 5.2. The equilibrium point (x̄, ū) of a nonlinear system is asymp-
totically stable if for all eigenvalues in the spectrum of A, the real part of these
eigenvalues is located in the left-hand side of the complex plane, i.e. ∀ λi ∈ σ(A),
Re(λi) < 0 for i = 1, ..., n.

Note that A denotes the linearization of the system matrix around the equilib-
rium point and hence it is given as (Besselink 2020),

A =
∂f

∂x
(x, u)|(x,u)

=
∂f

∂x
(x, u)|(0,0).

With the initial conditions given, p(0) = 0 and φm(0) = 0, and the fact that the
system is chosen to be without input, the following simplified equation can be
obtained,

f(φm, 0) = −DT
mC−1Dmg(φm).

From this matrix A can be defined,

A =
∂(−DT

mC−1Dmg(φm))

∂φm
|φm=0

= −DT
mC−1Dm

∂g(φm)

∂φm
|φm=0.

Note that from Section 4.1, if the electrical circuit consists of at least one mem-
ristor, the following function for g(φm(t)) is defined

g(φm(t)) =


g1(φ1(t))
g2(φ2(t))

...
gl(φl(t))

 =


φ1(t) + φ1(t)

3

φ2(t) + φ2(t)
3

...
φl(t) + φl(t)

3

 .

Where l denotes the total number of branches containing memristors. By taking
the partial derivatives, we need to consider the Jacobian and hence obtain,

∂g(φm)

∂φm
=


1 + 3φ1(t)

2 0 . . . 0
0 1 + 3φ2(t)

2 . . . 0
...

...
. . .

...
0 0 . . . 1 + 3φl(t)

2
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If the derivative is now evaluated at the equilibrium point φm = 0,

∂g(φm)

∂φm
|φm=0 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 = I

Now, the matrix A can be denoted in its final terms,

A = −DT
mC−1Dm

∂g(φm)

∂φm
|φm=0

= −DT
mC−1DmI

= −DT
mC−1Dm.

5.2 Stability in numerical examples

From the previous section, it can be concluded that a nonlinear system is asymp-
totically stable around an equilibrium point if for all eigenvalues in the spectrum
of A, the real part of these eigenvalues is located in the left-hand side of the com-
plex plane. From the previous section it is found that A = −DT

mC−1Dm. Note
that for the first example, the following incidence matrix for the memristor and
the following capacitance matrix is given

Dm =

[
−1
1

]
C =

[
1 0
0 1

]
.

Note that the following is obtained for A,

A = −DT
mC−1Dm

= −
[
−1 1

] [1 0
0 1

] [
−1
1

]
= −2.

The only eigenvalue of this matrix is λ = −2, since the real part is on the left-
hand side of the complex plane, the solution is asymptotically stable around the
equilibrium point (0, 0).

Next, consider the second example with two memristors. The following inci-
dence and capacitance matrix are given:

Dm =

 1 0
−1 1
0 −1

 C =

1 0 0
0 1 0
0 0 1


In this case, for A, the following can be derived,

A = −DT
mC−1Dm

= −
[
1 −1 0
0 1 −1

]1 0 0
0 1 0
0 0 1

 1 0
−1 1
0 −1


=

[
−2 1
1 −2

]
.
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In order to study the eigenvalues, we want to solve the equation det(Ā−λI) = 0.
After rewriting,

det(Ā− λI) = det

([
−2− λ 1

1 −2− λ

])
= λ2 + 4λ+ 3

= (λ+ 1)(λ+ 3).

From det(Ā − λI) = (λ + 1)(λ + 3) = 0, it can be concluded that the eigen-
values of A are λ1 = −1 and λ2 = −3. Since these are both on the left-hand
side, also this system is asymptotically stable around the equilibrium point (0, 0).

The final example with three memristors has the following incidence and ca-
pacitance matrices:

Dm =


1 0 0
−1 1 0
0 −1 1
0 0 −1

 C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


For A, we have,

A = −DT
mC−1Dm

=

1 −1 0 0
0 1 −1 0
0 0 1 −1



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0
−1 1 0
0 −1 1
0 0 −1


=

 2 −1 0
−1 2 −1
0 −1 2

 .

In order to find the eigenvalues,the equation det(Ā − λI) = 0 can be solved.
Another way to find the eigenvalues is to use the build-in function of MATLAB
called eig(A) which returns the eigenvalues of a certain matrix A. In particular,
we compute eig(−DT

mC−1Dm) which gives,

eig

 2 −1 0
−1 2 −1
0 −1 2

 .

For this equation, three eigenvalues are found. Namely λ1 = −0.5858, λ2 = −2
and finally, λ3 = −3.4142. As all these eigenvalues are in the left-hand side of the
complex plane, also this system is asymptotically stable around the equilibrium
point (0, 0).

5.3 Change of charge

The next topic that will be studied is the influence of the change over the current
source. We are interested in the change of flux over the memristor(s) when this
charge changes, i.e. when qs changes, what is the influence on φm? Note that
the charge is chosen as the input in the system. Since there is a system of
the form φ̇m = Ag(φm) + Bqs, the change of the solution can be explained by
two matrices. First, due to the state matrix A, various memristors will interact.
Furthermore, the way B is defined will explain the change of the solution. When
one looks at Section 4, it can be seen that B = −DT

mC−1Ds.
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Consider the third example, for which we have the 4 nodes which can be seen
in Figure 16.

Figure 16: The Third Example Given with the 4 Nodes Belonging To This Circuit.

For this example, the following incidence matrices are given,

Dm =


1 0 0
−1 1 0
0 −1 1
0 0 −1

 Ds =


−1
1
0
0

 C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


In this case, B is equal to,

B = −DT
mC−1Ds

=

−2
1
0

 .

The result of interest is the change of the flux over the memristors, φm when
the capacitor voltages, qs change. Let us first consider an increase of the charge
of the source. Assume at t = 5, the charge qs is equal to 5 instead of 1.
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Figure 17: Flux with qs = 5 Figure 18: Flux with qs = 1

From the figure above it can be seen that when the charge increases and so does
the input, the flux has a larger amplitude in comparison to when one looks at
the original charge. This can be explained from the fact that

Bqs = −DT
mC−1Dsqs

=

−2qs
qs
0

 .

And hence, when qs increases to 5, one gets the matrix

−10
5
0

 in stead of

−2
1
0

.
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The next change to be considered is a decrease of the charge of the source. Let
us take for example qs = 0.1 instead of qs = 1. The following figure is obtained:

Figure 19: Flux with qs = 0.1 Figure 20: Flux with qs = 1

From the figure, when the charge decreases, so does the influence of the charge
on the flux. It can be explained in a similar fashion as above as we now chose

qs = 0.1, the following matrix for Bqs is obtained

−0.2
0.1
0

 instead of Bqs =−2
1
0

.
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Finally, consider a negative charge, so let qs = −1. Then the following graphs
are obtained:

Figure 21: Flux with qs = −1 Figure 22: Flux with qs = 1

As one can mention, there is now a reflection in the x-axis. When considering
the vector Bqs this can be explained since there is a change of signs for each

element of the vector. So now we have, Bqs =

 2
−1
0

 instead of Bqs =

−2
1
0

.
In this chapter, some analytical properties were derived. First of all, the defini-
tion of asymptotically stability was studied, next the stability of the memristor-
capacitor networks of Chapter 4 was analyzed and finally the change of the state
when the input changes has been considered. The next chapter will give a brief
conclusion on all topics studied throughout this research.
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6 Conclusion

Throughout this paper memristive circuits and their modeling, solutions and
analysis have been studied. First, the theoretical framework was given. Within
this framework, first some graph theory was discussed. Memristive circuits can
be represented as undirected graphs with an associated orientation. From these
graphs, incidence matrices can be derived. These incidence matrices can be used
in order to derive the mathematics needed to study the properties of the cir-
cuits. After defining incidence matrices, Kirchhoff’s Laws were given. First the
general notion of these laws has been shown and thereafter, the mathematical
representation, consisting of incidence matrices, has been stated. After stat-
ing Kirchhoff’s Laws, memristors and capacitors were discussed since the focus
of this paper was on memristor-capacitor circuits. Thereafter, the constitutive
relations for the resistor and capacitor were given. The theoretical framework
concludes with the fact that a linear memristor is nothing else than a linear
resistor and hence in order to study the memristor, a nonlinear approach should
be taken. Therefore, the flux-controlled memristor law was obtained.

After deriving the theoretical framework, mathematical modeling has been done.
First the modeling for the system without an input u is shown. After modeling
a circuit without external input, next the circuit with external input is consid-
ered. After obtaining the models, the ordinary differential equations are solved
partially in order to obtain a reduction in the state-space dimension. This has
been shown for both the circuits; with and without external input.

When these models and its partially analytical solution has been obtained, a
numerical implementation was considered. First, the capacitance matrix, the
function for the memristor and the function for the charge needed to be defined.
The capacitance matrix is a diagonal matrix with the capacitances on its diag-
onal. The function for the memristor must be monotone and nonlinear and the
function for the charge is a step function. By using ODE45, the build-in func-
tion of MATLAB, the ODE is solved for three examples. These three circuits
consists of one current source and of one, two or three memristors. Both the
state matrix A and the input matrix explain the behaviour of the three graphs
of both the flux and the voltage.

After obtaining the numerical results, a further explanation of the obtained
results is shown in the analysis section. First the definition of stability is in-
vestigated. The equilibrium point (x̄, ū) of a nonlinear system is asymptotically
stable if the real part of the eigenvalues in the spectrum of A lie in the left-hand
side of the complex plane. Where A denotes the linearization of the system ma-
trix around the equilibrium point. By analytical derivation and making use of
the found equilibrium point, it has been shown that for all these three examples
the equilibrium point (0, 0) of the nonlinear systems is asymptotically stable.
Finally, the change of charge is studied. When the charge considered is higher,
the flux has a larger amplitude than when one compares it with the original
charge. On the other side, when the charge considered is lower, the flux has a
smaller amplitude compared to the original charge. The last change considered
is to add a negative charge in stead of a positive charge. From this, a reflec-
tion in the x-axis was obtained. All these three changes has been explained from
the way the input matrix B is defined. With this section, the report is concluded.
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After denoting all the results, some questions still arise. One question within
the study of capacitor-memristor networks that for example arises is: What can
be said about equilibrium points when one changes the values for A or the initial
conditions p0 and q0? Another topic of interest are electrical circuits with more
current sources. This paper focuses on electrical circuits with at least one mem-
ristor but with only one current source. What can be said about the modeling
and analysis when more current sources are added? Note that throughout this
research only a very specific type of circuits are studied, namely the circuits
containing of memristors with a capacitor attached to each node. What can
be said about the modeling and analysis of other types of circuits and how can
these circuits be used in order to study the field of cognitive computing? These
questions can be studied in further research.
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8 Appendix

8.1 Functions

Function of the memristor
gflux.m

1 f unc t i on gphi = g f l ux ( phi )
2 gphi = phi+(phi ) . ˆ ( 3 ) ;
3 end

Ordinary Differential Equation
ODEphi.m

1 %Input
2 %Dm Inc idence matrix o f memristor
3 %Ds Inc idence matrix o f source
4 %phi Function o f f l u x over memristor
5 %gf lux Monotone , non l i n ea r func t i on depending on

phi
6 %C Capacitance matrix
7 %qs Step funct i on o f charge by the source
8

9 %I n i t i a l c ond i t i on s
10 %p0 Poten t i a l at t=0
11 %phi0 Flux at at t=0
12

13 %OUTPUT
14 %f Change o f f l u x with r e sp e c t to t time
15

16 f unc t i on f=ODEphi(Dm, Ds , C, p0 , phi , phi0 , qs , qs0 )
17 f=−Dm’∗C’∗Dm∗ g f l ux ( phi )+Dm’∗ p0+Dm’∗C’∗Dm∗ g f l ux ( phi0 )−Dm’∗

C’∗Ds∗( qs−qs0 ) ;
18 end

Ordinary Differential Equation without input
ODEphiwithoutinput.m

1 f unc t i on f=ODEphiwithoutinput ( phi )
2 Dm = [1 ; −1 ] ; % Inc idence matrix o f the memristor
3 C = [1 0 ; 0 1 ] ; % Capacitance matrix
4 phi0 = 0 ; % Flux at t=0
5 p0 = [ 0 ; 0 ] ; % Poten t i a l at t=0
6 f=−Dm’∗C’∗Dm∗ g f l ux ( phi )+Dm’∗ p0+Dm’∗C’∗Dm∗ g f l ux ( phi0 ) ;
7 end
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8.2 ODE solvers

Solve ODE with one memristor
ODEsolver.m

1 c l o s e a l l
2 %DEFINING PARAMETERS
3 A = 1 ; % Pulse at t=tau
4 tau = 5 ; % Time where pu l s e occurs
5 Dm = [1 ; −1 ] ; % Inc idence matrix o f the memristor
6 Ds = [1 ; −1 ] ; % Inc idence matrix o f the source
7 C = [1 0 ; 0 1 ] ; % Matrix c o n s i s t i n g o f capac i t ance s
8

9

10 %INITIAL CONDITIONS
11 p0 = [ 0 ; 0 ] ; % Poten t i a l at t=0
12 phi0 = 0 ; % Flux at t=0
13

14 %Solv ing ODE f o r t<5
15 qs = 0 ;
16 tspan = [0 5 ] ;
17 [ t1 , phi1 ] = ode45 (@( t , phi ) ODEphi(Dm, Ds , C, p0 , phi ,

phi0 , qs , qs0 ) , tspan , phi0 ) ;
18

19 %Solv ing ODE f o r t>=5
20 qs = 1 ;
21 tspan = [5 1 0 ] ;
22 [ t2 , phi2 ] = ode45 (@( t , phi ) ODEphi(Dm, Ds , C, p0 , phi ,

phi0 , qs , qs0 ) , tspan , phi0 ) ;
23

24 %Combining both ODE’ s
25 phi = [ phi1 ; phi2 ] ;
26 t = [ t1 ; t2 ] ;
27

28 %Def in ing vo l t ag e s f o r t<5
29 qs=0;
30 y1 = ODEphi(Dm, Ds , C, p0 , phi1 , phi0 , qs , qs0 ) ;
31 %Def in ing vo l t ag e s f o r t=>5
32 qs=1;
33 y2 = ODEphi(Dm, Ds , C, p0 , phi2 , phi0 , qs , qs0 ) ;
34

35 %Combining both vo l t ag e s
36 y = [ y1 ; y2 ] ;
37

38 %Plot s o l u t i o n s
39 f i g u r e ;
40 subplot ( 1 , 2 , 1 )
41 p lo t ( t , phi )
42 t i t l e ( ’ Flux over time ’ )
43 x l ab e l ( ’ t ’ )
44 y l ab e l ( ’ ˆ\ phi ’ )
45 subplot ( 1 , 2 , 2 )
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46 p lo t ( t , y )
47 t i t l e ( ’ Voltage over time ’ )
48 x l ab e l ( ’ t ’ )
49 y l ab e l ( ’ ˆ{d\phi }/ {dt} ’ )
50

51 %Finding roo t s
52 fun = @ODEphiwithoutinput ;
53 x = f z e r o ( fun , phi0 ) ;

Solve ODE with two memristors
ODEsolver2D.m

1 c l o s e a l l
2 %DEFINING PARAMETERS
3 A = 1 ; % Pulse at t=tau
4 tau = 5 ; % Time where pu l s e occurs
5 Dm = [1 0 ; −1 1 ; 0 −1]; % Inc idence matrix o f the

memristor
6 Ds = [1 ; −1 ; 0 ] ; % Inc idence matrix o f the

source
7 C = [1 0 0 ; 0 1 0 ; 0 0 1 ] ; %Matrix c o n s i s t i n g o f

capac i t ance s
8

9 %INITIAL CONDITIONS
10 p0 = [ 0 ; 0 ; 0 ] ; % Pot en t i a l at t=0
11 phi0 = [ 0 ; 0 ] ; % Flux at t=0
12

13 %Solv ing ODE f o r t<5
14 qs = 0 ;
15 tspan = [0 5 ] ;
16 [ t1 , phi1 ] = ode45 (@( t , phi ) ODEphi(Dm, Ds , C, p0 , phi ,

phi0 , qs , qs0 ) , tspan , phi0 ) ;
17

18 %Solv ing ODE f o r t>=5
19 qs = 1 ;
20 tspan = [5 1 0 ] ;
21 [ t2 , phi2 ] = ode45 (@( t , phi ) ODEphi(Dm, Ds , C, p0 , phi ,

phi0 , qs , qs0 ) , tspan , phi0 ) ;
22

23 %Combining both ODE’ s
24 phi = [ phi1 ; phi2 ] ;
25 t = [ t1 ; t2 ] ;
26

27 %Def in ing vo l t ag e s f o r t<5
28 qs=0;
29 y1 = ODEphi(Dm, Ds , C, p0 , phi1 ’ , phi0 , qs , qs0 ) ;
30 %Def in ing vo l t ag e s f o r t=>5
31 qs=1;
32 y2 = ODEphi(Dm, Ds , C, p0 , phi2 ’ , phi0 , qs , qs0 ) ;
33

34 %Combining both vo l t ag e s
35 y = [ y1 , y2 ] ;
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36

37 %Plot s o l u t i o n s
38 f i g u r e ;
39 subplot ( 1 , 2 , 1 )
40 p lo t ( t , phi ( : , 1 ) )
41 hold on
42 p lo t ( t , phi ( : , 2 ) )
43 l egend ( ’ \ phi 1 ’ , ’ \ phi 2 ’ )
44 t i t l e ( ’ Flux over time ’ )
45 x l ab e l ( ’ t ’ )
46 y l ab e l ( ’ ˆ\ phi ’ )
47 subplot ( 1 , 2 , 2 )
48 p lo t ( t , y ( 1 , : ) )
49 hold on
50 p lo t ( t , y ( 2 , : ) )
51 l egend ( ’ {d\ phi 1 }/{dt} ’ , ’ {d\ phi 2 }/{dt} ’ )
52 t i t l e ( ’ Voltage over time ’ )
53 x l ab e l ( ’ t ’ )
54 y l ab e l ( ’ ˆ{d\phi }/ {dt} ’ )

Solve ODE with three memristors
ODEsolver3D.m

1 c l o s e a l l
2 %DEFINING PARAMETERS
3 A = 1 ; % Pulse at t=

tau
4 tau = 5 ; % Time where

pu l s e occurs
5 Dm = [1 0 0 ; −1 1 0 ; 0 −1 0 ; 0 0 −1]; % Inc idence

matrix o f the memristor
6 Ds = [1 ; −1 ; 0 ; 0 ] ; % Inc idence

matrix o f the source
7 C = [1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 0 0 0 1 ] ; % Matrix

c o n s i s t i n g o f capac i t ance s
8

9 %INITIAL CONDITIONS
10 p0 = [ 0 ; 0 ; 0 ; 0 ] ; % Pot en t i a l at t=0
11 phi0 = [ 0 ; 0 ; 0 ] ; % Flux at t=0
12

13 %Solv ing ODE f o r t<5
14 qs = 0 ;
15 tspan = [0 5 ] ;
16 [ t1 , phi1 ] = ode45 (@( t , phi ) ODEphi(Dm, Ds , C, p0 , phi ,

phi0 , qs , qs0 ) , tspan , phi0 ) ;
17

18 %Solv ing ODE f o r t>=5
19 qs = 1 ;
20 tspan = [5 1 0 ] ;
21 [ t2 , phi2 ] = ode45 (@( t , phi ) ODEphi(Dm, Ds , C, p0 , phi ,

phi0 , qs , qs0 ) , tspan , phi0 ) ;
22
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23 %Combining both ODE’ s
24 phi = [ phi1 ; phi2 ] ;
25 t = [ t1 ; t2 ] ;
26

27 %Def in ing vo l t ag e s f o r t<5
28 qs=0;
29 y1 = ODEphi(Dm, Ds , C, p0 , phi1 ’ , phi0 , qs , qs0 ) ;
30 %Def in ing vo l t ag e s f o r t=>5
31 qs=1;
32 y2 = ODEphi(Dm, Ds , C, p0 , phi2 ’ , phi0 , qs , qs0 ) ;
33

34 %Combining both vo l t ag e s
35 y = [ y1 , y2 ] ;
36

37 %Plot s o l u t i o n s
38 f i g u r e ;
39 subplot ( 1 , 2 , 1 )
40 p lo t ( t , phi ( : , 1 ) )
41 hold on
42 p lo t ( t , phi ( : , 2 ) )
43 hold on
44 p lo t ( t , phi ( : , 3 ) )
45 l egend ( ’ \ phi 1 ’ , ’ \ phi 2 ’ , ’ \ phi 3 ’ )
46 t i t l e ( ’ Flux over time ’ )
47 x l ab e l ( ’ t ’ )
48 y l ab e l ( ’ ˆ\ phi ’ )
49 subplot ( 1 , 2 , 2 )
50 p lo t ( t , y ( 1 , : ) )
51 hold on
52 p lo t ( t , y ( 2 , : ) )
53 hold on
54 p lo t ( t , y ( 3 , : ) )
55 l egend ( ’ {d\ phi 1 }/{dt} ’ , ’ {d\ phi 2 }/{dt} ’ , ’ {d\ phi 3 }/{dt

} ’ )
56 t i t l e ( ’ Voltage over time ’ )
57 x l ab e l ( ’ t ’ )
58 y l ab e l ( ’ ˆ{d\phi }/ {dt} ’ )
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